/** @file | |
This is a variation on dtoa.c that converts arbitary binary | |
floating-point formats to and from decimal notation. It uses | |
double-precision arithmetic internally, so there are still | |
various #ifdefs that adapt the calculations to the native | |
IEEE double-precision arithmetic. | |
Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials are licensed and made available under | |
the terms and conditions of the BSD License that accompanies this distribution. | |
The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license. | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
***************************************************************** | |
The author of this software is David M. Gay. | |
Copyright (C) 1998-2000 by Lucent Technologies | |
All Rights Reserved | |
Permission to use, copy, modify, and distribute this software and | |
its documentation for any purpose and without fee is hereby | |
granted, provided that the above copyright notice appear in all | |
copies and that both that the copyright notice and this | |
permission notice and warranty disclaimer appear in supporting | |
documentation, and that the name of Lucent or any of its entities | |
not be used in advertising or publicity pertaining to | |
distribution of the software without specific, written prior | |
permission. | |
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. | |
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY | |
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER | |
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, | |
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF | |
THIS SOFTWARE. | |
Please send bug reports to David M. Gay (dmg at acm dot org, | |
with " at " changed at "@" and " dot " changed to "."). | |
***************************************************************** | |
NetBSD: gdtoaimp.h,v 1.5.4.1 2007/05/07 19:49:06 pavel Exp | |
**/ | |
/* On a machine with IEEE extended-precision registers, it is | |
* necessary to specify double-precision (53-bit) rounding precision | |
* before invoking strtod or dtoa. If the machine uses (the equivalent | |
* of) Intel 80x87 arithmetic, the call | |
* _control87(PC_53, MCW_PC); | |
* does this with many compilers. Whether this or another call is | |
* appropriate depends on the compiler; for this to work, it may be | |
* necessary to #include "float.h" or another system-dependent header | |
* file. | |
*/ | |
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | |
* | |
* This strtod returns a nearest machine number to the input decimal | |
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are | |
* broken by the IEEE round-even rule. Otherwise ties are broken by | |
* biased rounding (add half and chop). | |
* | |
* Inspired loosely by William D. Clinger's paper "How to Read Floating | |
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. | |
* | |
* Modifications: | |
* | |
* 1. We only require IEEE, IBM, or VAX double-precision | |
* arithmetic (not IEEE double-extended). | |
* 2. We get by with floating-point arithmetic in a case that | |
* Clinger missed -- when we're computing d * 10^n | |
* for a small integer d and the integer n is not too | |
* much larger than 22 (the maximum integer k for which | |
* we can represent 10^k exactly), we may be able to | |
* compute (d*10^k) * 10^(e-k) with just one roundoff. | |
* 3. Rather than a bit-at-a-time adjustment of the binary | |
* result in the hard case, we use floating-point | |
* arithmetic to determine the adjustment to within | |
