/** @file | |
Provides basic function upon network adapter card. | |
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include "Undi32.h" | |
UINT8 basic_config_cmd[22] = { | |
22, 0x08, | |
0, 0, | |
0, (UINT8)0x80, | |
0x32, 0x03, | |
1, 0, | |
0x2E, 0, | |
0x60, 0, | |
(UINT8)0xf2, 0x48, | |
0, 0x40, | |
(UINT8)0xf2, (UINT8)0x80, // 0x40=Force full-duplex | |
0x3f, 0x05, | |
}; | |
// | |
// How to wait for the command unit to accept a command. | |
// Typically this takes 0 ticks. | |
// | |
#define wait_for_cmd_done(cmd_ioaddr) \ | |
{ \ | |
INT16 wait_count = 2000; \ | |
while ((InByte (AdapterInfo, cmd_ioaddr) != 0) && --wait_count >= 0) \ | |
DelayIt (AdapterInfo, 10); \ | |
if (wait_count == 0) \ | |
DelayIt (AdapterInfo, 50); \ | |
} | |
/** | |
This function calls the MemIo callback to read a byte from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Port Which port to read from. | |
@retval Results The data read from the port. | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
UINT8 | |
InByte ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT32 Port | |
) | |
{ | |
UINT8 Results; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_READ, | |
1, | |
(UINT64)Port, | |
(UINT64) (UINTN) &Results | |
); | |
return Results; | |
} | |
/** | |
This function calls the MemIo callback to read a word from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Port Which port to read from. | |
@retval Results The data read from the port. | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
UINT16 | |
InWord ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT32 Port | |
) | |
{ | |
UINT16 Results; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_READ, | |
2, | |
(UINT64)Port, | |
(UINT64)(UINTN)&Results | |
); | |
return Results; | |
} | |
/** | |
This function calls the MemIo callback to read a dword from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Port Which port to read from. | |
@retval Results The data read from the port. | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
UINT32 | |
InLong ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT32 Port | |
) | |
{ | |
UINT32 Results; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_READ, | |
4, | |
(UINT64)Port, | |
(UINT64)(UINTN)&Results | |
); | |
return Results; | |
} | |
/** | |
This function calls the MemIo callback to write a byte from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Data Data to write to Port. | |
@param Port Which port to write to. | |
@return none | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
VOID | |
OutByte ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT8 Data, | |
IN UINT32 Port | |
) | |
{ | |
UINT8 Val; | |
Val = Data; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_WRITE, | |
1, | |
(UINT64)Port, | |
(UINT64)(UINTN)(UINTN)&Val | |
); | |
return ; | |
} | |
/** | |
This function calls the MemIo callback to write a word from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Data Data to write to Port. | |
@param Port Which port to write to. | |
@return none | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
VOID | |
OutWord ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT16 Data, | |
IN UINT32 Port | |
) | |
{ | |
UINT16 Val; | |
Val = Data; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_WRITE, | |
2, | |
(UINT64)Port, | |
(UINT64)(UINTN)&Val | |
); | |
return ; | |
} | |
/** | |
This function calls the MemIo callback to write a dword from the device's | |
address space | |
Since UNDI3.0 uses the TmpMemIo function (instead of the callback routine) | |
which also takes the UniqueId parameter (as in UNDI3.1 spec) we don't have | |
to make undi3.0 a special case | |
@param Data Data to write to Port. | |
@param Port Which port to write to. | |
@return none | |
**/ | |
// TODO: AdapterInfo - add argument and description to function comment | |
VOID | |
OutLong ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT32 Data, | |
IN UINT32 Port | |
) | |
{ | |
UINT32 Val; | |
Val = Data; | |
(*AdapterInfo->Mem_Io) ( | |
AdapterInfo->Unique_ID, | |
PXE_MEM_WRITE, | |
4, | |
(UINT64)Port, | |
(UINT64)(UINTN)&Val | |
); | |
return ; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param MemAddr TODO: add argument description | |
@param Size TODO: add argument description | |
@param Direction TODO: add argument description | |
@param MappedAddr TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
MapIt ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT64 MemAddr, | |
IN UINT32 Size, | |
IN UINT32 Direction, | |
OUT UINT64 MappedAddr | |
) | |
{ | |
UINT64 *PhyAddr; | |
PhyAddr = (UINT64 *) (UINTN) MappedAddr; | |
// | |
// mapping is different for theold and new NII protocols | |
// | |
if (AdapterInfo->VersionFlag == 0x30) { | |
if (AdapterInfo->Virt2Phys_30 == (VOID *) NULL) { | |
*PhyAddr = (UINT64) AdapterInfo->MemoryPtr; | |
} else { | |
(*AdapterInfo->Virt2Phys_30) (MemAddr, (UINT64) (UINTN) PhyAddr); | |
} | |
if (*PhyAddr > FOUR_GIGABYTE) { | |
return PXE_STATCODE_INVALID_PARAMETER; | |
} | |
} else { | |
if (AdapterInfo->Map_Mem == (VOID *) NULL) { | |
// | |
// this UNDI cannot handle addresses beyond 4 GB without a map routine | |
// | |
if (MemAddr > FOUR_GIGABYTE) { | |
return PXE_STATCODE_INVALID_PARAMETER; | |
} else { | |
*PhyAddr = MemAddr; | |
} | |
} else { | |
(*AdapterInfo->Map_Mem) ( | |
AdapterInfo->Unique_ID, | |
MemAddr, | |
Size, | |
Direction, | |
MappedAddr | |
); | |
} | |
} | |
return PXE_STATCODE_SUCCESS; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param MemAddr TODO: add argument description | |
@param Size TODO: add argument description | |
@param Direction TODO: add argument description | |
@param MappedAddr TODO: add argument description | |
@return TODO: add return values | |
**/ | |
VOID | |
UnMapIt ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT64 MemAddr, | |
IN UINT32 Size, | |
IN UINT32 Direction, | |
IN UINT64 MappedAddr | |
) | |
{ | |
if (AdapterInfo->VersionFlag > 0x30) { | |
// | |
// no mapping service | |
// | |
if (AdapterInfo->UnMap_Mem != (VOID *) NULL) { | |
(*AdapterInfo->UnMap_Mem) ( | |
AdapterInfo->Unique_ID, | |
MemAddr, | |
Size, | |
Direction, | |
MappedAddr | |
); | |
} | |
} | |
return ; | |
} | |
/** | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
**/ | |
// TODO: MicroSeconds - add argument and description to function comment | |
VOID | |
DelayIt ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
UINT16 MicroSeconds | |
) | |
{ | |
if (AdapterInfo->VersionFlag == 0x30) { | |
(*AdapterInfo->Delay_30) (MicroSeconds); | |
} else { | |
(*AdapterInfo->Delay) (AdapterInfo->Unique_ID, MicroSeconds); | |
} | |
} | |
/** | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
**/ | |
// TODO: flag - add argument and description to function comment | |
VOID | |
BlockIt ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
UINT32 flag | |
) | |
{ | |
if (AdapterInfo->VersionFlag == 0x30) { | |
(*AdapterInfo->Block_30) (flag); | |
} else { | |
(*AdapterInfo->Block) (AdapterInfo->Unique_ID, flag); | |
} | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
Load_Base_Regs ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// we will use the linear (flat) memory model and fill our base registers | |
// with 0's so that the entire physical address is our offset | |
// | |
// | |
// we reset the statistics totals here because this is where we are loading stats addr | |
// | |
AdapterInfo->RxTotals = 0; | |
AdapterInfo->TxTotals = 0; | |
// | |
// Load the statistics block address. | |
// | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
OutLong (AdapterInfo, (UINT32) AdapterInfo->stat_phy_addr, AdapterInfo->ioaddr + SCBPointer); | |
OutByte (AdapterInfo, CU_STATSADDR, AdapterInfo->ioaddr + SCBCmd); | |
AdapterInfo->statistics->done_marker = 0; | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
OutLong (AdapterInfo, 0, AdapterInfo->ioaddr + SCBPointer); | |
OutByte (AdapterInfo, RX_ADDR_LOAD, AdapterInfo->ioaddr + SCBCmd); | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
OutLong (AdapterInfo, 0, AdapterInfo->ioaddr + SCBPointer); | |
OutByte (AdapterInfo, CU_CMD_BASE, AdapterInfo->ioaddr + SCBCmd); | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param cmd_ptr TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
IssueCB ( | |
NIC_DATA_INSTANCE *AdapterInfo, | |
TxCB *cmd_ptr | |
) | |
{ | |
UINT16 status; | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
// | |
// read the CU status, if it is idle, write the address of cb_ptr | |
// in the scbpointer and issue a cu_start, | |
// if it is suspended, remove the suspend bit in the previous command | |
// block and issue a resume | |
// | |
// Ensure that the CU Active Status bit is not on from previous CBs. | |
// | |
status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus); | |
// | |
// Skip acknowledging the interrupt if it is not already set | |
// | |
// | |
// ack only the cna the integer | |
// | |
if ((status & SCB_STATUS_CNA) != 0) { | |
OutWord (AdapterInfo, SCB_STATUS_CNA, AdapterInfo->ioaddr + SCBStatus); | |
} | |
if ((status & SCB_STATUS_CU_MASK) == SCB_STATUS_CU_IDLE) { | |
// | |
// give a cu_start | |
// | |
OutLong (AdapterInfo, cmd_ptr->PhysTCBAddress, AdapterInfo->ioaddr + SCBPointer); | |
OutByte (AdapterInfo, CU_START, AdapterInfo->ioaddr + SCBCmd); | |
} else { | |
// | |
// either active or suspended, give a resume | |
// | |
cmd_ptr->PrevTCBVirtualLinkPtr->cb_header.command &= ~(CmdSuspend | CmdIntr); | |
OutByte (AdapterInfo, CU_RESUME, AdapterInfo->ioaddr + SCBCmd); | |
} | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
Configure ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// all command blocks are of TxCB format | |
// | |
TxCB *cmd_ptr; | |
UINT8 *data_ptr; | |
volatile INT16 Index; | |
UINT8 my_filter; | |
cmd_ptr = GetFreeCB (AdapterInfo); | |
ASSERT (cmd_ptr != NULL); | |
data_ptr = (UINT8 *) cmd_ptr + sizeof (struct CB_Header); | |
// | |
// start the config data right after the command header | |
