blob: 5e4406102f1f6bb1c7255a0010bacd1c715f51c1 [file] [log] [blame]
Tom Warren52ef43b2014-01-24 12:46:15 -07001/*
Tom Warren722e0002015-06-25 09:50:44 -07002 * (C) Copyright 2013-2015
Tom Warren52ef43b2014-01-24 12:46:15 -07003 * NVIDIA Corporation <www.nvidia.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8/* Tegra124 Clock control functions */
9
10#include <common.h>
11#include <asm/io.h>
12#include <asm/arch/clock.h>
13#include <asm/arch/sysctr.h>
14#include <asm/arch/tegra.h>
15#include <asm/arch-tegra/clk_rst.h>
16#include <asm/arch-tegra/timer.h>
17#include <div64.h>
18#include <fdtdec.h>
19
20/*
21 * Clock types that we can use as a source. The Tegra124 has muxes for the
22 * peripheral clocks, and in most cases there are four options for the clock
23 * source. This gives us a clock 'type' and exploits what commonality exists
24 * in the device.
25 *
26 * Letters are obvious, except for T which means CLK_M, and S which means the
27 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
28 * datasheet) and PLL_M are different things. The former is the basic
29 * clock supplied to the SOC from an external oscillator. The latter is the
30 * memory clock PLL.
31 *
32 * See definitions in clock_id in the header file.
33 */
34enum clock_type_id {
35 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
36 CLOCK_TYPE_MCPA, /* and so on */
37 CLOCK_TYPE_MCPT,
38 CLOCK_TYPE_PCM,
39 CLOCK_TYPE_PCMT,
40 CLOCK_TYPE_PDCT,
41 CLOCK_TYPE_ACPT,
42 CLOCK_TYPE_ASPTE,
43 CLOCK_TYPE_PMDACD2T,
44 CLOCK_TYPE_PCST,
Simon Glass96e82a22015-04-14 21:03:34 -060045 CLOCK_TYPE_DP,
Tom Warren52ef43b2014-01-24 12:46:15 -070046
47 CLOCK_TYPE_PC2CC3M,
48 CLOCK_TYPE_PC2CC3S_T,
49 CLOCK_TYPE_PC2CC3M_T,
50 CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
51 CLOCK_TYPE_MC2CC3P_A,
52 CLOCK_TYPE_M,
53 CLOCK_TYPE_MCPTM2C2C3,
54 CLOCK_TYPE_PC2CC3T_S,
55 CLOCK_TYPE_AC2CC3P_TS2,
56
57 CLOCK_TYPE_COUNT,
58 CLOCK_TYPE_NONE = -1, /* invalid clock type */
59};
60
61enum {
62 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
63};
64
65/*
66 * Clock source mux for each clock type. This just converts our enum into
67 * a list of mux sources for use by the code.
68 *
69 * Note:
70 * The extra column in each clock source array is used to store the mask
71 * bits in its register for the source.
72 */
73#define CLK(x) CLOCK_ID_ ## x
74static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
75 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
76 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
77 MASK_BITS_31_30},
78 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
79 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
80 MASK_BITS_31_30},
81 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
82 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
83 MASK_BITS_31_30},
84 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
85 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
86 MASK_BITS_31_30},
87 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
88 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
89 MASK_BITS_31_30},
90 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
91 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
92 MASK_BITS_31_30},
93 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
94 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
95 MASK_BITS_31_30},
96 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
97 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
98 MASK_BITS_31_29},
99 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
100 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
101 MASK_BITS_31_29},
102 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
103 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
104 MASK_BITS_31_28},
Simon Glass96e82a22015-04-14 21:03:34 -0600105 /* CLOCK_TYPE_DP */
106 { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
107 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
108 MASK_BITS_31_28},
Tom Warren52ef43b2014-01-24 12:46:15 -0700109
110 /* Additional clock types on Tegra114+ */
111 /* CLOCK_TYPE_PC2CC3M */
112 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
113 CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
114 MASK_BITS_31_29},
115 /* CLOCK_TYPE_PC2CC3S_T */
116 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
117 CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
118 MASK_BITS_31_29},
119 /* CLOCK_TYPE_PC2CC3M_T */
120 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
121 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
122 MASK_BITS_31_29},
123 /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
124 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
125 CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
126 MASK_BITS_31_29},
127 /* CLOCK_TYPE_MC2CC3P_A */
128 { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
129 CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
130 MASK_BITS_31_29},
131 /* CLOCK_TYPE_M */
132 { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
133 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
134 MASK_BITS_31_30},
135 /* CLOCK_TYPE_MCPTM2C2C3 */
