blob: 9ee2e2e999a295950c89f8ba89c193f8494fdd2c [file] [log] [blame]
Patrice Chotard4c3aebd2017-09-13 18:00:06 +02001/*
Patrice Chotard3bc599c2017-10-23 09:53:58 +02002 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
3 * Author(s): Patrice Chotard, <patrice.chotard@st.com> for STMicroelectronics.
Patrice Chotard4c3aebd2017-09-13 18:00:06 +02004 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8#include <common.h>
9#include <clk-uclass.h>
10#include <dm.h>
11#include <regmap.h>
12#include <syscon.h>
13#include <asm/io.h>
14#include <dm/root.h>
15
16#include <dt-bindings/clock/stm32h7-clks.h>
17
18DECLARE_GLOBAL_DATA_PTR;
19
20/* RCC CR specific definitions */
21#define RCC_CR_HSION BIT(0)
22#define RCC_CR_HSIRDY BIT(2)
23
24#define RCC_CR_HSEON BIT(16)
25#define RCC_CR_HSERDY BIT(17)
26#define RCC_CR_HSEBYP BIT(18)
27#define RCC_CR_PLL1ON BIT(24)
28#define RCC_CR_PLL1RDY BIT(25)
29
30#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
31#define RCC_CR_HSIDIV_SHIFT 3
32
33#define RCC_CFGR_SW_MASK GENMASK(2, 0)
34#define RCC_CFGR_SW_HSI 0
35#define RCC_CFGR_SW_CSI 1
36#define RCC_CFGR_SW_HSE 2
37#define RCC_CFGR_SW_PLL1 3
Patrice Chotardb4367942018-02-07 10:44:47 +010038#define RCC_CFGR_TIMPRE BIT(15)
Patrice Chotard4c3aebd2017-09-13 18:00:06 +020039
40#define RCC_PLLCKSELR_PLLSRC_HSI 0
41#define RCC_PLLCKSELR_PLLSRC_CSI 1
42#define RCC_PLLCKSELR_PLLSRC_HSE 2
43#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
44
45#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
46
47#define RCC_PLLCKSELR_DIVM1_SHIFT 4
48#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
49
50#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
51
52#define RCC_PLL1DIVR_DIVP1_SHIFT 9
53#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
54
55#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
56#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
57
58#define RCC_PLL1DIVR_DIVR1_SHIFT 24
59#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
60
61#define RCC_PLL1FRACR_FRACN1_SHIFT 3
62#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
63
64#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
65#define PLL1RGE_1_2_MHZ 0
66#define PLL1RGE_2_4_MHZ 1
67#define PLL1RGE_4_8_MHZ 2
68#define PLL1RGE_8_16_MHZ 3
69#define RCC_PLLCFGR_DIVP1EN BIT(16)
70#define RCC_PLLCFGR_DIVQ1EN BIT(17)
71#define RCC_PLLCFGR_DIVR1EN BIT(18)
72
73#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
74#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
75#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
76
77#define RCC_D1CFGR_HPRE_DIV2 8
78
79#define RCC_D1CFGR_D1PPRE_SHIFT 4
80#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
81#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
82
83#define RCC_D1CFGR_D1CPRE_SHIFT 8
84#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
85#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
86
87#define RCC_D2CFGR_D2PPRE1_SHIFT 4
88#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
89#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
90
91#define RCC_D2CFGR_D2PPRE2_SHIFT 8
92#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
93#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
94
95#define RCC_D3CFGR_D3PPRE_SHIFT 4
96#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
97#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
98
99#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
100#define FMCSRC_HCLKD1 0
101#define FMCSRC_PLL1_Q_CK 1
102#define FMCSRC_PLL2_R_CK 2
103#define FMCSRC_PER_CK 3
104
105#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
106#define RCC_D1CCIPR_QSPISRC_SHIFT 4
107#define QSPISRC_HCLKD1 0
108#define QSPISRC_PLL1_Q_CK 1
109#define QSPISRC_PLL2_R_CK 2
110#define QSPISRC_PER_CK 3
111
112#define PWR_CR3 0x0c
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200113#define PWR_CR3_SCUEN BIT(2)
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200114#define PWR_D3CR 0x18