// | |
for (Index = 0; Index < sizeof (basic_config_cmd); Index++) { | |
data_ptr[Index] = basic_config_cmd[Index]; | |
} | |
my_filter = (UINT8) ((AdapterInfo->Rx_Filter & PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS) ? 1 : 0); | |
my_filter = (UINT8) (my_filter | ((AdapterInfo->Rx_Filter & PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST) ? 0 : 2)); | |
data_ptr[15] = (UINT8) (data_ptr[15] | my_filter); | |
data_ptr[19] = (UINT8) (AdapterInfo->Duplex ? 0xC0 : 0x80); | |
data_ptr[21] = (UINT8) ((AdapterInfo->Rx_Filter & PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST) ? 0x0D : 0x05); | |
// | |
// check if we have to use the AUI port instead | |
// | |
if ((AdapterInfo->PhyRecord[0] & 0x8000) != 0) { | |
data_ptr[15] |= 0x80; | |
data_ptr[8] = 0; | |
} | |
BlockIt (AdapterInfo, TRUE); | |
cmd_ptr->cb_header.command = CmdSuspend | CmdConfigure; | |
IssueCB (AdapterInfo, cmd_ptr); | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
BlockIt (AdapterInfo, FALSE); | |
CommandWaitForCompletion (cmd_ptr, AdapterInfo); | |
// | |
// restore the cb values for tx | |
// | |
cmd_ptr->PhysTBDArrayAddres = cmd_ptr->PhysArrayAddr; | |
cmd_ptr->ByteCount = cmd_ptr->Threshold = cmd_ptr->TBDCount = 0; | |
// | |
// fields beyond the immediatedata are assumed to be safe | |
// add the CB to the free list again | |
// | |
SetFreeCB (AdapterInfo, cmd_ptr); | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
E100bSetupIAAddr ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// all command blocks are of TxCB format | |
// | |
TxCB *cmd_ptr; | |
UINT16 *data_ptr; | |
UINT16 *eaddrs; | |
eaddrs = (UINT16 *) AdapterInfo->CurrentNodeAddress; | |
cmd_ptr = GetFreeCB (AdapterInfo); | |
ASSERT (cmd_ptr != NULL); | |
data_ptr = (UINT16 *) ((UINT8 *) cmd_ptr +sizeof (struct CB_Header)); | |
// | |
// AVOID a bug (?!) here by marking the command already completed. | |
// | |
cmd_ptr->cb_header.command = (CmdSuspend | CmdIASetup); | |
cmd_ptr->cb_header.status = 0; | |
data_ptr[0] = eaddrs[0]; | |
data_ptr[1] = eaddrs[1]; | |
data_ptr[2] = eaddrs[2]; | |
BlockIt (AdapterInfo, TRUE); | |
IssueCB (AdapterInfo, cmd_ptr); | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
BlockIt (AdapterInfo, FALSE); | |
CommandWaitForCompletion (cmd_ptr, AdapterInfo); | |
// | |
// restore the cb values for tx | |
// | |
cmd_ptr->PhysTBDArrayAddres = cmd_ptr->PhysArrayAddr; | |
cmd_ptr->ByteCount = cmd_ptr->Threshold = cmd_ptr->TBDCount = 0; | |
// | |
// fields beyond the immediatedata are assumed to be safe | |
// add the CB to the free list again | |
// | |
SetFreeCB (AdapterInfo, cmd_ptr); | |
return 0; | |
} | |
/** | |
Instructs the NIC to stop receiving packets. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
**/ | |
VOID | |
StopRU ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if (AdapterInfo->Receive_Started) { | |
// | |
// Todo: verify that we must wait for previous command completion. | |
// | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
// | |
// Disable interrupts, and stop the chip's Rx process. | |
// | |
OutWord (AdapterInfo, INT_MASK, AdapterInfo->ioaddr + SCBCmd); | |
OutWord (AdapterInfo, INT_MASK | RX_ABORT, AdapterInfo->ioaddr + SCBCmd); | |
AdapterInfo->Receive_Started = FALSE; | |
} | |
return ; | |
} | |
/** | |
Instructs the NIC to start receiving packets. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@retval 0 Successful | |
@retval -1 Already Started | |
**/ | |
INT8 | |
StartRU ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
if (AdapterInfo->Receive_Started) { | |
// | |
// already started | |
// | |
return -1; | |
} | |
AdapterInfo->cur_rx_ind = 0; | |
AdapterInfo->Int_Status = 0; | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
OutLong (AdapterInfo, (UINT32) AdapterInfo->rx_phy_addr, AdapterInfo->ioaddr + SCBPointer); | |
OutByte (AdapterInfo, RX_START, AdapterInfo->ioaddr + SCBCmd); | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
AdapterInfo->Receive_Started = TRUE; | |
return 0; | |
} | |
/** | |
Configures the chip. This routine expects the NIC_DATA_INSTANCE structure to be filled in. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@retval 0 Successful | |
@retval PXE_STATCODE_NOT_ENOUGH_MEMORY Insufficient length of locked memory | |
@retval other Failure initializing chip | |
**/ | |
UINTN | |
E100bInit ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
PCI_CONFIG_HEADER *CfgHdr; | |
UINTN stat; | |
UINTN rx_size; | |
UINTN tx_size; | |
if (AdapterInfo->MemoryLength < MEMORY_NEEDED) { | |
return PXE_STATCODE_NOT_ENOUGH_MEMORY; | |
} | |
stat = MapIt ( | |
AdapterInfo, | |
AdapterInfo->MemoryPtr, | |
AdapterInfo->MemoryLength, | |
TO_AND_FROM_DEVICE, | |
(UINT64)(UINTN) &AdapterInfo->Mapped_MemoryPtr | |
); | |
if (stat != 0) { | |
return stat; | |
} | |
CfgHdr = (PCI_CONFIG_HEADER *) &(AdapterInfo->Config[0]); | |
// | |
// fill in the ioaddr, int... from the config space | |
// | |
AdapterInfo->int_num = CfgHdr->int_line; | |
// | |
// we don't need to validate integer number, what if they don't want to assign one? | |
// if (AdapterInfo->int_num == 0 || AdapterInfo->int_num == 0xff) | |
// return PXE_STATCODE_DEVICE_FAILURE; | |
// | |
AdapterInfo->ioaddr = 0; | |
AdapterInfo->VendorID = CfgHdr->VendorID; | |
AdapterInfo->DeviceID = CfgHdr->DeviceID; | |
AdapterInfo->RevID = CfgHdr->RevID; | |
AdapterInfo->SubVendorID = CfgHdr->SubVendorID; | |
AdapterInfo->SubSystemID = CfgHdr->SubSystemID; | |
AdapterInfo->flash_addr = 0; | |
// | |
// Read the station address EEPROM before doing the reset. | |
// Perhaps this should even be done before accepting the device, | |
// then we wouldn't have a device name with which to report the error. | |
// | |
if (E100bReadEepromAndStationAddress (AdapterInfo) != 0) { | |
return PXE_STATCODE_DEVICE_FAILURE; | |
} | |
// | |
// ## calculate the buffer #s depending on memory given | |
// ## calculate the rx and tx ring pointers | |
// | |
AdapterInfo->TxBufCnt = TX_BUFFER_COUNT; | |
AdapterInfo->RxBufCnt = RX_BUFFER_COUNT; | |
rx_size = (AdapterInfo->RxBufCnt * sizeof (RxFD)); | |
tx_size = (AdapterInfo->TxBufCnt * sizeof (TxCB)); | |
AdapterInfo->rx_ring = (RxFD *) (UINTN) (AdapterInfo->MemoryPtr); | |
AdapterInfo->tx_ring = (TxCB *) (UINTN) (AdapterInfo->MemoryPtr + rx_size); | |
AdapterInfo->statistics = (struct speedo_stats *) (UINTN) (AdapterInfo->MemoryPtr + rx_size + tx_size); | |
AdapterInfo->rx_phy_addr = AdapterInfo->Mapped_MemoryPtr; | |
AdapterInfo->tx_phy_addr = AdapterInfo->Mapped_MemoryPtr + rx_size; | |
AdapterInfo->stat_phy_addr = AdapterInfo->tx_phy_addr + tx_size; | |
// | |
// auto detect. | |
// | |
AdapterInfo->PhyAddress = 0xFF; | |
AdapterInfo->Rx_Filter = PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST; | |
AdapterInfo->Receive_Started = FALSE; | |
AdapterInfo->mcast_list.list_len = 0; | |
return InitializeChip (AdapterInfo); | |
} | |
/** | |
Sets the interrupt state for the NIC. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@retval 0 Successful | |
**/ | |
UINT8 | |
E100bSetInterruptState ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// don't set receive interrupt if receiver is disabled... | |
// | |
UINT16 cmd_word; | |
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_RECEIVE) != 0) { | |
cmd_word = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBCmd); | |
cmd_word &= ~INT_MASK; | |
OutWord (AdapterInfo, cmd_word, AdapterInfo->ioaddr + SCBCmd); | |
} else { | |
// | |
// disable ints, should not be given for SW Int. | |
// | |
OutWord (AdapterInfo, INT_MASK, AdapterInfo->ioaddr + SCBCmd); | |
} | |
if ((AdapterInfo->int_mask & PXE_OPFLAGS_INTERRUPT_SOFTWARE) != 0) { | |
// | |
// reset the bit in our mask, it is only one time!! | |
// | |
AdapterInfo->int_mask &= ~(PXE_OPFLAGS_INTERRUPT_SOFTWARE); | |
cmd_word = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBCmd); | |
cmd_word |= DRVR_INT; | |
OutWord (AdapterInfo, cmd_word, AdapterInfo->ioaddr + SCBCmd); | |
} | |
return 0; | |
} | |
// | |
// we are not going to disable broadcast for the WOL's sake! | |
// | |
/** | |
Instructs the NIC to start receiving packets. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. new_filter | |
- cpb - | |
cpbsize - | |
@retval 0 Successful | |
@retval -1 Already Started | |
**/ | |
UINTN | |
E100bSetfilter ( | |
NIC_DATA_INSTANCE *AdapterInfo, | |
UINT16 new_filter, | |
UINT64 cpb, | |
UINT32 cpbsize | |
) | |
{ | |
PXE_CPB_RECEIVE_FILTERS *mc_list = (PXE_CPB_RECEIVE_FILTERS *) (UINTN)cpb; | |
UINT16 cfg_flt; | |
UINT16 old_filter; | |
UINT16 Index; | |
UINT16 Index2; | |
UINT16 mc_count; | |
TxCB *cmd_ptr; | |
struct MC_CB_STRUCT *data_ptr; | |
UINT16 mc_byte_cnt; | |
old_filter = AdapterInfo->Rx_Filter; | |
// | |
// only these bits need a change in the configuration | |
// actually change in bcast requires configure but we ignore that change | |
// | |
cfg_flt = PXE_OPFLAGS_RECEIVE_FILTER_PROMISCUOUS | | |
PXE_OPFLAGS_RECEIVE_FILTER_ALL_MULTICAST; | |
if ((old_filter & cfg_flt) != (new_filter & cfg_flt)) { | |
XmitWaitForCompletion (AdapterInfo); | |
if (AdapterInfo->Receive_Started) { | |
StopRU (AdapterInfo); | |
} | |
AdapterInfo->Rx_Filter = (UINT8) (new_filter | PXE_OPFLAGS_RECEIVE_FILTER_BROADCAST); | |
Configure (AdapterInfo); | |
} | |
// | |
// check if mcast setting changed | |
// | |
if ( ((new_filter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != | |
(old_filter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) ) || | |
(mc_list != NULL) ) { | |
if (mc_list != NULL) { | |
mc_count = AdapterInfo->mcast_list.list_len = (UINT16) (cpbsize / PXE_MAC_LENGTH); | |
for (Index = 0; (Index < mc_count && Index < MAX_MCAST_ADDRESS_CNT); Index++) { | |
for (Index2 = 0; Index2 < PXE_MAC_LENGTH; Index2++) { | |
AdapterInfo->mcast_list.mc_list[Index][Index2] = mc_list->MCastList[Index][Index2]; | |
} | |
} | |
} | |
// | |
// are we setting the list or resetting?? | |
// | |
if ((new_filter & PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST) != 0) { | |