136 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
137 CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
138 MASK_BITS_31_29},
139 /* CLOCK_TYPE_PC2CC3T_S */
140 { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
141 CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
142 MASK_BITS_31_29},
143 /* CLOCK_TYPE_AC2CC3P_TS2 */
144 { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
145 CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
146 MASK_BITS_31_29},
147};
148
149/*
150 * Clock type for each peripheral clock source. We put the name in each
151 * record just so it is easy to match things up
152 */
153#define TYPE(name, type) type
154static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
155 /* 0x00 */
156 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
157 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
158 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
159 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
160 TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
161 TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
162 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
163 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
164
165 /* 0x08 */
166 TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
167 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
168 TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
169 TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
170 TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
171 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
172 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
173 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
174
175 /* 0x10 */
176 TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
177 TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
178 TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
179 TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
180 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
181 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
182 TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
183 TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
184
185 /* 0x18 */
186 TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
187 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
188 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
189 TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
190 TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
191 TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
192 TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
193 TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
194
195 /* 0x20 */
196 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
197 TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
198 TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
199 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
200 TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
201 TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
202 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
203 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
204
205 /* 0x28 */
206 TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
207 TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
208 TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
209 TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
210 TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
211 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
212 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
213 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
214
215 /* 0x30 */
216 TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
217 TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
218 TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
219 TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
220 TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
221 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
222 TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
223 TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
224
225 /* 0x38 */
226 TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
227 TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
228 TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
229 TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
230 TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
231 TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
232 TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
233 TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
234
235 /* 0x40 */
236 TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
237 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
238 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
239 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
240 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
241 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
242 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
243 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
244
245 /* 0x48 */
