blob: 48c9514ba04b765e0052ee0a33f1d07bb86e3bab [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_CLK
#include <common.h>
#include <clk-uclass.h>
#include <div64.h>
#include <dm.h>
#include <init.h>
#include <log.h>
#include <regmap.h>
#include <spl.h>
#include <syscon.h>
#include <time.h>
#include <vsprintf.h>
#include <asm/arch/sys_proto.h>
#include <asm/global_data.h>
#include <dm/device_compat.h>
#include <dt-bindings/clock/stm32mp1-clks.h>
#include <dt-bindings/clock/stm32mp1-clksrc.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_TFABOOT
#if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
/* activate clock tree initialization in the driver */
#define STM32MP1_CLOCK_TREE_INIT
#endif
#endif
#define MAX_HSI_HZ 64000000
/* TIMEOUT */
#define TIMEOUT_200MS 200000
#define TIMEOUT_1S 1000000
/* STGEN registers */
#define STGENC_CNTCR 0x00
#define STGENC_CNTSR 0x04
#define STGENC_CNTCVL 0x08
#define STGENC_CNTCVU 0x0C
#define STGENC_CNTFID0 0x20
#define STGENC_CNTCR_EN BIT(0)
/* RCC registers */
#define RCC_OCENSETR 0x0C
#define RCC_OCENCLRR 0x10
#define RCC_HSICFGR 0x18
#define RCC_MPCKSELR 0x20
#define RCC_ASSCKSELR 0x24
#define RCC_RCK12SELR 0x28
#define RCC_MPCKDIVR 0x2C
#define RCC_AXIDIVR 0x30
#define RCC_APB4DIVR 0x3C
#define RCC_APB5DIVR 0x40
#define RCC_RTCDIVR 0x44
#define RCC_MSSCKSELR 0x48
#define RCC_PLL1CR 0x80
#define RCC_PLL1CFGR1 0x84
#define RCC_PLL1CFGR2 0x88
#define RCC_PLL1FRACR 0x8C
#define RCC_PLL1CSGR 0x90
#define RCC_PLL2CR 0x94
#define RCC_PLL2CFGR1 0x98
#define RCC_PLL2CFGR2 0x9C
#define RCC_PLL2FRACR 0xA0
#define RCC_PLL2CSGR 0xA4
#define RCC_I2C46CKSELR 0xC0
#define RCC_CPERCKSELR 0xD0
#define RCC_STGENCKSELR 0xD4
#define RCC_DDRITFCR 0xD8
#define RCC_BDCR 0x140
#define RCC_RDLSICR 0x144
#define RCC_MP_APB4ENSETR 0x200
#define RCC_MP_APB5ENSETR 0x208
#define RCC_MP_AHB5ENSETR 0x210
#define RCC_MP_AHB6ENSETR 0x218
#define RCC_OCRDYR 0x808
#define RCC_DBGCFGR 0x80C
#define RCC_RCK3SELR 0x820
#define RCC_RCK4SELR 0x824
#define RCC_MCUDIVR 0x830
#define RCC_APB1DIVR 0x834
#define RCC_APB2DIVR 0x838
#define RCC_APB3DIVR 0x83C
#define RCC_PLL3CR 0x880
#define RCC_PLL3CFGR1 0x884
#define RCC_PLL3CFGR2 0x888
#define RCC_PLL3FRACR 0x88C
#define RCC_PLL3CSGR 0x890
#define RCC_PLL4CR 0x894
#define RCC_PLL4CFGR1 0x898
#define RCC_PLL4CFGR2 0x89C
#define RCC_PLL4FRACR 0x8A0
#define RCC_PLL4CSGR 0x8A4
#define RCC_I2C12CKSELR 0x8C0
#define RCC_I2C35CKSELR 0x8C4
#define RCC_SPI2S1CKSELR 0x8D8
#define RCC_SPI45CKSELR 0x8E0
#define RCC_UART6CKSELR 0x8E4
#define RCC_UART24CKSELR 0x8E8
#define RCC_UART35CKSELR 0x8EC
#define RCC_UART78CKSELR 0x8F0
#define RCC_SDMMC12CKSELR 0x8F4
#define RCC_SDMMC3CKSELR 0x8F8
#define RCC_ETHCKSELR 0x8FC
#define RCC_QSPICKSELR 0x900
#define RCC_FMCCKSELR 0x904
#define RCC_USBCKSELR 0x91C
#define RCC_DSICKSELR 0x924
#define RCC_ADCCKSELR 0x928
#define RCC_MP_APB1ENSETR 0xA00
#define RCC_MP_APB2ENSETR 0XA08
#define RCC_MP_APB3ENSETR 0xA10
#define RCC_MP_AHB2ENSETR 0xA18
#define RCC_MP_AHB3ENSETR 0xA20
#define RCC_MP_AHB4ENSETR 0xA28
/* used for most of SELR register */
#define RCC_SELR_SRC_MASK GENMASK(2, 0)
#define RCC_SELR_SRCRDY BIT(31)
/* Values of RCC_MPCKSELR register */
#define RCC_MPCKSELR_HSI 0
#define RCC_MPCKSELR_HSE 1
#define RCC_MPCKSELR_PLL 2
#define RCC_MPCKSELR_PLL_MPUDIV 3
/* Values of RCC_ASSCKSELR register */
#define RCC_ASSCKSELR_HSI 0
#define RCC_ASSCKSELR_HSE 1
#define RCC_ASSCKSELR_PLL 2
/* Values of RCC_MSSCKSELR register */
#define RCC_MSSCKSELR_HSI 0
#define RCC_MSSCKSELR_HSE 1
#define RCC_MSSCKSELR_CSI 2
#define RCC_MSSCKSELR_PLL 3
/* Values of RCC_CPERCKSELR register */
#define RCC_CPERCKSELR_HSI 0
#define RCC_CPERCKSELR_CSI 1
#define RCC_CPERCKSELR_HSE 2
/* used for most of DIVR register : max div for RTC */
#define RCC_DIVR_DIV_MASK GENMASK(5, 0)
#define RCC_DIVR_DIVRDY BIT(31)
/* Masks for specific DIVR registers */
#define RCC_APBXDIV_MASK GENMASK(2, 0)
#define RCC_MPUDIV_MASK GENMASK(2, 0)
#define RCC_AXIDIV_MASK GENMASK(2, 0)
#define RCC_MCUDIV_MASK GENMASK(3, 0)
/* offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
#define RCC_MP_ENCLRR_OFFSET 4
/* Fields of RCC_BDCR register */
#define RCC_BDCR_LSEON BIT(0)
#define RCC_BDCR_LSEBYP BIT(1)
#define RCC_BDCR_LSERDY BIT(2)
#define RCC_BDCR_DIGBYP BIT(3)
#define RCC_BDCR_LSEDRV_MASK GENMASK(5, 4)
#define RCC_BDCR_LSEDRV_SHIFT 4
#define RCC_BDCR_LSECSSON BIT(8)
#define RCC_BDCR_RTCCKEN BIT(20)
#define RCC_BDCR_RTCSRC_MASK GENMASK(17, 16)
#define RCC_BDCR_RTCSRC_SHIFT 16
/* Fields of RCC_RDLSICR register */
#define RCC_RDLSICR_LSION BIT(0)
#define RCC_RDLSICR_LSIRDY BIT(1)
/* used for ALL PLLNCR registers */
#define RCC_PLLNCR_PLLON BIT(0)
#define RCC_PLLNCR_PLLRDY BIT(1)
#define RCC_PLLNCR_SSCG_CTRL BIT(2)
#define RCC_PLLNCR_DIVPEN BIT(4)
#define RCC_PLLNCR_DIVQEN BIT(5)
#define RCC_PLLNCR_DIVREN BIT(6)
#define RCC_PLLNCR_DIVEN_SHIFT 4
/* used for ALL PLLNCFGR1 registers */
#define RCC_PLLNCFGR1_DIVM_SHIFT 16
#define RCC_PLLNCFGR1_DIVM_MASK GENMASK(21, 16)
#define RCC_PLLNCFGR1_DIVN_SHIFT 0
#define RCC_PLLNCFGR1_DIVN_MASK GENMASK(8, 0)
/* only for PLL3 and PLL4 */
#define RCC_PLLNCFGR1_IFRGE_SHIFT 24
#define RCC_PLLNCFGR1_IFRGE_MASK GENMASK(25, 24)
/* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
#define RCC_PLLNCFGR2_SHIFT(div_id) ((div_id) * 8)
#define RCC_PLLNCFGR2_DIVX_MASK GENMASK(6, 0)
#define RCC_PLLNCFGR2_DIVP_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_P)
#define RCC_PLLNCFGR2_DIVP_MASK GENMASK(6, 0)
#define RCC_PLLNCFGR2_DIVQ_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_Q)
#define RCC_PLLNCFGR2_DIVQ_MASK GENMASK(14, 8)
#define RCC_PLLNCFGR2_DIVR_SHIFT RCC_PLLNCFGR2_SHIFT(_DIV_R)
#define RCC_PLLNCFGR2_DIVR_MASK GENMASK(22, 16)
/* used for ALL PLLNFRACR registers */
#define RCC_PLLNFRACR_FRACV_SHIFT 3
#define RCC_PLLNFRACR_FRACV_MASK GENMASK(15, 3)
#define RCC_PLLNFRACR_FRACLE BIT(16)