* one bit; only in really hard cases do we need to | |
* compute a second residual. | |
* 4. Because of 3., we don't need a large table of powers of 10 | |
* for ten-to-e (just some small tables, e.g. of 10^k | |
* for 0 <= k <= 22). | |
*/ | |
/* | |
* #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least | |
* significant byte has the lowest address. | |
* #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most | |
* significant byte has the lowest address. | |
* #define Long int on machines with 32-bit ints and 64-bit longs. | |
* #define Sudden_Underflow for IEEE-format machines without gradual | |
* underflow (i.e., that flush to zero on underflow). | |
* #define No_leftright to omit left-right logic in fast floating-point | |
* computation of dtoa. | |
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. | |
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines | |
* that use extended-precision instructions to compute rounded | |
* products and quotients) with IBM. | |
* #define ROUND_BIASED for IEEE-format with biased rounding. | |
* #define Inaccurate_Divide for IEEE-format with correctly rounded | |
* products but inaccurate quotients, e.g., for Intel i860. | |
* #define NO_LONG_LONG on machines that do not have a "long long" | |
* integer type (of >= 64 bits). On such machines, you can | |
* #define Just_16 to store 16 bits per 32-bit Long when doing | |
* high-precision integer arithmetic. Whether this speeds things | |
* up or slows things down depends on the machine and the number | |
* being converted. If long long is available and the name is | |
* something other than "long long", #define Llong to be the name, | |
* and if "unsigned Llong" does not work as an unsigned version of | |
* Llong, #define #ULLong to be the corresponding unsigned type. | |
* #define Bad_float_h if your system lacks a float.h or if it does not | |
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, | |
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX. | |
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) | |
* if memory is available and otherwise does something you deem | |
* appropriate. If MALLOC is undefined, malloc will be invoked | |
* directly -- and assumed always to succeed. | |
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making | |
* memory allocations from a private pool of memory when possible. | |
* When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, | |
* unless #defined to be a different length. This default length | |
* suffices to get rid of MALLOC calls except for unusual cases, | |
* such as decimal-to-binary conversion of a very long string of | |
* digits. When converting IEEE double precision values, the | |
* longest string gdtoa can return is about 751 bytes long. For | |
* conversions by strtod of strings of 800 digits and all gdtoa | |
* conversions of IEEE doubles in single-threaded executions with | |
* 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with | |
* 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. | |
* #define INFNAN_CHECK on IEEE systems to cause strtod to check for | |
* Infinity and NaN (case insensitively). | |
* When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, | |
* strtodg also accepts (case insensitively) strings of the form | |
* NaN(x), where x is a string of hexadecimal digits and spaces; | |
* if there is only one string of hexadecimal digits, it is taken | |
* for the fraction bits of the resulting NaN; if there are two or | |
* more strings of hexadecimal digits, each string is assigned | |
* to the next available sequence of 32-bit words of fractions | |