246 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
247 TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
248 TYPE(PERIPHC_DAM0, CLOCK_TYPE_AC2CC3P_TS2),
249 TYPE(PERIPHC_DAM1, CLOCK_TYPE_AC2CC3P_TS2),
250 TYPE(PERIPHC_DAM2, CLOCK_TYPE_AC2CC3P_TS2),
251 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
252 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
253 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
254
255 /* 0x50 */
256 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
257 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
258 TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
259 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
260 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
261 TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
262 TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
263 TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
264
265 /* 0x58 */
266 TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
Simon Glass96e82a22015-04-14 21:03:34 -0600267 TYPE(PERIPHC_SOR, CLOCK_TYPE_NONE),
Tom Warren52ef43b2014-01-24 12:46:15 -0700268 TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
269 TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
270 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
271 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
272 TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
273 TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
274
275 /* 0x60 */
276 TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
277 TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
278 TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
279 TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
280 TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
281 TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
282 TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
283 TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
284
285 /* 0x68 */
286 TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
287 TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
288 TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
289 TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
290 TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
291 TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
292 TYPE(PERIPHC_ADX0, CLOCK_TYPE_NONE),
293 TYPE(PERIPHC_AMX0, CLOCK_TYPE_NONE),
294
295 /* 0x70 */
296 TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
297 TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
298 TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
299 TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
300 TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
301 TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
302 TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
303 TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
304
305 /* 0x78 */
306 TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
307 TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
308 TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
309 TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
310 TYPE(PERIPHC_ADX1, CLOCK_TYPE_AC2CC3P_TS2),
311 TYPE(PERIPHC_AMX1, CLOCK_TYPE_AC2CC3P_TS2),
312 TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
313 TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
314};
315
316/*
317 * This array translates a periph_id to a periphc_internal_id
318 *
319 * Not present/matched up:
320 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
321 * SPDIF - which is both 0x08 and 0x0c
322 *
323 */
324#define NONE(name) (-1)
325#define OFFSET(name, value) PERIPHC_ ## name
326static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
327 /* Low word: 31:0 */
328 NONE(CPU),
329 NONE(COP),
330 NONE(TRIGSYS),
331 NONE(ISPB),
332 NONE(RESERVED4),
333 NONE(TMR),
334 PERIPHC_UART1,
335 PERIPHC_UART2, /* and vfir 0x68 */
336
337 /* 8 */
338 NONE(GPIO),
339 PERIPHC_SDMMC2,
340 PERIPHC_SPDIF_IN,
341 PERIPHC_I2S1,
342 PERIPHC_I2C1,
343 NONE(RESERVED13),
344 PERIPHC_SDMMC1,
345 PERIPHC_SDMMC4,
346
347 /* 16 */
348 NONE(TCW),
349 PERIPHC_PWM,
350 PERIPHC_I2S2,
351 NONE(RESERVED19),
352 PERIPHC_VI,
353 NONE(RESERVED21),
354 NONE(USBD),
355 NONE(ISP),
356
357 /* 24 */
358 NONE(RESERVED24),
359 NONE(RESERVED25),
360 PERIPHC_DISP2,
361 PERIPHC_DISP1,
362 PERIPHC_HOST1X,
363 NONE(VCP),
364 PERIPHC_I2S0,
365 NONE(CACHE2),
366
367 /* Middle word: 63:32 */
368 NONE(MEM),
369 NONE(AHBDMA),
370 NONE(APBDMA),
371 NONE(RESERVED35),
372 NONE(RESERVED36),
373 NONE(STAT_MON),
374 NONE(RESERVED38),
375 NONE(FUSE),
376
377 /* 40 */
378 NONE(KFUSE),
379 PERIPHC_SBC1, /* SBCx = SPIx */
380 PERIPHC_NOR,
381 NONE(RESERVED43),
382 PERIPHC_SBC2,
383 NONE(XIO),
384 PERIPHC_SBC3,
385 PERIPHC_I2C5,
386
387 /* 48 */
388 NONE(DSI),
389 NONE(RESERVED49),
390 PERIPHC_HSI,
391 PERIPHC_HDMI,
392 NONE(CSI),
393 NONE(RESERVED53),
394 PERIPHC_I2C2,
395 PERIPHC_UART3,
396
397 /* 56 */
398 NONE(MIPI_CAL),
399 PERIPHC_EMC,
400 NONE(USB2),
401 NONE(USB3),
402 NONE(RESERVED60),
403 PERIPHC_VDE,
404 NONE(BSEA),
405 NONE(BSEV),
406