115#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
116#define PWR_D3CR_VOS_SHIFT 14
117#define VOS_SCALE_3 1
118#define VOS_SCALE_2 2
119#define VOS_SCALE_1 3
120#define PWR_D3CR_VOSREADY BIT(13)
121
122struct stm32_rcc_regs {
123 u32 cr; /* 0x00 Source Control Register */
124 u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
125 u32 crrcr; /* 0x08 Clock Recovery RC Register */
126 u32 reserved1; /* 0x0c reserved */
127 u32 cfgr; /* 0x10 Clock Configuration Register */
128 u32 reserved2; /* 0x14 reserved */
129 u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
130 u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
131 u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
132 u32 reserved3; /* 0x24 reserved */
133 u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
134 u32 pllcfgr; /* 0x2c PLLs Configuration Register */
135 u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
136 u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
137 u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
138 u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
139 u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
140 u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
141 u32 reserved4; /* 0x48 reserved */
142 u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
143 u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
144 u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
145 u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
146 u32 reserved5; /* 0x5c reserved */
147 u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
148 u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
149 u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
150 u32 reserved6; /* 0x6c reserved */
151 u32 bdcr; /* 0x70 Backup Domain Control Register */
152 u32 csr; /* 0x74 Clock Control and Status Register */
153 u32 reserved7; /* 0x78 reserved */
154
155 u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
156 u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
157 u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
158 u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
159
160 u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
161 u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
162 u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
163 u32 apb2rstr; /* 0x98 APB2 Clock Register */
164 u32 apb4rstr; /* 0x9c APB4 Clock Register */
165
166 u32 gcr; /* 0xa0 Global Control Register */
167 u32 reserved8; /* 0xa4 reserved */
168 u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
169 u32 reserved9[9];/* 0xac to 0xcc reserved */
170 u32 rsr; /* 0xd0 Reset Status Register */
171 u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
172 u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
173 u32 ahb2enr; /* 0xdc AHB2 Clock Register */
174 u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
175
176 u32 apb3enr; /* 0xe4 APB3 Clock Register */
177 u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
178 u32 apb1henr; /* 0xec APB1 high Clock Register */
179 u32 apb2enr; /* 0xf0 APB2 Clock Register */
180 u32 apb4enr; /* 0xf4 APB4 Clock Register */
181};
182
183#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
184#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
185#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
186#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
187#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
188#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
189#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
190#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
191#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
192
193struct clk_cfg {
194 u32 gate_offset;
195 u8 gate_bit_idx;
196 const char *name;
197};
198
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200199/*
200 * the way all these entries are sorted in this array could seem
201 * unlogical, but we are dependant of kernel DT_bindings,
