wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1 | /* |
| 2 | * (C) Copyright 2003 |
| 3 | * Gerry Hamel, geh@ti.com, Texas Instruments |
| 4 | * |
| 5 | * Based on |
| 6 | * linux/drivers/usb/device/bi/omap.c |
| 7 | * TI OMAP1510 USB bus interface driver |
| 8 | * |
| 9 | * Author: MontaVista Software, Inc. |
| 10 | * source@mvista.com |
| 11 | * (C) Copyright 2002 |
| 12 | * |
Wolfgang Denk | 1a45966 | 2013-07-08 09:37:19 +0200 | [diff] [blame] | 13 | * SPDX-License-Identifier: GPL-2.0+ |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 14 | */ |
| 15 | |
| 16 | #include <common.h> |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 17 | #include <asm/io.h> |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 18 | #ifdef CONFIG_OMAP_SX1 |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 19 | #include <i2c.h> |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 20 | #endif |
Jean-Christophe PLAGNIOL-VILLARD | 2731b9a | 2009-04-03 12:46:58 +0200 | [diff] [blame] | 21 | #include <usbdevice.h> |
| 22 | #include <usb/omap1510_udc.h> |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 23 | |
Jean-Christophe PLAGNIOL-VILLARD | 2731b9a | 2009-04-03 12:46:58 +0200 | [diff] [blame] | 24 | #include "ep0.h" |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 25 | |
| 26 | |
wdenk | efa329c | 2004-03-23 20:18:25 +0000 | [diff] [blame] | 27 | #define UDC_INIT_MDELAY 80 /* Device settle delay */ |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 28 | #define UDC_MAX_ENDPOINTS 31 /* Number of endpoints on this UDC */ |
| 29 | |
| 30 | /* Some kind of debugging output... */ |
| 31 | #if 1 |
| 32 | #define UDCDBG(str) |
| 33 | #define UDCDBGA(fmt,args...) |
| 34 | #else /* The bugs still exists... */ |
| 35 | #define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__) |
| 36 | #define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args) |
| 37 | #endif |
| 38 | |
| 39 | #if 1 |
| 40 | #define UDCREG(name) |
| 41 | #define UDCREGL(name) |
| 42 | #else /* The bugs still exists... */ |
| 43 | #define UDCREG(name) serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name)) /* For 16-bit regs */ |
| 44 | #define UDCREGL(name) serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name)) /* For 32-bit regs */ |
| 45 | #endif |
| 46 | |
| 47 | |
| 48 | static struct urb *ep0_urb = NULL; |
| 49 | |
| 50 | static struct usb_device_instance *udc_device; /* Used in interrupt handler */ |
| 51 | static u16 udc_devstat = 0; /* UDC status (DEVSTAT) */ |
| 52 | static u32 udc_interrupts = 0; |
| 53 | |
| 54 | static void udc_stall_ep (unsigned int ep_addr); |
| 55 | |
| 56 | |
| 57 | static struct usb_endpoint_instance *omap1510_find_ep (int ep) |
| 58 | { |
| 59 | int i; |
| 60 | |
| 61 | for (i = 0; i < udc_device->bus->max_endpoints; i++) { |
| 62 | if (udc_device->bus->endpoint_array[i].endpoint_address == ep) |
| 63 | return &udc_device->bus->endpoint_array[i]; |
| 64 | } |
| 65 | return NULL; |
| 66 | } |
| 67 | |
| 68 | /* ************************************************************************** */ |
| 69 | /* IO |
| 70 | */ |
| 71 | |
| 72 | /* |
| 73 | * omap1510_prepare_endpoint_for_rx |
| 74 | * |
| 75 | * This function implements TRM Figure 14-11. |
| 76 | * |
| 77 | * The endpoint to prepare for transfer is specified as a physical endpoint |
| 78 | * number. For OUT (rx) endpoints 1 through 15, the corresponding endpoint |
| 79 | * configuration register is checked to see if the endpoint is ISO or not. |
| 80 | * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled. |
| 81 | * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30. |
| 82 | */ |
| 83 | static void omap1510_prepare_endpoint_for_rx (int ep_addr) |
| 84 | { |
| 85 | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| 86 | |
| 87 | UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr); |
| 88 | if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) { |
| 89 | if ((inw (UDC_EP_RX (ep_num)) & |
| 90 | (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) == |
| 91 | UDC_EPn_RX_Valid) { |
| 92 | /* rx endpoint is valid, non-ISO, so enable its FIFO */ |
| 93 | outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); |
| 94 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 95 | outw (0, UDC_EP_NUM); |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /* omap1510_configure_endpoints |
| 101 | * |
| 102 | * This function implements TRM Figure 14-10. |
| 103 | */ |
| 104 | static void omap1510_configure_endpoints (struct usb_device_instance *device) |
| 105 | { |
| 106 | int ep; |
| 107 | struct usb_bus_instance *bus; |
| 108 | struct usb_endpoint_instance *endpoint; |
| 109 | unsigned short ep_ptr; |
| 110 | unsigned short ep_size; |
| 111 | unsigned short ep_isoc; |
| 112 | unsigned short ep_doublebuffer; |
| 113 | int ep_addr; |
| 114 | int packet_size; |
| 115 | int buffer_size; |
| 116 | int attributes; |
| 117 | |
| 118 | bus = device->bus; |
| 119 | |
| 120 | /* There is a dedicated 2048 byte buffer for USB packets that may be |
| 121 | * arbitrarily partitioned among the endpoints on 8-byte boundaries. |
| 122 | * The first 8 bytes are reserved for receiving setup packets on |
| 123 | * endpoint 0. |
| 124 | */ |
| 125 | ep_ptr = 8; /* reserve the first 8 bytes for the setup fifo */ |
| 126 | |
| 127 | for (ep = 0; ep < bus->max_endpoints; ep++) { |
| 128 | endpoint = bus->endpoint_array + ep; |
| 129 | ep_addr = endpoint->endpoint_address; |
| 130 | if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 131 | /* IN endpoint */ |
| 132 | packet_size = endpoint->tx_packetSize; |
| 133 | attributes = endpoint->tx_attributes; |
| 134 | } else { |
| 135 | /* OUT endpoint */ |
| 136 | packet_size = endpoint->rcv_packetSize; |
| 137 | attributes = endpoint->rcv_attributes; |
| 138 | } |
| 139 | |
| 140 | switch (packet_size) { |
| 141 | case 0: |
| 142 | ep_size = 0; |
| 143 | break; |
| 144 | case 8: |
| 145 | ep_size = 0; |
| 146 | break; |
| 147 | case 16: |
| 148 | ep_size = 1; |
| 149 | break; |
| 150 | case 32: |
| 151 | ep_size = 2; |
| 152 | break; |
| 153 | case 64: |
| 154 | ep_size = 3; |
| 155 | break; |
| 156 | case 128: |
| 157 | ep_size = 4; |
| 158 | break; |
| 159 | case 256: |
| 160 | ep_size = 5; |
| 161 | break; |
| 162 | case 512: |
| 163 | ep_size = 6; |
| 164 | break; |
| 165 | default: |
| 166 | UDCDBGA ("ep 0x%02x has bad packet size %d", |
| 167 | ep_addr, packet_size); |
| 168 | packet_size = 0; |
| 169 | ep_size = 0; |
| 170 | break; |
| 171 | } |
| 172 | |
| 173 | switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) { |
| 174 | case USB_ENDPOINT_XFER_CONTROL: |
| 175 | case USB_ENDPOINT_XFER_BULK: |
| 176 | case USB_ENDPOINT_XFER_INT: |
| 177 | default: |
| 178 | /* A non-isochronous endpoint may optionally be |
| 179 | * double-buffered. For now we disable |
| 180 | * double-buffering. |
| 181 | */ |
| 182 | ep_doublebuffer = 0; |
| 183 | ep_isoc = 0; |
| 184 | if (packet_size > 64) |
| 185 | packet_size = 0; |
| 186 | if (!ep || !ep_doublebuffer) |
| 187 | buffer_size = packet_size; |
| 188 | else |
| 189 | buffer_size = packet_size * 2; |
| 190 | break; |
| 191 | case USB_ENDPOINT_XFER_ISOC: |
| 192 | /* Isochronous endpoints are always double- |
| 193 | * buffered, but the double-buffering bit |
| 194 | * in the endpoint configuration register |
| 195 | * becomes the msb of the endpoint size so we |