/* used for ALL PLLNCSGR registers */
#define RCC_PLLNCSGR_INC_STEP_SHIFT 16
#define RCC_PLLNCSGR_INC_STEP_MASK GENMASK(30, 16)
#define RCC_PLLNCSGR_MOD_PER_SHIFT 0
#define RCC_PLLNCSGR_MOD_PER_MASK GENMASK(12, 0)
#define RCC_PLLNCSGR_SSCG_MODE_SHIFT 15
#define RCC_PLLNCSGR_SSCG_MODE_MASK BIT(15)
/* used for RCC_OCENSETR and RCC_OCENCLRR registers */
#define RCC_OCENR_HSION BIT(0)
#define RCC_OCENR_CSION BIT(4)
#define RCC_OCENR_DIGBYP BIT(7)
#define RCC_OCENR_HSEON BIT(8)
#define RCC_OCENR_HSEBYP BIT(10)
#define RCC_OCENR_HSECSSON BIT(11)
/* Fields of RCC_OCRDYR register */
#define RCC_OCRDYR_HSIRDY BIT(0)
#define RCC_OCRDYR_HSIDIVRDY BIT(2)
#define RCC_OCRDYR_CSIRDY BIT(4)
#define RCC_OCRDYR_HSERDY BIT(8)
/* Fields of DDRITFCR register */
#define RCC_DDRITFCR_DDRCKMOD_MASK GENMASK(22, 20)
#define RCC_DDRITFCR_DDRCKMOD_SHIFT 20
#define RCC_DDRITFCR_DDRCKMOD_SSR 0
/* Fields of RCC_HSICFGR register */
#define RCC_HSICFGR_HSIDIV_MASK GENMASK(1, 0)
/* used for MCO related operations */
#define RCC_MCOCFG_MCOON BIT(12)
#define RCC_MCOCFG_MCODIV_MASK GENMASK(7, 4)
#define RCC_MCOCFG_MCODIV_SHIFT 4
#define RCC_MCOCFG_MCOSRC_MASK GENMASK(2, 0)
enum stm32mp1_parent_id {
/*
* _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
* they are used as index in osc_clk[] as clock reference
*/
_HSI,
_HSE,
_CSI,
_LSI,
_LSE,
_I2S_CKIN,
NB_OSC,
/* other parent source */
_HSI_KER = NB_OSC,
_HSE_KER,
_HSE_KER_DIV2,
_CSI_KER,
_PLL1_P,
_PLL1_Q,
_PLL1_R,
_PLL2_P,
_PLL2_Q,
_PLL2_R,
_PLL3_P,
_PLL3_Q,
_PLL3_R,
_PLL4_P,
_PLL4_Q,
_PLL4_R,
_ACLK,
_PCLK1,
_PCLK2,
_PCLK3,
_PCLK4,
_PCLK5,
_HCLK6,
_HCLK2,
_CK_PER,
_CK_MPU,
_CK_MCU,
_DSI_PHY,
_USB_PHY_48,
_PARENT_NB,
_UNKNOWN_ID = 0xff,
};
enum stm32mp1_parent_sel {
_I2C12_SEL,
_I2C35_SEL,
_I2C46_SEL,
_UART6_SEL,
_UART24_SEL,
_UART35_SEL,
_UART78_SEL,
_SDMMC12_SEL,
_SDMMC3_SEL,
_ETH_SEL,
_QSPI_SEL,
_FMC_SEL,
_USBPHY_SEL,
_USBO_SEL,
_STGEN_SEL,
_DSI_SEL,
_ADC12_SEL,
_SPI1_SEL,
_SPI45_SEL,
_RTC_SEL,
_PARENT_SEL_NB,
_UNKNOWN_SEL = 0xff,
};
enum stm32mp1_pll_id {
_PLL1,
_PLL2,
_PLL3,
_PLL4,
_PLL_NB
};
enum stm32mp1_div_id {
_DIV_P,
_DIV_Q,
_DIV_R,
_DIV_NB,
};
enum stm32mp1_clksrc_id {
CLKSRC_MPU,
CLKSRC_AXI,
CLKSRC_MCU,
CLKSRC_PLL12,
CLKSRC_PLL3,
CLKSRC_PLL4,
CLKSRC_RTC,
CLKSRC_MCO1,
CLKSRC_MCO2,
CLKSRC_NB
};
enum stm32mp1_clkdiv_id {
CLKDIV_MPU,
CLKDIV_AXI,
CLKDIV_MCU,
CLKDIV_APB1,
CLKDIV_APB2,
CLKDIV_APB3,
CLKDIV_APB4,
CLKDIV_APB5,
CLKDIV_RTC,
CLKDIV_MCO1,
CLKDIV_MCO2,
CLKDIV_NB
};
enum stm32mp1_pllcfg {
PLLCFG_M,
PLLCFG_N,
PLLCFG_P,
PLLCFG_Q,
PLLCFG_R,
PLLCFG_O,
PLLCFG_NB
};
enum stm32mp1_pllcsg {
PLLCSG_MOD_PER,
PLLCSG_INC_STEP,
PLLCSG_SSCG_MODE,
PLLCSG_NB
};
enum stm32mp1_plltype {
PLL_800,
PLL_1600,
PLL_TYPE_NB
};
struct stm32mp1_pll {
u8 refclk_min;
u8 refclk_max;
u8 divn_max;
};
struct stm32mp1_clk_gate {
u16 offset;
u8 bit;
u8 index;
u8 set_clr;
u8 sel;
u8 fixed;
};
struct stm32mp1_clk_sel {
u16 offset;
u8 src;
u8 msk;
u8 nb_parent;
const u8 *parent;
};
#define REFCLK_SIZE 4
struct stm32mp1_clk_pll {
enum stm32mp1_plltype plltype;
u16 rckxselr;
u16 pllxcfgr1;
u16 pllxcfgr2;
u16 pllxfracr;
u16 pllxcr;
u16 pllxcsgr;
u8 refclk[REFCLK_SIZE];
};
struct stm32mp1_clk_data {
const struct stm32mp1_clk_gate *gate;
const struct stm32mp1_clk_sel *sel;
const struct stm32mp1_clk_pll *pll;
const int nb_gate;
};
struct stm32mp1_clk_priv {
fdt_addr_t base;
const struct stm32mp1_clk_data *data;
struct clk osc_clk[NB_OSC];
};
#define STM32MP1_CLK(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
}
#define STM32MP1_CLK_F(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 0, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
}
#define STM32MP1_CLK_SET_CLR(off, b, idx, s) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = (s), \
.fixed = _UNKNOWN_ID, \
}
#define STM32MP1_CLK_SET_CLR_F(off, b, idx, f) \
{ \
.offset = (off), \
.bit = (b), \
.index = (idx), \
.set_clr = 1, \
.sel = _UNKNOWN_SEL, \
.fixed = (f), \
}
#define STM32MP1_CLK_PARENT(idx, off, s, m, p) \
[(idx)] = { \
.offset = (off), \
.src = (s), \
.msk = (m), \
.parent = (p), \
.nb_parent = ARRAY_SIZE((p)) \
}
#define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
p1, p2, p3, p4) \
[(idx)] = { \
.plltype = (type), \
.rckxselr = (off1), \
.pllxcfgr1 = (off2), \
.pllxcfgr2 = (off3), \
.pllxfracr = (off4), \
.pllxcr = (off5), \
.pllxcsgr = (off6), \
.refclk[0] = (p1), \
.refclk[1] = (p2), \
.refclk[2] = (p3), \
.refclk[3] = (p4), \
}
static const u8 stm32mp1_clks[][2] = {
{CK_PER, _CK_PER},
{CK_MPU, _CK_MPU},
{CK_AXI, _ACLK},
{CK_MCU, _CK_MCU},
{CK_HSE, _HSE},
{CK_CSI, _CSI},
{CK_LSI, _LSI},
{CK_LSE, _LSE},
{CK_HSI, _HSI},
{CK_HSE_DIV2, _HSE_KER_DIV2},
};
static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 11, SYSCFG, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
};
static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
_PLL3_R};
static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
_HSE_KER};
static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
uart24_parents),
STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
uart35_parents),
STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
uart78_parents),
STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
sdmmc12_parents),
STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
sdmmc3_parents),
STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
(RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
rtc_parents),
};
#ifdef STM32MP1_CLOCK_TREE_INIT
/* define characteristic of PLL according type */
#define DIVM_MIN 0
#define DIVM_MAX 63
#define DIVN_MIN 24
#define DIVP_MIN 0
#define DIVP_MAX 127
#define FRAC_MAX 8192
#define PLL1600_VCO_MIN 800000000
#define PLL1600_VCO_MAX 1600000000
static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
[PLL_800] = {
.refclk_min = 4,
.refclk_max = 16,
.divn_max = 99,
},
[PLL_1600] = {
.refclk_min = 8,
.refclk_max = 16,
.divn_max = 199,