202 * where clocks are separate in 2 banks, peripheral clocks and
203 * kernel clocks.
204 */
205
206static const struct clk_cfg clk_map[] = {
Patrice Chotard1b4ce692017-10-09 11:41:23 +0200207 {RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
208 {RCC_AHB3ENR, 30, "itcm"},
209 {RCC_AHB3ENR, 29, "dtcm2"},
210 {RCC_AHB3ENR, 28, "dtcm1"},
211 {RCC_AHB3ENR, 8, "flitf"},
212 {RCC_AHB3ENR, 5, "jpgdec"},
213 {RCC_AHB3ENR, 4, "dma2d"},
214 {RCC_AHB3ENR, 0, "mdma"},
215 {RCC_AHB1ENR, 28, "usb2ulpi"},
216 {RCC_AHB1ENR, 17, "eth1rx"},
217 {RCC_AHB1ENR, 16, "eth1tx"},
218 {RCC_AHB1ENR, 15, "eth1mac"},
219 {RCC_AHB1ENR, 14, "art"},
220 {RCC_AHB1ENR, 26, "usb1ulpi"},
221 {RCC_AHB1ENR, 1, "dma2"},
222 {RCC_AHB1ENR, 0, "dma1"},
223 {RCC_AHB2ENR, 31, "d2sram3"},
224 {RCC_AHB2ENR, 30, "d2sram2"},
225 {RCC_AHB2ENR, 29, "d2sram1"},
226 {RCC_AHB2ENR, 5, "hash"},
227 {RCC_AHB2ENR, 4, "crypt"},
228 {RCC_AHB2ENR, 0, "camitf"},
229 {RCC_AHB4ENR, 28, "bkpram"},
230 {RCC_AHB4ENR, 25, "hsem"},
231 {RCC_AHB4ENR, 21, "bdma"},
232 {RCC_AHB4ENR, 19, "crc"},
233 {RCC_AHB4ENR, 10, "gpiok"},
234 {RCC_AHB4ENR, 9, "gpioj"},
235 {RCC_AHB4ENR, 8, "gpioi"},
236 {RCC_AHB4ENR, 7, "gpioh"},
237 {RCC_AHB4ENR, 6, "gpiog"},
238 {RCC_AHB4ENR, 5, "gpiof"},
239 {RCC_AHB4ENR, 4, "gpioe"},
240 {RCC_AHB4ENR, 3, "gpiod"},
241 {RCC_AHB4ENR, 2, "gpioc"},
242 {RCC_AHB4ENR, 1, "gpiob"},
243 {RCC_AHB4ENR, 0, "gpioa"},
244 {RCC_APB3ENR, 6, "wwdg1"},
245 {RCC_APB1LENR, 29, "dac12"},
246 {RCC_APB1LENR, 11, "wwdg2"},
247 {RCC_APB1LENR, 8, "tim14"},
248 {RCC_APB1LENR, 7, "tim13"},
249 {RCC_APB1LENR, 6, "tim12"},
250 {RCC_APB1LENR, 5, "tim7"},
251 {RCC_APB1LENR, 4, "tim6"},
252 {RCC_APB1LENR, 3, "tim5"},
253 {RCC_APB1LENR, 2, "tim4"},
254 {RCC_APB1LENR, 1, "tim3"},
255 {RCC_APB1LENR, 0, "tim2"},
256 {RCC_APB1HENR, 5, "mdios"},
257 {RCC_APB1HENR, 4, "opamp"},
258 {RCC_APB1HENR, 1, "crs"},
259 {RCC_APB2ENR, 18, "tim17"},
260 {RCC_APB2ENR, 17, "tim16"},
261 {RCC_APB2ENR, 16, "tim15"},
262 {RCC_APB2ENR, 1, "tim8"},
263 {RCC_APB2ENR, 0, "tim1"},
264 {RCC_APB4ENR, 26, "tmpsens"},
265 {RCC_APB4ENR, 16, "rtcapb"},
266 {RCC_APB4ENR, 15, "vref"},
267 {RCC_APB4ENR, 14, "comp12"},
268 {RCC_APB4ENR, 1, "syscfg"},
269 {RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
270 {RCC_AHB3ENR, 14, "quadspi"},
271 {RCC_AHB3ENR, 12, "fmc"},
272 {RCC_AHB1ENR, 27, "usb2otg"},
273 {RCC_AHB1ENR, 25, "usb1otg"},
274 {RCC_AHB1ENR, 5, "adc12"},
275 {RCC_AHB2ENR, 9, "sdmmc2"},
276 {RCC_AHB2ENR, 6, "rng"},
277 {RCC_AHB4ENR, 24, "adc3"},
278 {RCC_APB3ENR, 4, "dsi"},
279 {RCC_APB3ENR, 3, "ltdc"},
280 {RCC_APB1LENR, 31, "usart8"},
281 {RCC_APB1LENR, 30, "usart7"},
282 {RCC_APB1LENR, 27, "hdmicec"},
283 {RCC_APB1LENR, 23, "i2c3"},
284 {RCC_APB1LENR, 22, "i2c2"},
285 {RCC_APB1LENR, 21, "i2c1"},
286 {RCC_APB1LENR, 20, "uart5"},
287 {RCC_APB1LENR, 19, "uart4"},
288 {RCC_APB1LENR, 18, "usart3"},
289 {RCC_APB1LENR, 17, "usart2"},
290 {RCC_APB1LENR, 16, "spdifrx"},
291 {RCC_APB1LENR, 15, "spi3"},
292 {RCC_APB1LENR, 14, "spi2"},
293 {RCC_APB1LENR, 9, "lptim1"},
294 {RCC_APB1HENR, 8, "fdcan"},
295 {RCC_APB1HENR, 2, "swp"},
296 {RCC_APB2ENR, 29, "hrtim"},
297 {RCC_APB2ENR, 28, "dfsdm1"},
298 {RCC_APB2ENR, 24, "sai3"},
299 {RCC_APB2ENR, 23, "sai2"},
300 {RCC_APB2ENR, 22, "sai1"},
301 {RCC_APB2ENR, 20, "spi5"},
302 {RCC_APB2ENR, 13, "spi4"},
303 {RCC_APB2ENR, 12, "spi1"},
304 {RCC_APB2ENR, 5, "usart6"},
305 {RCC_APB2ENR, 4, "usart1"},
306 {RCC_APB4ENR, 21, "sai4a"},
307 {RCC_APB4ENR, 21, "sai4b"},
308 {RCC_APB4ENR, 12, "lptim5"},
309 {RCC_APB4ENR, 11, "lptim4"},
310 {RCC_APB4ENR, 10, "lptim3"},
311 {RCC_APB4ENR, 9, "lptim2"},
312 {RCC_APB4ENR, 7, "i2c4"},
313 {RCC_APB4ENR, 5, "spi6"},
314 {RCC_APB4ENR, 3, "lpuart1"},
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200315};
316
317struct stm32_clk {
318 struct stm32_rcc_regs *rcc_base;
319 struct regmap *pwr_regmap;
320};
321
322struct pll_psc {
323 u8 divm;
324 u16 divn;
325 u8 divp;
326 u8 divq;
327 u8 divr;
328};
329
330/*