407 /* Upper word 95:64 */
408 NONE(RESERVED64),
409 PERIPHC_UART4,
410 PERIPHC_UART5,
411 PERIPHC_I2C3,
412 PERIPHC_SBC4,
413 PERIPHC_SDMMC3,
414 NONE(PCIE),
415 PERIPHC_OWR,
416
417 /* 72 */
418 NONE(AFI),
419 PERIPHC_CSITE,
420 NONE(PCIEXCLK),
421 NONE(AVPUCQ),
422 NONE(LA),
423 NONE(TRACECLKIN),
424 NONE(SOC_THERM),
425 NONE(DTV),
426
427 /* 80 */
428 NONE(RESERVED80),
429 PERIPHC_I2CSLOW,
430 NONE(DSIB),
431 PERIPHC_TSEC,
432 NONE(RESERVED84),
433 NONE(RESERVED85),
434 NONE(RESERVED86),
435 NONE(EMUCIF),
436
437 /* 88 */
438 NONE(RESERVED88),
439 NONE(XUSB_HOST),
440 NONE(RESERVED90),
441 PERIPHC_MSENC,
442 NONE(RESERVED92),
443 NONE(RESERVED93),
444 NONE(RESERVED94),
445 NONE(XUSB_DEV),
446
447 /* V word: 31:0 */
448 NONE(CPUG),
449 NONE(CPULP),
450 NONE(V_RESERVED2),
451 PERIPHC_MSELECT,
452 NONE(V_RESERVED4),
453 PERIPHC_I2S3,
454 PERIPHC_I2S4,
455 PERIPHC_I2C4,
456
457 /* 104 */
458 PERIPHC_SBC5,
459 PERIPHC_SBC6,
460 PERIPHC_AUDIO,
461 NONE(APBIF),
462 PERIPHC_DAM0,
463 PERIPHC_DAM1,
464 PERIPHC_DAM2,
465 PERIPHC_HDA2CODEC2X,
466
467 /* 112 */
468 NONE(ATOMICS),
469 NONE(V_RESERVED17),
470 NONE(V_RESERVED18),
471 NONE(V_RESERVED19),
472 NONE(V_RESERVED20),
473 NONE(V_RESERVED21),
474 NONE(V_RESERVED22),
475 PERIPHC_ACTMON,
476
477 /* 120 */
Simon Glass057772b2015-06-05 14:39:39 -0600478 PERIPHC_EXTPERIPH1,
Tom Warren52ef43b2014-01-24 12:46:15 -0700479 NONE(EXTPERIPH2),
480 NONE(EXTPERIPH3),
481 NONE(OOB),
482 PERIPHC_SATA,
483 PERIPHC_HDA,
484 NONE(TZRAM),
485 NONE(SE),
486
487 /* W word: 31:0 */
488 NONE(HDA2HDMICODEC),
489 NONE(SATACOLD),
490 NONE(W_RESERVED2),
491 NONE(W_RESERVED3),
492 NONE(W_RESERVED4),
493 NONE(W_RESERVED5),
494 NONE(W_RESERVED6),
495 NONE(W_RESERVED7),
496
497 /* 136 */
498 NONE(CEC),
499 NONE(W_RESERVED9),
500 NONE(W_RESERVED10),
501 NONE(W_RESERVED11),
502 NONE(W_RESERVED12),
503 NONE(W_RESERVED13),
504 NONE(XUSB_PADCTL),
505 NONE(W_RESERVED15),
506
507 /* 144 */
508 NONE(W_RESERVED16),
509 NONE(W_RESERVED17),
510 NONE(W_RESERVED18),
511 NONE(W_RESERVED19),
512 NONE(W_RESERVED20),
513 NONE(ENTROPY),
514 NONE(DDS),
515 NONE(W_RESERVED23),
516
517 /* 152 */
518 NONE(DP2),
519 NONE(AMX0),
520 NONE(ADX0),
521 NONE(DVFS),
522 NONE(XUSB_SS),
523 NONE(W_RESERVED29),
524 NONE(W_RESERVED30),
525 NONE(W_RESERVED31),
526
527 /* X word: 31:0 */
528 NONE(SPARE),
529 NONE(X_RESERVED1),
530 NONE(X_RESERVED2),
531 NONE(X_RESERVED3),
532 NONE(CAM_MCLK),
533 NONE(CAM_MCLK2),
534 PERIPHC_I2C6,
535 NONE(X_RESERVED7),
536
537 /* 168 */
538 NONE(X_RESERVED8),
539 NONE(X_RESERVED9),
540 NONE(X_RESERVED10),
541 NONE(VIM2_CLK),
542 NONE(X_RESERVED12),
543 NONE(X_RESERVED13),
544 NONE(EMC_DLL),
545 NONE(X_RESERVED15),
546
547 /* 176 */
548 NONE(HDMI_AUDIO),
549 NONE(CLK72MHZ),
550 NONE(VIC),
551 NONE(X_RESERVED19),
552 NONE(ADX1),
553 NONE(DPAUX),
Simon Glass96e82a22015-04-14 21:03:34 -0600554 PERIPHC_SOR,
Tom Warren52ef43b2014-01-24 12:46:15 -0700555 NONE(X_RESERVED23),
556
557 /* 184 */
558 NONE(GPU),
559 NONE(AMX1),
560 NONE(X_RESERVED26),
561 NONE(X_RESERVED27),
562 NONE(X_RESERVED28),
563 NONE(X_RESERVED29),
564 NONE(X_RESERVED30),
565 NONE(X_RESERVED31),
566};
567
568/*
Tom Warren722e0002015-06-25 09:50:44 -0700569 * PLL divider shift/mask tables for all PLL IDs.
570 */
571struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
572 /*
Simon Glass5a30cee2015-08-10 07:14:36 -0600573 * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
Tom Warren722e0002015-06-25 09:50:44 -0700574 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
575 * If lock_ena or lock_det are >31, they're not used in that PLL.
576 */
577
578 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
579 .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
580 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
581 .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
582 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
583 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
584 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
585 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
586 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
587 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
588 { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
589 .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
590 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
591 .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
592 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
593 .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
594 { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
595 .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
Simon Glass5a30cee2015-08-10 07:14:36 -0600596 { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0xF,
597 .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
Tom Warren722e0002015-06-25 09:50:44 -0700598};
599
600/*
Tom Warren52ef43b2014-01-24 12:46:15 -0700601 * Get the oscillator frequency, from the corresponding hardware configuration
602 * field. Note that Tegra30+ support 3 new higher freqs, but we map back
603 * to the old T20 freqs. Support for the higher oscillators is TBD.