* bits (starting with the most significant), right-aligned in | |
* each sequence. | |
* #define MULTIPLE_THREADS if the system offers preemptively scheduled | |
* multiple threads. In this case, you must provide (or suitably | |
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed | |
* by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed | |
* in pow5mult, ensures lazy evaluation of only one copy of high | |
* powers of 5; omitting this lock would introduce a small | |
* probability of wasting memory, but would otherwise be harmless.) | |
* You must also invoke freedtoa(s) to free the value s returned by | |
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. | |
* #define IMPRECISE_INEXACT if you do not care about the setting of | |
* the STRTOG_Inexact bits in the special case of doing IEEE double | |
* precision conversions (which could also be done by the strtog in | |
* dtoa.c). | |
* #define NO_HEX_FP to disable recognition of C9x's hexadecimal | |
* floating-point constants. | |
* #define -DNO_ERRNO to suppress setting errno (in strtod.c and | |
* strtodg.c). | |
* #define NO_STRING_H to use private versions of memcpy. | |
* On some K&R systems, it may also be necessary to | |
* #define DECLARE_SIZE_T in this case. | |
* #define YES_ALIAS to permit aliasing certain double values with | |
* arrays of ULongs. This leads to slightly better code with | |
* some compilers and was always used prior to 19990916, but it | |
* is not strictly legal and can cause trouble with aggressively | |
* optimizing compilers (e.g., gcc 2.95.1 under -O2). | |
* #define USE_LOCALE to use the current locale's decimal_point value. | |
*/ | |
/* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */ | |
#include <LibConfig.h> | |
#include <stdint.h> | |
#define Short int16_t | |
#define UShort uint16_t | |
#define Long int32_t | |
#define ULong uint32_t | |
#define LLong int64_t | |
#define ULLong uint64_t | |
#define INFNAN_CHECK | |
#ifdef _REENTRANT | |
#define MULTIPLE_THREADS | |
#endif | |
#define USE_LOCALE | |
#ifndef GDTOAIMP_H_INCLUDED | |
#define GDTOAIMP_H_INCLUDED | |
#include "gdtoa.h" | |
#include "gd_qnan.h" | |
#ifdef DEBUG | |
#include "stdio.h" | |
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | |
#endif | |
#include "stdlib.h" | |
#include "string.h" | |
#define Char void | |
#ifdef MALLOC | |
extern Char *MALLOC ANSI((size_t)); | |
#else | |
#define MALLOC malloc | |
#endif | |
#undef IEEE_Arith | |
#undef Avoid_Underflow | |
#ifdef IEEE_BIG_ENDIAN | |
#define IEEE_Arith | |
#endif | |
#ifdef IEEE_LITTLE_ENDIAN | |
#define IEEE_Arith | |
#endif | |
#include "errno.h" | |
#ifdef Bad_float_h | |
#ifdef IEEE_Arith | |
#define DBL_DIG 15 | |
#define DBL_MAX_10_EXP 308 | |
#define DBL_MAX_EXP 1024 | |
#define FLT_RADIX 2 | |
#define DBL_MAX 1.7976931348623157e+308 | |
#endif | |
#ifndef LONG_MAX | |
#define LONG_MAX 2147483647 | |
#endif | |
#else /* ifndef Bad_float_h */ | |
#include "float.h" | |
#endif /* Bad_float_h */ | |
#ifdef IEEE_Arith | |
#define Scale_Bit 0x10 | |
#define n_bigtens 5 | |
#endif | |
#include "math.h" | |
#ifdef __cplusplus | |
extern "C" { | |
#endif | |
#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) != 1 | |
Exactly one of IEEE_LITTLE_ENDIAN or IEEE_BIG_ENDIAN should be defined. | |
#endif | |
/* This union assumes that: | |
sizeof(double) == 8 | |
sizeof(UINT32) == 4 | |
If this is not the case, the type and dimension of the L member will | |
have to be modified. | |
*/ | |
typedef union { double d; UINT32 L[2]; } U; | |