},
};
#endif /* STM32MP1_CLOCK_TREE_INIT */
static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
STM32MP1_CLK_PLL(_PLL1, PLL_1600,
RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
_HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
STM32MP1_CLK_PLL(_PLL2, PLL_1600,
RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
_HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
STM32MP1_CLK_PLL(_PLL3, PLL_800,
RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
_HSI, _HSE, _CSI, _UNKNOWN_ID),
STM32MP1_CLK_PLL(_PLL4, PLL_800,
RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
_HSI, _HSE, _CSI, _I2S_CKIN),
};
/* Prescaler table lookups for clock computation */
/* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
static const u8 stm32mp1_mcu_div[16] = {
0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
};
/* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
#define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
#define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
static const u8 stm32mp1_mpu_apbx_div[8] = {
0, 1, 2, 3, 4, 4, 4, 4
};
/* div = /1 /2 /3 /4 */
static const u8 stm32mp1_axi_div[8] = {
1, 2, 3, 4, 4, 4, 4, 4
};
static const __maybe_unused
char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
[_HSI] = "HSI",
[_HSE] = "HSE",
[_CSI] = "CSI",
[_LSI] = "LSI",
[_LSE] = "LSE",
[_I2S_CKIN] = "I2S_CKIN",
[_HSI_KER] = "HSI_KER",
[_HSE_KER] = "HSE_KER",
[_HSE_KER_DIV2] = "HSE_KER_DIV2",
[_CSI_KER] = "CSI_KER",
[_PLL1_P] = "PLL1_P",
[_PLL1_Q] = "PLL1_Q",
[_PLL1_R] = "PLL1_R",
[_PLL2_P] = "PLL2_P",
[_PLL2_Q] = "PLL2_Q",
[_PLL2_R] = "PLL2_R",
[_PLL3_P] = "PLL3_P",
[_PLL3_Q] = "PLL3_Q",
[_PLL3_R] = "PLL3_R",
[_PLL4_P] = "PLL4_P",
[_PLL4_Q] = "PLL4_Q",
[_PLL4_R] = "PLL4_R",
[_ACLK] = "ACLK",
[_PCLK1] = "PCLK1",
[_PCLK2] = "PCLK2",
[_PCLK3] = "PCLK3",
[_PCLK4] = "PCLK4",
[_PCLK5] = "PCLK5",
[_HCLK6] = "KCLK6",
[_HCLK2] = "HCLK2",
[_CK_PER] = "CK_PER",
[_CK_MPU] = "CK_MPU",
[_CK_MCU] = "CK_MCU",
[_USB_PHY_48] = "USB_PHY_48",
[_DSI_PHY] = "DSI_PHY_PLL",
};
static const __maybe_unused
char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
[_I2C12_SEL] = "I2C12",
[_I2C35_SEL] = "I2C35",
[_I2C46_SEL] = "I2C46",
[_UART6_SEL] = "UART6",
[_UART24_SEL] = "UART24",
[_UART35_SEL] = "UART35",
[_UART78_SEL] = "UART78",
[_SDMMC12_SEL] = "SDMMC12",
[_SDMMC3_SEL] = "SDMMC3",
[_ETH_SEL] = "ETH",
[_QSPI_SEL] = "QSPI",
[_FMC_SEL] = "FMC",
[_USBPHY_SEL] = "USBPHY",
[_USBO_SEL] = "USBO",
[_STGEN_SEL] = "STGEN",
[_DSI_SEL] = "DSI",
[_ADC12_SEL] = "ADC12",
[_SPI1_SEL] = "SPI1",
[_SPI45_SEL] = "SPI45",
[_RTC_SEL] = "RTC",
};
static const struct stm32mp1_clk_data stm32mp1_data = {
.gate = stm32mp1_clk_gate,
.sel = stm32mp1_clk_sel,
.pll = stm32mp1_clk_pll,
.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
};
static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
{
if (idx >= NB_OSC) {
log_debug("clk id %d not found\n", idx);
return 0;
}
return clk_get_rate(&priv->osc_clk[idx]);
}
static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i, nb_clks = priv->data->nb_gate;
for (i = 0; i < nb_clks; i++) {
if (gate[i].index == id)
break;
}
if (i == nb_clks) {
log_err("clk id %d not found\n", (u32)id);
return -EINVAL;
}
return i;
}
static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
if (gate[i].sel > _PARENT_SEL_NB) {
log_err("parents for clk id %d not found\n", i);
return -EINVAL;
}
return gate[i].sel;
}
static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
int i)
{
const struct stm32mp1_clk_gate *gate = priv->data->gate;
if (gate[i].fixed == _UNKNOWN_ID)
return -ENOENT;
return gate[i].fixed;
}
static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
unsigned long id)
{
const struct stm32mp1_clk_sel *sel = priv->data->sel;
int i;
int s, p;
unsigned int idx;
for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
if (stm32mp1_clks[idx][0] == id)
return stm32mp1_clks[idx][1];
i = stm32mp1_clk_get_id(priv, id);
if (i < 0)
return i;
p = stm32mp1_clk_get_fixed_parent(priv, i);
if (p >= 0 && p < _PARENT_NB)
return p;
s = stm32mp1_clk_get_sel(priv, i);
if (s < 0)
return s;
p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
if (p < sel[s].nb_parent) {
log_content("%s clock is the parent %s of clk id %d\n",
stm32mp1_clk_parent_name[sel[s].parent[p]],
stm32mp1_clk_parent_sel_name[s],
(u32)id);
return sel[s].parent[p];
}
log_err("no parents defined for clk id %d\n", (u32)id);
return -EINVAL;
}
static ulong pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
int pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
u32 selr;
int src;
ulong refclk;
/* Get current refclk */
selr = readl(priv->base + pll[pll_id].rckxselr);
src = selr & RCC_SELR_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
return refclk;
}
/*
* pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
* - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
* - PLL3 & PLL4 => return VCO with Fpll_y_ck = FVCO / (DIVy + 1)
* => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
*/
static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
int pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
int divm, divn;
ulong refclk, fvco;
u32 cfgr1, fracr;
cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
fracr = readl(priv->base + pll[pll_id].pllxfracr);
divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
refclk = pll_get_fref_ck(priv, pll_id);
/* with FRACV :
* Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
* without FRACV
* Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
*/
if (fracr & RCC_PLLNFRACR_FRACLE) {
u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
>> RCC_PLLNFRACR_FRACV_SHIFT;
fvco = (ulong)lldiv((unsigned long long)refclk *
(((divn + 1) << 13) + fracv),
((unsigned long long)(divm + 1)) << 13);
} else {
fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
}
return fvco;
}