| 196 | * set the double-buffering flag to zero. |
| 197 | */ |
| 198 | ep_doublebuffer = 0; |
| 199 | ep_isoc = 1; |
| 200 | buffer_size = packet_size * 2; |
| 201 | break; |
| 202 | } |
| 203 | |
| 204 | /* check to see if our packet buffer RAM is exhausted */ |
| 205 | if ((ep_ptr + buffer_size) > 2048) { |
| 206 | UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size); |
| 207 | buffer_size = packet_size = 0; |
| 208 | } |
| 209 | |
| 210 | /* force a default configuration for endpoint 0 since it is |
| 211 | * always enabled |
| 212 | */ |
| 213 | if (!ep && ((packet_size < 8) || (packet_size > 64))) { |
| 214 | buffer_size = packet_size = 64; |
| 215 | ep_size = 3; |
| 216 | } |
| 217 | |
| 218 | if (!ep) { |
| 219 | /* configure endpoint 0 */ |
| 220 | outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0); |
| 221 | /*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */ |
| 222 | /* ep_ptr, packet_size); */ |
| 223 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 224 | /* IN endpoint */ |
| 225 | if (packet_size) { |
| 226 | outw ((1 << 15) | (ep_doublebuffer << 14) | |
| 227 | (ep_size << 12) | (ep_isoc << 11) | |
| 228 | (ep_ptr >> 3), |
| 229 | UDC_EP_TX (ep_addr & |
| 230 | USB_ENDPOINT_NUMBER_MASK)); |
| 231 | UDCDBGA ("IN ep %d buffer offset 0x%03x" |
| 232 | " packet size 0x%03x", |
| 233 | ep_addr & USB_ENDPOINT_NUMBER_MASK, |
| 234 | ep_ptr, packet_size); |
| 235 | } else { |
| 236 | outw (0, |
| 237 | UDC_EP_TX (ep_addr & |
| 238 | USB_ENDPOINT_NUMBER_MASK)); |
| 239 | } |
| 240 | } else { |
| 241 | /* OUT endpoint */ |
| 242 | if (packet_size) { |
| 243 | outw ((1 << 15) | (ep_doublebuffer << 14) | |
| 244 | (ep_size << 12) | (ep_isoc << 11) | |
| 245 | (ep_ptr >> 3), |
| 246 | UDC_EP_RX (ep_addr & |
| 247 | USB_ENDPOINT_NUMBER_MASK)); |
| 248 | UDCDBGA ("OUT ep %d buffer offset 0x%03x" |
| 249 | " packet size 0x%03x", |
| 250 | ep_addr & USB_ENDPOINT_NUMBER_MASK, |
| 251 | ep_ptr, packet_size); |
| 252 | } else { |
| 253 | outw (0, |
| 254 | UDC_EP_RX (ep_addr & |
| 255 | USB_ENDPOINT_NUMBER_MASK)); |
| 256 | } |
| 257 | } |
| 258 | ep_ptr += buffer_size; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /* omap1510_deconfigure_device |
| 263 | * |
| 264 | * This function balances omap1510_configure_device. |
| 265 | */ |
| 266 | static void omap1510_deconfigure_device (void) |
| 267 | { |
| 268 | int epnum; |
| 269 | |
| 270 | UDCDBG ("clear Cfg_Lock"); |
| 271 | outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1); |
| 272 | UDCREG (UDC_SYSCON1); |
| 273 | |
| 274 | /* deconfigure all endpoints */ |
| 275 | for (epnum = 1; epnum <= 15; epnum++) { |
| 276 | outw (0, UDC_EP_RX (epnum)); |
| 277 | outw (0, UDC_EP_TX (epnum)); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | /* omap1510_configure_device |
| 282 | * |
| 283 | * This function implements TRM Figure 14-9. |
| 284 | */ |
| 285 | static void omap1510_configure_device (struct usb_device_instance *device) |
| 286 | { |
| 287 | omap1510_configure_endpoints (device); |
| 288 | |
| 289 | |
| 290 | /* Figure 14-9 indicates we should enable interrupts here, but we have |
| 291 | * other routines (udc_all_interrupts, udc_suspended_interrupts) to |
| 292 | * do that. |
| 293 | */ |
| 294 | |
| 295 | UDCDBG ("set Cfg_Lock"); |
| 296 | outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1); |
| 297 | UDCREG (UDC_SYSCON1); |
| 298 | } |
| 299 | |
| 300 | /* omap1510_write_noniso_tx_fifo |
| 301 | * |
| 302 | * This function implements TRM Figure 14-30. |
| 303 | * |
| 304 | * If the endpoint has an active tx_urb, then the next packet of data from the |
| 305 | * URB is written to the tx FIFO. The total amount of data in the urb is given |
| 306 | * by urb->actual_length. The maximum amount of data that can be sent in any |
| 307 | * one packet is given by endpoint->tx_packetSize. The number of data bytes |
| 308 | * from this URB that have already been transmitted is given by endpoint->sent. |
| 309 | * endpoint->last is updated by this routine with the number of data bytes |
| 310 | * transmitted in this packet. |
| 311 | * |
| 312 | * In accordance with Figure 14-30, the EP_NUM register must already have been |
| 313 | * written with the value to select the appropriate tx FIFO before this routine |
| 314 | * is called. |
| 315 | */ |
| 316 | static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance |
| 317 | *endpoint) |
| 318 | { |
| 319 | struct urb *urb = endpoint->tx_urb; |
| 320 | |
| 321 | if (urb) { |
| 322 | unsigned int last, i; |
| 323 | |
| 324 | UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d", |
| 325 | urb->buffer, urb->buffer_length, urb->actual_length); |
| 326 | if ((last = |
| 327 | MIN (urb->actual_length - endpoint->sent, |
| 328 | endpoint->tx_packetSize))) { |
| 329 | u8 *cp = urb->buffer + endpoint->sent; |
| 330 | |
| 331 | UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last); |
| 332 | |
| 333 | if (((u32) cp & 1) == 0) { /* word aligned? */ |
| 334 | outsw (UDC_DATA, cp, last >> 1); |
| 335 | } else { /* byte aligned. */ |
| 336 | for (i = 0; i < (last >> 1); i++) { |
| 337 | u16 w = ((u16) cp[2 * i + 1] << 8) | |
| 338 | (u16) cp[2 * i]; |
| 339 | outw (w, UDC_DATA); |
| 340 | } |
| 341 | } |
| 342 | if (last & 1) { |
| 343 | outb (*(cp + last - 1), UDC_DATA); |
| 344 | } |
| 345 | } |
| 346 | endpoint->last = last; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /* omap1510_read_noniso_rx_fifo |
| 351 | * |
| 352 | * This function implements TRM Figure 14-28. |
| 353 | * |
| 354 | * If the endpoint has an active rcv_urb, then the next packet of data is read |
| 355 | * from the rcv FIFO and written to rcv_urb->buffer at offset |
| 356 | * rcv_urb->actual_length to append the packet data to the data from any |
| 357 | * previous packets for this transfer. We assume that there is sufficient room |
| 358 | * left in the buffer to hold an entire packet of data. |
| 359 | * |
| 360 | * The return value is the number of bytes read from the FIFO for this packet. |
| 361 | * |
| 362 | * In accordance with Figure 14-28, the EP_NUM register must already have been |
| 363 | * written with the value to select the appropriate rcv FIFO before this routine |
| 364 | * is called. |
| 365 | */ |
| 366 | static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance |
| 367 | *endpoint) |
| 368 | { |
| 369 | struct urb *urb = endpoint->rcv_urb; |
| 370 | int len = 0; |
| 371 | |
| 372 | if (urb) { |
| 373 | len = inw (UDC_RXFSTAT); |
| 374 | |
| 375 | if (len) { |
| 376 | unsigned char *cp = urb->buffer + urb->actual_length; |
| 377 | |
| 378 | insw (UDC_DATA, cp, len >> 1); |
| 379 | if (len & 1) |
| 380 | *(cp + len - 1) = inb (UDC_DATA); |
| 381 | } |
| 382 | } |
| 383 | return len; |
| 384 | } |
| 385 | |
| 386 | /* omap1510_prepare_for_control_write_status |
| 387 | * |
| 388 | * This function implements TRM Figure 14-17. |
| 389 | * |
| 390 | * We have to deal here with non-autodecoded control writes that haven't already |
| 391 | * been dealt with by ep0_recv_setup. The non-autodecoded standard control |
| 392 | * write requests are: set/clear endpoint feature, set configuration, set |
| 393 | * interface, and set descriptor. ep0_recv_setup handles set/clear requests for |
| 394 | * ENDPOINT_HALT by halting the endpoint for a set request and resetting the |
| 395 | * endpoint for a clear request. ep0_recv_setup returns an error for |