604 */
605enum clock_osc_freq clock_get_osc_freq(void)
606{
607 struct clk_rst_ctlr *clkrst =
608 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
609 u32 reg;
610
611 reg = readl(&clkrst->crc_osc_ctrl);
612 reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
613
614 if (reg & 1) /* one of the newer freqs */
615 printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
616
617 return reg >> 2; /* Map to most common (T20) freqs */
618}
619
620/* Returns a pointer to the clock source register for a peripheral */
621u32 *get_periph_source_reg(enum periph_id periph_id)
622{
623 struct clk_rst_ctlr *clkrst =
624 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
625 enum periphc_internal_id internal_id;
626
627 /* Coresight is a special case */
628 if (periph_id == PERIPH_ID_CSI)
629 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
630
631 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
632 internal_id = periph_id_to_internal_id[periph_id];
633 assert(internal_id != -1);
Simon Glass96e82a22015-04-14 21:03:34 -0600634 if (internal_id >= PERIPHC_X_FIRST) {
635 internal_id -= PERIPHC_X_FIRST;
636 return &clkrst->crc_clk_src_x[internal_id];
637 } else if (internal_id >= PERIPHC_VW_FIRST) {
Tom Warren52ef43b2014-01-24 12:46:15 -0700638 internal_id -= PERIPHC_VW_FIRST;
639 return &clkrst->crc_clk_src_vw[internal_id];
640 } else {
641 return &clkrst->crc_clk_src[internal_id];
642 }
643}
644
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600645int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
646 int *divider_bits, int *type)
647{
648 enum periphc_internal_id internal_id;
649
650 if (!clock_periph_id_isvalid(periph_id))
651 return -1;
652
653 internal_id = periph_id_to_internal_id[periph_id];
654 if (!periphc_internal_id_isvalid(internal_id))
655 return -1;
656
657 *type = clock_periph_type[internal_id];
658 if (!clock_type_id_isvalid(*type))
659 return -1;
660
661 *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
662
663 if (*type == CLOCK_TYPE_PC2CC3M_T16)
664 *divider_bits = 16;
665 else
666 *divider_bits = 8;
667
668 return 0;
669}
670
671enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
672{
673 enum periphc_internal_id internal_id;
674 int type;
675
676 if (!clock_periph_id_isvalid(periph_id))
677 return CLOCK_ID_NONE;
678
679 internal_id = periph_id_to_internal_id[periph_id];
680 if (!periphc_internal_id_isvalid(internal_id))
681 return CLOCK_ID_NONE;
682
683 type = clock_periph_type[internal_id];
684 if (!clock_type_id_isvalid(type))
685 return CLOCK_ID_NONE;
686
687 return clock_source[type][source];
688}
689
Tom Warren52ef43b2014-01-24 12:46:15 -0700690/**
691 * Given a peripheral ID and the required source clock, this returns which
692 * value should be programmed into the source mux for that peripheral.
693 *
694 * There is special code here to handle the one source type with 5 sources.
695 *
696 * @param periph_id peripheral to start
697 * @param source PLL id of required parent clock
698 * @param mux_bits Set to number of bits in mux register: 2 or 4
699 * @param divider_bits Set to number of divider bits (8 or 16)
700 * @return mux value (0-4, or -1 if not found)
701 */
702int get_periph_clock_source(enum periph_id periph_id,
703 enum clock_id parent, int *mux_bits, int *divider_bits)
704{
705 enum clock_type_id type;
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600706 int mux, err;
Tom Warren52ef43b2014-01-24 12:46:15 -0700707
Stephen Warrend0ad8a52016-09-13 10:45:56 -0600708 err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
709 assert(!err);
Tom Warren52ef43b2014-01-24 12:46:15 -0700710
711 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
712 if (clock_source[type][mux] == parent)
713 return mux;
714
715 /* if we get here, either us or the caller has made a mistake */
716 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
717 parent);
718 return -1;
719}
720
721void clock_set_enable(enum periph_id periph_id, int enable)
722{
723 struct clk_rst_ctlr *clkrst =
724 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
725 u32 *clk;
726 u32 reg;
727
728 /* Enable/disable the clock to this peripheral */
729 assert(clock_periph_id_isvalid(periph_id));
730 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
731 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
Simon Glass96e82a22015-04-14 21:03:34 -0600732 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren52ef43b2014-01-24 12:46:15 -0700733 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
Simon Glass96e82a22015-04-14 21:03:34 -0600734 else
735 clk = &clkrst->crc_clk_out_enb_x;
Tom Warren52ef43b2014-01-24 12:46:15 -0700736 reg = readl(clk);
737 if (enable)
738 reg |= PERIPH_MASK(periph_id);
739 else
740 reg &= ~PERIPH_MASK(periph_id);
741 writel(reg, clk);
742}
743
744void reset_set_enable(enum periph_id periph_id, int enable)
745{
746 struct clk_rst_ctlr *clkrst =
747 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
748 u32 *reset;
749 u32 reg;
750
751 /* Enable/disable reset to the peripheral */
752 assert(clock_periph_id_isvalid(periph_id));
753 if (periph_id < PERIPH_ID_VW_FIRST)
754 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
Simon Glass96e82a22015-04-14 21:03:34 -0600755 else if ((int)periph_id < PERIPH_ID_X_FIRST)
Tom Warren52ef43b2014-01-24 12:46:15 -0700756 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
Simon Glass96e82a22015-04-14 21:03:34 -0600757 else
758 reset = &clkrst->crc_rst_devices_x;
Tom Warren52ef43b2014-01-24 12:46:15 -0700759 reg = readl(reset);
760 if (enable)
761 reg |= PERIPH_MASK(periph_id);
762 else
763 reg &= ~PERIPH_MASK(periph_id);
764 writel(reg, reset);
765}
766
Masahiro Yamada0f925822015-08-12 07:31:55 +0900767#if CONFIG_IS_ENABLED(OF_CONTROL)
Tom Warren52ef43b2014-01-24 12:46:15 -0700768/*
769 * Convert a device tree clock ID to our peripheral ID. They are mostly
770 * the same but we are very cautious so we check that a valid clock ID is
771 * provided.
