| /* |
| * (C) Copyright 2001 |
| * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* |
| * evb64260.c - main board support/init for the Galileo Eval board. |
| */ |
| |
| #include <common.h> |
| #include <74xx_7xx.h> |
| #include <galileo/memory.h> |
| #include <galileo/pci.h> |
| #include <galileo/gt64260R.h> |
| #include <net.h> |
| |
| #include <asm/io.h> |
| #include "eth.h" |
| #include "mpsc.h" |
| #include "i2c.h" |
| #include "64260.h" |
| #ifdef CONFIG_ZUMA_V2 |
| extern void zuma_mbox_init(void); |
| #endif |
| |
| #undef DEBUG |
| #define MAP_PCI |
| |
| #ifdef DEBUG |
| #define DP(x) x |
| #else |
| #define DP(x) |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* this is the current GT register space location */ |
| /* it starts at CFG_DFL_GT_REGS but moves later to CFG_GT_REGS */ |
| |
| /* Unfortunately, we cant change it while we are in flash, so we initialize it |
| * to the "final" value. This means that any debug_led calls before |
| * board_pre_init wont work right (like in cpu_init_f). |
| * See also my_remap_gt_regs below. (NTL) |
| */ |
| |
| unsigned int INTERNAL_REG_BASE_ADDR = CFG_GT_REGS; |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * This is a version of the GT register space remapping function that |
| * doesn't touch globals (meaning, it's ok to run from flash.) |
| * |
| * Unfortunately, this has the side effect that a writable |
| * INTERNAL_REG_BASE_ADDR is impossible. Oh well. |
| */ |
| |
| void |
| my_remap_gt_regs(u32 cur_loc, u32 new_loc) |
| { |
| u32 temp; |
| |
| /* check and see if it's already moved */ |
| temp = in_le32((u32 *)(new_loc + INTERNAL_SPACE_DECODE)); |
| if ((temp & 0xffff) == new_loc >> 20) |
| return; |
| |
| temp = (in_le32((u32 *)(cur_loc + INTERNAL_SPACE_DECODE)) & |
| 0xffff0000) | (new_loc >> 20); |
| |
| out_le32((u32 *)(cur_loc + INTERNAL_SPACE_DECODE), temp); |
| |
| while (GTREGREAD(INTERNAL_SPACE_DECODE) != temp); |
| } |
| |
| static void |
| gt_pci_config(void) |
| { |
| /* move PCI stuff out of the way - NTL */ |
| /* map PCI Host 0 */ |
| pciMapSpace(PCI_HOST0, PCI_REGION0, CFG_PCI0_0_MEM_SPACE, |
| CFG_PCI0_0_MEM_SPACE, CFG_PCI0_MEM_SIZE); |
| |
| pciMapSpace(PCI_HOST0, PCI_REGION1, 0, 0, 0); |
| pciMapSpace(PCI_HOST0, PCI_REGION2, 0, 0, 0); |
| pciMapSpace(PCI_HOST0, PCI_REGION3, 0, 0, 0); |
| |
| pciMapSpace(PCI_HOST0, PCI_IO, CFG_PCI0_IO_SPACE_PCI, |
| CFG_PCI0_IO_SPACE, CFG_PCI0_IO_SIZE); |
| |
| /* map PCI Host 1 */ |
| pciMapSpace(PCI_HOST1, PCI_REGION0, CFG_PCI1_0_MEM_SPACE, |
| CFG_PCI1_0_MEM_SPACE, CFG_PCI1_MEM_SIZE); |
| |
| pciMapSpace(PCI_HOST1, PCI_REGION1, 0, 0, 0); |
| pciMapSpace(PCI_HOST1, PCI_REGION2, 0, 0, 0); |
| pciMapSpace(PCI_HOST1, PCI_REGION3, 0, 0, 0); |
| |
| pciMapSpace(PCI_HOST1, PCI_IO, CFG_PCI1_IO_SPACE_PCI, |
| CFG_PCI1_IO_SPACE, CFG_PCI1_IO_SIZE); |