static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
int pll_id, int div_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
int divy;
ulong dfout;
u32 cfgr2;
if (div_id >= _DIV_NB)
return 0;
cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
return dfout;
}
static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
{
u32 reg;
ulong clock = 0;
switch (p) {
case _CK_MPU:
/* MPU sub system */
reg = readl(priv->base + RCC_MPCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MPCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_MPCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_MPCKSELR_PLL:
case RCC_MPCKSELR_PLL_MPUDIV:
clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
if ((reg & RCC_SELR_SRC_MASK) ==
RCC_MPCKSELR_PLL_MPUDIV) {
reg = readl(priv->base + RCC_MPCKDIVR);
clock >>= stm32mp1_mpu_div[reg &
RCC_MPUDIV_MASK];
}
break;
}
break;
/* AXI sub system */
case _ACLK:
case _HCLK2:
case _HCLK6:
case _PCLK4:
case _PCLK5:
reg = readl(priv->base + RCC_ASSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_ASSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_ASSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_ASSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
break;
}
/* System clock divider */
reg = readl(priv->base + RCC_AXIDIVR);
clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
switch (p) {
case _PCLK4:
reg = readl(priv->base + RCC_APB4DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK5:
reg = readl(priv->base + RCC_APB5DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
default:
break;
}
break;
/* MCU sub system */
case _CK_MCU:
case _PCLK1:
case _PCLK2:
case _PCLK3:
reg = readl(priv->base + RCC_MSSCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_MSSCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_MSSCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_MSSCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
break;
case RCC_MSSCKSELR_PLL:
clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
break;
}
/* MCU clock divider */
reg = readl(priv->base + RCC_MCUDIVR);
clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
switch (p) {
case _PCLK1:
reg = readl(priv->base + RCC_APB1DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK2:
reg = readl(priv->base + RCC_APB2DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _PCLK3:
reg = readl(priv->base + RCC_APB3DIVR);
clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
break;
case _CK_MCU:
default:
break;
}
break;
case _CK_PER:
reg = readl(priv->base + RCC_CPERCKSELR);
switch (reg & RCC_SELR_SRC_MASK) {
case RCC_CPERCKSELR_HSI:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case RCC_CPERCKSELR_HSE:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
break;
case RCC_CPERCKSELR_CSI:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
break;
}
break;
case _HSI:
case _HSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case _CSI:
case _CSI_KER:
clock = stm32mp1_clk_get_fixed(priv, _CSI);
break;
case _HSE:
case _HSE_KER:
case _HSE_KER_DIV2:
clock = stm32mp1_clk_get_fixed(priv, _HSE);
if (p == _HSE_KER_DIV2)
clock >>= 1;
break;
case _LSI:
clock = stm32mp1_clk_get_fixed(priv, _LSI);
break;
case _LSE:
clock = stm32mp1_clk_get_fixed(priv, _LSE);
break;
/* PLL */
case _PLL1_P:
case _PLL1_Q:
case _PLL1_R:
clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
break;
case _PLL2_P:
case _PLL2_Q:
case _PLL2_R:
clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
break;
case _PLL3_P:
case _PLL3_Q:
case _PLL3_R:
clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
break;
case _PLL4_P:
case _PLL4_Q:
case _PLL4_R:
clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
break;
/* other */
case _USB_PHY_48:
clock = 48000000;
break;
case _DSI_PHY:
{
struct clk clk;
struct udevice *dev = NULL;
if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
&dev)) {
if (clk_request(dev, &clk)) {
log_err("ck_dsi_phy request");
} else {
clk.id = 0;
clock = clk_get_rate(&clk);
}
}
break;
}
default:
break;
}
log_debug("id=%d clock = %lx : %ld kHz\n", p, clock, clock / 1000);
return clock;
}
static int stm32mp1_clk_enable(struct clk *clk)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, clk->id);
if (i < 0)
return i;
if (gate[i].set_clr)
writel(BIT(gate[i].bit), priv->base + gate[i].offset);
else
setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
dev_dbg(clk->dev, "%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
return 0;
}
static int stm32mp1_clk_disable(struct clk *clk)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
const struct stm32mp1_clk_gate *gate = priv->data->gate;
int i = stm32mp1_clk_get_id(priv, clk->id);
if (i < 0)
return i;
if (gate[i].set_clr)
writel(BIT(gate[i].bit),
priv->base + gate[i].offset
+ RCC_MP_ENCLRR_OFFSET);
else
clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
dev_dbg(clk->dev, "%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
return 0;
}
static ulong stm32mp1_clk_get_rate(struct clk *clk)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
int p = stm32mp1_clk_get_parent(priv, clk->id);
ulong rate;
if (p < 0)
return 0;
rate = stm32mp1_clk_get(priv, p);
dev_vdbg(clk->dev, "computed rate for id clock %d is %d (parent is %s)\n",
(u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
return rate;
}
#ifdef STM32MP1_CLOCK_TREE_INIT
bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type)
{
unsigned int id;
switch (opp_id) {
case 1:
case 2:
id = opp_id;
break;
default:
id = 1; /* default value */
break;
}
switch (cpu_type) {
case CPU_STM32MP157Fxx:
case CPU_STM32MP157Dxx:
case CPU_STM32MP153Fxx:
case CPU_STM32MP153Dxx:
case CPU_STM32MP151Fxx:
case CPU_STM32MP151Dxx:
return true;
default:
return id == 1;
}
}
__weak void board_vddcore_init(u32 voltage_mv)
{
}
/*
* gets OPP parameters (frequency in KHz and voltage in mV) from
* an OPP table subnode. Platform HW support capabilities are also checked.