| 396 | * SET_DESCRIPTOR requests which causes them to be terminated with a stall by |
| 397 | * the setup handler. A SET_INTERFACE request is handled by ep0_recv_setup by |
| 398 | * generating a DEVICE_SET_INTERFACE event. This leaves only the |
| 399 | * SET_CONFIGURATION event for us to deal with here. |
| 400 | * |
| 401 | */ |
| 402 | static void omap1510_prepare_for_control_write_status (struct urb *urb) |
| 403 | { |
| 404 | struct usb_device_request *request = &urb->device_request;; |
| 405 | |
| 406 | /* check for a SET_CONFIGURATION request */ |
| 407 | if (request->bRequest == USB_REQ_SET_CONFIGURATION) { |
| 408 | int configuration = le16_to_cpu (request->wValue) & 0xff; |
| 409 | unsigned short devstat = inw (UDC_DEVSTAT); |
| 410 | |
| 411 | if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) { |
| 412 | /* device is currently in ADDRESSED state */ |
| 413 | if (configuration) { |
| 414 | /* Assume the specified non-zero configuration |
| 415 | * value is valid and switch to the CONFIGURED |
| 416 | * state. |
| 417 | */ |
| 418 | outw (UDC_Dev_Cfg, UDC_SYSCON2); |
| 419 | } |
| 420 | } else if ((devstat & UDC_CFG) == UDC_CFG) { |
| 421 | /* device is currently in CONFIGURED state */ |
| 422 | if (!configuration) { |
| 423 | /* Switch to ADDRESSED state. */ |
| 424 | outw (UDC_Clr_Cfg, UDC_SYSCON2); |
| 425 | } |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /* select EP0 tx FIFO */ |
| 430 | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| 431 | /* clear endpoint (no data bytes in status stage) */ |
| 432 | outw (UDC_Clr_EP, UDC_CTRL); |
| 433 | /* enable the EP0 tx FIFO */ |
| 434 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 435 | /* deselect the endpoint */ |
| 436 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 437 | } |
| 438 | |
| 439 | /* udc_state_transition_up |
| 440 | * udc_state_transition_down |
| 441 | * |
| 442 | * Helper functions to implement device state changes. The device states and |
| 443 | * the events that transition between them are: |
| 444 | * |
| 445 | * STATE_ATTACHED |
| 446 | * || /\ |
| 447 | * \/ || |
| 448 | * DEVICE_HUB_CONFIGURED DEVICE_HUB_RESET |
| 449 | * || /\ |
| 450 | * \/ || |
| 451 | * STATE_POWERED |
| 452 | * || /\ |
| 453 | * \/ || |
| 454 | * DEVICE_RESET DEVICE_POWER_INTERRUPTION |
| 455 | * || /\ |
| 456 | * \/ || |
| 457 | * STATE_DEFAULT |
| 458 | * || /\ |
| 459 | * \/ || |
| 460 | * DEVICE_ADDRESS_ASSIGNED DEVICE_RESET |
| 461 | * || /\ |
| 462 | * \/ || |
| 463 | * STATE_ADDRESSED |
| 464 | * || /\ |
| 465 | * \/ || |
| 466 | * DEVICE_CONFIGURED DEVICE_DE_CONFIGURED |
| 467 | * || /\ |
| 468 | * \/ || |
| 469 | * STATE_CONFIGURED |
| 470 | * |
| 471 | * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED |
| 472 | * to STATE_CONFIGURED) from the specified initial state to the specified final |
| 473 | * state, passing through each intermediate state on the way. If the initial |
| 474 | * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then |
| 475 | * no state transitions will take place. |
| 476 | * |
| 477 | * udc_state_transition_down transitions down (in the direction from |
| 478 | * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the |
| 479 | * specified final state, passing through each intermediate state on the way. |
| 480 | * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final |
| 481 | * state, then no state transitions will take place. |
| 482 | * |
| 483 | * These functions must only be called with interrupts disabled. |
| 484 | */ |
| 485 | static void udc_state_transition_up (usb_device_state_t initial, |
| 486 | usb_device_state_t final) |
| 487 | { |
| 488 | if (initial < final) { |
| 489 | switch (initial) { |
| 490 | case STATE_ATTACHED: |
| 491 | usbd_device_event_irq (udc_device, |
| 492 | DEVICE_HUB_CONFIGURED, 0); |
| 493 | if (final == STATE_POWERED) |
| 494 | break; |
| 495 | case STATE_POWERED: |
| 496 | usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| 497 | if (final == STATE_DEFAULT) |
| 498 | break; |
| 499 | case STATE_DEFAULT: |
| 500 | usbd_device_event_irq (udc_device, |
| 501 | DEVICE_ADDRESS_ASSIGNED, 0); |
| 502 | if (final == STATE_ADDRESSED) |
| 503 | break; |
| 504 | case STATE_ADDRESSED: |
| 505 | usbd_device_event_irq (udc_device, DEVICE_CONFIGURED, |
| 506 | 0); |
| 507 | case STATE_CONFIGURED: |
| 508 | break; |
| 509 | default: |
| 510 | break; |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | static void udc_state_transition_down (usb_device_state_t initial, |
| 516 | usb_device_state_t final) |
| 517 | { |
| 518 | if (initial > final) { |
| 519 | switch (initial) { |
| 520 | case STATE_CONFIGURED: |
| 521 | usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0); |
| 522 | if (final == STATE_ADDRESSED) |
| 523 | break; |
| 524 | case STATE_ADDRESSED: |
| 525 | usbd_device_event_irq (udc_device, DEVICE_RESET, 0); |
| 526 | if (final == STATE_DEFAULT) |
| 527 | break; |
| 528 | case STATE_DEFAULT: |
| 529 | usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0); |
| 530 | if (final == STATE_POWERED) |
| 531 | break; |
| 532 | case STATE_POWERED: |
| 533 | usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0); |
| 534 | case STATE_ATTACHED: |
| 535 | break; |
| 536 | default: |
| 537 | break; |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | /* Handle all device state changes. |
| 543 | * This function implements TRM Figure 14-21. |
| 544 | */ |
| 545 | static void omap1510_udc_state_changed (void) |
| 546 | { |
| 547 | u16 bits; |
| 548 | u16 devstat = inw (UDC_DEVSTAT); |
| 549 | |
| 550 | UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat); |
| 551 | |
| 552 | bits = devstat ^ udc_devstat; |
| 553 | if (bits) { |
| 554 | if (bits & UDC_ATT) { |
| 555 | if (devstat & UDC_ATT) { |
| 556 | UDCDBG ("device attached and powered"); |
| 557 | udc_state_transition_up (udc_device->device_state, STATE_POWERED); |
| 558 | } else { |
| 559 | UDCDBG ("device detached or unpowered"); |
| 560 | udc_state_transition_down (udc_device->device_state, STATE_ATTACHED); |
| 561 | } |
| 562 | } |
| 563 | if (bits & UDC_USB_Reset) { |
| 564 | if (devstat & UDC_USB_Reset) { |
| 565 | UDCDBG ("device reset in progess"); |
| 566 | udc_state_transition_down (udc_device->device_state, STATE_POWERED); |
| 567 | } else { |
| 568 | UDCDBG ("device reset completed"); |
| 569 | } |
| 570 | } |
| 571 | if (bits & UDC_DEF) { |
| 572 | if (devstat & UDC_DEF) { |
| 573 | UDCDBG ("device entering default state"); |
| 574 | udc_state_transition_up (udc_device->device_state, STATE_DEFAULT); |
| 575 | } else { |
| 576 | UDCDBG ("device leaving default state"); |
| 577 | udc_state_transition_down (udc_device->device_state, STATE_POWERED); |
| 578 | } |
| 579 | } |
| 580 | if (bits & UDC_SUS) { |
| 581 | if (devstat & UDC_SUS) { |
| 582 | UDCDBG ("entering suspended state"); |
| 583 | usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0); |
| 584 | } else { |
| 585 | UDCDBG ("leaving suspended state"); |
| 586 | usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0); |
| 587 | } |
| 588 | } |
| 589 | if (bits & UDC_R_WK_OK) { |
| 590 | UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK) |
| 591 | ? "enabled" : "disabled"); |
| 592 | } |
| 593 | if (bits & UDC_ADD) { |
| 594 | if (devstat & UDC_ADD) { |
| 595 | UDCDBG ("default -> addressed"); |