331 * OSC_HSE = 25 MHz
332 * VCO = 500MHz
333 * pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
334 */
335struct pll_psc sys_pll_psc = {
336 .divm = 4,
337 .divn = 80,
338 .divp = 2,
339 .divq = 2,
340 .divr = 2,
341};
342
Patrice Chotardb4367942018-02-07 10:44:47 +0100343enum apb {
344 APB1,
345 APB2,
346};
347
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200348int configure_clocks(struct udevice *dev)
349{
350 struct stm32_clk *priv = dev_get_priv(dev);
351 struct stm32_rcc_regs *regs = priv->rcc_base;
352 uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
353 uint32_t pllckselr = 0;
354 uint32_t pll1divr = 0;
355 uint32_t pllcfgr = 0;
356
357 /* Switch on HSI */
358 setbits_le32(&regs->cr, RCC_CR_HSION);
359 while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
360 ;
361
362 /* Reset CFGR, now HSI is the default system clock */
363 writel(0, &regs->cfgr);
364
365 /* Set all kernel domain clock registers to reset value*/
366 writel(0x0, &regs->d1ccipr);
367 writel(0x0, &regs->d2ccip1r);
368 writel(0x0, &regs->d2ccip2r);
369
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200370 /* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200371 clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
372 VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
Patrice Chotard6c1bf6c2017-10-09 11:41:24 +0200373 /* Lock supply configuration update */
374 clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200375 while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
376 ;
377
378 /* disable HSE to configure it */
379 clrbits_le32(&regs->cr, RCC_CR_HSEON);
380 while ((readl(&regs->cr) & RCC_CR_HSERDY))
381 ;
382
383 /* clear HSE bypass and set it ON */
384 clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
385 /* Switch on HSE */
386 setbits_le32(&regs->cr, RCC_CR_HSEON);
387 while (!(readl(&regs->cr) & RCC_CR_HSERDY))
388 ;
389
390 /* pll setup, disable it */
391 clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
392 while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
393 ;
394
395 /* Select HSE as PLL clock source */
396 pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
397 pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
398 writel(pllckselr, &regs->pllckselr);
399
400 pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
401 pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
402 pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
403 pll1divr |= (sys_pll_psc.divn - 1);
404 writel(pll1divr, &regs->pll1divr);
405
406 pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
407 pllcfgr |= RCC_PLLCFGR_DIVP1EN;
408 pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
409 pllcfgr |= RCC_PLLCFGR_DIVR1EN;
410 writel(pllcfgr, &regs->pllcfgr);
411
412 /* pll setup, enable it */
413 setbits_le32(&regs->cr, RCC_CR_PLL1ON);
414
415 /* set HPRE (/2) DI clk --> 125MHz */
416 clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
417 RCC_D1CFGR_HPRE_DIV2);
418
419 /* select PLL1 as system clock source (sys_ck)*/
420 clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
421 while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
422 ;
423
424 /* sdram: use pll1_q as fmc_k clk */
425 clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
426 FMCSRC_PLL1_Q_CK);
427
428 return 0;
429}
430
431static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
432{
433 u32 divider;
434
435 /* get HSI divider value */
436 divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
437 divider = divider >> RCC_CR_HSIDIV_SHIFT;
438
439 return divider;
440};
441
442enum pllsrc {
443 HSE,
444 LSE,
445 HSI,
446 CSI,
447 I2S,
448 TIMER,
449 PLLSRC_NB,
450};
451
452static const char * const pllsrc_name[PLLSRC_NB] = {
453 [HSE] = "clk-hse",
454 [LSE] = "clk-lse",
455 [HSI] = "clk-hsi",
456 [CSI] = "clk-csi",
457 [I2S] = "clk-i2s",
458 [TIMER] = "timer-clk"
459};
460
461static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
462{
463 struct clk clk;