772 *
773 * @param clk_id Clock ID according to tegra124 device tree binding
774 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
775 */
776enum periph_id clk_id_to_periph_id(int clk_id)
777{
778 if (clk_id > PERIPH_ID_COUNT)
779 return PERIPH_ID_NONE;
780
781 switch (clk_id) {
782 case PERIPH_ID_RESERVED4:
783 case PERIPH_ID_RESERVED25:
784 case PERIPH_ID_RESERVED35:
785 case PERIPH_ID_RESERVED36:
786 case PERIPH_ID_RESERVED38:
787 case PERIPH_ID_RESERVED43:
788 case PERIPH_ID_RESERVED49:
789 case PERIPH_ID_RESERVED53:
790 case PERIPH_ID_RESERVED64:
791 case PERIPH_ID_RESERVED84:
792 case PERIPH_ID_RESERVED85:
793 case PERIPH_ID_RESERVED86:
794 case PERIPH_ID_RESERVED88:
795 case PERIPH_ID_RESERVED90:
796 case PERIPH_ID_RESERVED92:
797 case PERIPH_ID_RESERVED93:
798 case PERIPH_ID_RESERVED94:
799 case PERIPH_ID_V_RESERVED2:
800 case PERIPH_ID_V_RESERVED4:
801 case PERIPH_ID_V_RESERVED17:
802 case PERIPH_ID_V_RESERVED18:
803 case PERIPH_ID_V_RESERVED19:
804 case PERIPH_ID_V_RESERVED20:
805 case PERIPH_ID_V_RESERVED21:
806 case PERIPH_ID_V_RESERVED22:
807 case PERIPH_ID_W_RESERVED2:
808 case PERIPH_ID_W_RESERVED3:
809 case PERIPH_ID_W_RESERVED4:
810 case PERIPH_ID_W_RESERVED5:
811 case PERIPH_ID_W_RESERVED6:
812 case PERIPH_ID_W_RESERVED7:
813 case PERIPH_ID_W_RESERVED9:
814 case PERIPH_ID_W_RESERVED10:
815 case PERIPH_ID_W_RESERVED11:
816 case PERIPH_ID_W_RESERVED12:
817 case PERIPH_ID_W_RESERVED13:
818 case PERIPH_ID_W_RESERVED15:
819 case PERIPH_ID_W_RESERVED16:
820 case PERIPH_ID_W_RESERVED17:
821 case PERIPH_ID_W_RESERVED18:
822 case PERIPH_ID_W_RESERVED19:
823 case PERIPH_ID_W_RESERVED20:
824 case PERIPH_ID_W_RESERVED23:
825 case PERIPH_ID_W_RESERVED29:
826 case PERIPH_ID_W_RESERVED30:
827 case PERIPH_ID_W_RESERVED31:
828 return PERIPH_ID_NONE;
829 default:
830 return clk_id;
831 }
832}
Masahiro Yamada0f925822015-08-12 07:31:55 +0900833#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
Tom Warren52ef43b2014-01-24 12:46:15 -0700834
835void clock_early_init(void)
836{
837 struct clk_rst_ctlr *clkrst =
838 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
Tom Warren722e0002015-06-25 09:50:44 -0700839 struct clk_pll_info *pllinfo;
840 u32 data;
Tom Warren52ef43b2014-01-24 12:46:15 -0700841
842 tegra30_set_up_pllp();
843
Thierry Redingaba11d42015-09-08 11:38:03 +0200844 /* clear IDDQ before accessing any other PLLC registers */
845 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
846 clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
847 udelay(2);
848
Tom Warren52ef43b2014-01-24 12:46:15 -0700849 /*
850 * PLLC output frequency set to 600Mhz
851 * PLLD output frequency set to 925Mhz
852 */
853 switch (clock_get_osc_freq()) {
854 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
855 clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
856 clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
857 break;
858
859 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
860 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
861 clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
862 break;
863
864 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
865 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
866 clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
867 break;
868 case CLOCK_OSC_FREQ_19_2:
869 default:
870 /*
871 * These are not supported. It is too early to print a
872 * message and the UART likely won't work anyway due to the
873 * oscillator being wrong.