// | |
// we are setting a new list! | |
// | |
mc_count = AdapterInfo->mcast_list.list_len; | |
// | |
// count should be the actual # of bytes in the list | |
// so multiply this with 6 | |
// | |
mc_byte_cnt = (UINT16) ((mc_count << 2) + (mc_count << 1)); | |
AdapterInfo->Rx_Filter |= PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST; | |
} else { | |
// | |
// disabling the list in the NIC. | |
// | |
mc_byte_cnt = mc_count = 0; | |
AdapterInfo->Rx_Filter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST); | |
} | |
// | |
// before issuing any new command! | |
// | |
XmitWaitForCompletion (AdapterInfo); | |
if (AdapterInfo->Receive_Started) { | |
StopRU (AdapterInfo); | |
} | |
cmd_ptr = GetFreeCB (AdapterInfo); | |
if (cmd_ptr == NULL) { | |
return PXE_STATCODE_QUEUE_FULL; | |
} | |
// | |
// fill the command structure and issue | |
// | |
data_ptr = (struct MC_CB_STRUCT *) (&cmd_ptr->PhysTBDArrayAddres); | |
// | |
// first 2 bytes are the count; | |
// | |
data_ptr->count = mc_byte_cnt; | |
for (Index = 0; Index < mc_count; Index++) { | |
for (Index2 = 0; Index2 < PXE_HWADDR_LEN_ETHER; Index2++) { | |
data_ptr->m_list[Index][Index2] = AdapterInfo->mcast_list.mc_list[Index][Index2]; | |
} | |
} | |
cmd_ptr->cb_header.command = CmdSuspend | CmdMulticastList; | |
cmd_ptr->cb_header.status = 0; | |
BlockIt (AdapterInfo, TRUE); | |
IssueCB (AdapterInfo, cmd_ptr); | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
BlockIt (AdapterInfo, FALSE); | |
CommandWaitForCompletion (cmd_ptr, AdapterInfo); | |
cmd_ptr->PhysTBDArrayAddres = cmd_ptr->PhysArrayAddr; | |
cmd_ptr->ByteCount = cmd_ptr->Threshold = cmd_ptr->TBDCount = 0; | |
// | |
// fields beyond the immediatedata are assumed to be safe | |
// add the CB to the free list again | |
// | |
SetFreeCB (AdapterInfo, cmd_ptr); | |
} | |
if (new_filter != 0) { | |
// | |
// enable unicast and start the RU | |
// | |
AdapterInfo->Rx_Filter = (UINT8) (AdapterInfo->Rx_Filter | (new_filter | PXE_OPFLAGS_RECEIVE_FILTER_UNICAST)); | |
StartRU (AdapterInfo); | |
} else { | |
// | |
// may be disabling everything! | |
// | |
if (AdapterInfo->Receive_Started) { | |
StopRU (AdapterInfo); | |
} | |
AdapterInfo->Rx_Filter |= (~PXE_OPFLAGS_RECEIVE_FILTER_UNICAST); | |
} | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param cpb TODO: add argument description | |
@param opflags TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
E100bTransmit ( | |
NIC_DATA_INSTANCE *AdapterInfo, | |
UINT64 cpb, | |
UINT16 opflags | |
) | |
{ | |
PXE_CPB_TRANSMIT_FRAGMENTS *tx_ptr_f; | |
PXE_CPB_TRANSMIT *tx_ptr_1; | |
TxCB *tcb_ptr; | |
UINT64 Tmp_ptr; | |
UINTN stat; | |
INT32 Index; | |
UINT16 wait_sec; | |
tx_ptr_1 = (PXE_CPB_TRANSMIT *) (UINTN) cpb; | |
tx_ptr_f = (PXE_CPB_TRANSMIT_FRAGMENTS *) (UINTN) cpb; | |
Tmp_ptr = 0; | |
// | |
// stop reentrancy here | |
// | |
if (AdapterInfo->in_transmit) { | |
return PXE_STATCODE_BUSY; | |
} | |
AdapterInfo->in_transmit = TRUE; | |
// | |
// Prevent interrupts from changing the Tx ring from underneath us. | |
// | |
// Calculate the Tx descriptor entry. | |
// | |
if ((tcb_ptr = GetFreeCB (AdapterInfo)) == NULL) { | |
AdapterInfo->in_transmit = FALSE; | |
return PXE_STATCODE_QUEUE_FULL; | |
} | |
AdapterInfo->TxTotals++; | |
tcb_ptr->cb_header.command = (CmdSuspend | CmdTx | CmdTxFlex); | |
tcb_ptr->cb_header.status = 0; | |
// | |
// no immediate data, set EOF in the ByteCount | |
// | |
tcb_ptr->ByteCount = 0x8000; | |
// | |
// The data region is always in one buffer descriptor, Tx FIFO | |
// threshold of 256. | |
// 82557 multiplies the threashold value by 8, so give 256/8 | |
// | |
tcb_ptr->Threshold = 32; | |
if ((opflags & PXE_OPFLAGS_TRANSMIT_FRAGMENTED) != 0) { | |
if (tx_ptr_f->FragCnt > MAX_XMIT_FRAGMENTS) { | |
SetFreeCB (AdapterInfo, tcb_ptr); | |
AdapterInfo->in_transmit = FALSE; | |
return PXE_STATCODE_INVALID_PARAMETER; | |
} | |
tcb_ptr->TBDCount = (UINT8) tx_ptr_f->FragCnt; | |
for (Index = 0; Index < tx_ptr_f->FragCnt; Index++) { | |
stat = MapIt ( | |
AdapterInfo, | |
tx_ptr_f->FragDesc[Index].FragAddr, | |
tx_ptr_f->FragDesc[Index].FragLen, | |
TO_DEVICE, | |
(UINT64)(UINTN) &Tmp_ptr | |
); | |
if (stat != 0) { | |
SetFreeCB (AdapterInfo, tcb_ptr); | |
AdapterInfo->in_transmit = FALSE; | |
return PXE_STATCODE_INVALID_PARAMETER; | |
} | |
tcb_ptr->TBDArray[Index].phys_buf_addr = (UINT32) Tmp_ptr; | |
tcb_ptr->TBDArray[Index].buf_len = tx_ptr_f->FragDesc[Index].FragLen; | |
} | |
tcb_ptr->free_data_ptr = tx_ptr_f->FragDesc[0].FragAddr; | |
} else { | |
// | |
// non fragmented case | |
// | |
tcb_ptr->TBDCount = 1; | |
stat = MapIt ( | |
AdapterInfo, | |
tx_ptr_1->FrameAddr, | |
tx_ptr_1->DataLen + tx_ptr_1->MediaheaderLen, | |
TO_DEVICE, | |
(UINT64)(UINTN) &Tmp_ptr | |
); | |
if (stat != 0) { | |
SetFreeCB (AdapterInfo, tcb_ptr); | |
AdapterInfo->in_transmit = FALSE; | |
return PXE_STATCODE_INVALID_PARAMETER; | |
} | |
tcb_ptr->TBDArray[0].phys_buf_addr = (UINT32) (Tmp_ptr); | |
tcb_ptr->TBDArray[0].buf_len = tx_ptr_1->DataLen + tx_ptr_1->MediaheaderLen; | |
tcb_ptr->free_data_ptr = tx_ptr_1->FrameAddr; | |
} | |
// | |
// must wait for previous command completion only if it was a non-transmit | |
// | |
BlockIt (AdapterInfo, TRUE); | |
IssueCB (AdapterInfo, tcb_ptr); | |
BlockIt (AdapterInfo, FALSE); | |
// | |
// see if we need to wait for completion here | |
// | |
if ((opflags & PXE_OPFLAGS_TRANSMIT_BLOCK) != 0) { | |
// | |
// don't wait for more than 1 second!!! | |
// | |
wait_sec = 1000; | |
while (tcb_ptr->cb_header.status == 0) { | |
DelayIt (AdapterInfo, 10); | |
wait_sec--; | |
if (wait_sec == 0) { | |
break; | |
} | |
} | |
// | |
// we need to un-map any mapped buffers here | |
// | |
if ((opflags & PXE_OPFLAGS_TRANSMIT_FRAGMENTED) != 0) { | |
for (Index = 0; Index < tx_ptr_f->FragCnt; Index++) { | |
Tmp_ptr = tcb_ptr->TBDArray[Index].phys_buf_addr; | |
UnMapIt ( | |
AdapterInfo, | |
tx_ptr_f->FragDesc[Index].FragAddr, | |
tx_ptr_f->FragDesc[Index].FragLen, | |
TO_DEVICE, | |
(UINT64) Tmp_ptr | |
); | |
} | |
} else { | |
Tmp_ptr = tcb_ptr->TBDArray[0].phys_buf_addr; | |
UnMapIt ( | |
AdapterInfo, | |
tx_ptr_1->FrameAddr, | |
tx_ptr_1->DataLen + tx_ptr_1->MediaheaderLen, | |
TO_DEVICE, | |
(UINT64) Tmp_ptr | |
); | |
} | |
if (tcb_ptr->cb_header.status == 0) { | |
SetFreeCB (AdapterInfo, tcb_ptr); | |
AdapterInfo->in_transmit = FALSE; | |
return PXE_STATCODE_DEVICE_FAILURE; | |
} | |
SetFreeCB (AdapterInfo, tcb_ptr); | |
} | |
// | |
// CB will be set free later in get_status (or when we run out of xmit buffers | |
// | |
AdapterInfo->in_transmit = FALSE; | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param cpb TODO: add argument description | |
@param db TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
E100bReceive ( | |
NIC_DATA_INSTANCE *AdapterInfo, | |
UINT64 cpb, | |
UINT64 db | |
) | |
{ | |
PXE_CPB_RECEIVE *rx_cpbptr; | |
PXE_DB_RECEIVE *rx_dbptr; | |
RxFD *rx_ptr; | |
INT32 status; | |
INT32 Index; | |
UINT16 pkt_len; | |
UINT16 ret_code; | |
PXE_FRAME_TYPE pkt_type; | |
UINT16 Tmp_len; | |
EtherHeader *hdr_ptr; | |
ret_code = PXE_STATCODE_NO_DATA; | |
pkt_type = PXE_FRAME_TYPE_NONE; | |
status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus); | |
AdapterInfo->Int_Status = (UINT16) (AdapterInfo->Int_Status | status); | |
// | |
// acknoledge the interrupts | |
// | |
OutWord (AdapterInfo, (UINT16) (status & 0xfc00), (UINT32) (AdapterInfo->ioaddr + SCBStatus)); | |
// | |
// include the prev ints as well | |
// | |
status = AdapterInfo->Int_Status; | |
rx_cpbptr = (PXE_CPB_RECEIVE *) (UINTN) cpb; | |
rx_dbptr = (PXE_DB_RECEIVE *) (UINTN) db; | |
rx_ptr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind]; | |
// | |
// be in a loop just in case (we may drop a pkt) | |
// | |
while ((status = rx_ptr->cb_header.status) & RX_COMPLETE) { | |
AdapterInfo->RxTotals++; | |
// | |
// If we own the next entry, it's a new packet. Send it up. | |
// | |
if (rx_ptr->forwarded) { | |
goto FreeRFD; | |
} | |
// | |
// discard bad frames | |
// | |
// | |
// crc, align, dma overrun, too short, receive error (v22 no coll) | |
// | |
if ((status & 0x0D90) != 0) { | |
goto FreeRFD; | |
} | |
// | |
// make sure the status is OK | |
// | |
if ((status & 0x02000) == 0) { | |
goto FreeRFD; | |
} | |
pkt_len = (UINT16) (rx_ptr->ActualCount & 0x3fff); | |
if (pkt_len != 0) { | |
Tmp_len = pkt_len; | |
if (pkt_len > rx_cpbptr->BufferLen) { | |
Tmp_len = (UINT16) rx_cpbptr->BufferLen; | |
} | |
CopyMem ((INT8 *) (UINTN) rx_cpbptr->BufferAddr, (INT8 *) &rx_ptr->RFDBuffer, Tmp_len); | |
hdr_ptr = (EtherHeader *) &rx_ptr->RFDBuffer; | |
// | |
// fill the CDB and break the loop | |
// | |
// | |
// includes header | |
// | |
rx_dbptr->FrameLen = pkt_len; | |
rx_dbptr->MediaHeaderLen = PXE_MAC_HEADER_LEN_ETHER; | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
if (hdr_ptr->dest_addr[Index] != AdapterInfo->CurrentNodeAddress[Index]) { | |
break; | |
} | |
} | |
if (Index >= PXE_HWADDR_LEN_ETHER) { | |
pkt_type = PXE_FRAME_TYPE_UNICAST; | |
} else { | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
if (hdr_ptr->dest_addr[Index] != AdapterInfo->BroadcastNodeAddress[Index]) { | |
break; | |
} | |
} | |
if (Index >= PXE_HWADDR_LEN_ETHER) { | |
pkt_type = PXE_FRAME_TYPE_BROADCAST; | |
} else { | |
if ((hdr_ptr->dest_addr[0] & 1) == 1) { | |
// | |
// mcast | |
// | |
pkt_type = PXE_FRAME_TYPE_FILTERED_MULTICAST; | |
} else { | |
pkt_type = PXE_FRAME_TYPE_PROMISCUOUS; | |
} | |
} | |
} | |
rx_dbptr->Type = pkt_type; | |
rx_dbptr->Protocol = hdr_ptr->type; | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
rx_dbptr->SrcAddr[Index] = hdr_ptr->src_addr[Index]; | |
rx_dbptr->DestAddr[Index] = hdr_ptr->dest_addr[Index]; | |
} | |
rx_ptr->forwarded = TRUE; | |
// | |
// success | |
// | |
ret_code = 0; | |
Recycle_RFD (AdapterInfo, AdapterInfo->cur_rx_ind); | |
AdapterInfo->cur_rx_ind++; | |
if (AdapterInfo->cur_rx_ind == AdapterInfo->RxBufCnt) { | |
AdapterInfo->cur_rx_ind = 0; | |
} | |
break; | |
} | |
FreeRFD: | |