* Returns 0 on success and a negative FDT error code on failure.
*/
static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode,
u32 *freq_khz, u32 *voltage_mv)
{
u32 opp_hw;
u64 read_freq_64;
u32 read_voltage_32;
*freq_khz = 0;
*voltage_mv = 0;
opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0);
if (opp_hw)
if (!stm32mp1_supports_opp(opp_hw, cpu_type))
return -FDT_ERR_BADVALUE;
read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) /
1000ULL;
read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) /
1000U;
if (!read_voltage_32 || !read_freq_64)
return -FDT_ERR_NOTFOUND;
/* Frequency value expressed in KHz must fit on 32 bits */
if (read_freq_64 > U32_MAX)
return -FDT_ERR_BADVALUE;
/* Millivolt value must fit on 16 bits */
if (read_voltage_32 > U16_MAX)
return -FDT_ERR_BADVALUE;
*freq_khz = (u32)read_freq_64;
*voltage_mv = read_voltage_32;
return 0;
}
/*
* parses OPP table in DT and finds the parameters for the
* highest frequency supported by the HW platform.
* Returns 0 on success and a negative FDT error code on failure.
*/
int stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv *priv, u64 *freq_hz)
{
ofnode node, subnode;
int ret;
u32 freq = 0U, voltage = 0U;
u32 cpu_type = get_cpu_type();
node = ofnode_by_compatible(ofnode_null(), "operating-points-v2");
if (!ofnode_valid(node))
return -FDT_ERR_NOTFOUND;
ofnode_for_each_subnode(subnode, node) {
unsigned int read_freq;
unsigned int read_voltage;
ret = stm32mp1_get_opp(cpu_type, subnode,
&read_freq, &read_voltage);
if (ret)
continue;
if (read_freq > freq) {
freq = read_freq;
voltage = read_voltage;
}
}
if (!freq || !voltage)
return -FDT_ERR_NOTFOUND;
*freq_hz = (u64)1000U * freq;
board_vddcore_init(voltage);
return 0;
}
static int stm32mp1_pll1_opp(struct stm32mp1_clk_priv *priv, int clksrc,
u32 *pllcfg, u32 *fracv)
{
u32 post_divm;
u32 input_freq;
u64 output_freq;
u64 freq;
u64 vco;
u32 divm, divn, divp, frac;
int i, ret;
u32 diff;
u32 best_diff = U32_MAX;
/* PLL1 is 1600 */
const u32 DIVN_MAX = stm32mp1_pll[PLL_1600].divn_max;
const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_1600].refclk_min * 1000000U;
const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_1600].refclk_max * 1000000U;
ret = stm32mp1_get_max_opp_freq(priv, &output_freq);
if (ret) {
log_debug("PLL1 OPP configuration not found (%d).\n", ret);
return ret;
}
switch (clksrc) {
case CLK_PLL12_HSI:
input_freq = stm32mp1_clk_get_fixed(priv, _HSI);
break;
case CLK_PLL12_HSE:
input_freq = stm32mp1_clk_get_fixed(priv, _HSE);
break;
default:
return -EINTR;
}
/* Following parameters have always the same value */
pllcfg[PLLCFG_Q] = 0;
pllcfg[PLLCFG_R] = 0;
pllcfg[PLLCFG_O] = PQR(1, 0, 0);
for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--) {
post_divm = (u32)(input_freq / (divm + 1));
if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX)
continue;
for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
freq = output_freq * (divm + 1) * (divp + 1);
divn = (u32)((freq / input_freq) - 1);
if (divn < DIVN_MIN || divn > DIVN_MAX)
continue;
frac = (u32)(((freq * FRAC_MAX) / input_freq) -
((divn + 1) * FRAC_MAX));
/* 2 loops to refine the fractional part */
for (i = 2; i != 0; i--) {
if (frac > FRAC_MAX)
break;
vco = (post_divm * (divn + 1)) +
((post_divm * (u64)frac) /
FRAC_MAX);
if (vco < (PLL1600_VCO_MIN / 2) ||
vco > (PLL1600_VCO_MAX / 2)) {
frac++;
continue;
}
freq = vco / (divp + 1);
if (output_freq < freq)
diff = (u32)(freq - output_freq);
else
diff = (u32)(output_freq - freq);
if (diff < best_diff) {
pllcfg[PLLCFG_M] = divm;
pllcfg[PLLCFG_N] = divn;
pllcfg[PLLCFG_P] = divp;
*fracv = frac;
if (diff == 0)
return 0;
best_diff = diff;
}
frac++;
}
}
}
if (best_diff == U32_MAX)
return -1;
return 0;
}
static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
u32 mask_on)
{
u32 address = rcc + offset;
if (enable)
setbits_le32(address, mask_on);
else
clrbits_le32(address, mask_on);
}
static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
{
writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
}
static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
u32 mask_rdy)
{
u32 mask_test = 0;
u32 address = rcc + offset;
u32 val;
int ret;
if (enable)
mask_test = mask_rdy;
ret = readl_poll_timeout(address, val,
(val & mask_rdy) == mask_test,
TIMEOUT_1S);
if (ret)
log_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
mask_rdy, address, enable, readl(address));
return ret;
}
static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
u32 lsedrv)
{
u32 value;
if (digbyp)
setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
if (bypass || digbyp)
setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
/*
* warning: not recommended to switch directly from "high drive"
* to "medium low drive", and vice-versa.