464 struct udevice *fixed_clock_dev = NULL;
465 u32 divider;
466 int ret;
467 const char *name = pllsrc_name[pllsrc];
468
469 debug("%s name %s\n", __func__, name);
470
471 clk.id = 0;
472 ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
473 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900474 pr_err("Can't find clk %s (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200475 return 0;
476 }
477
478 ret = clk_request(fixed_clock_dev, &clk);
479 if (ret) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900480 pr_err("Can't request %s clk (%d)", name, ret);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200481 return 0;
482 }
483
484 divider = 0;
485 if (pllsrc == HSI)
486 divider = stm32_get_HSI_divider(regs);
487
488 debug("%s divider %d rate %ld\n", __func__,
489 divider, clk_get_rate(&clk));
490
491 return clk_get_rate(&clk) >> divider;
492};
493
494enum pll1_output {
495 PLL1_P_CK,
496 PLL1_Q_CK,
497 PLL1_R_CK,
498};
499
500static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
501 enum pll1_output output)
502{
503 ulong pllsrc = 0;
504 u32 divm1, divn1, divp1, divq1, divr1, fracn1;
505 ulong vco, rate;
506
507 /* get the PLLSRC */
508 switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
509 case RCC_PLLCKSELR_PLLSRC_HSI:
510 pllsrc = stm32_get_rate(regs, HSI);
511 break;
512 case RCC_PLLCKSELR_PLLSRC_CSI:
513 pllsrc = stm32_get_rate(regs, CSI);
514 break;
515 case RCC_PLLCKSELR_PLLSRC_HSE:
516 pllsrc = stm32_get_rate(regs, HSE);
517 break;
518 case RCC_PLLCKSELR_PLLSRC_NO_CLK:
519 /* shouldn't happen */
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900520 pr_err("wrong value for RCC_PLLCKSELR register\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200521 pllsrc = 0;
522 break;
523 }
524
525 /* pllsrc = 0 ? no need to go ahead */
526 if (!pllsrc)
527 return pllsrc;
528
529 /* get divm1, divp1, divn1 and divr1 */
530 divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
531 divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
532
533 divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
534
535 divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
536 divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
537
538 divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
539 divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
540
541 divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
542 divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
543
544 fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
545 fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
546
547 vco = (pllsrc / divm1) * divn1;
548 rate = (pllsrc * fracn1) / (divm1 * 8192);
549
550 debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
551 __func__, divm1, divn1, divp1, divq1, divr1);
552 debug("%s fracn1 = %d vco = %ld rate = %ld\n",
553 __func__, fracn1, vco, rate);
554
555 switch (output) {
556 case PLL1_P_CK:
557 return (vco + rate) / divp1;
558 break;
559 case PLL1_Q_CK:
560 return (vco + rate) / divq1;
561 break;
562
563 case PLL1_R_CK:
564 return (vco + rate) / divr1;
565 break;
566 }
567
568 return -EINVAL;
569}
570
Patrice Chotardb4367942018-02-07 10:44:47 +0100571static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
572{
573 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
574 u32 d2cfgr = readl(&regs->d2cfgr);
575
576 if (apb == APB1) {
577 if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
578 /* get D2 domain APB1 prescaler */
579 return prescaler_table[
580 ((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
581 >> RCC_D2CFGR_D2PPRE1_SHIFT)];
582 } else { /* APB2 */
583 if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
584 /* get D2 domain APB2 prescaler */
585 return prescaler_table[
586 ((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
587 >> RCC_D2CFGR_D2PPRE2_SHIFT)];
588 }
589
590 return 1;
591};
592
593static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
594 enum apb apb)
595{