Recycle_RFD (AdapterInfo, AdapterInfo->cur_rx_ind); | |
AdapterInfo->cur_rx_ind++; | |
if (AdapterInfo->cur_rx_ind == AdapterInfo->RxBufCnt) { | |
AdapterInfo->cur_rx_ind = 0; | |
} | |
rx_ptr = &AdapterInfo->rx_ring[AdapterInfo->cur_rx_ind]; | |
} | |
if (pkt_type == PXE_FRAME_TYPE_NONE) { | |
AdapterInfo->Int_Status &= (~SCB_STATUS_FR); | |
} | |
status = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBStatus); | |
if ((status & SCB_RUS_NO_RESOURCES) != 0) { | |
// | |
// start the receive unit here! | |
// leave all the filled frames, | |
// | |
SetupReceiveQueues (AdapterInfo); | |
OutLong (AdapterInfo, (UINT32) AdapterInfo->rx_phy_addr, AdapterInfo->ioaddr + SCBPointer); | |
OutWord (AdapterInfo, RX_START, AdapterInfo->ioaddr + SCBCmd); | |
AdapterInfo->cur_rx_ind = 0; | |
} | |
return ret_code; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
INT16 | |
E100bReadEepromAndStationAddress ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
INT32 Index; | |
INT32 Index2; | |
UINT16 sum; | |
UINT16 eeprom_len; | |
UINT8 addr_len; | |
UINT16 *eedata; | |
eedata = (UINT16 *) (&AdapterInfo->NVData[0]); | |
sum = 0; | |
addr_len = E100bGetEepromAddrLen (AdapterInfo); | |
// | |
// in words | |
// | |
AdapterInfo->NVData_Len = eeprom_len = (UINT16) (1 << addr_len); | |
for (Index2 = 0, Index = 0; ((Index2 < PXE_MAC_LENGTH - 1) && (Index < eeprom_len)); Index++) { | |
UINT16 value; | |
value = E100bReadEeprom (AdapterInfo, Index, addr_len); | |
eedata[Index] = value; | |
sum = (UINT16) (sum + value); | |
if (Index < 3) { | |
AdapterInfo->PermNodeAddress[Index2++] = (UINT8) value; | |
AdapterInfo->PermNodeAddress[Index2++] = (UINT8) (value >> 8); | |
} | |
} | |
if (sum != 0xBABA) { | |
return -1; | |
} | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
AdapterInfo->CurrentNodeAddress[Index] = AdapterInfo->PermNodeAddress[Index]; | |
} | |
for (Index = 0; Index < PXE_HWADDR_LEN_ETHER; Index++) { | |
AdapterInfo->BroadcastNodeAddress[Index] = 0xff; | |
} | |
for (Index = PXE_HWADDR_LEN_ETHER; Index < PXE_MAC_LENGTH; Index++) { | |
AdapterInfo->CurrentNodeAddress[Index] = 0; | |
AdapterInfo->PermNodeAddress[Index] = 0; | |
AdapterInfo->BroadcastNodeAddress[Index] = 0; | |
} | |
return 0; | |
} | |
// | |
// CBList is a circular linked list | |
// 1) When all are free, Tail->next == Head and FreeCount == # allocated | |
// 2) When none are free, Tail == Head and FreeCount == 0 | |
// 3) when one is free, Tail == Head and Freecount == 1 | |
// 4) First non-Free frame is always at Tail->next | |
// | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
SetupCBlink ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
TxCB *head_ptr; | |
TxCB *tail_ptr; | |
TxCB *cur_ptr; | |
INT32 Index; | |
UINTN array_off; | |
cur_ptr = &(AdapterInfo->tx_ring[0]); | |
array_off = (UINTN) (&cur_ptr->TBDArray) - (UINTN) cur_ptr; | |
for (Index = 0; Index < AdapterInfo->TxBufCnt; Index++) { | |
cur_ptr[Index].cb_header.status = 0; | |
cur_ptr[Index].cb_header.command = 0; | |
cur_ptr[Index].PhysTCBAddress = | |
(UINT32) AdapterInfo->tx_phy_addr + (Index * sizeof (TxCB)); | |
cur_ptr[Index].PhysArrayAddr = (UINT32)(cur_ptr[Index].PhysTCBAddress + array_off); | |
cur_ptr[Index].PhysTBDArrayAddres = (UINT32)(cur_ptr[Index].PhysTCBAddress + array_off); | |
cur_ptr->free_data_ptr = (UINT64) 0; | |
if (Index < AdapterInfo->TxBufCnt - 1) { | |
cur_ptr[Index].cb_header.link = cur_ptr[Index].PhysTCBAddress + sizeof (TxCB); | |
cur_ptr[Index].NextTCBVirtualLinkPtr = &cur_ptr[Index + 1]; | |
cur_ptr[Index + 1].PrevTCBVirtualLinkPtr = &cur_ptr[Index]; | |
} | |
} | |
head_ptr = &cur_ptr[0]; | |
tail_ptr = &cur_ptr[AdapterInfo->TxBufCnt - 1]; | |
tail_ptr->cb_header.link = head_ptr->PhysTCBAddress; | |
tail_ptr->NextTCBVirtualLinkPtr = head_ptr; | |
head_ptr->PrevTCBVirtualLinkPtr = tail_ptr; | |
AdapterInfo->FreeCBCount = AdapterInfo->TxBufCnt; | |
AdapterInfo->FreeTxHeadPtr = head_ptr; | |
// | |
// set tail of the free list, next to this would be either in use | |
// or the head itself | |
// | |
AdapterInfo->FreeTxTailPtr = tail_ptr; | |
AdapterInfo->xmit_done_head = AdapterInfo->xmit_done_tail = 0; | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
TxCB * | |
GetFreeCB ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
TxCB *free_cb_ptr; | |
// | |
// claim any hanging free CBs | |
// | |
if (AdapterInfo->FreeCBCount <= 1) { | |
CheckCBList (AdapterInfo); | |
} | |
// | |
// don't use up the last CB problem if the previous CB that the CU used | |
// becomes the last CB we submit because of the SUSPEND bit we set. | |
// the CU thinks it was never cleared. | |
// | |
if (AdapterInfo->FreeCBCount <= 1) { | |
return NULL; | |
} | |
BlockIt (AdapterInfo, TRUE); | |
free_cb_ptr = AdapterInfo->FreeTxHeadPtr; | |
AdapterInfo->FreeTxHeadPtr = free_cb_ptr->NextTCBVirtualLinkPtr; | |
--AdapterInfo->FreeCBCount; | |
BlockIt (AdapterInfo, FALSE); | |
return free_cb_ptr; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param cb_ptr TODO: add argument description | |
@return TODO: add return values | |
**/ | |
VOID | |
SetFreeCB ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN TxCB *cb_ptr | |
) | |
{ | |
// | |
// here we assume cb are returned in the order they are taken out | |
// and we link the newly freed cb at the tail of free cb list | |
// | |
cb_ptr->cb_header.status = 0; | |
cb_ptr->free_data_ptr = (UINT64) 0; | |
AdapterInfo->FreeTxTailPtr = cb_ptr; | |
++AdapterInfo->FreeCBCount; | |
return ; | |
} | |
/** | |
TODO: Add function description | |
@param ind TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT16 | |
next ( | |
IN UINT16 ind | |
) | |
{ | |
UINT16 Tmp; | |
Tmp = (UINT16) (ind + 1); | |
if (Tmp >= (TX_BUFFER_COUNT << 1)) { | |
Tmp = 0; | |
} | |
return Tmp; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT16 | |
CheckCBList ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
TxCB *Tmp_ptr; | |
UINT16 cnt; | |
cnt = 0; | |
while (1) { | |
Tmp_ptr = AdapterInfo->FreeTxTailPtr->NextTCBVirtualLinkPtr; | |
if ((Tmp_ptr->cb_header.status & CMD_STATUS_MASK) != 0) { | |
// | |
// check if Q is full | |
// | |
if (next (AdapterInfo->xmit_done_tail) != AdapterInfo->xmit_done_head) { | |
ASSERT (AdapterInfo->xmit_done_tail < TX_BUFFER_COUNT << 1); | |
AdapterInfo->xmit_done[AdapterInfo->xmit_done_tail] = Tmp_ptr->free_data_ptr; | |
UnMapIt ( | |
AdapterInfo, | |
Tmp_ptr->free_data_ptr, | |
Tmp_ptr->TBDArray[0].buf_len, | |
TO_DEVICE, | |
(UINT64) Tmp_ptr->TBDArray[0].phys_buf_addr | |
); | |
AdapterInfo->xmit_done_tail = next (AdapterInfo->xmit_done_tail); | |
} | |
SetFreeCB (AdapterInfo, Tmp_ptr); | |
} else { | |
break; | |
} | |
} | |
return cnt; | |
} | |
// | |
// Description : Initialize the RFD list list by linking each element together | |
// in a circular list. The simplified memory model is used. | |
// All data is in the RFD. The RFDs are linked together and the | |
// last one points back to the first one. When the current RFD | |
// is processed (frame received), its EL bit is set and the EL | |
// bit in the previous RXFD is cleared. | |
// Allocation done during INIT, this is making linked list. | |
// | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
SetupReceiveQueues ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
RxFD *rx_ptr; | |
RxFD *tail_ptr; | |
UINT16 Index; | |
AdapterInfo->cur_rx_ind = 0; | |
rx_ptr = (&AdapterInfo->rx_ring[0]); | |
for (Index = 0; Index < AdapterInfo->RxBufCnt; Index++) { | |
rx_ptr[Index].cb_header.status = 0; | |
rx_ptr[Index].cb_header.command = 0; | |
rx_ptr[Index].RFDSize = RX_BUFFER_SIZE; | |
rx_ptr[Index].ActualCount = 0; | |
// | |
// RBDs not used, simple memory model | |
// | |
rx_ptr[Index].rx_buf_addr = (UINT32) (-1); | |
// | |
// RBDs not used, simple memory model | |
// | |
rx_ptr[Index].forwarded = FALSE; | |
// | |
// don't use Tmp_ptr if it is beyond the last one | |
// | |
if (Index < AdapterInfo->RxBufCnt - 1) { | |
rx_ptr[Index].cb_header.link = (UINT32) AdapterInfo->rx_phy_addr + ((Index + 1) * sizeof (RxFD)); | |
} | |
} | |
tail_ptr = (&AdapterInfo->rx_ring[AdapterInfo->RxBufCnt - 1]); | |
tail_ptr->cb_header.link = (UINT32) AdapterInfo->rx_phy_addr; | |
// | |
// set the EL bit | |
// | |
tail_ptr->cb_header.command = 0xC000; | |
AdapterInfo->RFDTailPtr = tail_ptr; | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param rx_index TODO: add argument description | |
@return TODO: add return values | |
**/ | |
VOID | |
Recycle_RFD ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT16 rx_index | |
) | |
{ | |
RxFD *rx_ptr; | |
RxFD *tail_ptr; | |
// | |
// change the EL bit and change the AdapterInfo->RxTailPtr | |
// rx_ptr is assumed to be the head of the Q | |
// AdapterInfo->rx_forwarded[rx_index] = FALSE; | |
// | |
rx_ptr = &AdapterInfo->rx_ring[rx_index]; | |
tail_ptr = AdapterInfo->RFDTailPtr; | |
// | |
// set el_bit and suspend bit | |
// | |
rx_ptr->cb_header.command = 0xc000; | |
rx_ptr->cb_header.status = 0; | |
rx_ptr->ActualCount = 0; | |
rx_ptr->forwarded = FALSE; | |
AdapterInfo->RFDTailPtr = rx_ptr; | |
// | |
// resetting the el_bit. | |
// | |
tail_ptr->cb_header.command = 0; | |
// | |
// check the receive unit, fix if there is any problem | |
// | |
return ; | |
} | |
// | |
// Serial EEPROM section. | |
// | |
// EEPROM_Ctrl bits. | |
// | |
#define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ | |
#define EE_CS 0x02 /* EEPROM chip select. */ | |
#define EE_DI 0x04 /* EEPROM chip data in. */ | |
#define EE_WRITE_0 0x01 | |
#define EE_WRITE_1 0x05 | |
#define EE_DO 0x08 /* EEPROM chip data out. */ | |
#define EE_ENB (0x4800 | EE_CS) | |
// | |
// Delay between EEPROM clock transitions. | |
// This will actually work with no delay on 33Mhz PCI. | |
// | |
#define eeprom_delay(nanosec) DelayIt (AdapterInfo, nanosec); | |
// | |
// The EEPROM commands include the alway-set leading bit. | |
// | |
#define EE_WRITE_CMD 5 // 101b | |
#define EE_READ_CMD 6 // 110b | |
#define EE_ERASE_CMD (7 << 6) | |
VOID | |