| 596 | udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED); |
| 597 | } else { |
| 598 | UDCDBG ("addressed -> default"); |
| 599 | udc_state_transition_down (udc_device->device_state, STATE_DEFAULT); |
| 600 | } |
| 601 | } |
| 602 | if (bits & UDC_CFG) { |
| 603 | if (devstat & UDC_CFG) { |
| 604 | UDCDBG ("device configured"); |
| 605 | /* The ep0_recv_setup function generates the |
| 606 | * DEVICE_CONFIGURED event when a |
| 607 | * USB_REQ_SET_CONFIGURATION setup packet is |
| 608 | * received, so we should already be in the |
| 609 | * state STATE_CONFIGURED. |
| 610 | */ |
| 611 | udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED); |
| 612 | } else { |
| 613 | UDCDBG ("device deconfigured"); |
| 614 | udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED); |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | /* Clear interrupt source */ |
| 620 | outw (UDC_DS_Chg, UDC_IRQ_SRC); |
| 621 | |
| 622 | /* Save current DEVSTAT */ |
| 623 | udc_devstat = devstat; |
| 624 | } |
| 625 | |
| 626 | /* Handle SETUP USB interrupt. |
| 627 | * This function implements TRM Figure 14-14. |
| 628 | */ |
| 629 | static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint) |
| 630 | { |
| 631 | UDCDBG ("-> Entering device setup"); |
Wolfgang Denk | 386eda0 | 2006-06-14 18:14:56 +0200 | [diff] [blame] | 632 | |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 633 | do { |
| 634 | const int setup_pktsize = 8; |
| 635 | unsigned char *datap = |
| 636 | (unsigned char *) &ep0_urb->device_request; |
| 637 | |
| 638 | /* Gain access to EP 0 setup FIFO */ |
| 639 | outw (UDC_Setup_Sel, UDC_EP_NUM); |
| 640 | |
| 641 | /* Read control request data */ |
| 642 | insb (UDC_DATA, datap, setup_pktsize); |
| 643 | |
| 644 | UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]", |
| 645 | *(datap + 0), *(datap + 1), *(datap + 2), |
| 646 | *(datap + 3), *(datap + 4), *(datap + 5), |
| 647 | *(datap + 6), *(datap + 7)); |
| 648 | |
| 649 | /* Reset EP0 setup FIFO */ |
| 650 | outw (0, UDC_EP_NUM); |
| 651 | } while (inw (UDC_IRQ_SRC) & UDC_Setup); |
| 652 | |
| 653 | /* Try to process setup packet */ |
| 654 | if (ep0_recv_setup (ep0_urb)) { |
| 655 | /* Not a setup packet, stall next EP0 transaction */ |
| 656 | udc_stall_ep (0); |
| 657 | UDCDBG ("can't parse setup packet, still waiting for setup"); |
| 658 | return; |
| 659 | } |
| 660 | |
| 661 | /* Check direction */ |
| 662 | if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK) |
| 663 | == USB_REQ_HOST2DEVICE) { |
| 664 | UDCDBG ("control write on EP0"); |
| 665 | if (le16_to_cpu (ep0_urb->device_request.wLength)) { |
| 666 | /* We don't support control write data stages. |
| 667 | * The only standard control write request with a data |
| 668 | * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't |
| 669 | * support that so we just stall those requests. A |
| 670 | * function driver might support a non-standard |
| 671 | * write request with a data stage, but it isn't |
| 672 | * obvious what we would do with the data if we read it |
| 673 | * so we'll just stall it. It seems like the API isn't |
| 674 | * quite right here. |
| 675 | */ |
| 676 | #if 0 |
| 677 | /* Here is what we would do if we did support control |
| 678 | * write data stages. |
| 679 | */ |
| 680 | ep0_urb->actual_length = 0; |
| 681 | outw (0, UDC_EP_NUM); |
| 682 | /* enable the EP0 rx FIFO */ |
| 683 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 684 | #else |
| 685 | /* Stall this request */ |
| 686 | UDCDBG ("Stalling unsupported EP0 control write data " |
| 687 | "stage."); |
| 688 | udc_stall_ep (0); |
| 689 | #endif |
| 690 | } else { |
| 691 | omap1510_prepare_for_control_write_status (ep0_urb); |
| 692 | } |
| 693 | } else { |
| 694 | UDCDBG ("control read on EP0"); |
| 695 | /* The ep0_recv_setup function has already placed our response |
| 696 | * packet data in ep0_urb->buffer and the packet length in |
| 697 | * ep0_urb->actual_length. |
| 698 | */ |
| 699 | endpoint->tx_urb = ep0_urb; |
| 700 | endpoint->sent = 0; |
| 701 | /* select the EP0 tx FIFO */ |
| 702 | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| 703 | /* Write packet data to the FIFO. omap1510_write_noniso_tx_fifo |
| 704 | * will update endpoint->last with the number of bytes written |
| 705 | * to the FIFO. |
| 706 | */ |
| 707 | omap1510_write_noniso_tx_fifo (endpoint); |
| 708 | /* enable the FIFO to start the packet transmission */ |
| 709 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 710 | /* deselect the EP0 tx FIFO */ |
| 711 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 712 | } |
| 713 | |
| 714 | UDCDBG ("<- Leaving device setup"); |
| 715 | } |
| 716 | |
| 717 | /* Handle endpoint 0 RX interrupt |
| 718 | * This routine implements TRM Figure 14-16. |
| 719 | */ |
| 720 | static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint) |
| 721 | { |
| 722 | unsigned short status; |
| 723 | |
| 724 | UDCDBG ("RX on EP0"); |
| 725 | /* select EP0 rx FIFO */ |
| 726 | outw (UDC_EP_Sel, UDC_EP_NUM); |
| 727 | |
| 728 | status = inw (UDC_STAT_FLG); |
| 729 | |
| 730 | if (status & UDC_ACK) { |
| 731 | /* Check direction */ |
| 732 | if ((ep0_urb->device_request.bmRequestType |
| 733 | & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) { |
| 734 | /* This rx interrupt must be for a control write data |
| 735 | * stage packet. |
| 736 | * |
| 737 | * We don't support control write data stages. |
| 738 | * We should never end up here. |
| 739 | */ |
| 740 | |
| 741 | /* clear the EP0 rx FIFO */ |
| 742 | outw (UDC_Clr_EP, UDC_CTRL); |
| 743 | |
| 744 | /* deselect the EP0 rx FIFO */ |
| 745 | outw (0, UDC_EP_NUM); |
| 746 | |
| 747 | UDCDBG ("Stalling unexpected EP0 control write " |
| 748 | "data stage packet"); |
| 749 | udc_stall_ep (0); |
| 750 | } else { |
| 751 | /* This rx interrupt must be for a control read status |
| 752 | * stage packet. |
| 753 | */ |
| 754 | UDCDBG ("ACK on EP0 control read status stage packet"); |
| 755 | /* deselect EP0 rx FIFO */ |
| 756 | outw (0, UDC_EP_NUM); |
| 757 | } |
| 758 | } else if (status & UDC_STALL) { |
| 759 | UDCDBG ("EP0 stall during RX"); |
| 760 | /* deselect EP0 rx FIFO */ |
| 761 | outw (0, UDC_EP_NUM); |
| 762 | } else { |
| 763 | /* deselect EP0 rx FIFO */ |
| 764 | outw (0, UDC_EP_NUM); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | /* Handle endpoint 0 TX interrupt |
| 769 | * This routine implements TRM Figure 14-18. |
| 770 | */ |
| 771 | static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint) |
| 772 | { |
| 773 | unsigned short status; |
| 774 | struct usb_device_request *request = &ep0_urb->device_request; |
| 775 | |
| 776 | UDCDBG ("TX on EP0"); |
| 777 | /* select EP0 TX FIFO */ |
| 778 | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| 779 | |
| 780 | status = inw (UDC_STAT_FLG); |
| 781 | if (status & UDC_ACK) { |
| 782 | /* Check direction */ |
| 783 | if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) == |
| 784 | USB_REQ_HOST2DEVICE) { |
| 785 | /* This tx interrupt must be for a control write status |
| 786 | * stage packet. |
| 787 | */ |
| 788 | UDCDBG ("ACK on EP0 control write status stage packet"); |
| 789 | /* deselect EP0 TX FIFO */ |
| 790 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 791 | } else { |
| 792 | /* This tx interrupt must be for a control read data |
| 793 | * stage packet. |
| 794 | */ |