596 struct stm32_rcc_regs *regs = priv->rcc_base;
597u32 psc = stm32_get_apb_psc(regs, apb);
598
599 if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
600 /*
601 * if APB prescaler is configured to a
602 * division factor of 1, 2 or 4
603 */
604 switch (psc) {
605 case 1:
606 case 2:
607 case 4:
608 return sysclk;
609 case 8:
610 return sysclk / 2;
611 case 16:
612 return sysclk / 4;
613 default:
614 pr_err("unexpected prescaler value (%d)\n", psc);
615 return 0;
616 }
617 else
618 switch (psc) {
619 case 1:
620 return sysclk;
621 case 2:
622 case 4:
623 case 8:
624 case 16:
625 return sysclk / psc;
626 default:
627 pr_err("unexpected prescaler value (%d)\n", psc);
628 return 0;
629 }
630};
631
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200632static ulong stm32_clk_get_rate(struct clk *clk)
633{
634 struct stm32_clk *priv = dev_get_priv(clk->dev);
635 struct stm32_rcc_regs *regs = priv->rcc_base;
636 ulong sysclk = 0;
637 u32 gate_offset;
Patrice Chotard09b335a2018-02-07 10:44:48 +0100638 u32 d1cfgr, d3cfgr;
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200639 /* prescaler table lookups for clock computation */
640 u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
641 u8 source, idx;
642
643 /*
644 * get system clock (sys_ck) source
645 * can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
646 */
647 source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
648 switch (source) {
649 case RCC_CFGR_SW_PLL1:
650 sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
651 break;
652 case RCC_CFGR_SW_HSE:
653 sysclk = stm32_get_rate(regs, HSE);
654 break;
655
656 case RCC_CFGR_SW_CSI:
657 sysclk = stm32_get_rate(regs, CSI);
658 break;
659
660 case RCC_CFGR_SW_HSI:
661 sysclk = stm32_get_rate(regs, HSI);
662 break;
663 }
664
665 /* sysclk = 0 ? no need to go ahead */
666 if (!sysclk)
667 return sysclk;
668
669 debug("%s system clock: source = %d freq = %ld\n",
670 __func__, source, sysclk);
671
672 d1cfgr = readl(&regs->d1cfgr);
673
674 if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
675 /* get D1 domain Core prescaler */
676 idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
677 RCC_D1CFGR_D1CPRE_SHIFT;
678 sysclk = sysclk / prescaler_table[idx];
679 }
680
681 if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
682 /* get D1 domain AHB prescaler */
683 idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
684 sysclk = sysclk / prescaler_table[idx];
685 }
686
687 gate_offset = clk_map[clk->id].gate_offset;
688
689 debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
690 __func__, clk->id, gate_offset, sysclk);
691
692 switch (gate_offset) {
693 case RCC_AHB3ENR:
694 case RCC_AHB1ENR:
695 case RCC_AHB2ENR:
696 case RCC_AHB4ENR:
697 return sysclk;
698 break;
699
700 case RCC_APB3ENR:
701 if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
702 /* get D1 domain APB3 prescaler */
703 idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
704 RCC_D1CFGR_D1PPRE_SHIFT;
705 sysclk = sysclk / prescaler_table[idx];
706 }
707
708 debug("%s system clock: freq after APB3 prescaler = %ld\n",
709 __func__, sysclk);
710
711 return sysclk;
712 break;
713
714 case RCC_APB4ENR:
Patrice Chotard09b335a2018-02-07 10:44:48 +0100715 d3cfgr = readl(&regs->d3cfgr);
716 if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200717 /* get D3 domain APB4 prescaler */
Patrice Chotard09b335a2018-02-07 10:44:48 +0100718 idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200719 RCC_D3CFGR_D3PPRE_SHIFT;
720 sysclk = sysclk / prescaler_table[idx];
721 }
722
723 debug("%s system clock: freq after APB4 prescaler = %ld\n",
724 __func__, sysclk);
725
726 return sysclk;
727 break;
728
729 case RCC_APB1LENR:
730 case RCC_APB1HENR:
Patrice Chotardb4367942018-02-07 10:44:47 +0100731 /* special case for GPT timers */
732 switch (clk->id) {
733 case TIM14_CK:
734 case TIM13_CK:
735 case TIM12_CK:
736 case TIM7_CK:
737 case TIM6_CK:
738 case TIM5_CK:
739 case TIM4_CK:
740 case TIM3_CK:
741 case TIM2_CK:
742 return stm32_get_timer_rate(priv, sysclk, APB1);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200743 }
744
745 debug("%s system clock: freq after APB1 prescaler = %ld\n",
746 __func__, sysclk);
747
Patrice Chotardb4367942018-02-07 10:44:47 +0100748 return (sysclk / stm32_get_apb_psc(regs, APB1));
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200749 break;
750
751 case RCC_APB2ENR:
Patrice Chotardb4367942018-02-07 10:44:47 +0100752 /* special case for timers */
753 switch (clk->id) {
754 case TIM17_CK:
755 case TIM16_CK:
756 case TIM15_CK:
757 case TIM8_CK:
758 case TIM1_CK:
759 return stm32_get_timer_rate(priv, sysclk, APB2);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200760 }
761
762 debug("%s system clock: freq after APB2 prescaler = %ld\n",
763 __func__, sysclk);
764
Patrice Chotardb4367942018-02-07 10:44:47 +0100765 return (sysclk / stm32_get_apb_psc(regs, APB2));
766
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200767 break;
768
769 default:
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900770 pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200771 return -EINVAL;
772 break;
773 }
774}
775
776static int stm32_clk_enable(struct clk *clk)
777{
778 struct stm32_clk *priv = dev_get_priv(clk->dev);
779 struct stm32_rcc_regs *regs = priv->rcc_base;
780 u32 gate_offset;
781 u32 gate_bit_index;
782 unsigned long clk_id = clk->id;
783
784 gate_offset = clk_map[clk_id].gate_offset;
785 gate_bit_index = clk_map[clk_id].gate_bit_idx;
786
787 debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
788 __func__, clk->id, gate_offset, gate_bit_index,
789 clk_map[clk_id].name);
790
791 setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
792
793 return 0;
794}
795
796static int stm32_clk_probe(struct udevice *dev)
797{
798 struct stm32_clk *priv = dev_get_priv(dev);
799 struct udevice *syscon;
800 fdt_addr_t addr;
801 int err;
802
803 addr = dev_read_addr(dev);
804 if (addr == FDT_ADDR_T_NONE)
805 return -EINVAL;
806
807 priv->rcc_base = (struct stm32_rcc_regs *)addr;
808
809 /* get corresponding syscon phandle */
810 err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
811 "st,syscfg", &syscon);
812
813 if (err) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900814 pr_err("unable to find syscon device\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200815 return err;
816 }
817
818 priv->pwr_regmap = syscon_get_regmap(syscon);
819 if (!priv->pwr_regmap) {
Masahiro Yamada9b643e32017-09-16 14:10:41 +0900820 pr_err("unable to find regmap\n");
Patrice Chotard4c3aebd2017-09-13 18:00:06 +0200821 return -ENODEV;
822 }
823
824 configure_clocks(dev);
825
826 return 0;
827}
828
829static int stm32_clk_of_xlate(struct clk *clk,
830 struct ofnode_phandle_args *args)
831{
832 if (args->args_count != 1) {
833 debug("Invaild args_count: %d\n", args->args_count);
834 return -EINVAL;
835 }
836
837 if (args->args_count) {
838 clk->id = args->args[0];
839 /*
840 * this computation convert DT clock index which is used to
841 * point into 2 separate clock arrays (peripheral and kernel
842 * clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
843 * into index to point into only one array where peripheral
844 * and kernel clocks are consecutive
845 */
846 if (clk->id >= KERN_BANK) {
847 clk->id -= KERN_BANK;
848 clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
849 } else {
850 clk->id -= PERIF_BANK;
851 }
852 } else {
853 clk->id = 0;
854 }
855
856 debug("%s clk->id %ld\n", __func__, clk->id);
857
858 return 0;
859}
860
861static struct clk_ops stm32_clk_ops = {
862 .of_xlate = stm32_clk_of_xlate,
863 .enable = stm32_clk_enable,
864 .get_rate = stm32_clk_get_rate,
865};
866
867U_BOOT_DRIVER(stm32h7_clk) = {
868 .name = "stm32h7_rcc_clock",
869 .id = UCLASS_CLK,
870 .ops = &stm32_clk_ops,
871 .probe = stm32_clk_probe,
872 .priv_auto_alloc_size = sizeof(struct stm32_clk),
873 .flags = DM_FLAG_PRE_RELOC,
874};