*/
value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
>> RCC_BDCR_LSEDRV_SHIFT;
while (value != lsedrv) {
if (value > lsedrv)
value--;
else
value++;
clrsetbits_le32(rcc + RCC_BDCR,
RCC_BDCR_LSEDRV_MASK,
value << RCC_BDCR_LSEDRV_SHIFT);
}
stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
}
static void stm32mp1_lse_wait(fdt_addr_t rcc)
{
stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
}
static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
{
stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
}
static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
{
if (digbyp)
writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
if (bypass || digbyp)
writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
if (css)
writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
}
static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
{
stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
}
static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
{
stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
}
static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
{
u32 address = rcc + RCC_OCRDYR;
u32 val;
int ret;
clrsetbits_le32(rcc + RCC_HSICFGR,
RCC_HSICFGR_HSIDIV_MASK,
RCC_HSICFGR_HSIDIV_MASK & hsidiv);
ret = readl_poll_timeout(address, val,
val & RCC_OCRDYR_HSIDIVRDY,
TIMEOUT_200MS);
if (ret)
log_err("HSIDIV failed @ 0x%x: 0x%x\n",
address, readl(address));
return ret;
}
static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
{
u8 hsidiv;
u32 hsidivfreq = MAX_HSI_HZ;
for (hsidiv = 0; hsidiv < 4; hsidiv++,
hsidivfreq = hsidivfreq / 2)
if (hsidivfreq == hsifreq)
break;
if (hsidiv == 4) {
log_err("hsi frequency invalid");
return -1;
}
if (hsidiv > 0)
return stm32mp1_set_hsidiv(rcc, hsidiv);
return 0;
}
static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
RCC_PLLNCR_DIVREN,
RCC_PLLNCR_PLLON);
}
static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
u32 pllxcr = priv->base + pll[pll_id].pllxcr;
u32 val;
int ret;
ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
TIMEOUT_200MS);
if (ret) {
log_err("PLL%d start failed @ 0x%x: 0x%x\n",
pll_id, pllxcr, readl(pllxcr));
return ret;
}
/* start the requested output */
setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
return 0;
}
static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
u32 pllxcr = priv->base + pll[pll_id].pllxcr;
u32 val;
/* stop all output */
clrbits_le32(pllxcr,
RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
/* stop PLL */
clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
/* wait PLL stopped */
return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
TIMEOUT_200MS);
}
static void pll_config_output(struct stm32mp1_clk_priv *priv,
int pll_id, u32 *pllcfg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
fdt_addr_t rcc = priv->base;
u32 value;
value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
& RCC_PLLNCFGR2_DIVP_MASK;
value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
& RCC_PLLNCFGR2_DIVQ_MASK;
value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
& RCC_PLLNCFGR2_DIVR_MASK;
writel(value, rcc + pll[pll_id].pllxcfgr2);
}
static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
u32 *pllcfg, u32 fracv)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
fdt_addr_t rcc = priv->base;
enum stm32mp1_plltype type = pll[pll_id].plltype;
int src;
ulong refclk;
u8 ifrge = 0;
u32 value;
src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
(pllcfg[PLLCFG_M] + 1);
if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
log_err("invalid refclk = %x\n", (u32)refclk);
return -EINVAL;
}
if (type == PLL_800 && refclk >= 8000000)
ifrge = 1;
value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
& RCC_PLLNCFGR1_DIVN_MASK;
value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
& RCC_PLLNCFGR1_DIVM_MASK;
value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
& RCC_PLLNCFGR1_IFRGE_MASK;
writel(value, rcc + pll[pll_id].pllxcfgr1);
/* fractional configuration: load sigma-delta modulator (SDM) */
/* Write into FRACV the new fractional value , and FRACLE to 0 */
writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
rcc + pll[pll_id].pllxfracr);
/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
setbits_le32(rcc + pll[pll_id].pllxfracr,
RCC_PLLNFRACR_FRACLE);
pll_config_output(priv, pll_id, pllcfg);
return 0;
}
static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
{
const struct stm32mp1_clk_pll *pll = priv->data->pll;
u32 pllxcsg;
pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
RCC_PLLNCSGR_MOD_PER_MASK) |
((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
RCC_PLLNCSGR_INC_STEP_MASK) |
((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
RCC_PLLNCSGR_SSCG_MODE_MASK);
writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
}
static __maybe_unused int pll_set_rate(struct udevice *dev,
int pll_id,
int div_id,
unsigned long clk_rate)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
unsigned int pllcfg[PLLCFG_NB];
ofnode plloff;
char name[12];
const struct stm32mp1_clk_pll *pll = priv->data->pll;
enum stm32mp1_plltype type = pll[pll_id].plltype;
int divm, divn, divy;
int ret;
ulong fck_ref;
u32 fracv;
u64 value;
if (div_id > _DIV_NB)
return -EINVAL;
sprintf(name, "st,pll@%d", pll_id);
plloff = dev_read_subnode(dev, name);
if (!ofnode_valid(plloff))
return -FDT_ERR_NOTFOUND;
ret = ofnode_read_u32_array(plloff, "cfg",
pllcfg, PLLCFG_NB);
if (ret < 0)
return -FDT_ERR_NOTFOUND;
fck_ref = pll_get_fref_ck(priv, pll_id);
divm = pllcfg[PLLCFG_M];
/* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
divy = pllcfg[PLLCFG_P + div_id];
/* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
* So same final result than PLL2 et 4
* with FRACV
* Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
* / (DIVy + 1) * (DIVM + 1)
* value = (DIVN + 1) * 2^13 + FRACV / 2^13
* = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
*/
value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
value = lldiv(value, fck_ref);
divn = (value >> 13) - 1;
if (divn < DIVN_MIN ||
divn > stm32mp1_pll[type].divn_max) {
dev_err(dev, "divn invalid = %d", divn);
return -EINVAL;
}
fracv = value - ((divn + 1) << 13);
pllcfg[PLLCFG_N] = divn;
/* reconfigure PLL */
pll_stop(priv, pll_id);
pll_config(priv, pll_id, pllcfg, fracv);
pll_start(priv, pll_id);
pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
return 0;
}
static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
{
u32 address = priv->base + (clksrc >> 4);