| |
| /* PCI interface settings */ |
| GT_REG_WRITE(PCI_0TIMEOUT_RETRY, 0xffff); |
| GT_REG_WRITE(PCI_1TIMEOUT_RETRY, 0xffff); |
| GT_REG_WRITE(PCI_0BASE_ADDRESS_REGISTERS_ENABLE, 0xfffff80e); |
| GT_REG_WRITE(PCI_1BASE_ADDRESS_REGISTERS_ENABLE, 0xfffff80e); |
| |
| |
| } |
| |
| /* Setup CPU interface paramaters */ |
| static void |
| gt_cpu_config(void) |
| { |
| cpu_t cpu = get_cpu_type(); |
| ulong tmp; |
| |
| /* cpu configuration register */ |
| tmp = GTREGREAD(CPU_CONFIGURATION); |
| |
| /* set the AACK delay bit |
| * see Res#14 */ |
| tmp |= CPU_CONF_AACK_DELAY; |
| tmp &= ~CPU_CONF_AACK_DELAY_2; /* New RGF */ |
| |
| /* Galileo claims this is necessary for all busses >= 100 MHz */ |
| tmp |= CPU_CONF_FAST_CLK; |
| |
| if (cpu == CPU_750CX) { |
| tmp &= ~CPU_CONF_DP_VALID; /* Safer, needed for CXe. RGF */ |
| tmp &= ~CPU_CONF_AP_VALID; |
| } else { |
| tmp |= CPU_CONF_DP_VALID; |
| tmp |= CPU_CONF_AP_VALID; |
| } |
| |
| /* this only works with the MPX bus */ |
| tmp &= ~CPU_CONF_RD_OOO; /* Safer RGF */ |
| tmp |= CPU_CONF_PIPELINE; |
| tmp |= CPU_CONF_TA_DELAY; |
| |
| GT_REG_WRITE(CPU_CONFIGURATION, tmp); |
| |
| /* CPU master control register */ |
| tmp = GTREGREAD(CPU_MASTER_CONTROL); |
| |
| tmp |= CPU_MAST_CTL_ARB_EN; |
| |
| if ((cpu == CPU_7400) || |
| (cpu == CPU_7410) || |
| (cpu == CPU_7450)) { |
| |
| tmp |= CPU_MAST_CTL_CLEAN_BLK; |
| tmp |= CPU_MAST_CTL_FLUSH_BLK; |
| |
| } else { |
| /* cleanblock must be cleared for CPUs |
| * that do not support this command |
| * see Res#1 */ |
| tmp &= ~CPU_MAST_CTL_CLEAN_BLK; |
| tmp &= ~CPU_MAST_CTL_FLUSH_BLK; |
| } |
| GT_REG_WRITE(CPU_MASTER_CONTROL, tmp); |
| } |
| |
| /* |
| * board_pre_init. |
| * |
| * set up gal. device mappings, etc. |
| */ |
| int board_pre_init (void) |
| { |
| uchar sram_boot = 0; |
| |
| /* |
| * set up the GT the way the kernel wants it |
| * the call to move the GT register space will obviously |
| * fail if it has already been done, but we're going to assume |
| * that if it's not at the power-on location, it's where we put |
| * it last time. (huber) |
| */ |
| my_remap_gt_regs(CFG_DFL_GT_REGS, CFG_GT_REGS); |
| |
| gt_pci_config(); |
| |
| /* mask all external interrupt sources */ |
| GT_REG_WRITE(CPU_INTERRUPT_MASK_REGISTER_LOW, 0); |
| GT_REG_WRITE(CPU_INTERRUPT_MASK_REGISTER_HIGH, 0); |
| GT_REG_WRITE(PCI_0INTERRUPT_CAUSE_MASK_REGISTER_LOW, 0); |
| GT_REG_WRITE(PCI_0INTERRUPT_CAUSE_MASK_REGISTER_HIGH, 0); |
| GT_REG_WRITE(PCI_1INTERRUPT_CAUSE_MASK_REGISTER_LOW, 0); |
| GT_REG_WRITE(PCI_1INTERRUPT_CAUSE_MASK_REGISTER_HIGH, 0); |
| GT_REG_WRITE(CPU_INT_0_MASK, 0); |
| GT_REG_WRITE(CPU_INT_1_MASK, 0); |
| GT_REG_WRITE(CPU_INT_2_MASK, 0); |
| GT_REG_WRITE(CPU_INT_3_MASK, 0); |
| |
| /* now, onto the configuration */ |
| GT_REG_WRITE(SDRAM_CONFIGURATION, CFG_SDRAM_CONFIG); |