874 */
875 break;
876 }
877
878 /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
879 writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
880
881 /* PLLC_MISC: Set LOCK_ENABLE */
Tom Warren722e0002015-06-25 09:50:44 -0700882 pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
883 setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
Tom Warren52ef43b2014-01-24 12:46:15 -0700884 udelay(2);
885
Tom Warren722e0002015-06-25 09:50:44 -0700886 /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
887 pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
888 data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
889 data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
890 writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
Tom Warren52ef43b2014-01-24 12:46:15 -0700891 udelay(2);
892}
893
894void arch_timer_init(void)
895{
896 struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
897 u32 freq, val;
898
Thierry Reding97c02d82015-08-20 11:42:20 +0200899 freq = clock_get_rate(CLOCK_ID_CLK_M);
900 debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
Tom Warren52ef43b2014-01-24 12:46:15 -0700901
902 /* ARM CNTFRQ */
903 asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
904
905 /* Only Tegra114+ has the System Counter regs */
906 debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
907 writel(freq, &sysctr->cntfid0);
908
909 val = readl(&sysctr->cntcr);
910 val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
911 writel(val, &sysctr->cntcr);
912 debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
913}
Thierry Redinga7230742014-12-09 22:25:06 -0700914
915#define PLLE_SS_CNTL 0x68
916#define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
917#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
918#define PLLE_SS_CNTL_SSCINVERT (1 << 15)
919#define PLLE_SS_CNTL_SSCCENTER (1 << 14)
920#define PLLE_SS_CNTL_SSCBYP (1 << 12)
921#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
922#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
923#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
924
925#define PLLE_BASE 0x0e8
926#define PLLE_BASE_ENABLE (1 << 30)
927#define PLLE_BASE_LOCK_OVERRIDE (1 << 29)
928#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
929#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
930#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
931
932#define PLLE_MISC 0x0ec
933#define PLLE_MISC_IDDQ_SWCTL (1 << 14)
934#define PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
935#define PLLE_MISC_LOCK_ENABLE (1 << 9)
936#define PLLE_MISC_PTS (1 << 8)
937#define PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
938#define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
939
940#define PLLE_AUX 0x48c
941#define PLLE_AUX_SEQ_ENABLE (1 << 24)
942#define PLLE_AUX_ENABLE_SWCTL (1 << 4)
943
944int tegra_plle_enable(void)
945{
946 unsigned int m = 1, n = 200, cpcon = 13;
947 u32 value;
948
949 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
950 value &= ~PLLE_BASE_LOCK_OVERRIDE;
951 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
952
953 value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
954 value |= PLLE_AUX_ENABLE_SWCTL;
955 value &= ~PLLE_AUX_SEQ_ENABLE;
956 writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
957
958 udelay(1);
959
960 value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
961 value |= PLLE_MISC_IDDQ_SWCTL;
962 value &= ~PLLE_MISC_IDDQ_OVERRIDE;
963 value |= PLLE_MISC_LOCK_ENABLE;
964 value |= PLLE_MISC_PTS;
965 value |= PLLE_MISC_VREG_BG_CTRL(3);
966 value |= PLLE_MISC_VREG_CTRL(2);
967 writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
968
969 udelay(5);
970
971 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
972 value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
973 PLLE_SS_CNTL_BYPASS_SS;
974 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
975
976 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
977 value &= ~PLLE_BASE_PLDIV_CML(0xf);
978 value &= ~PLLE_BASE_NDIV(0xff);
979 value &= ~PLLE_BASE_MDIV(0xff);
980 value |= PLLE_BASE_PLDIV_CML(cpcon);
981 value |= PLLE_BASE_NDIV(n);
982 value |= PLLE_BASE_MDIV(m);
983 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
984
985 udelay(1);
986
987 value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
988 value |= PLLE_BASE_ENABLE;
989 writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
990
991 /* wait for lock */
992 udelay(300);
993
994 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
995 value &= ~PLLE_SS_CNTL_SSCINVERT;
996 value &= ~PLLE_SS_CNTL_SSCCENTER;
997
998 value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
999 value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1000 value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
1001
1002 value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
1003 value |= PLLE_SS_CNTL_SSCINC(0x01);
1004 value |= PLLE_SS_CNTL_SSCMAX(0x25);
1005
1006 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1007
1008 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1009 value &= ~PLLE_SS_CNTL_SSCBYP;