u32 val;
int ret;
clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
TIMEOUT_200MS);
if (ret)
log_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
clksrc, address, readl(address));
return ret;
}
static void stgen_config(struct stm32mp1_clk_priv *priv)
{
int p;
u32 stgenc, cntfid0;
ulong rate;
stgenc = STM32_STGEN_BASE;
cntfid0 = readl(stgenc + STGENC_CNTFID0);
p = stm32mp1_clk_get_parent(priv, STGEN_K);
rate = stm32mp1_clk_get(priv, p);
if (cntfid0 != rate) {
u64 counter;
log_debug("System Generic Counter (STGEN) update\n");
clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
counter = (u64)readl(stgenc + STGENC_CNTCVL);
counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
counter = lldiv(counter * (u64)rate, cntfid0);
writel((u32)counter, stgenc + STGENC_CNTCVL);
writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
writel(rate, stgenc + STGENC_CNTFID0);
setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
/* need to update gd->arch.timer_rate_hz with new frequency */
timer_init();
}
}
static int set_clkdiv(unsigned int clkdiv, u32 address)
{
u32 val;
int ret;
clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
TIMEOUT_200MS);
if (ret)
log_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
clkdiv, address, readl(address));
return ret;
}
static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
u32 clksrc, u32 clkdiv)
{
u32 address = priv->base + (clksrc >> 4);
/*
* binding clksrc : bit15-4 offset
* bit3: disable
* bit2-0: MCOSEL[2:0]
*/
if (clksrc & 0x8) {
clrbits_le32(address, RCC_MCOCFG_MCOON);
} else {
clrsetbits_le32(address,
RCC_MCOCFG_MCOSRC_MASK,
clksrc & RCC_MCOCFG_MCOSRC_MASK);
clrsetbits_le32(address,
RCC_MCOCFG_MCODIV_MASK,
clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
setbits_le32(address, RCC_MCOCFG_MCOON);
}
}
static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
unsigned int clksrc,
int lse_css)
{
u32 address = priv->base + RCC_BDCR;
if (readl(address) & RCC_BDCR_RTCCKEN)
goto skip_rtc;
if (clksrc == CLK_RTC_DISABLED)
goto skip_rtc;
clrsetbits_le32(address,
RCC_BDCR_RTCSRC_MASK,
clksrc << RCC_BDCR_RTCSRC_SHIFT);
setbits_le32(address, RCC_BDCR_RTCCKEN);
skip_rtc:
if (lse_css)
setbits_le32(address, RCC_BDCR_LSECSSON);
}
static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
{
u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
u32 value = pkcs & 0xF;
u32 mask = 0xF;
if (pkcs & BIT(31)) {
mask <<= 4;
value <<= 4;
}
clrsetbits_le32(address, mask, value);
}
static int stm32mp1_clktree(struct udevice *dev)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
fdt_addr_t rcc = priv->base;
unsigned int clksrc[CLKSRC_NB];
unsigned int clkdiv[CLKDIV_NB];
unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
unsigned int pllfracv[_PLL_NB];
unsigned int pllcsg[_PLL_NB][PLLCSG_NB];
bool pllcfg_valid[_PLL_NB];
bool pllcsg_set[_PLL_NB];
int ret;
int i, len;
int lse_css = 0;
const u32 *pkcs_cell;
/* check mandatory field */
ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
if (ret < 0) {
dev_dbg(dev, "field st,clksrc invalid: error %d\n", ret);
return -FDT_ERR_NOTFOUND;
}
ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
if (ret < 0) {
dev_dbg(dev, "field st,clkdiv invalid: error %d\n", ret);
return -FDT_ERR_NOTFOUND;
}
/* check mandatory field in each pll */
for (i = 0; i < _PLL_NB; i++) {
char name[12];
ofnode node;
sprintf(name, "st,pll@%d", i);
node = dev_read_subnode(dev, name);
pllcfg_valid[i] = ofnode_valid(node);
pllcsg_set[i] = false;
if (pllcfg_valid[i]) {
dev_dbg(dev, "DT for PLL %d @ %s\n", i, name);
ret = ofnode_read_u32_array(node, "cfg",
pllcfg[i], PLLCFG_NB);
if (ret < 0) {
dev_dbg(dev, "field cfg invalid: error %d\n", ret);
return -FDT_ERR_NOTFOUND;
}
pllfracv[i] = ofnode_read_u32_default(node, "frac", 0);
ret = ofnode_read_u32_array(node, "csg", pllcsg[i],
PLLCSG_NB);
if (!ret) {
pllcsg_set[i] = true;
} else if (ret != -FDT_ERR_NOTFOUND) {
dev_dbg(dev, "invalid csg node for pll@%d res=%d\n",
i, ret);
return ret;
}
} else if (i == _PLL1) {
/* use OPP for PLL1 for A7 CPU */
dev_dbg(dev, "DT for PLL %d with OPP\n", i);
ret = stm32mp1_pll1_opp(priv,
clksrc[CLKSRC_PLL12],
pllcfg[i],
&pllfracv[i]);
if (ret) {
dev_dbg(dev, "PLL %d with OPP error = %d\n", i, ret);
return ret;
}
pllcfg_valid[i] = true;
}
}
dev_dbg(dev, "configuration MCO\n");
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
dev_dbg(dev, "switch ON osillator\n");
/*
* switch ON oscillator found in device-tree,
* HSI already ON after bootrom
*/
if (clk_valid(&priv->osc_clk[_LSI]))
stm32mp1_lsi_set(rcc, 1);
if (clk_valid(&priv->osc_clk[_LSE])) {
int bypass, digbyp;
u32 lsedrv;
struct udevice *dev = priv->osc_clk[_LSE].dev;
bypass = dev_read_bool(dev, "st,bypass");
digbyp = dev_read_bool(dev, "st,digbypass");
lse_css = dev_read_bool(dev, "st,css");
lsedrv = dev_read_u32_default(dev, "st,drive",
LSEDRV_MEDIUM_HIGH);
stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
}
if (clk_valid(&priv->osc_clk[_HSE])) {
int bypass, digbyp, css;
struct udevice *dev = priv->osc_clk[_HSE].dev;
bypass = dev_read_bool(dev, "st,bypass");
digbyp = dev_read_bool(dev, "st,digbypass");
css = dev_read_bool(dev, "st,css");
stm32mp1_hse_enable(rcc, bypass, digbyp, css);
}
/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
* => switch on CSI even if node is not present in device tree
*/
stm32mp1_csi_set(rcc, 1);
/* come back to HSI */
dev_dbg(dev, "come back to HSI\n");
set_clksrc(priv, CLK_MPU_HSI);
set_clksrc(priv, CLK_AXI_HSI);
set_clksrc(priv, CLK_MCU_HSI);
dev_dbg(dev, "pll stop\n");
for (i = 0; i < _PLL_NB; i++)
pll_stop(priv, i);
/* configure HSIDIV */
dev_dbg(dev, "configure HSIDIV\n");
if (clk_valid(&priv->osc_clk[_HSI])) {
stm32mp1_hsidiv(rcc, clk_get_rate(&priv->osc_clk[_HSI]));
stgen_config(priv);
}
/* select DIV */
dev_dbg(dev, "select DIV\n");
/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
/* no ready bit for RTC */
writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
/* configure PLLs source */
dev_dbg(dev, "configure PLLs source\n");
set_clksrc(priv, clksrc[CLKSRC_PLL12]);
set_clksrc(priv, clksrc[CLKSRC_PLL3]);
set_clksrc(priv, clksrc[CLKSRC_PLL4]);
/* configure and start PLLs */
dev_dbg(dev, "configure PLLs\n");
for (i = 0; i < _PLL_NB; i++) {
if (!pllcfg_valid[i])
continue;
dev_dbg(dev, "configure PLL %d\n", i);
pll_config(priv, i, pllcfg[i], pllfracv[i]);
if (pllcsg_set[i])
pll_csg(priv, i, pllcsg[i]);
pll_start(priv, i);
}
/* wait and start PLLs ouptut when ready */
for (i = 0; i < _PLL_NB; i++) {