| |
| /* ----- DEVICE BUS SETTINGS ------ */ |
| |
| /* |
| * EVB |
| * 0 - SRAM |
| * 1 - RTC |
| * 2 - UART |
| * 3 - Flash |
| * boot - BootCS |
| * |
| * Zuma |
| * 0 - Flash |
| * boot - BootCS |
| */ |
| |
| /* |
| * the dual 7450 module requires burst access to the boot |
| * device, so the serial rom copies the boot device to the |
| * on-board sram on the eval board, and updates the correct |
| * registers to boot from the sram. (device0) |
| */ |
| #ifdef CONFIG_ZUMA_V2 |
| /* Zuma has no SRAM */ |
| sram_boot = 0; |
| #else |
| if (memoryGetDeviceBaseAddress(DEVICE0) && 0xfff00000 == CFG_MONITOR_BASE) |
| sram_boot = 1; |
| #endif |
| |
| if (!sram_boot) |
| memoryMapDeviceSpace(DEVICE0, CFG_DEV0_SPACE, CFG_DEV0_SIZE); |
| |
| memoryMapDeviceSpace(DEVICE1, CFG_DEV1_SPACE, CFG_DEV1_SIZE); |
| memoryMapDeviceSpace(DEVICE2, CFG_DEV2_SPACE, CFG_DEV2_SIZE); |
| memoryMapDeviceSpace(DEVICE3, CFG_DEV3_SPACE, CFG_DEV3_SIZE); |
| |
| /* configure device timing */ |
| #ifdef CFG_DEV0_PAR |
| if (!sram_boot) |
| GT_REG_WRITE(DEVICE_BANK0PARAMETERS, CFG_DEV0_PAR); |
| #endif |
| |
| #ifdef CFG_DEV1_PAR |
| GT_REG_WRITE(DEVICE_BANK1PARAMETERS, CFG_DEV1_PAR); |
| #endif |
| #ifdef CFG_DEV2_PAR |
| GT_REG_WRITE(DEVICE_BANK2PARAMETERS, CFG_DEV2_PAR); |
| #endif |
| |
| #ifdef CFG_32BIT_BOOT_PAR |
| /* detect if we are booting from the 32 bit flash */ |
| if (GTREGREAD(DEVICE_BOOT_BANK_PARAMETERS) & (0x3 << 20)) { |
| /* 32 bit boot flash */ |
| GT_REG_WRITE(DEVICE_BANK3PARAMETERS, CFG_8BIT_BOOT_PAR); |
| GT_REG_WRITE(DEVICE_BOOT_BANK_PARAMETERS, CFG_32BIT_BOOT_PAR); |
| } else { |
| /* 8 bit boot flash */ |
| GT_REG_WRITE(DEVICE_BANK3PARAMETERS, CFG_32BIT_BOOT_PAR); |
| GT_REG_WRITE(DEVICE_BOOT_BANK_PARAMETERS, CFG_8BIT_BOOT_PAR); |
| } |
| #else |
| /* 8 bit boot flash only */ |
| GT_REG_WRITE(DEVICE_BOOT_BANK_PARAMETERS, CFG_8BIT_BOOT_PAR); |
| #endif |
| |
| gt_cpu_config(); |
| |
| /* MPP setup */ |
| GT_REG_WRITE(MPP_CONTROL0, CFG_MPP_CONTROL_0); |
| GT_REG_WRITE(MPP_CONTROL1, CFG_MPP_CONTROL_1); |
| GT_REG_WRITE(MPP_CONTROL2, CFG_MPP_CONTROL_2); |
| GT_REG_WRITE(MPP_CONTROL3, CFG_MPP_CONTROL_3); |
| |
| GT_REG_WRITE(GPP_LEVEL_CONTROL, CFG_GPP_LEVEL_CONTROL); |
| GT_REG_WRITE(SERIAL_PORT_MULTIPLEX, CFG_SERIAL_PORT_MUX); |
| |
| return 0; |
| } |
| |
| /* various things to do after relocation */ |
| |
| int misc_init_r (void) |
| { |
| icache_enable(); |
| #ifdef CFG_L2 |
| l2cache_enable(); |
| #endif |
| |
| #ifdef CONFIG_MPSC |
| mpsc_init2(); |
| #endif |
| |
| #ifdef CONFIG_ZUMA_V2 |
| zuma_mbox_init(); |
| #endif |
| return (0); |
| } |
| |
| void |
| after_reloc(ulong dest_addr) |
| { |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* check to see if we booted from the sram. If so, move things |
| * back to the way they should be. (we're running from main |