#ifdef YES_ALIAS | |
#define dval(x) x | |
#ifdef IEEE_LITTLE_ENDIAN | |
#define word0(x) ((ULong *)&x)[1] | |
#define word1(x) ((ULong *)&x)[0] | |
#else | |
#define word0(x) ((ULong *)&x)[0] | |
#define word1(x) ((ULong *)&x)[1] | |
#endif | |
#else /* !YES_ALIAS */ | |
#ifdef IEEE_LITTLE_ENDIAN | |
#define word0(x) ( /* LINTED */ (U*)&x)->L[1] | |
#define word1(x) ( /* LINTED */ (U*)&x)->L[0] | |
#else | |
#define word0(x) ( /* LINTED */ (U*)&x)->L[0] | |
#define word1(x) ( /* LINTED */ (U*)&x)->L[1] | |
#endif | |
#define dval(x) ( /* LINTED */ (U*)&x)->d | |
#endif /* YES_ALIAS */ | |
/* The following definition of Storeinc is appropriate for MIPS processors. | |
* An alternative that might be better on some machines is | |
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | |
*/ | |
#if defined(IEEE_LITTLE_ENDIAN) | |
#define Storeinc(a,b,c) \ | |
(((unsigned short *)(void *)a)[1] = (unsigned short)b, \ | |
((unsigned short *)(void *)a)[0] = (unsigned short)c, \ | |
a++) | |
#else | |
#define Storeinc(a,b,c) \ | |
(((unsigned short *)(void *)a)[0] = (unsigned short)b, \ | |
((unsigned short *)(void *)a)[1] = (unsigned short)c, \ | |
a++) | |
#endif | |
/* #define P DBL_MANT_DIG */ | |
/* Ten_pmax = floor(P*log(2)/log(5)) */ | |
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | |
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | |
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | |
#ifdef IEEE_Arith | |
#define Exp_shift 20 | |
#define Exp_shift1 20 | |
#define Exp_msk1 0x100000 | |
#define Exp_msk11 0x100000 | |
#define Exp_mask 0x7ff00000 | |
#define P 53 | |
#define Bias 1023 | |
#define Emin (-1022) | |
#define Exp_1 0x3ff00000 | |
#define Exp_11 0x3ff00000 | |
#define Ebits 11 | |
#define Frac_mask 0xfffffU | |
#define Frac_mask1 0xfffffU | |
#define Ten_pmax 22 | |
#define Bletch 0x10 | |
#define Bndry_mask 0xfffffU | |
#define Bndry_mask1 0xfffffU | |
#define LSB 1 | |
#define Sign_bit 0x80000000 | |
#define Log2P 1 | |
#define Tiny0 0 | |
#define Tiny1 1 | |
#define Quick_max 14 | |
#define Int_max 14 | |
#ifndef Flt_Rounds | |
#ifdef FLT_ROUNDS | |
#define Flt_Rounds FLT_ROUNDS | |
#else | |
#define Flt_Rounds 1 | |
#endif | |
#endif /*Flt_Rounds*/ | |
#else /* ifndef IEEE_Arith */ | |
#undef Sudden_Underflow | |
#define Sudden_Underflow | |
#ifdef IBM | |
#undef Flt_Rounds | |
#define Flt_Rounds 0 | |
#define Exp_shift 24 | |
#define Exp_shift1 24 | |
#define Exp_msk1 0x1000000 | |
#define Exp_msk11 0x1000000 | |
#define Exp_mask 0x7f000000 | |
#define P 14 | |
#define Bias 65 | |
#define Exp_1 0x41000000 | |
#define Exp_11 0x41000000 | |
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ | |
#define Frac_mask 0xffffff | |
#define Frac_mask1 0xffffff | |
#define Bletch 4 | |
#define Ten_pmax 22 | |
#define Bndry_mask 0xefffff | |
#define Bndry_mask1 0xffffff | |
#define LSB 1 | |
#define Sign_bit 0x80000000 | |
#define Log2P 4 | |
#define Tiny0 0x100000 | |
#define Tiny1 0 | |
#define Quick_max 14 | |
#define Int_max 15 | |
#else /* VAX */ | |
#undef Flt_Rounds | |
#define Flt_Rounds 1 | |
#define Exp_shift 23 | |
#define Exp_shift1 7 | |
#define Exp_msk1 0x80 | |
#define Exp_msk11 0x800000 | |
#define Exp_mask 0x7f80 | |
#define P 56 | |
#define Bias 129 | |
#define Exp_1 0x40800000 | |
#define Exp_11 0x4080 | |
#define Ebits 8 | |
#define Frac_mask 0x7fffff | |
#define Frac_mask1 0xffff007f | |
#define Ten_pmax 24 | |
#define Bletch 2 | |
#define Bndry_mask 0xffff007f | |
#define Bndry_mask1 0xffff007f | |
#define LSB 0x10000 | |
#define Sign_bit 0x8000 | |
#define Log2P 1 | |