| 795 | int wLength = le16_to_cpu (request->wLength); |
| 796 | |
| 797 | /* Update our count of bytes sent so far in this |
| 798 | * transfer. |
| 799 | */ |
| 800 | endpoint->sent += endpoint->last; |
| 801 | |
| 802 | /* We are finished with this transfer if we have sent |
| 803 | * all of the bytes in our tx urb (urb->actual_length) |
| 804 | * unless we need a zero-length terminating packet. We |
| 805 | * need a zero-length terminating packet if we returned |
| 806 | * fewer bytes than were requested (wLength) by the host, |
| 807 | * and the number of bytes we returned is an exact |
| 808 | * multiple of the packet size endpoint->tx_packetSize. |
| 809 | */ |
| 810 | if ((endpoint->sent == ep0_urb->actual_length) |
| 811 | && ((ep0_urb->actual_length == wLength) |
| 812 | || (endpoint->last != |
| 813 | endpoint->tx_packetSize))) { |
| 814 | /* Done with control read data stage. */ |
| 815 | UDCDBG ("control read data stage complete"); |
| 816 | /* deselect EP0 TX FIFO */ |
| 817 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 818 | /* select EP0 RX FIFO to prepare for control |
| 819 | * read status stage. |
| 820 | */ |
| 821 | outw (UDC_EP_Sel, UDC_EP_NUM); |
| 822 | /* clear the EP0 RX FIFO */ |
| 823 | outw (UDC_Clr_EP, UDC_CTRL); |
| 824 | /* enable the EP0 RX FIFO */ |
| 825 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 826 | /* deselect the EP0 RX FIFO */ |
| 827 | outw (0, UDC_EP_NUM); |
| 828 | } else { |
| 829 | /* We still have another packet of data to send |
| 830 | * in this control read data stage or else we |
| 831 | * need a zero-length terminating packet. |
| 832 | */ |
| 833 | UDCDBG ("ACK control read data stage packet"); |
| 834 | omap1510_write_noniso_tx_fifo (endpoint); |
| 835 | /* enable the EP0 tx FIFO to start transmission */ |
| 836 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 837 | /* deselect EP0 TX FIFO */ |
| 838 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 839 | } |
| 840 | } |
| 841 | } else if (status & UDC_STALL) { |
| 842 | UDCDBG ("EP0 stall during TX"); |
| 843 | /* deselect EP0 TX FIFO */ |
| 844 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 845 | } else { |
| 846 | /* deselect EP0 TX FIFO */ |
| 847 | outw (UDC_EP_Dir, UDC_EP_NUM); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | /* Handle RX transaction on non-ISO endpoint. |
| 852 | * This function implements TRM Figure 14-27. |
| 853 | * The ep argument is a physical endpoint number for a non-ISO OUT endpoint |
| 854 | * in the range 1 to 15. |
| 855 | */ |
| 856 | static void omap1510_udc_epn_rx (int ep) |
| 857 | { |
| 858 | unsigned short status; |
| 859 | |
| 860 | /* Check endpoint status */ |
| 861 | status = inw (UDC_STAT_FLG); |
| 862 | |
| 863 | if (status & UDC_ACK) { |
| 864 | int nbytes; |
| 865 | struct usb_endpoint_instance *endpoint = |
| 866 | omap1510_find_ep (ep); |
| 867 | |
| 868 | nbytes = omap1510_read_noniso_rx_fifo (endpoint); |
| 869 | usbd_rcv_complete (endpoint, nbytes, 0); |
| 870 | |
| 871 | /* enable rx FIFO to prepare for next packet */ |
| 872 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 873 | } else if (status & UDC_STALL) { |
| 874 | UDCDBGA ("STALL on RX endpoint %d", ep); |
| 875 | } else if (status & UDC_NAK) { |
| 876 | UDCDBGA ("NAK on RX ep %d", ep); |
| 877 | } else { |
| 878 | serial_printf ("omap-bi: RX on ep %d with status %x", ep, |
| 879 | status); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | /* Handle TX transaction on non-ISO endpoint. |
| 884 | * This function implements TRM Figure 14-29. |
| 885 | * The ep argument is a physical endpoint number for a non-ISO IN endpoint |
| 886 | * in the range 16 to 30. |
| 887 | */ |
| 888 | static void omap1510_udc_epn_tx (int ep) |
| 889 | { |
| 890 | unsigned short status; |
| 891 | |
| 892 | /*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */ |
| 893 | |
| 894 | /* Check endpoint status */ |
| 895 | status = inw (UDC_STAT_FLG); |
| 896 | |
| 897 | if (status & UDC_ACK) { |
| 898 | struct usb_endpoint_instance *endpoint = |
| 899 | omap1510_find_ep (ep); |
| 900 | |
| 901 | /* We need to transmit a terminating zero-length packet now if |
| 902 | * we have sent all of the data in this URB and the transfer |
| 903 | * size was an exact multiple of the packet size. |
| 904 | */ |
| 905 | if (endpoint->tx_urb |
| 906 | && (endpoint->last == endpoint->tx_packetSize) |
| 907 | && (endpoint->tx_urb->actual_length - endpoint->sent - |
| 908 | endpoint->last == 0)) { |
| 909 | /* Prepare to transmit a zero-length packet. */ |
| 910 | endpoint->sent += endpoint->last; |
| 911 | /* write 0 bytes of data to FIFO */ |
| 912 | omap1510_write_noniso_tx_fifo (endpoint); |
| 913 | /* enable tx FIFO to start transmission */ |
| 914 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 915 | } else if (endpoint->tx_urb |
| 916 | && endpoint->tx_urb->actual_length) { |
| 917 | /* retire the data that was just sent */ |
| 918 | usbd_tx_complete (endpoint); |
| 919 | /* Check to see if we have more data ready to transmit |
| 920 | * now. |
| 921 | */ |
| 922 | if (endpoint->tx_urb |
| 923 | && endpoint->tx_urb->actual_length) { |
| 924 | /* write data to FIFO */ |
| 925 | omap1510_write_noniso_tx_fifo (endpoint); |
| 926 | /* enable tx FIFO to start transmission */ |
| 927 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 928 | } |
| 929 | } |
| 930 | } else if (status & UDC_STALL) { |
| 931 | UDCDBGA ("STALL on TX endpoint %d", ep); |
| 932 | } else if (status & UDC_NAK) { |
| 933 | UDCDBGA ("NAK on TX endpoint %d", ep); |
| 934 | } else { |
| 935 | /*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */ |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | |
| 940 | /* |
| 941 | ------------------------------------------------------------------------------- |
| 942 | */ |
| 943 | |
| 944 | /* Handle general USB interrupts and dispatch according to type. |
| 945 | * This function implements TRM Figure 14-13. |
| 946 | */ |
| 947 | void omap1510_udc_irq (void) |
| 948 | { |
| 949 | u16 irq_src = inw (UDC_IRQ_SRC); |
| 950 | int valid_irq = 0; |
| 951 | |
| 952 | if (!(irq_src & ~UDC_SOF_Flg)) /* ignore SOF interrupts ) */ |
| 953 | return; |
| 954 | |
| 955 | UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src); |
| 956 | /*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */ |
| 957 | |
| 958 | if (irq_src & UDC_DS_Chg) { |
| 959 | /* Device status changed */ |
| 960 | omap1510_udc_state_changed (); |
| 961 | valid_irq++; |
| 962 | } |
| 963 | if (irq_src & UDC_EP0_RX) { |
| 964 | /* Endpoint 0 receive */ |
| 965 | outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */ |
| 966 | omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0); |
| 967 | valid_irq++; |
| 968 | } |
| 969 | if (irq_src & UDC_EP0_TX) { |
| 970 | /* Endpoint 0 transmit */ |
| 971 | outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */ |
| 972 | omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0); |
| 973 | valid_irq++; |
| 974 | } |
| 975 | if (irq_src & UDC_Setup) { |
| 976 | /* Device setup */ |
| 977 | omap1510_udc_setup (udc_device->bus->endpoint_array + 0); |
| 978 | valid_irq++; |
| 979 | } |
| 980 | /*if (!valid_irq) */ |
| 981 | /* serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */ |
| 982 | UDCDBGA ("< IRQ #%d end >", udc_interrupts); |
| 983 | udc_interrupts++; |
| 984 | } |
| 985 | |