shift_bits_out ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT16 val, | |
IN UINT8 num_bits | |
) | |
/*++ | |
Routine Description: | |
TODO: Add function description | |
Arguments: | |
AdapterInfo - TODO: add argument description | |
val - TODO: add argument description | |
num_bits - TODO: add argument description | |
Returns: | |
TODO: add return values | |
--*/ | |
{ | |
INT32 Index; | |
UINT8 Tmp; | |
UINT32 EEAddr; | |
EEAddr = AdapterInfo->ioaddr + SCBeeprom; | |
for (Index = num_bits; Index >= 0; Index--) { | |
INT16 dataval; | |
// | |
// will be 0 or 4 | |
// | |
dataval = (INT16) ((val & (1 << Index)) ? EE_DI : 0); | |
// | |
// mask off the data_in bit | |
// | |
Tmp = (UINT8) (InByte (AdapterInfo, EEAddr) &~EE_DI); | |
Tmp = (UINT8) (Tmp | dataval); | |
OutByte (AdapterInfo, Tmp, EEAddr); | |
eeprom_delay (100); | |
// | |
// raise the eeprom clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (150); | |
// | |
// lower the eeprom clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (150); | |
} | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT16 | |
shift_bits_in ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT8 Tmp; | |
INT32 Index; | |
UINT16 retval; | |
UINT32 EEAddr; | |
EEAddr = AdapterInfo->ioaddr + SCBeeprom; | |
retval = 0; | |
for (Index = 15; Index >= 0; Index--) { | |
// | |
// raise the clock | |
// | |
// | |
// mask off the data_in bit | |
// | |
Tmp = InByte (AdapterInfo, EEAddr); | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
Tmp = InByte (AdapterInfo, EEAddr); | |
retval = (UINT16) ((retval << 1) | ((Tmp & EE_DO) ? 1 : 0)); | |
// | |
// lower the clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
} | |
return retval; | |
} | |
/** | |
This routine sets the EEPROM lockout bit to gain exclusive access to the | |
eeprom. the access bit is the most significant bit in the General Control | |
Register 2 in the SCB space. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@retval TRUE if it got the access | |
@retval FALSE if it fails to get the exclusive access | |
**/ | |
BOOLEAN | |
E100bSetEepromLockOut ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINTN wait; | |
UINT8 tmp; | |
if ((AdapterInfo->DeviceID == D102_DEVICE_ID) || | |
(AdapterInfo->RevID >= D102_REVID)) { | |
wait = 500; | |
while (wait--) { | |
tmp = InByte (AdapterInfo, AdapterInfo->ioaddr + SCBGenCtrl2); | |
tmp |= GCR2_EEPROM_ACCESS_SEMAPHORE; | |
OutByte (AdapterInfo, tmp, AdapterInfo->ioaddr + SCBGenCtrl2); | |
DelayIt (AdapterInfo, 50); | |
tmp = InByte (AdapterInfo, AdapterInfo->ioaddr + SCBGenCtrl2); | |
if (tmp & GCR2_EEPROM_ACCESS_SEMAPHORE) { | |
return TRUE; | |
} | |
} | |
return FALSE; | |
} | |
return TRUE; | |
} | |
/** | |
This routine Resets the EEPROM lockout bit to giveup access to the | |
eeprom. the access bit is the most significant bit in the General Control | |
Register 2 in the SCB space. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@return None | |
**/ | |
VOID | |
E100bReSetEepromLockOut ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT8 tmp; | |
if ((AdapterInfo->DeviceID == D102_DEVICE_ID) || | |
(AdapterInfo->RevID >= D102_REVID)) { | |
tmp = InByte (AdapterInfo, AdapterInfo->ioaddr + SCBGenCtrl2); | |
tmp &= ~(GCR2_EEPROM_ACCESS_SEMAPHORE); | |
OutByte (AdapterInfo, tmp, AdapterInfo->ioaddr + SCBGenCtrl2); | |
DelayIt (AdapterInfo, 50); | |
} | |
} | |
/** | |
Using the NIC data structure information, read the EEPROM to get a Word of data for the MAC address. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@param Location Word offset into the MAC address to read. | |
@param AddrLen Number of bits of address length. | |
@retval RetVal The word read from the EEPROM. | |
**/ | |
UINT16 | |
E100bReadEeprom ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN INT32 Location, | |
IN UINT8 AddrLen | |
) | |
{ | |
UINT16 RetVal; | |
UINT8 Tmp; | |
UINT32 EEAddr; | |
UINT16 ReadCmd; | |
EEAddr = AdapterInfo->ioaddr + SCBeeprom; | |
ReadCmd = (UINT16) (Location | (EE_READ_CMD << AddrLen)); | |
RetVal = 0; | |
// | |
// get exclusive access to the eeprom first! | |
// | |
E100bSetEepromLockOut (AdapterInfo); | |
// | |
// eeprom control reg bits: x,x,x,x,DO,DI,CS,SK | |
// to write the opcode+data value out one bit at a time in DI starting at msb | |
// and then out a 1 to sk, wait, out 0 to SK and wait | |
// repeat this for all the bits to be written | |
// | |
// | |
// 11110010b | |
// | |
Tmp = (UINT8) (InByte (AdapterInfo, EEAddr) & 0xF2); | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_CS), EEAddr); | |
// | |
// 3 for the read opcode 110b | |
// | |
shift_bits_out (AdapterInfo, ReadCmd, (UINT8) (3 + AddrLen)); | |
// | |
// read the eeprom word one bit at a time | |
// | |
RetVal = shift_bits_in (AdapterInfo); | |
// | |
// Terminate the EEPROM access and leave eeprom in a clean state. | |
// | |
Tmp = InByte (AdapterInfo, EEAddr); | |
Tmp &= ~(EE_CS | EE_DI); | |
OutByte (AdapterInfo, Tmp, EEAddr); | |
// | |
// raise the clock and lower the eeprom shift clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
// | |
// giveup access to the eeprom | |
// | |
E100bReSetEepromLockOut (AdapterInfo); | |
return RetVal; | |
} | |
/** | |
Using the NIC data structure information, read the EEPROM to determine how many bits of address length | |
this EEPROM is in Words. | |
@param AdapterInfo Pointer to the NIC data structure | |
information which the UNDI driver is | |
layering on.. | |
@retval RetVal The word read from the EEPROM. | |
**/ | |
UINT8 | |
E100bGetEepromAddrLen ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT8 Tmp; | |
UINT8 AddrLen; | |
UINT32 EEAddr; | |
// | |
// assume 64word eeprom (so,6 bits of address_length) | |
// | |
UINT16 ReadCmd; | |
EEAddr = AdapterInfo->ioaddr + SCBeeprom; | |
ReadCmd = (EE_READ_CMD << 6); | |
// | |
// get exclusive access to the eeprom first! | |
// | |
E100bSetEepromLockOut (AdapterInfo); | |
// | |
// address we are trying to read is 0 | |
// eeprom control reg bits: x,x,x,x,DO,,DI,,CS,SK | |
// to write the opcode+data value out one bit at a time in DI starting at msb | |
// and then out a 1 to sk, wait, out 0 to SK and wait | |
// repeat this for all the bits to be written | |
// | |
Tmp = (UINT8) (InByte (AdapterInfo, EEAddr) & 0xF2); | |
// | |
// enable eeprom access | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_CS), EEAddr); | |
// | |
// 3 for opcode, 6 for the default address len | |
// | |
shift_bits_out (AdapterInfo, ReadCmd, (UINT8) (3 + 6)); | |
// | |
// (in case of a 64 word eeprom). | |
// read the "dummy zero" from EE_DO to say that the address we wrote | |
// (six 0s) is accepted, write more zeros (until 8) to get a "dummy zero" | |
// | |
// | |
// assume the smallest | |
// | |
AddrLen = 6; | |
Tmp = InByte (AdapterInfo, EEAddr); | |
while ((AddrLen < 8) && ((Tmp & EE_DO) != 0)) { | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_DI), EEAddr); | |
eeprom_delay (100); | |
// | |
// raise the eeprom clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (150); | |
// | |
// lower the eeprom clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (150); | |
Tmp = InByte (AdapterInfo, EEAddr); | |
AddrLen++; | |
} | |
// | |
// read the eeprom word, even though we don't need this | |
// | |
shift_bits_in (AdapterInfo); | |
// | |
// Terminate the EEPROM access. | |
// | |
Tmp = InByte (AdapterInfo, EEAddr); | |
Tmp &= ~(EE_CS | EE_DI); | |
OutByte (AdapterInfo, Tmp, EEAddr); | |
// | |
// raise the clock and lower the eeprom shift clock | |
// | |
OutByte (AdapterInfo, (UINT8) (Tmp | EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
OutByte (AdapterInfo, (UINT8) (Tmp &~EE_SHIFT_CLK), EEAddr); | |
eeprom_delay (100); | |
// | |
// giveup access to the eeprom! | |
// | |
E100bReSetEepromLockOut (AdapterInfo); | |
return AddrLen; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param DBaddr TODO: add argument description | |
@param DBsize TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
E100bStatistics ( | |
NIC_DATA_INSTANCE *AdapterInfo, | |
UINT64 DBaddr, | |
UINT16 DBsize | |
) | |
{ | |
PXE_DB_STATISTICS db; | |
// | |
// wait upto one second (each wait is 100 micro s) | |
// | |
UINT32 Wait; | |
Wait = 10000; | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
// | |
// Clear statistics done marker. | |
// | |
AdapterInfo->statistics->done_marker = 0; | |
// | |
// Issue statistics dump (or dump w/ reset) command. | |
// | |
OutByte ( | |
AdapterInfo, | |
(UINT8) (DBsize ? CU_SHOWSTATS : CU_DUMPSTATS), | |
(UINT32) (AdapterInfo->ioaddr + SCBCmd) | |
); | |
// | |
// Wait for command to complete. | |
// | |
// zero the db here just to chew up a little more time. | |
// | |
ZeroMem ((VOID *) &db, sizeof db); | |
while (Wait != 0) { | |
// | |
// Wait a bit before checking. | |
// | |
DelayIt (AdapterInfo, 100); | |
// | |
// Look for done marker at end of statistics. | |
// | |
switch (AdapterInfo->statistics->done_marker) { | |
case 0xA005: | |
case 0xA007: | |
break; | |
default: | |
Wait--; | |
continue; | |
} | |
// | |
// if we did not "continue" from the above switch, we are done, | |
// | |
break; | |
} | |
// | |
// If this is a reset, we are out of here! | |
// | |
if (DBsize == 0) { | |
return PXE_STATCODE_SUCCESS; | |
} | |
// | |
// Convert NIC statistics counter format to EFI/UNDI | |
// specification statistics counter format. | |
// | |
// | |
// 54 3210 fedc ba98 7654 3210 | |
// db.Supported = 01 0000 0100 1101 0001 0111; | |
// | |
db.Supported = 0x104D17; | |
// | |
// Statistics from the NIC | |
// | |
db.Data[0x01] = AdapterInfo->statistics->rx_good_frames; | |
db.Data[0x02] = AdapterInfo->statistics->rx_runt_errs; | |
db.Data[0x08] = AdapterInfo->statistics->rx_crc_errs + | |
AdapterInfo->statistics->rx_align_errs; | |
db.Data[0x04] = db.Data[0x02] + | |
db.Data[0x08] + | |
AdapterInfo->statistics->rx_resource_errs + | |
AdapterInfo->statistics->rx_overrun_errs; | |
db.Data[0x00] = db.Data[0x01] + db.Data[0x04]; | |
db.Data[0x0B] = AdapterInfo->statistics->tx_good_frames; | |