#define Tiny0 0x80 | |
#define Tiny1 0 | |
#define Quick_max 15 | |
#define Int_max 15 | |
#endif /* IBM, VAX */ | |
#endif /* IEEE_Arith */ | |
#ifndef IEEE_Arith | |
#define ROUND_BIASED | |
#endif | |
#ifdef RND_PRODQUOT | |
#define rounded_product(a,b) a = rnd_prod(a, b) | |
#define rounded_quotient(a,b) a = rnd_quot(a, b) | |
extern double rnd_prod(double, double), rnd_quot(double, double); | |
#else | |
#define rounded_product(a,b) a *= b | |
#define rounded_quotient(a,b) a /= b | |
#endif | |
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | |
#define Big1 0xffffffffU | |
#undef Pack_16 | |
#ifndef Pack_32 | |
#define Pack_32 | |
#endif | |
#ifdef NO_LONG_LONG | |
#undef ULLong | |
#ifdef Just_16 | |
#undef Pack_32 | |
#define Pack_16 | |
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. | |
* This makes some inner loops simpler and sometimes saves work | |
* during multiplications, but it often seems to make things slightly | |
* slower. Hence the default is now to store 32 bits per Long. | |
*/ | |
#endif | |
#else /* long long available */ | |
#ifndef Llong | |
#define Llong long long | |
#endif | |
#ifndef ULLong | |
#define ULLong unsigned Llong | |
#endif | |
#endif /* NO_LONG_LONG */ | |
#ifdef Pack_32 | |
#define ULbits 32 | |
#define kshift 5 | |
#define kmask 31 | |
#define ALL_ON 0xffffffff | |
#else | |
#define ULbits 16 | |
#define kshift 4 | |
#define kmask 15 | |
#define ALL_ON 0xffff | |
#endif | |
#ifndef MULTIPLE_THREADS | |
#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ | |
#define FREE_DTOA_LOCK(n) /*nothing*/ | |
#else | |
#include "reentrant.h" | |
extern mutex_t __gdtoa_locks[2]; | |
#define ACQUIRE_DTOA_LOCK(n) \ | |
do { \ | |
if (__isthreaded) \ | |
mutex_lock(&__gdtoa_locks[n]); \ | |
} while (/* CONSTCOND */ 0) | |
#define FREE_DTOA_LOCK(n) \ | |
do { \ | |
if (__isthreaded) \ | |
mutex_unlock(&__gdtoa_locks[n]); \ | |
} while (/* CONSTCOND */ 0) | |
#endif | |
#define Kmax (sizeof(size_t) << 3) | |
struct | |
Bigint { | |
struct Bigint *next; | |
int k, maxwds, sign, wds; | |
ULong x[1]; | |
}; | |
typedef struct Bigint Bigint; | |
#ifdef NO_STRING_H | |
#ifdef DECLARE_SIZE_T | |
typedef unsigned int size_t; | |
#endif | |
extern void memcpy_D2A ANSI((void*, const void*, size_t)); | |
#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) | |
#else /* !NO_STRING_H */ | |
#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) | |
#endif /* NO_STRING_H */ | |
#define Balloc __Balloc_D2A | |
#define Bfree __Bfree_D2A | |
#define ULtoQ __ULtoQ_D2A | |
#define ULtof __ULtof_D2A | |
#define ULtod __ULtod_D2A | |
#define ULtodd __ULtodd_D2A | |
#define ULtox __ULtox_D2A | |
#define ULtoxL __ULtoxL_D2A | |
#define any_on __any_on_D2A | |
#define b2d __b2d_D2A | |
#define bigtens __bigtens_D2A | |
#define cmp __cmp_D2A | |
#define copybits __copybits_D2A | |
#define d2b __d2b_D2A | |
#define decrement __decrement_D2A | |
#define diff __diff_D2A | |
#define dtoa_result __dtoa_result_D2A | |
#define g__fmt __g__fmt_D2A | |
#define gethex __gethex_D2A | |
#define hexdig __hexdig_D2A | |
#define hexdig_init_D2A __hexdig_init_D2A | |
#define hexnan __hexnan_D2A | |
#define hi0bits __hi0bits_D2A | |
#define hi0bits_D2A __hi0bits_D2A | |
#define i2b __i2b_D2A | |
#define increment __increment_D2A | |
#define lo0bits __lo0bits_D2A | |
#define lshift __lshift_D2A | |
#define match __match_D2A | |
#define mult __mult_D2A | |
#define multadd __multadd_D2A | |
#define nrv_alloc __nrv_alloc_D2A | |
#define pow5mult __pow5mult_D2A | |
#define quorem __quorem_D2A | |
#define ratio __ratio_D2A | |