| 986 | /* This function implements TRM Figure 14-26. */ |
| 987 | void omap1510_udc_noniso_irq (void) |
| 988 | { |
| 989 | unsigned short epnum; |
| 990 | unsigned short irq_src = inw (UDC_IRQ_SRC); |
| 991 | int valid_irq = 0; |
| 992 | |
| 993 | if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX))) |
| 994 | return; |
| 995 | |
| 996 | UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC)); |
| 997 | |
| 998 | if (irq_src & UDC_EPn_RX) { /* Endpoint N OUT transaction */ |
| 999 | /* Determine the endpoint number for this interrupt */ |
| 1000 | epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8; |
| 1001 | UDCDBGA ("RX on ep %x", epnum); |
| 1002 | |
| 1003 | /* acknowledge interrupt */ |
| 1004 | outw (UDC_EPn_RX, UDC_IRQ_SRC); |
| 1005 | |
| 1006 | if (epnum) { |
| 1007 | /* select the endpoint FIFO */ |
| 1008 | outw (UDC_EP_Sel | epnum, UDC_EP_NUM); |
| 1009 | |
| 1010 | omap1510_udc_epn_rx (epnum); |
| 1011 | |
| 1012 | /* deselect the endpoint FIFO */ |
| 1013 | outw (epnum, UDC_EP_NUM); |
| 1014 | } |
| 1015 | valid_irq++; |
| 1016 | } |
| 1017 | if (irq_src & UDC_EPn_TX) { /* Endpoint N IN transaction */ |
| 1018 | /* Determine the endpoint number for this interrupt */ |
| 1019 | epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN; |
| 1020 | UDCDBGA ("TX on ep %x", epnum); |
| 1021 | |
| 1022 | /* acknowledge interrupt */ |
| 1023 | outw (UDC_EPn_TX, UDC_IRQ_SRC); |
| 1024 | |
| 1025 | if (epnum) { |
| 1026 | /* select the endpoint FIFO */ |
| 1027 | outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); |
| 1028 | |
| 1029 | omap1510_udc_epn_tx (epnum); |
| 1030 | |
| 1031 | /* deselect the endpoint FIFO */ |
| 1032 | outw (UDC_EP_Dir | epnum, UDC_EP_NUM); |
| 1033 | } |
| 1034 | valid_irq++; |
| 1035 | } |
| 1036 | if (!valid_irq) |
| 1037 | serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n", |
| 1038 | irq_src); |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | ------------------------------------------------------------------------------- |
| 1043 | */ |
| 1044 | |
| 1045 | |
| 1046 | /* |
| 1047 | * Start of public functions. |
| 1048 | */ |
| 1049 | |
| 1050 | /* Called to start packet transmission. */ |
Jean-Christophe PLAGNIOL-VILLARD | dedacc1 | 2008-12-07 09:45:35 +0100 | [diff] [blame] | 1051 | int udc_endpoint_write (struct usb_endpoint_instance *endpoint) |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1052 | { |
| 1053 | unsigned short epnum = |
| 1054 | endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK; |
| 1055 | |
| 1056 | UDCDBGA ("Starting transmit on ep %x", epnum); |
| 1057 | |
| 1058 | if (endpoint->tx_urb) { |
| 1059 | /* select the endpoint FIFO */ |
| 1060 | outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); |
| 1061 | /* write data to FIFO */ |
| 1062 | omap1510_write_noniso_tx_fifo (endpoint); |
| 1063 | /* enable tx FIFO to start transmission */ |
| 1064 | outw (UDC_Set_FIFO_En, UDC_CTRL); |
| 1065 | /* deselect the endpoint FIFO */ |
| 1066 | outw (UDC_EP_Dir | epnum, UDC_EP_NUM); |
| 1067 | } |
Jean-Christophe PLAGNIOL-VILLARD | dedacc1 | 2008-12-07 09:45:35 +0100 | [diff] [blame] | 1068 | |
| 1069 | return 0; |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1070 | } |
| 1071 | |
| 1072 | /* Start to initialize h/w stuff */ |
| 1073 | int udc_init (void) |
| 1074 | { |
| 1075 | u16 udc_rev; |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 1076 | uchar value; |
wdenk | efa329c | 2004-03-23 20:18:25 +0000 | [diff] [blame] | 1077 | ulong gpio; |
| 1078 | int i; |
| 1079 | |
| 1080 | /* Let the device settle down before we start */ |
| 1081 | for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000); |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1082 | |
| 1083 | udc_device = NULL; |
| 1084 | |
| 1085 | UDCDBG ("starting"); |
| 1086 | |
| 1087 | /* Check peripheral reset. Must be 1 to make sure |
| 1088 | MPU TIPB peripheral reset is inactive */ |
| 1089 | UDCREG (ARM_RSTCT2); |
| 1090 | |
| 1091 | /* Set and check clock control. |
| 1092 | * We might ought to be using the clock control API to do |
| 1093 | * this instead of fiddling with the clock registers directly |
| 1094 | * here. |
| 1095 | */ |
| 1096 | outw ((1 << 4) | (1 << 5), CLOCK_CTRL); |
| 1097 | UDCREG (CLOCK_CTRL); |
Hunter, Jon | 1d10dcd | 2008-07-26 18:59:16 -0500 | [diff] [blame] | 1098 | |
| 1099 | #ifdef CONFIG_OMAP1510 |
| 1100 | /* This code was originally implemented for OMAP1510 and |
| 1101 | * therefore is only applicable for OMAP1510 boards. For |
| 1102 | * OMAP5912 or OMAP16xx the register APLL_CTRL does not |
| 1103 | * exist and DPLL_CTRL is already configured. |
| 1104 | */ |
| 1105 | |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1106 | /* Set and check APLL */ |
| 1107 | outw (0x0008, APLL_CTRL); |
| 1108 | UDCREG (APLL_CTRL); |
| 1109 | /* Set and check DPLL */ |
| 1110 | outw (0x2210, DPLL_CTRL); |
| 1111 | UDCREG (DPLL_CTRL); |
Hunter, Jon | 1d10dcd | 2008-07-26 18:59:16 -0500 | [diff] [blame] | 1112 | #endif |
| 1113 | /* Set and check SOFT |
| 1114 | * The below line of code has been changed to perform a |
| 1115 | * read-modify-write instead of a simple write for |
| 1116 | * configuring the SOFT_REQ register. This allows the code |
| 1117 | * to be compatible with OMAP5912 and OMAP16xx devices |
| 1118 | */ |
| 1119 | outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ); |
| 1120 | |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1121 | /* Short delay to wait for DPLL */ |
| 1122 | udelay (1000); |
| 1123 | |
| 1124 | /* Print banner with device revision */ |
| 1125 | udc_rev = inw (UDC_REV) & 0xff; |
Hunter, Jon | 1d10dcd | 2008-07-26 18:59:16 -0500 | [diff] [blame] | 1126 | #ifdef CONFIG_OMAP1510 |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1127 | printf ("USB: TI OMAP1510 USB function module rev %d.%d\n", |
| 1128 | udc_rev >> 4, udc_rev & 0xf); |
Hunter, Jon | 1d10dcd | 2008-07-26 18:59:16 -0500 | [diff] [blame] | 1129 | #endif |
| 1130 | |
| 1131 | #ifdef CONFIG_OMAP1610 |
| 1132 | printf ("USB: TI OMAP5912 USB function module rev %d.%d\n", |
| 1133 | udc_rev >> 4, udc_rev & 0xf); |
| 1134 | #endif |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1135 | |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 1136 | #ifdef CONFIG_OMAP_SX1 |
| 1137 | i2c_read (0x32, 0x04, 1, &value, 1); |
| 1138 | value |= 0x04; |
| 1139 | i2c_write (0x32, 0x04, 1, &value, 1); |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1140 | |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 1141 | i2c_read (0x32, 0x03, 1, &value, 1); |
| 1142 | value |= 0x01; |
| 1143 | i2c_write (0x32, 0x03, 1, &value, 1); |
wdenk | efa329c | 2004-03-23 20:18:25 +0000 | [diff] [blame] | 1144 | |
| 1145 | gpio = inl(GPIO_PIN_CONTROL_REG); |
| 1146 | gpio |= 0x0002; /* A_IRDA_OFF */ |
| 1147 | gpio |= 0x0800; /* A_SWITCH */ |
| 1148 | gpio |= 0x8000; /* A_USB_ON */ |
| 1149 | outl (gpio, GPIO_PIN_CONTROL_REG); |
| 1150 | |
| 1151 | gpio = inl(GPIO_DIR_CONTROL_REG); |
| 1152 | gpio &= ~0x0002; /* A_IRDA_OFF */ |
| 1153 | gpio &= ~0x0800; /* A_SWITCH */ |
| 1154 | gpio &= ~0x8000; /* A_USB_ON */ |
| 1155 | outl (gpio, GPIO_DIR_CONTROL_REG); |
| 1156 | |
| 1157 | gpio = inl(GPIO_DATA_OUTPUT_REG); |
| 1158 | gpio |= 0x0002; /* A_IRDA_OFF */ |
| 1159 | gpio &= ~0x0800; /* A_SWITCH */ |
| 1160 | gpio &= ~0x8000; /* A_USB_ON */ |
| 1161 | outl (gpio, GPIO_DATA_OUTPUT_REG); |