db.Data[0x0E] = AdapterInfo->statistics->tx_coll16_errs + | |
AdapterInfo->statistics->tx_late_colls + | |
AdapterInfo->statistics->tx_underruns + | |
AdapterInfo->statistics->tx_one_colls + | |
AdapterInfo->statistics->tx_multi_colls; | |
db.Data[0x14] = AdapterInfo->statistics->tx_total_colls; | |
db.Data[0x0A] = db.Data[0x0B] + | |
db.Data[0x0E] + | |
AdapterInfo->statistics->tx_lost_carrier; | |
if (DBsize > sizeof db) { | |
DBsize = (UINT16) sizeof (db); | |
} | |
CopyMem ((VOID *) (UINTN) DBaddr, (VOID *) &db, (UINTN) DBsize); | |
return PXE_STATCODE_SUCCESS; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@param OpFlags TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
E100bReset ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN INT32 OpFlags | |
) | |
{ | |
UINT16 save_filter; | |
// | |
// disable the interrupts | |
// | |
OutWord (AdapterInfo, INT_MASK, AdapterInfo->ioaddr + SCBCmd); | |
// | |
// wait for the tx queue to complete | |
// | |
CheckCBList (AdapterInfo); | |
XmitWaitForCompletion (AdapterInfo); | |
if (AdapterInfo->Receive_Started) { | |
StopRU (AdapterInfo); | |
} | |
InitializeChip (AdapterInfo); | |
// | |
// check the opflags and restart receive filters | |
// | |
if ((OpFlags & PXE_OPFLAGS_RESET_DISABLE_FILTERS) == 0) { | |
save_filter = AdapterInfo->Rx_Filter; | |
// | |
// if we give the filter same as Rx_Filter, | |
// this routine will not set mcast list (it thinks there is no change) | |
// to force it, we will reset that flag in the Rx_Filter | |
// | |
AdapterInfo->Rx_Filter &= (~PXE_OPFLAGS_RECEIVE_FILTER_FILTERED_MULTICAST); | |
E100bSetfilter (AdapterInfo, save_filter, (UINT64) 0, (UINT32) 0); | |
} | |
if ((OpFlags & PXE_OPFLAGS_RESET_DISABLE_INTERRUPTS) != 0) { | |
// | |
// disable the interrupts | |
// | |
AdapterInfo->int_mask = 0; | |
} | |
// | |
// else leave the interrupt in the pre-set state!!! | |
// | |
E100bSetInterruptState (AdapterInfo); | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINTN | |
E100bShutdown ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
// | |
// disable the interrupts | |
// | |
OutWord (AdapterInfo, INT_MASK, AdapterInfo->ioaddr + SCBCmd); | |
// | |
// stop the receive unit | |
// | |
if (AdapterInfo->Receive_Started) { | |
StopRU (AdapterInfo); | |
} | |
// | |
// wait for the tx queue to complete | |
// | |
CheckCBList (AdapterInfo); | |
if (AdapterInfo->FreeCBCount != AdapterInfo->TxBufCnt) { | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
} | |
// | |
// we do not want to reset the phy, it takes a long time to renegotiate the | |
// link after that (3-4 seconds) | |
// | |
InitializeChip (AdapterInfo); | |
SelectiveReset (AdapterInfo); | |
return 0; | |
} | |
/** | |
This routine will write a value to the specified MII register | |
of an external MDI compliant device (e.g. PHY 100). The command will | |
execute in polled mode. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
@param RegAddress The MII register that we are writing to | |
@param PhyAddress The MDI address of the Phy component. | |
@param DataValue The value that we are writing to the MII | |
register. | |
@return nothing | |
**/ | |
VOID | |
MdiWrite ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT8 RegAddress, | |
IN UINT8 PhyAddress, | |
IN UINT16 DataValue | |
) | |
{ | |
UINT32 WriteCommand; | |
WriteCommand = ((UINT32) DataValue) | | |
((UINT32)(RegAddress << 16)) | | |
((UINT32)(PhyAddress << 21)) | | |
((UINT32)(MDI_WRITE << 26)); | |
// | |
// Issue the write command to the MDI control register. | |
// | |
OutLong (AdapterInfo, WriteCommand, AdapterInfo->ioaddr + SCBCtrlMDI); | |
// | |
// wait 20usec before checking status | |
// | |
DelayIt (AdapterInfo, 20); | |
// | |
// poll for the mdi write to complete | |
while ((InLong (AdapterInfo, AdapterInfo->ioaddr + SCBCtrlMDI) & | |
MDI_PHY_READY) == 0){ | |
DelayIt (AdapterInfo, 20); | |
} | |
} | |
/** | |
This routine will read a value from the specified MII register | |
of an external MDI compliant device (e.g. PHY 100), and return | |
it to the calling routine. The command will execute in polled mode. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
@param RegAddress The MII register that we are reading from | |
@param PhyAddress The MDI address of the Phy component. | |
@param DataValue pointer to the value that we read from | |
the MII register. | |
**/ | |
VOID | |
MdiRead ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT8 RegAddress, | |
IN UINT8 PhyAddress, | |
IN OUT UINT16 *DataValue | |
) | |
{ | |
UINT32 ReadCommand; | |
ReadCommand = ((UINT32) (RegAddress << 16)) | | |
((UINT32) (PhyAddress << 21)) | | |
((UINT32) (MDI_READ << 26)); | |
// | |
// Issue the read command to the MDI control register. | |
// | |
OutLong (AdapterInfo, ReadCommand, AdapterInfo->ioaddr + SCBCtrlMDI); | |
// | |
// wait 20usec before checking status | |
// | |
DelayIt (AdapterInfo, 20); | |
// | |
// poll for the mdi read to complete | |
// | |
while ((InLong (AdapterInfo, AdapterInfo->ioaddr + SCBCtrlMDI) & | |
MDI_PHY_READY) == 0) { | |
DelayIt (AdapterInfo, 20); | |
} | |
*DataValue = InWord (AdapterInfo, AdapterInfo->ioaddr + SCBCtrlMDI); | |
} | |
/** | |
This routine will reset the PHY that the adapter is currently | |
configured to use. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
**/ | |
VOID | |
PhyReset ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 MdiControlReg; | |
MdiControlReg = (MDI_CR_AUTO_SELECT | | |
MDI_CR_RESTART_AUTO_NEG | | |
MDI_CR_RESET); | |
// | |
// Write the MDI control register with our new Phy configuration | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MdiControlReg | |
); | |
return ; | |
} | |
/** | |
This routine will detect what phy we are using, set the line | |
speed, FDX or HDX, and configure the phy if necessary. | |
The following combinations are supported: | |
- TX or T4 PHY alone at PHY address 1 | |
- T4 or TX PHY at address 1 and MII PHY at address 0 | |
- 82503 alone (10Base-T mode, no full duplex support) | |
- 82503 and MII PHY (TX or T4) at address 0 | |
The sequence / priority of detection is as follows: | |
- PHY 1 with cable termination | |
- PHY 0 with cable termination | |
- PHY 1 (if found) without cable termination | |
- 503 interface | |
Additionally auto-negotiation capable (NWAY) and parallel | |
detection PHYs are supported. The flow-chart is described in | |
the 82557 software writer's manual. | |
NOTE: 1. All PHY MDI registers are read in polled mode. | |
2. The routines assume that the 82557 has been RESET and we have | |
obtained the virtual memory address of the CSR. | |
3. PhyDetect will not RESET the PHY. | |
4. If FORCEFDX is set, SPEED should also be set. The driver will | |
check the values for inconsistency with the detected PHY | |
technology. | |
5. PHY 1 (the PHY on the adapter) may have an address in the range | |
1 through 31 inclusive. The driver will accept addresses in | |
this range. | |
6. Driver ignores FORCEFDX and SPEED overrides if a 503 interface | |
is detected. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
@retval TRUE If a Phy was detected, and configured | |
correctly. | |
@retval FALSE If a valid phy could not be detected and | |
configured. | |
**/ | |
BOOLEAN | |
PhyDetect ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 *eedata; | |
UINT16 MdiControlReg; | |
UINT16 MdiStatusReg; | |
BOOLEAN FoundPhy1; | |
UINT8 ReNegotiateTime; | |
eedata = (UINT16 *) (&AdapterInfo->NVData[0]); | |
FoundPhy1 = FALSE; | |
ReNegotiateTime = 35; | |
// | |
// EEPROM word [6] contains the Primary PHY record in which the least 3 bits | |
// indicate the PHY address | |
// and word [7] contains the secondary PHY record | |
// | |
AdapterInfo->PhyRecord[0] = eedata[6]; | |
AdapterInfo->PhyRecord[1] = eedata[7]; | |
AdapterInfo->PhyAddress = (UINT8) (AdapterInfo->PhyRecord[0] & 7); | |
// | |
// Check for a phy address over-ride of 32 which indicates force use of 82503 | |
// not detecting the link in this case | |
// | |
if (AdapterInfo->PhyAddress == 32) { | |
// | |
// 503 interface over-ride | |
// Record the current speed and duplex. We will be in half duplex | |
// mode unless the user used the force full duplex over-ride. | |
// | |
AdapterInfo->LinkSpeed = 10; | |
return (TRUE); | |
} | |
// | |
// If the Phy Address is between 1-31 then we must first look for phy 1, | |
// at that address. | |
// | |
if ((AdapterInfo->PhyAddress > 0) && (AdapterInfo->PhyAddress < 32)) { | |
// | |
// Read the MDI control and status registers at phy 1 | |
// and check if we found a valid phy | |
// | |
MdiRead ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
&MdiControlReg | |
); | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
if (!((MdiControlReg == 0xffff) || | |
((MdiStatusReg == 0) && (MdiControlReg == 0)))) { | |
// | |
// we have a valid phy1 | |
// Read the status register again because of sticky bits | |
// | |
FoundPhy1 = TRUE; | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
// | |
// If there is a valid link then use this Phy. | |
// | |
if (MdiStatusReg & MDI_SR_LINK_STATUS) { | |
return (SetupPhy(AdapterInfo)); | |
} | |
} | |
} | |
// | |
// Next try to detect a PHY at address 0x00 because there was no Phy 1, | |
// or Phy 1 didn't have link, or we had a phy 0 over-ride | |
// | |
// | |
// Read the MDI control and status registers at phy 0 | |
// | |
MdiRead (AdapterInfo, MDI_CONTROL_REG, 0, &MdiControlReg); | |
MdiRead (AdapterInfo, MDI_STATUS_REG, 0, &MdiStatusReg); | |
// | |
// check if we found a valid phy 0 | |
// | |
if (((MdiControlReg == 0xffff) || | |
((MdiStatusReg == 0) && (MdiControlReg == 0)))) { | |
// | |
// we don't have a valid phy at address 0 | |
// if phy address was forced to 0, then error out because we | |
// didn't find a phy at that address | |
// | |
if (AdapterInfo->PhyAddress == 0x0000) { | |
return (FALSE); | |
} else { | |
// | |
// at this point phy1 does not have link and there is no phy 0 at all | |
// if we are forced to detect the cable, error out here! | |