if (!pllcfg_valid[i])
continue;
dev_dbg(dev, "output PLL %d\n", i);
pll_output(priv, i, pllcfg[i][PLLCFG_O]);
}
/* wait LSE ready before to use it */
if (clk_valid(&priv->osc_clk[_LSE]))
stm32mp1_lse_wait(rcc);
/* configure with expected clock source */
dev_dbg(dev, "CLKSRC\n");
set_clksrc(priv, clksrc[CLKSRC_MPU]);
set_clksrc(priv, clksrc[CLKSRC_AXI]);
set_clksrc(priv, clksrc[CLKSRC_MCU]);
set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
/* configure PKCK */
dev_dbg(dev, "PKCK\n");
pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
if (pkcs_cell) {
bool ckper_disabled = false;
for (i = 0; i < len / sizeof(u32); i++) {
u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
if (pkcs == CLK_CKPER_DISABLED) {
ckper_disabled = true;
continue;
}
pkcs_config(priv, pkcs);
}
/* CKPER is source for some peripheral clock
* (FMC-NAND / QPSI-NOR) and switching source is allowed
* only if previous clock is still ON
* => deactivated CKPER only after switching clock
*/
if (ckper_disabled)
pkcs_config(priv, CLK_CKPER_DISABLED);
}
/* STGEN clock source can change with CLK_STGEN_XXX */
stgen_config(priv);
dev_dbg(dev, "oscillator off\n");
/* switch OFF HSI if not found in device-tree */
if (!clk_valid(&priv->osc_clk[_HSI]))
stm32mp1_hsi_set(rcc, 0);
/* Software Self-Refresh mode (SSR) during DDR initilialization */
clrsetbits_le32(priv->base + RCC_DDRITFCR,
RCC_DDRITFCR_DDRCKMOD_MASK,
RCC_DDRITFCR_DDRCKMOD_SSR <<
RCC_DDRITFCR_DDRCKMOD_SHIFT);
return 0;
}
#endif /* STM32MP1_CLOCK_TREE_INIT */
static int pll_set_output_rate(struct udevice *dev,
int pll_id,
int div_id,
unsigned long clk_rate)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
const struct stm32mp1_clk_pll *pll = priv->data->pll;
u32 pllxcr = priv->base + pll[pll_id].pllxcr;
int div;
ulong fvco;
if (div_id > _DIV_NB)
return -EINVAL;
fvco = pll_get_fvco(priv, pll_id);
if (fvco <= clk_rate)
div = 1;
else
div = DIV_ROUND_UP(fvco, clk_rate);
if (div > 128)
div = 128;
/* stop the requested output */
clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
/* change divider */
clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
/* start the requested output */
setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
return 0;
}
static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
int p;
switch (clk->id) {
#if defined(STM32MP1_CLOCK_TREE_INIT) && \
defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
case DDRPHYC:
break;
#endif
case LTDC_PX:
case DSI_PX:
break;
default:
dev_err(clk->dev, "Set of clk %ld not supported", clk->id);
return -EINVAL;
}
p = stm32mp1_clk_get_parent(priv, clk->id);
dev_vdbg(clk->dev, "parent = %d:%s\n", p, stm32mp1_clk_parent_name[p]);
if (p < 0)
return -EINVAL;
switch (p) {
#if defined(STM32MP1_CLOCK_TREE_INIT) && \
defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
case _PLL2_R: /* DDRPHYC */
{
/* only for change DDR clock in interactive mode */
ulong result;
set_clksrc(priv, CLK_AXI_HSI);
result = pll_set_rate(clk->dev, _PLL2, _DIV_R, clk_rate);
set_clksrc(priv, CLK_AXI_PLL2P);
return result;
}
#endif
case _PLL4_Q:
/* for LTDC_PX and DSI_PX case */
return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
}
return -EINVAL;
}
static void stm32mp1_osc_init(struct udevice *dev)
{
struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
int i;
const char *name[NB_OSC] = {
[_LSI] = "lsi",
[_LSE] = "lse",
[_HSI] = "hsi",
[_HSE] = "hse",
[_CSI] = "csi",
[_I2S_CKIN] = "i2s_ckin",
};
for (i = 0; i < NB_OSC; i++) {
if (clk_get_by_name(dev, name[i], &priv->osc_clk[i]))
dev_dbg(dev, "No source clock \"%s\"", name[i]);
else
dev_dbg(dev, "%s clock rate: %luHz\n",
name[i], clk_get_rate(&priv->osc_clk[i]));
}
}
static void __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
{
char buf[32];
int i, s, p;
printf("Clocks:\n");
for (i = 0; i < _PARENT_NB; i++) {
printf("- %s : %s MHz\n",
stm32mp1_clk_parent_name[i],
strmhz(buf, stm32mp1_clk_get(priv, i)));
}
printf("Source Clocks:\n");
for (i = 0; i < _PARENT_SEL_NB; i++) {
p = (readl(priv->base + priv->data->sel[i].offset) >>
priv->data->sel[i].src) & priv->data->sel[i].msk;
if (p < priv->data->sel[i].nb_parent) {
s = priv->data->sel[i].parent[p];
printf("- %s(%d) => parent %s(%d)\n",
stm32mp1_clk_parent_sel_name[i], i,
stm32mp1_clk_parent_name[s], s);
} else {
printf("- %s(%d) => parent index %d is invalid\n",
stm32mp1_clk_parent_sel_name[i], i, p);
}
}
}
#ifdef CONFIG_CMD_CLK
int soc_clk_dump(void)
{
struct udevice *dev;
struct stm32mp1_clk_priv *priv;
int ret;
ret = uclass_get_device_by_driver(UCLASS_CLK,
DM_DRIVER_GET(stm32mp1_clock),
&dev);
if (ret)
return ret;
priv = dev_get_priv(dev);
stm32mp1_clk_dump(priv);
return 0;
}
#endif
static int stm32mp1_clk_probe(struct udevice *dev)
{
int result = 0;
struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
priv->base = dev_read_addr(dev->parent);
if (priv->base == FDT_ADDR_T_NONE)
return -EINVAL;
priv->data = (void *)&stm32mp1_data;
if (!priv->data->gate || !priv->data->sel ||
!priv->data->pll)
return -EINVAL;
stm32mp1_osc_init(dev);
#ifdef STM32MP1_CLOCK_TREE_INIT
/* clock tree init is done only one time, before relocation */
if (!(gd->flags & GD_FLG_RELOC))
result = stm32mp1_clktree(dev);
if (result)
dev_err(dev, "clock tree initialization failed (%d)\n", result);
#endif
#ifndef CONFIG_SPL_BUILD
#if defined(VERBOSE_DEBUG)
/* display debug information for probe after relocation */
if (gd->flags & GD_FLG_RELOC)
stm32mp1_clk_dump(priv);
#endif
gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
/* DDRPHYC father */
gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
#if defined(CONFIG_DISPLAY_CPUINFO)
if (gd->flags & GD_FLG_RELOC) {
char buf[32];
log_info("Clocks:\n");
log_info("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
log_info("- MCU : %s MHz\n",
strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
log_info("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
log_info("- PER : %s MHz\n",
strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
log_info("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
}
#endif /* CONFIG_DISPLAY_CPUINFO */
#endif
return result;
}
static const struct clk_ops stm32mp1_clk_ops = {
.enable = stm32mp1_clk_enable,
.disable = stm32mp1_clk_disable,
.get_rate = stm32mp1_clk_get_rate,
.set_rate = stm32mp1_clk_set_rate,
};
U_BOOT_DRIVER(stm32mp1_clock) = {
.name = "stm32mp1_clk",
.id = UCLASS_CLK,
.ops = &stm32mp1_clk_ops,
.priv_auto = sizeof(struct stm32mp1_clk_priv),
.probe = stm32mp1_clk_probe,
};