wdenk | bdda519 | 2004-03-12 13:47:56 +0000 | [diff] [blame] | 1162 | #endif |
wdenk | 232c150 | 2004-03-12 00:14:09 +0000 | [diff] [blame] | 1163 | |
| 1164 | /* The VBUS_MODE bit selects whether VBUS detection is done via |
| 1165 | * software (1) or hardware (0). When software detection is |
| 1166 | * selected, VBUS_CTRL selects whether USB is not connected (0) |
| 1167 | * or connected (1). |
| 1168 | */ |
| 1169 | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); |
| 1170 | outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); |
| 1171 | UDCREGL (FUNC_MUX_CTRL_0); |
| 1172 | |
| 1173 | /* |
| 1174 | * At this point, device is ready for configuration... |
| 1175 | */ |
| 1176 | |
| 1177 | UDCDBG ("disable USB interrupts"); |
| 1178 | outw (0, UDC_IRQ_EN); |
| 1179 | UDCREG (UDC_IRQ_EN); |
| 1180 | |
| 1181 | UDCDBG ("disable USB DMA"); |
| 1182 | outw (0, UDC_DMA_IRQ_EN); |
| 1183 | UDCREG (UDC_DMA_IRQ_EN); |
| 1184 | |
| 1185 | UDCDBG ("initialize SYSCON1"); |
| 1186 | outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1); |
| 1187 | UDCREG (UDC_SYSCON1); |
| 1188 | |
| 1189 | return 0; |
| 1190 | } |
| 1191 | |
| 1192 | /* Stall endpoint */ |
| 1193 | static void udc_stall_ep (unsigned int ep_addr) |
| 1194 | { |
| 1195 | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| 1196 | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| 1197 | |
| 1198 | UDCDBGA ("stall ep_addr %d", ep_addr); |
| 1199 | |
| 1200 | /* REVISIT? |
| 1201 | * The OMAP TRM section 14.2.4.2 says we must check that the FIFO |
| 1202 | * is empty before halting the endpoint. The current implementation |
| 1203 | * doesn't check that the FIFO is empty. |
| 1204 | */ |
| 1205 | |
| 1206 | if (!ep_num) { |
| 1207 | outw (UDC_Stall_Cmd, UDC_SYSCON2); |
| 1208 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { |
| 1209 | if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { |
| 1210 | /* we have a valid rx endpoint, so halt it */ |
| 1211 | outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); |
| 1212 | outw (UDC_Set_Halt, UDC_CTRL); |
| 1213 | outw (ep_num, UDC_EP_NUM); |
| 1214 | } |
| 1215 | } else { |
| 1216 | if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { |
| 1217 | /* we have a valid tx endpoint, so halt it */ |
| 1218 | outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM); |
| 1219 | outw (UDC_Set_Halt, UDC_CTRL); |
| 1220 | outw (ep_num, UDC_EP_NUM); |
| 1221 | } |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | /* Reset endpoint */ |
| 1226 | #if 0 |
| 1227 | static void udc_reset_ep (unsigned int ep_addr) |
| 1228 | { |
| 1229 | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| 1230 | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| 1231 | |
| 1232 | UDCDBGA ("reset ep_addr %d", ep_addr); |
| 1233 | |
| 1234 | if (!ep_num) { |
| 1235 | /* control endpoint 0 can't be reset */ |
| 1236 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { |
| 1237 | UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num, |
| 1238 | inw (UDC_EP_RX (ep_num))); |
| 1239 | if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { |
| 1240 | /* we have a valid rx endpoint, so reset it */ |
| 1241 | outw (ep_num | UDC_EP_Sel, UDC_EP_NUM); |
| 1242 | outw (UDC_Reset_EP, UDC_CTRL); |
| 1243 | outw (ep_num, UDC_EP_NUM); |
| 1244 | UDCDBGA ("OUT endpoint %d reset", ep_num); |
| 1245 | } |
| 1246 | } else { |
| 1247 | UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num, |
| 1248 | inw (UDC_EP_TX (ep_num))); |
| 1249 | /* Resetting of tx endpoints seems to be causing the USB function |
| 1250 | * module to fail, which causes problems when the driver is |
| 1251 | * uninstalled. We'll skip resetting tx endpoints for now until |
| 1252 | * we figure out what the problem is. |
| 1253 | */ |
| 1254 | #if 0 |
| 1255 | if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { |
| 1256 | /* we have a valid tx endpoint, so reset it */ |
| 1257 | outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); |
| 1258 | outw (UDC_Reset_EP, UDC_CTRL); |
| 1259 | outw (ep_num | UDC_EP_Dir, UDC_EP_NUM); |
| 1260 | UDCDBGA ("IN endpoint %d reset", ep_num); |
| 1261 | } |
| 1262 | #endif |
| 1263 | } |
| 1264 | } |
| 1265 | #endif |
| 1266 | |
| 1267 | /* ************************************************************************** */ |
| 1268 | |
| 1269 | /** |
| 1270 | * udc_check_ep - check logical endpoint |
| 1271 | * |
| 1272 | * Return physical endpoint number to use for this logical endpoint or zero if not valid. |
| 1273 | */ |
| 1274 | #if 0 |
| 1275 | int udc_check_ep (int logical_endpoint, int packetsize) |
| 1276 | { |
| 1277 | if ((logical_endpoint == 0x80) || |
| 1278 | ((logical_endpoint & 0x8f) != logical_endpoint)) { |
| 1279 | return 0; |
| 1280 | } |
| 1281 | |
| 1282 | switch (packetsize) { |
| 1283 | case 8: |
| 1284 | case 16: |
| 1285 | case 32: |
| 1286 | case 64: |
| 1287 | case 128: |
| 1288 | case 256: |
| 1289 | case 512: |
| 1290 | break; |
| 1291 | default: |
| 1292 | return 0; |
| 1293 | } |
| 1294 | |
| 1295 | return EP_ADDR_TO_PHYS_EP (logical_endpoint); |
| 1296 | } |
| 1297 | #endif |
| 1298 | |
| 1299 | /* |
| 1300 | * udc_setup_ep - setup endpoint |
| 1301 | * |
| 1302 | * Associate a physical endpoint with endpoint_instance |
| 1303 | */ |
| 1304 | void udc_setup_ep (struct usb_device_instance *device, |
| 1305 | unsigned int ep, struct usb_endpoint_instance *endpoint) |
| 1306 | { |
| 1307 | UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address); |
| 1308 | |
| 1309 | /* This routine gets called by bi_modinit for endpoint 0 and from |
| 1310 | * bi_config for all of the other endpoints. bi_config gets called |
| 1311 | * during the DEVICE_CREATE, DEVICE_CONFIGURED, and |
| 1312 | * DEVICE_SET_INTERFACE events. We need to reconfigure the OMAP packet |
| 1313 | * RAM after bi_config scans the selected device configuration and |
| 1314 | * initializes the endpoint structures, but before this routine enables |
| 1315 | * the OUT endpoint FIFOs. Since bi_config calls this routine in a |
| 1316 | * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our |
| 1317 | * packet RAM here when ep==1. |
| 1318 | * I really hate to do this here, but it seems like the API exported |
| 1319 | * by the USB bus interface controller driver to the usbd-bi module |
| 1320 | * isn't quite right so there is no good place to do this. |
| 1321 | */ |
| 1322 | if (ep == 1) { |
| 1323 | omap1510_deconfigure_device (); |
| 1324 | omap1510_configure_device (device); |
| 1325 | } |
| 1326 | |
| 1327 | if (endpoint && (ep < UDC_MAX_ENDPOINTS)) { |
| 1328 | int ep_addr = endpoint->endpoint_address; |
| 1329 | |
| 1330 | if (!ep_addr) { |
| 1331 | /* nothing to do for endpoint 0 */ |
| 1332 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 1333 | /* nothing to do for IN (tx) endpoints */ |
| 1334 | } else { /* OUT (rx) endpoint */ |
| 1335 | if (endpoint->rcv_packetSize) { |
| 1336 | /*struct urb* urb = &(urb_out_array[ep&0xFF]); */ |
| 1337 | /*urb->endpoint = endpoint; */ |
| 1338 | /*urb->device = device; */ |
| 1339 | /*urb->buffer_length = sizeof(urb->buffer); */ |
| 1340 | |
| 1341 | /*endpoint->rcv_urb = urb; */ |
| 1342 | omap1510_prepare_endpoint_for_rx (ep_addr); |
| 1343 | } |
| 1344 | } |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | /** |
| 1349 | * udc_disable_ep - disable endpoint |
| 1350 | * @ep: |