// | |
if (AdapterInfo->CableDetect != 0) { | |
return FALSE; | |
} | |
if (FoundPhy1) { | |
// | |
// no phy 0, but there is a phy 1 (no link I guess), so use phy 1 | |
// | |
return SetupPhy (AdapterInfo); | |
} else { | |
// | |
// didn't find phy 0 or phy 1, so assume a 503 interface | |
// | |
AdapterInfo->PhyAddress = 32; | |
// | |
// Record the current speed and duplex. We'll be in half duplex | |
// mode unless the user used the force full duplex over-ride. | |
// | |
AdapterInfo->LinkSpeed = 10; | |
return (TRUE); | |
} | |
} | |
} else { | |
// | |
// We have a valid phy at address 0. If phy 0 has a link then we use | |
// phy 0. If Phy 0 doesn't have a link then we use Phy 1 (no link) | |
// if phy 1 is present, or phy 0 if phy 1 is not present | |
// If phy 1 was present, then we must isolate phy 1 before we enable | |
// phy 0 to see if Phy 0 has a link. | |
// | |
if (FoundPhy1) { | |
// | |
// isolate phy 1 | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MDI_CR_ISOLATE | |
); | |
// | |
// wait 100 microseconds for the phy to isolate. | |
// | |
DelayIt (AdapterInfo, 100); | |
} | |
// | |
// Since this Phy is at address 0, we must enable it. So clear | |
// the isolate bit, and set the auto-speed select bit | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
0, | |
MDI_CR_AUTO_SELECT | |
); | |
// | |
// wait 100 microseconds for the phy to be enabled. | |
// | |
DelayIt (AdapterInfo, 100); | |
// | |
// restart the auto-negotion process | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
0, | |
MDI_CR_RESTART_AUTO_NEG | MDI_CR_AUTO_SELECT | |
); | |
// | |
// wait no more than 3.5 seconds for auto-negotiation to complete | |
// | |
while (ReNegotiateTime) { | |
// | |
// Read the status register twice because of sticky bits | |
// | |
MdiRead (AdapterInfo, MDI_STATUS_REG, 0, &MdiStatusReg); | |
MdiRead (AdapterInfo, MDI_STATUS_REG, 0, &MdiStatusReg); | |
if (MdiStatusReg & MDI_SR_AUTO_NEG_COMPLETE) { | |
break; | |
} | |
DelayIt (AdapterInfo, 100); | |
ReNegotiateTime--; | |
} | |
// | |
// Read the status register again because of sticky bits | |
// | |
MdiRead (AdapterInfo, MDI_STATUS_REG, 0, &MdiStatusReg); | |
// | |
// If the link was not set | |
// | |
if ((MdiStatusReg & MDI_SR_LINK_STATUS) == 0) { | |
// | |
// PHY1 does not have a link and phy 0 does not have a link | |
// do not proceed if we need to detect the link! | |
// | |
if (AdapterInfo->CableDetect != 0) { | |
return FALSE; | |
} | |
// | |
// the link wasn't set, so use phy 1 if phy 1 was present | |
// | |
if (FoundPhy1) { | |
// | |
// isolate phy 0 | |
// | |
MdiWrite (AdapterInfo, MDI_CONTROL_REG, 0, MDI_CR_ISOLATE); | |
// | |
// wait 100 microseconds for the phy to isolate. | |
// | |
DelayIt (AdapterInfo, 100); | |
// | |
// Now re-enable PHY 1 | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MDI_CR_AUTO_SELECT | |
); | |
// | |
// wait 100 microseconds for the phy to be enabled | |
// | |
DelayIt (AdapterInfo, 100); | |
// | |
// restart the auto-negotion process | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MDI_CR_RESTART_AUTO_NEG | MDI_CR_AUTO_SELECT | |
); | |
// | |
// Don't wait for it to complete (we didn't have link earlier) | |
// | |
return (SetupPhy (AdapterInfo)); | |
} | |
} | |
// | |
// Definitely using Phy 0 | |
// | |
AdapterInfo->PhyAddress = 0; | |
return (SetupPhy(AdapterInfo)); | |
} | |
} | |
/** | |
This routine will setup phy 1 or phy 0 so that it is configured | |
to match a speed and duplex over-ride option. If speed or | |
duplex mode is not explicitly specified in the registry, the | |
driver will skip the speed and duplex over-ride code, and | |
assume the adapter is automatically setting the line speed, and | |
the duplex mode. At the end of this routine, any truly Phy | |
specific code will be executed (each Phy has its own quirks, | |
and some require that certain special bits are set). | |
NOTE: The driver assumes that SPEED and FORCEFDX are specified at the | |
same time. If FORCEDPX is set without speed being set, the driver | |
will encouter a fatal error and log a message into the event viewer. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
@retval TRUE If the phy could be configured correctly | |
@retval FALSE If the phy couldn't be configured | |
correctly, because an unsupported | |
over-ride option was used | |
**/ | |
BOOLEAN | |
SetupPhy ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 MdiControlReg; | |
UINT16 MdiStatusReg; | |
UINT16 MdiIdLowReg; | |
UINT16 MdiIdHighReg; | |
UINT16 MdiMiscReg; | |
UINT32 PhyId; | |
BOOLEAN ForcePhySetting; | |
ForcePhySetting = FALSE; | |
// | |
// If we are NOT forcing a setting for line speed or full duplex, then | |
// we won't force a link setting, and we'll jump down to the phy | |
// specific code. | |
// | |
if (((AdapterInfo->LinkSpeedReq) || (AdapterInfo->DuplexReq))) { | |
// | |
// Find out what kind of technology this Phy is capable of. | |
// | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
// | |
// Read the MDI control register at our phy | |
// | |
MdiRead ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
&MdiControlReg | |
); | |
// | |
// Now check the validity of our forced option. If the force option is | |
// valid, then force the setting. If the force option is not valid, | |
// we'll set a flag indicating that we should error out. | |
// | |
// | |
// If speed is forced to 10mb | |
// | |
if (AdapterInfo->LinkSpeedReq == 10) { | |
// | |
// If half duplex is forced | |
// | |
if ((AdapterInfo->DuplexReq & PXE_FORCE_HALF_DUPLEX) != 0) { | |
if (MdiStatusReg & MDI_SR_10T_HALF_DPX) { | |
MdiControlReg &= ~(MDI_CR_10_100 | MDI_CR_AUTO_SELECT | MDI_CR_FULL_HALF); | |
ForcePhySetting = TRUE; | |
} | |
} else if ((AdapterInfo->DuplexReq & PXE_FORCE_FULL_DUPLEX) != 0) { | |
// | |
// If full duplex is forced | |
// | |
if (MdiStatusReg & MDI_SR_10T_FULL_DPX) { | |
MdiControlReg &= ~(MDI_CR_10_100 | MDI_CR_AUTO_SELECT); | |
MdiControlReg |= MDI_CR_FULL_HALF; | |
ForcePhySetting = TRUE; | |
} | |
} else { | |
// | |
// If auto duplex (we actually set phy to 1/2) | |
// | |
if (MdiStatusReg & (MDI_SR_10T_FULL_DPX | MDI_SR_10T_HALF_DPX)) { | |
MdiControlReg &= ~(MDI_CR_10_100 | MDI_CR_AUTO_SELECT | MDI_CR_FULL_HALF); | |
ForcePhySetting = TRUE; | |
} | |
} | |
} | |
// | |
// If speed is forced to 100mb | |
// | |
else if (AdapterInfo->LinkSpeedReq == 100) { | |
// | |
// If half duplex is forced | |
// | |
if ((AdapterInfo->DuplexReq & PXE_FORCE_HALF_DUPLEX) != 0) { | |
if (MdiStatusReg & (MDI_SR_TX_HALF_DPX | MDI_SR_T4_CAPABLE)) { | |
MdiControlReg &= ~(MDI_CR_AUTO_SELECT | MDI_CR_FULL_HALF); | |
MdiControlReg |= MDI_CR_10_100; | |
ForcePhySetting = TRUE; | |
} | |
} else if ((AdapterInfo->DuplexReq & PXE_FORCE_FULL_DUPLEX) != 0) { | |
// | |
// If full duplex is forced | |
// | |
if (MdiStatusReg & MDI_SR_TX_FULL_DPX) { | |
MdiControlReg &= ~MDI_CR_AUTO_SELECT; | |
MdiControlReg |= (MDI_CR_10_100 | MDI_CR_FULL_HALF); | |
ForcePhySetting = TRUE; | |
} | |
} else { | |
// | |
// If auto duplex (we set phy to 1/2) | |
// | |
if (MdiStatusReg & (MDI_SR_TX_HALF_DPX | MDI_SR_T4_CAPABLE)) { | |
MdiControlReg &= ~(MDI_CR_AUTO_SELECT | MDI_CR_FULL_HALF); | |
MdiControlReg |= MDI_CR_10_100; | |
ForcePhySetting = TRUE; | |
} | |
} | |
} | |
if (!ForcePhySetting) { | |
return (FALSE); | |
} | |
// | |
// Write the MDI control register with our new Phy configuration | |
// | |
MdiWrite ( | |
AdapterInfo, | |
MDI_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MdiControlReg | |
); | |
// | |
// wait 100 milliseconds for auto-negotiation to complete | |
// | |
DelayIt (AdapterInfo, 100); | |
} | |
// | |
// Find out specifically what Phy this is. We do this because for certain | |
// phys there are specific bits that must be set so that the phy and the | |
// 82557 work together properly. | |
// | |
MdiRead ( | |
AdapterInfo, | |
PHY_ID_REG_1, | |
AdapterInfo->PhyAddress, | |
&MdiIdLowReg | |
); | |
MdiRead ( | |
AdapterInfo, | |
PHY_ID_REG_2, | |
AdapterInfo->PhyAddress, | |
&MdiIdHighReg | |
); | |
PhyId = ((UINT32) MdiIdLowReg | ((UINT32) MdiIdHighReg << 16)); | |
// | |
// And out the revsion field of the Phy ID so that we'll be able to detect | |
// future revs of the same Phy. | |
// | |
PhyId &= PHY_MODEL_REV_ID_MASK; | |
// | |
// Handle the National TX | |
// | |
if (PhyId == PHY_NSC_TX) { | |
MdiRead ( | |
AdapterInfo, | |
NSC_CONG_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
&MdiMiscReg | |
); | |
MdiMiscReg |= (NSC_TX_CONG_TXREADY | NSC_TX_CONG_F_CONNECT); | |
MdiWrite ( | |
AdapterInfo, | |
NSC_CONG_CONTROL_REG, | |
AdapterInfo->PhyAddress, | |
MdiMiscReg | |
); | |
} | |
FindPhySpeedAndDpx (AdapterInfo, PhyId); | |
// | |
// We put a hardware fix on to our adapters to work-around the PHY_100 errata | |
// described below. The following code is only compiled in, if we wanted | |
// to attempt a software workaround to the PHY_100 A/B step problem. | |
// | |
return (TRUE); | |
} | |
/** | |
This routine will figure out what line speed and duplex mode | |
the PHY is currently using. | |
@param AdapterInfo pointer to the structure that contains | |
the NIC's context. | |
@param PhyId The ID of the PHY in question. | |
@return NOTHING | |
**/ | |
VOID | |
FindPhySpeedAndDpx ( | |
IN NIC_DATA_INSTANCE *AdapterInfo, | |
IN UINT32 PhyId | |
) | |
{ | |
UINT16 MdiStatusReg; | |
UINT16 MdiMiscReg; | |
UINT16 MdiOwnAdReg; | |
UINT16 MdiLinkPartnerAdReg; | |
// | |
// If there was a speed and/or duplex override, then set our current | |
// value accordingly | |
// | |
AdapterInfo->LinkSpeed = AdapterInfo->LinkSpeedReq; | |
AdapterInfo->Duplex = (UINT8) ((AdapterInfo->DuplexReq & PXE_FORCE_FULL_DUPLEX) ? | |
FULL_DUPLEX : HALF_DUPLEX); | |
// | |
// If speed and duplex were forced, then we know our current settings, so | |
// we'll just return. Otherwise, we'll need to figure out what NWAY set | |
// us to. | |
// | |
if (AdapterInfo->LinkSpeed && AdapterInfo->Duplex) { | |
return ; | |
} | |
// | |