1010 value &= ~PLLE_SS_CNTL_BYPASS_SS;
1011 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1012
1013 udelay(1);
1014
1015 value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1016 value &= ~PLLE_SS_CNTL_INTERP_RESET;
1017 writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1018
1019 udelay(1);
1020
1021 return 0;
1022}
Simon Glass96e82a22015-04-14 21:03:34 -06001023
1024void clock_sor_enable_edp_clock(void)
1025{
1026 u32 *reg;
1027
1028 /* uses PLLP, has a non-standard bit layout. */
1029 reg = get_periph_source_reg(PERIPH_ID_SOR0);
1030 setbits_le32(reg, SOR0_CLK_SEL0);
1031}
1032
1033u32 clock_set_display_rate(u32 frequency)
1034{
1035 /**
1036 * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
1037 * = (cf * n) >> p, where 1MHz < cf < 6MHz
1038 * = ((ref / m) * n) >> p
1039 *
1040 * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
1041 * safe vco, then find best (m, n). since m has only 5 bits, we can
1042 * iterate all possible values. Note Tegra 124 supports 11 bits for n,
1043 * but our pll_fields has only 10 bits for n.
1044 *
1045 * Note values undershoot or overshoot target output frequency may not
1046 * work if the values are not in "safe" range by panel specification.
1047 */
1048 u32 ref = clock_get_rate(CLOCK_ID_OSC);
1049 u32 divm, divn, divp, cpcon;
1050 u32 cf, vco, rounded_rate = frequency;
1051 u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
1052 const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
1053 mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
1054 min_cf = 1 * mhz, max_cf = 6 * mhz;
1055 int mux_bits, divider_bits, source;
1056
1057 for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
1058 vco <<= 1;
1059
1060 if (vco < min_vco || vco > max_vco) {
1061 printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
1062 __func__, frequency);
1063 return 0;
1064 }
1065
1066 best_p = divp;
1067 best_diff = vco;
1068
1069 for (divm = 1; divm < max_m && best_diff; divm++) {
1070 cf = ref / divm;
1071 if (cf < min_cf)
1072 break;
1073 if (cf > max_cf)
1074 continue;
1075
1076 divn = vco / cf;
1077 if (divn >= max_n)
1078 continue;
1079
1080 diff = vco - divn * cf;
1081 if (divn + 1 < max_n && diff > cf / 2) {
1082 divn++;
1083 diff = cf - diff;
1084 }
1085
1086 if (diff >= best_diff)
1087 continue;
1088
1089 best_diff = diff;
1090 best_m = divm;
1091 best_n = divn;
1092 }
1093
1094 if (best_n < 50)
1095 cpcon = 2;
1096 else if (best_n < 300)
1097 cpcon = 3;
1098 else if (best_n < 600)
1099 cpcon = 8;
1100 else
1101 cpcon = 12;
1102
1103 if (best_diff) {
1104 printf("%s: Failed to match output frequency %u, best difference is %u\n",
1105 __func__, frequency, best_diff);
1106 rounded_rate = (ref / best_m * best_n) >> best_p;
1107 }
1108
1109 debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
1110 __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
1111
1112 source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
1113 &mux_bits, &divider_bits);
1114 clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
1115 clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
1116
1117 return rounded_rate;
1118}
1119
1120void clock_set_up_plldp(void)
1121{
1122 struct clk_rst_ctlr *clkrst =
1123 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1124 u32 value;
1125
1126 value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
1127 writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
1128 clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
1129 writel(value, &clkrst->crc_plldp_ss_cfg);
1130}
1131
1132struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1133{
1134 struct clk_rst_ctlr *clkrst =
1135 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1136
1137 if (clkid == CLOCK_ID_DP)
1138 return &clkrst->plldp;
1139
1140 return NULL;
1141}
Stephen Warren6dbcc962016-09-13 10:45:55 -06001142
1143struct periph_clk_init periph_clk_init_table[] = {
1144 { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1145 { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1146 { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1147 { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1148 { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1149 { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1150 { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1151 { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
1152 { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1153 { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1154 { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1155 { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1156 { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
1157 { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1158 { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1159 { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1160 { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1161 { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1162 { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1163 { -1, },
1164};