| 1351 | * |
| 1352 | * Disable specified endpoint |
| 1353 | */ |
| 1354 | #if 0 |
| 1355 | void udc_disable_ep (unsigned int ep_addr) |
| 1356 | { |
| 1357 | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ |
| 1358 | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; |
| 1359 | struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr); /*udc_device->bus->endpoint_array + ep; */ |
| 1360 | |
| 1361 | UDCDBGA ("disable ep_addr %d", ep_addr); |
| 1362 | |
| 1363 | if (!ep_num) { |
| 1364 | /* nothing to do for endpoint 0 */ ; |
| 1365 | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { |
| 1366 | if (endpoint->tx_packetSize) { |
| 1367 | /* we have a valid tx endpoint */ |
| 1368 | /*usbd_flush_tx(endpoint); */ |
| 1369 | endpoint->tx_urb = NULL; |
| 1370 | } |
| 1371 | } else { |
| 1372 | if (endpoint->rcv_packetSize) { |
| 1373 | /* we have a valid rx endpoint */ |
| 1374 | /*usbd_flush_rcv(endpoint); */ |
| 1375 | endpoint->rcv_urb = NULL; |
| 1376 | } |
| 1377 | } |
| 1378 | } |
| 1379 | #endif |
| 1380 | |
| 1381 | /* ************************************************************************** */ |
| 1382 | |
| 1383 | /** |
| 1384 | * udc_connected - is the USB cable connected |
| 1385 | * |
| 1386 | * Return non-zero if cable is connected. |
| 1387 | */ |
| 1388 | #if 0 |
| 1389 | int udc_connected (void) |
| 1390 | { |
| 1391 | return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT); |
| 1392 | } |
| 1393 | #endif |
| 1394 | |
| 1395 | /* Turn on the USB connection by enabling the pullup resistor */ |
| 1396 | void udc_connect (void) |
| 1397 | { |
| 1398 | UDCDBG ("connect, enable Pullup"); |
| 1399 | outl (0x00000018, FUNC_MUX_CTRL_D); |
| 1400 | } |
| 1401 | |
| 1402 | /* Turn off the USB connection by disabling the pullup resistor */ |
| 1403 | void udc_disconnect (void) |
| 1404 | { |
| 1405 | UDCDBG ("disconnect, disable Pullup"); |
| 1406 | outl (0x00000000, FUNC_MUX_CTRL_D); |
| 1407 | } |
| 1408 | |
| 1409 | /* ************************************************************************** */ |
| 1410 | |
| 1411 | |
| 1412 | /* |
| 1413 | * udc_disable_interrupts - disable interrupts |
| 1414 | * switch off interrupts |
| 1415 | */ |
| 1416 | #if 0 |
| 1417 | void udc_disable_interrupts (struct usb_device_instance *device) |
| 1418 | { |
| 1419 | UDCDBG ("disabling all interrupts"); |
| 1420 | outw (0, UDC_IRQ_EN); |
| 1421 | } |
| 1422 | #endif |
| 1423 | |
| 1424 | /* ************************************************************************** */ |
| 1425 | |
| 1426 | /** |
| 1427 | * udc_ep0_packetsize - return ep0 packetsize |
| 1428 | */ |
| 1429 | #if 0 |
| 1430 | int udc_ep0_packetsize (void) |
| 1431 | { |
| 1432 | return EP0_PACKETSIZE; |
| 1433 | } |
| 1434 | #endif |
| 1435 | |
| 1436 | /* Switch on the UDC */ |
| 1437 | void udc_enable (struct usb_device_instance *device) |
| 1438 | { |
| 1439 | UDCDBGA ("enable device %p, status %d", device, device->status); |
| 1440 | |
| 1441 | /* initialize driver state variables */ |
| 1442 | udc_devstat = 0; |
| 1443 | |
| 1444 | /* Save the device structure pointer */ |
| 1445 | udc_device = device; |
| 1446 | |
| 1447 | /* Setup ep0 urb */ |
| 1448 | if (!ep0_urb) { |
| 1449 | ep0_urb = |
| 1450 | usbd_alloc_urb (udc_device, |
| 1451 | udc_device->bus->endpoint_array); |
| 1452 | } else { |
| 1453 | serial_printf ("udc_enable: ep0_urb already allocated %p\n", |
| 1454 | ep0_urb); |
| 1455 | } |
| 1456 | |
| 1457 | UDCDBG ("Check clock status"); |
| 1458 | UDCREG (STATUS_REQ); |
| 1459 | |
| 1460 | /* The VBUS_MODE bit selects whether VBUS detection is done via |
| 1461 | * software (1) or hardware (0). When software detection is |
| 1462 | * selected, VBUS_CTRL selects whether USB is not connected (0) |
| 1463 | * or connected (1). |
| 1464 | */ |
| 1465 | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE, |
| 1466 | FUNC_MUX_CTRL_0); |
| 1467 | UDCREGL (FUNC_MUX_CTRL_0); |
| 1468 | |
| 1469 | omap1510_configure_device (device); |
| 1470 | } |
| 1471 | |
| 1472 | /* Switch off the UDC */ |
| 1473 | void udc_disable (void) |
| 1474 | { |
| 1475 | UDCDBG ("disable UDC"); |
| 1476 | |
| 1477 | omap1510_deconfigure_device (); |
| 1478 | |
| 1479 | /* The VBUS_MODE bit selects whether VBUS detection is done via |
| 1480 | * software (1) or hardware (0). When software detection is |
| 1481 | * selected, VBUS_CTRL selects whether USB is not connected (0) |
| 1482 | * or connected (1). |
| 1483 | */ |
| 1484 | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); |
| 1485 | outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); |
| 1486 | UDCREGL (FUNC_MUX_CTRL_0); |
| 1487 | |
| 1488 | /* Free ep0 URB */ |
| 1489 | if (ep0_urb) { |
| 1490 | /*usbd_dealloc_urb(ep0_urb); */ |
| 1491 | ep0_urb = NULL; |
| 1492 | } |
| 1493 | |
| 1494 | /* Reset device pointer. |
| 1495 | * We ought to do this here to balance the initialization of udc_device |
| 1496 | * in udc_enable, but some of our other exported functions get called |
| 1497 | * by the bus interface driver after udc_disable, so we have to hang on |
| 1498 | * to the device pointer to avoid a null pointer dereference. */ |
| 1499 | /* udc_device = NULL; */ |
| 1500 | } |
| 1501 | |
| 1502 | /** |
| 1503 | * udc_startup - allow udc code to do any additional startup |
| 1504 | */ |
| 1505 | void udc_startup_events (struct usb_device_instance *device) |
| 1506 | { |
| 1507 | /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */ |
| 1508 | usbd_device_event_irq (device, DEVICE_INIT, 0); |
| 1509 | |
| 1510 | /* The DEVICE_CREATE event puts the USB device in the state |
| 1511 | * STATE_ATTACHED. |
| 1512 | */ |
| 1513 | usbd_device_event_irq (device, DEVICE_CREATE, 0); |
| 1514 | |
| 1515 | /* Some USB controller driver implementations signal |
| 1516 | * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here. |
| 1517 | * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED, |
| 1518 | * and DEVICE_RESET causes a transition to the state STATE_DEFAULT. |
| 1519 | * The OMAP USB client controller has the capability to detect when the |
| 1520 | * USB cable is connected to a powered USB bus via the ATT bit in the |
| 1521 | * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and |
| 1522 | * DEVICE_RESET events until later. |
| 1523 | */ |
| 1524 | |
| 1525 | udc_enable (device); |
| 1526 | } |
| 1527 | |
Wolfgang Denk | 16c8d5e | 2006-06-14 17:45:53 +0200 | [diff] [blame] | 1528 | /** |
Wolfgang Denk | 386eda0 | 2006-06-14 18:14:56 +0200 | [diff] [blame] | 1529 | * udc_irq - do pseudo interrupts |
Wolfgang Denk | 16c8d5e | 2006-06-14 17:45:53 +0200 | [diff] [blame] | 1530 | */ |
| 1531 | void udc_irq(void) |
| 1532 | { |
| 1533 | /* Loop while we have interrupts. |
| 1534 | * If we don't do this, the input chain |
| 1535 | * polling delay is likely to miss |
| 1536 | * host requests. |
| 1537 | */ |
| 1538 | while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) { |
| 1539 | /* Handle any new IRQs */ |
| 1540 | omap1510_udc_irq (); |
| 1541 | omap1510_udc_noniso_irq (); |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | /* Flow control */ |
| 1546 | void udc_set_nak(int epid) |
| 1547 | { |
| 1548 | /* TODO: implement this functionality in omap1510 */ |
| 1549 | } |
| 1550 | |
| 1551 | void udc_unset_nak (int epid) |
| 1552 | { |
| 1553 | /* TODO: implement this functionality in omap1510 */ |
| 1554 | } |