// If we didn't have a valid link, then we'll assume that our current | |
// speed is 10mb half-duplex. | |
// | |
// | |
// Read the status register twice because of sticky bits | |
// | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
// | |
// If there wasn't a valid link then use default speed & duplex | |
// | |
if (!(MdiStatusReg & MDI_SR_LINK_STATUS)) { | |
AdapterInfo->LinkSpeed = 10; | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
return ; | |
} | |
// | |
// If this is an Intel PHY (a T4 PHY_100 or a TX PHY_TX), then read bits | |
// 1 and 0 of extended register 0, to get the current speed and duplex | |
// settings. | |
// | |
if ((PhyId == PHY_100_A) || (PhyId == PHY_100_C) || (PhyId == PHY_TX_ID)) { | |
// | |
// Read extended register 0 | |
// | |
MdiRead ( | |
AdapterInfo, | |
EXTENDED_REG_0, | |
AdapterInfo->PhyAddress, | |
&MdiMiscReg | |
); | |
// | |
// Get current speed setting | |
// | |
if (MdiMiscReg & PHY_100_ER0_SPEED_INDIC) { | |
AdapterInfo->LinkSpeed = 100; | |
} else { | |
AdapterInfo->LinkSpeed = 10; | |
} | |
// | |
// Get current duplex setting -- if bit is set then FDX is enabled | |
// | |
if (MdiMiscReg & PHY_100_ER0_FDX_INDIC) { | |
AdapterInfo->Duplex = FULL_DUPLEX; | |
} else { | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
} | |
return ; | |
} | |
// | |
// Read our link partner's advertisement register | |
// | |
MdiRead ( | |
AdapterInfo, | |
AUTO_NEG_LINK_PARTNER_REG, | |
AdapterInfo->PhyAddress, | |
&MdiLinkPartnerAdReg | |
); | |
// | |
// See if Auto-Negotiation was complete (bit 5, reg 1) | |
// | |
MdiRead ( | |
AdapterInfo, | |
MDI_STATUS_REG, | |
AdapterInfo->PhyAddress, | |
&MdiStatusReg | |
); | |
// | |
// If a True NWAY connection was made, then we can detect speed/duplex by | |
// ANDing our adapter's advertised abilities with our link partner's | |
// advertised ablilities, and then assuming that the highest common | |
// denominator was chosed by NWAY. | |
// | |
if ((MdiLinkPartnerAdReg & NWAY_LP_ABILITY) && | |
(MdiStatusReg & MDI_SR_AUTO_NEG_COMPLETE)) { | |
// | |
// Read our advertisement register | |
// | |
MdiRead ( | |
AdapterInfo, | |
AUTO_NEG_ADVERTISE_REG, | |
AdapterInfo->PhyAddress, | |
&MdiOwnAdReg | |
); | |
// | |
// AND the two advertisement registers together, and get rid of any | |
// extraneous bits. | |
// | |
MdiOwnAdReg = (UINT16) (MdiOwnAdReg & (MdiLinkPartnerAdReg & NWAY_LP_ABILITY)); | |
// | |
// Get speed setting | |
// | |
if (MdiOwnAdReg & (NWAY_AD_TX_HALF_DPX | NWAY_AD_TX_FULL_DPX | NWAY_AD_T4_CAPABLE)) { | |
AdapterInfo->LinkSpeed = 100; | |
} else { | |
AdapterInfo->LinkSpeed = 10; | |
} | |
// | |
// Get duplex setting -- use priority resolution algorithm | |
// | |
if (MdiOwnAdReg & (NWAY_AD_T4_CAPABLE)) { | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
return ; | |
} else if (MdiOwnAdReg & (NWAY_AD_TX_FULL_DPX)) { | |
AdapterInfo->Duplex = FULL_DUPLEX; | |
return ; | |
} else if (MdiOwnAdReg & (NWAY_AD_TX_HALF_DPX)) { | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
return ; | |
} else if (MdiOwnAdReg & (NWAY_AD_10T_FULL_DPX)) { | |
AdapterInfo->Duplex = FULL_DUPLEX; | |
return ; | |
} else { | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
return ; | |
} | |
} | |
// | |
// If we are connected to a dumb (non-NWAY) repeater or hub, and the line | |
// speed was determined automatically by parallel detection, then we have | |
// no way of knowing exactly what speed the PHY is set to unless that PHY | |
// has a propietary register which indicates speed in this situation. The | |
// NSC TX PHY does have such a register. Also, since NWAY didn't establish | |
// the connection, the duplex setting should HALF duplex. | |
// | |
AdapterInfo->Duplex = HALF_DUPLEX; | |
if (PhyId == PHY_NSC_TX) { | |
// | |
// Read register 25 to get the SPEED_10 bit | |
// | |
MdiRead ( | |
AdapterInfo, | |
NSC_SPEED_IND_REG, | |
AdapterInfo->PhyAddress, | |
&MdiMiscReg | |
); | |
// | |
// If bit 6 was set then we're at 10mb | |
// | |
if (MdiMiscReg & NSC_TX_SPD_INDC_SPEED) { | |
AdapterInfo->LinkSpeed = 10; | |
} else { | |
AdapterInfo->LinkSpeed = 100; | |
} | |
} | |
// | |
// If we don't know what line speed we are set at, then we'll default to | |
// 10mbs | |
// | |
else { | |
AdapterInfo->LinkSpeed = 10; | |
} | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
VOID | |
XmitWaitForCompletion ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
TxCB *TxPtr; | |
if (AdapterInfo->FreeCBCount == AdapterInfo->TxBufCnt) { | |
return ; | |
} | |
// | |
// used xmit cb list starts right after the free tail (ends before the | |
// free head ptr) | |
// | |
TxPtr = AdapterInfo->FreeTxTailPtr->NextTCBVirtualLinkPtr; | |
while (TxPtr != AdapterInfo->FreeTxHeadPtr) { | |
CommandWaitForCompletion (TxPtr, AdapterInfo); | |
SetFreeCB (AdapterInfo, TxPtr); | |
TxPtr = TxPtr->NextTCBVirtualLinkPtr; | |
} | |
} | |
/** | |
TODO: Add function description | |
@param cmd_ptr TODO: add argument description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
INT8 | |
CommandWaitForCompletion ( | |
TxCB *cmd_ptr, | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
INT16 wait; | |
wait = 5000; | |
while ((cmd_ptr->cb_header.status == 0) && (--wait > 0)) { | |
DelayIt (AdapterInfo, 10); | |
} | |
if (cmd_ptr->cb_header.status == 0) { | |
return -1; | |
} | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
INT8 | |
SoftwareReset ( | |
NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT8 tco_stat; | |
UINT16 wait; | |
tco_stat = 0; | |
// | |
// Reset the chip: stop Tx and Rx processes and clear counters. | |
// This takes less than 10usec and will easily finish before the next | |
// action. | |
// | |
OutLong (AdapterInfo, PORT_RESET, AdapterInfo->ioaddr + SCBPort); | |
// | |
// wait for 5 milli seconds here! | |
// | |
DelayIt (AdapterInfo, 5000); | |
// | |
// TCO Errata work around for 559s only | |
// ----------------------------------------------------------------------------------- | |
// TCO Workaround Code | |
// haifa workaround | |
// ----------------------------------------------------------------------------------- | |
// 1. Issue SW-RST ^^^ (already done above) | |
// 2. Issue a redundant Set CU Base CMD immediately | |
// Do not set the General Pointer before the Set CU Base cycle | |
// Do not check the SCB CMD before the Set CU Base cycle | |
// 3. Wait for the SCB-CMD to be cleared | |
// this indicates the transition to post-driver | |
// 4. Poll the TCO-Req bit in the PMDR to be cleared | |
// this indicates the tco activity has stopped for real | |
// 5. Proceed with the nominal Driver Init: | |
// Actual Set CU & RU Base ... | |
// | |
// Check for ICH2 device ID. If this is an ICH2, | |
// do the TCO workaround code. | |
// | |
if (AdapterInfo->VendorID == D102_DEVICE_ID || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_1 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_2 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_3 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_4 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_5 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_6 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_7 || | |
AdapterInfo->VendorID == ICH3_DEVICE_ID_8 || | |
AdapterInfo->RevID >= 8) { // do the TCO fix | |
// | |
// donot load the scb pointer but just give load_cu cmd. | |
// | |
OutByte (AdapterInfo, CU_CMD_BASE, AdapterInfo->ioaddr + SCBCmd); | |
// | |
// wait for command to be accepted. | |
// | |
wait_for_cmd_done (AdapterInfo->ioaddr + SCBCmd); | |
// | |
// read PMDR register and check bit 1 in it to see if TCO is active | |
// | |
// | |
// wait for 5 milli seconds | |
// | |
wait = 5000; | |
while (wait) { | |
tco_stat = InByte (AdapterInfo, AdapterInfo->ioaddr + 0x1b); | |
if ((tco_stat & 2) == 0) { | |
// | |
// is the activity bit clear?? | |
// | |
break; | |
} | |
wait--; | |
DelayIt (AdapterInfo, 1); | |
} | |
if ((tco_stat & 2) != 0) { | |
// | |
// not zero?? | |
// | |
return -1; | |
} | |
} | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT8 | |
SelectiveReset ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 wait; | |
UINT32 stat; | |
wait = 10; | |
stat = 0; | |
OutLong (AdapterInfo, POR_SELECTIVE_RESET, AdapterInfo->ioaddr + SCBPort); | |
// | |
// wait for this to complete | |
// | |
// | |
// wait for 2 milli seconds here! | |
// | |
DelayIt (AdapterInfo, 2000); | |
while (wait > 0) { | |
wait--; | |
stat = InLong (AdapterInfo, AdapterInfo->ioaddr + SCBPort); | |
if (stat == 0) { | |
break; | |
} | |
// | |
// wait for 1 milli second | |
// | |
DelayIt (AdapterInfo, 1000); | |
} | |
if (stat != 0) { | |
return PXE_STATCODE_DEVICE_FAILURE; | |
} | |
return 0; | |
} | |
/** | |
TODO: Add function description | |
@param AdapterInfo TODO: add argument description | |
@return TODO: add return values | |
**/ | |
UINT16 | |
InitializeChip ( | |
IN NIC_DATA_INSTANCE *AdapterInfo | |
) | |
{ | |
UINT16 ret_val; | |
if (SoftwareReset (AdapterInfo) != 0) { | |
return PXE_STATCODE_DEVICE_FAILURE; | |
} | |
// | |
// disable interrupts | |
// | |
OutWord (AdapterInfo, INT_MASK, AdapterInfo->ioaddr + SCBCmd); | |
// | |
// Load the base registers with 0s (we will give the complete address as | |
// offset later when we issue any command | |
// | |
if ((ret_val = Load_Base_Regs (AdapterInfo)) != 0) { | |
return ret_val; | |
} | |
if ((ret_val = SetupCBlink (AdapterInfo)) != 0) { | |
return ret_val; | |
} | |
if ((ret_val = SetupReceiveQueues (AdapterInfo)) != 0) { | |
return ret_val; | |
} | |
// | |
// detect the PHY only if we need to detect the cable as requested by the | |
// initialize parameters | |
// | |
AdapterInfo->PhyAddress = 0xFF; | |
if (AdapterInfo->CableDetect != 0) { | |
if (!PhyDetect (AdapterInfo)) { | |
return PXE_STATCODE_DEVICE_FAILURE; | |
} | |
} | |
if ((ret_val = E100bSetupIAAddr (AdapterInfo)) != 0) { | |
return ret_val; | |
} | |
if ((ret_val = Configure (AdapterInfo)) != 0) { | |
return ret_val; | |
} | |
return 0; | |
} |