| * memory at this point now */ |
| |
| if (memoryGetDeviceBaseAddress(DEVICE0) == CFG_MONITOR_BASE) { |
| memoryMapDeviceSpace(DEVICE0, CFG_DEV0_SPACE, CFG_DEV0_SIZE); |
| memoryMapDeviceSpace(BOOT_DEVICE, CFG_FLASH_BASE, _1M); |
| } |
| |
| /* now, jump to the main U-Boot board init code */ |
| board_init_r (gd, dest_addr); |
| |
| /* NOTREACHED */ |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* |
| * Check Board Identity: |
| */ |
| |
| int |
| checkboard (void) |
| { |
| puts ("Board: " CFG_BOARD_NAME "\n"); |
| return (0); |
| } |
| |
| /* utility functions */ |
| void |
| debug_led(int led, int mode) |
| { |
| #ifndef CONFIG_ZUMA_V2 |
| volatile int *addr = NULL; |
| int dummy; |
| |
| if (mode == 1) { |
| switch (led) { |
| case 0: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x08000); |
| break; |
| |
| case 1: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x0c000); |
| break; |
| |
| case 2: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x10000); |
| break; |
| } |
| } else if (mode == 0) { |
| switch (led) { |
| case 0: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x14000); |
| break; |
| |
| case 1: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x18000); |
| break; |
| |
| case 2: |
| addr = (int *)((unsigned int)CFG_DEV1_SPACE | 0x1c000); |
| break; |
| } |
| } |
| WRITE_CHAR(addr, 0); |
| dummy = *addr; |
| #endif /* CONFIG_ZUMA_V2 */ |
| } |
| |
| void |
| display_mem_map(void) |
| { |
| int i,j; |
| unsigned int base,size,width; |
| /* SDRAM */ |
| printf("SDRAM\n"); |
| for(i=0;i<=BANK3;i++) { |
| base = memoryGetBankBaseAddress(i); |
| size = memoryGetBankSize(i); |
| if(size !=0) |
| { |
| printf("BANK%d: base - 0x%08x\tsize - %dM bytes\n",i,base,size>>20); |
| } |
| } |
| |
| /* CPU's PCI windows */ |
| for(i=0;i<=PCI_HOST1;i++) { |
| printf("\nCPU's PCI %d windows\n", i); |
| base=pciGetSpaceBase(i,PCI_IO); |
| size=pciGetSpaceSize(i,PCI_IO); |
| printf(" IO: base - 0x%08x\tsize - %dM bytes\n",base,size>>20); |
| for(j=0;j<=PCI_REGION3;j++) { |
| base = pciGetSpaceBase(i,j); |
| size = pciGetSpaceSize(i,j); |
| printf("MEMORY %d: base - 0x%08x\tsize - %dM bytes\n",j,base, |
| size>>20); |
| } |
| } |
| |
| /* Devices */ |
| printf("\nDEVICES\n"); |
| for(i=0;i<=DEVICE3;i++) { |
| base = memoryGetDeviceBaseAddress(i); |
| size = memoryGetDeviceSize(i); |
| width= memoryGetDeviceWidth(i) * 8; |
| printf("DEV %d: base - 0x%08x\tsize - %dM bytes\twidth - %d bits\n", |
| i, base, size>>20, width); |
| } |
| |
| /* Bootrom */ |
| base = memoryGetDeviceBaseAddress(BOOT_DEVICE); /* Boot */ |
| size = memoryGetDeviceSize(BOOT_DEVICE); |
| width= memoryGetDeviceWidth(BOOT_DEVICE) * 8; |
| printf(" BOOT: base - 0x%08x\tsize - %dM bytes\twidth - %d bits\n", |
| base, size>>20, width); |
| } |