#define rshift __rshift_D2A | |
#define rv_alloc __rv_alloc_D2A | |
#define s2b __s2b_D2A | |
#define set_ones __set_ones_D2A | |
#define strcp __strcp_D2A | |
#define strcp_D2A __strcp_D2A | |
#define strtoIg __strtoIg_D2A | |
#define sum __sum_D2A | |
#define tens __tens_D2A | |
#define tinytens __tinytens_D2A | |
#define tinytens __tinytens_D2A | |
#define trailz __trailz_D2A | |
#define ulp __ulp_D2A | |
extern char *dtoa_result; | |
extern CONST double bigtens[], tens[], tinytens[]; | |
extern unsigned char hexdig[]; | |
extern Bigint *Balloc (int); | |
extern void Bfree (Bigint*); | |
extern void ULtof (ULong*, ULong*, Long, int); | |
extern void ULtod (ULong*, ULong*, Long, int); | |
extern void ULtodd (ULong*, ULong*, Long, int); | |
extern void ULtoQ (ULong*, ULong*, Long, int); | |
extern void ULtox (UShort*, ULong*, Long, int); | |
extern void ULtoxL (ULong*, ULong*, Long, int); | |
extern ULong any_on (Bigint*, int); | |
extern double b2d (Bigint*, int*); | |
extern int cmp (Bigint*, Bigint*); | |
extern void copybits (ULong*, int, Bigint*); | |
extern Bigint *d2b (double, int*, int*); | |
extern int decrement (Bigint*); | |
extern Bigint *diff (Bigint*, Bigint*); | |
extern char *dtoa (double d, int mode, int ndigits, | |
int *decpt, int *sign, char **rve); | |
extern char *g__fmt (char*, char*, char*, int, ULong); | |
extern int gethex (CONST char**, CONST FPI*, Long*, Bigint**, int); | |
extern void hexdig_init_D2A(Void); | |
extern int hexnan (CONST char**, CONST FPI*, ULong*); | |
extern int hi0bits_D2A (ULong); | |
extern Bigint *i2b (int); | |
extern Bigint *increment (Bigint*); | |
extern int lo0bits (ULong*); | |
extern Bigint *lshift (Bigint*, int); | |
extern int match (CONST char**, CONST char*); | |
extern Bigint *mult (Bigint*, Bigint*); | |
extern Bigint *multadd (Bigint*, int, int); | |
extern char *nrv_alloc (CONST char*, char **, size_t); | |
extern Bigint *pow5mult (Bigint*, int); | |
extern int quorem (Bigint*, Bigint*); | |
extern double ratio (Bigint*, Bigint*); | |
extern void rshift (Bigint*, int); | |
extern char *rv_alloc (size_t); | |
extern Bigint *s2b (CONST char*, int, int, ULong); | |
extern Bigint *set_ones (Bigint*, int); | |
extern char *strcp (char*, const char*); | |
extern int strtoIg (CONST char*, char**, FPI*, Long*, Bigint**, int*); | |
extern double strtod (const char *s00, char **se); | |
extern Bigint *sum (Bigint*, Bigint*); | |
extern int trailz (CONST Bigint*); | |
extern double ulp (double); | |
#ifdef __cplusplus | |
} | |
#endif | |
/* | |
* NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to | |
* 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, | |
* respectively), but now are determined by compiling and running | |
* qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. | |
* Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... | |
* and -DNAN_WORD1=... values if necessary. This should still work. | |
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) | |
*/ | |
#ifdef IEEE_Arith | |
#ifdef IEEE_BIG_ENDIAN | |
#define _0 0 | |
#define _1 1 | |
#ifndef NAN_WORD0 | |
#define NAN_WORD0 d_QNAN0 | |
#endif | |
#ifndef NAN_WORD1 | |
#define NAN_WORD1 d_QNAN1 | |
#endif | |
#else | |
#define _0 1 | |
#define _1 0 | |
#ifndef NAN_WORD0 | |
#define NAN_WORD0 d_QNAN1 | |
#endif | |
#ifndef NAN_WORD1 | |
#define NAN_WORD1 d_QNAN0 | |
#endif | |
#endif | |
#else | |
#undef INFNAN_CHECK | |
#endif | |
#undef SI | |
#ifdef Sudden_Underflow | |
#define SI 1 | |
#else | |
#define SI 0 | |
#endif | |
#endif /* GDTOAIMP_H_INCLUDED */ |