doc: driver-model: Convert of-plat.txt to reST

Convert plain text documentation to reStructuredText format and add
it to Sphinx TOC tree. No essential content change.

Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
diff --git a/doc/driver-model/of-plat.rst b/doc/driver-model/of-plat.rst
new file mode 100644
index 0000000..0d3cd8c
--- /dev/null
+++ b/doc/driver-model/of-plat.rst
@@ -0,0 +1,341 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+Compiled-in Device Tree / Platform Data
+=======================================
+
+
+Introduction
+------------
+
+Device tree is the standard configuration method in U-Boot. It is used to
+define what devices are in the system and provide configuration information
+to these devices.
+
+The overhead of adding device tree access to U-Boot is fairly modest,
+approximately 3KB on Thumb 2 (plus the size of the DT itself). This means
+that in most cases it is best to use device tree for configuration.
+
+However there are some very constrained environments where U-Boot needs to
+work. These include SPL with severe memory limitations. For example, some
+SoCs require a 16KB SPL image which must include a full MMC stack. In this
+case the overhead of device tree access may be too great.
+
+It is possible to create platform data manually by defining C structures
+for it, and reference that data in a U_BOOT_DEVICE() declaration. This
+bypasses the use of device tree completely, effectively creating a parallel
+configuration mechanism. But it is an available option for SPL.
+
+As an alternative, a new 'of-platdata' feature is provided. This converts the
+device tree contents into C code which can be compiled into the SPL binary.
+This saves the 3KB of code overhead and perhaps a few hundred more bytes due
+to more efficient storage of the data.
+
+Note: Quite a bit of thought has gone into the design of this feature.
+However it still has many rough edges and comments and suggestions are
+strongly encouraged! Quite possibly there is a much better approach.
+
+
+Caveats
+-------
+
+There are many problems with this features. It should only be used when
+strictly necessary. Notable problems include:
+
+   - Device tree does not describe data types. But the C code must define a
+     type for each property. These are guessed using heuristics which
+     are wrong in several fairly common cases. For example an 8-byte value
+     is considered to be a 2-item integer array, and is byte-swapped. A
+     boolean value that is not present means 'false', but cannot be
+     included in the structures since there is generally no mention of it
+     in the device tree file.
+
+   - Naming of nodes and properties is automatic. This means that they follow
+     the naming in the device tree, which may result in C identifiers that
+     look a bit strange.
+
+   - It is not possible to find a value given a property name. Code must use
+     the associated C member variable directly in the code. This makes
+     the code less robust in the face of device-tree changes. It also
+     makes it very unlikely that your driver code will be useful for more
+     than one SoC. Even if the code is common, each SoC will end up with
+     a different C struct name, and a likely a different format for the
+     platform data.
+
+   - The platform data is provided to drivers as a C structure. The driver
+     must use the same structure to access the data. Since a driver
+     normally also supports device tree it must use #ifdef to separate
+     out this code, since the structures are only available in SPL.
+
+   - Correct relations between nodes are not implemented. This means that
+     parent/child relations (like bus device iteration) do not work yet.
+     Some phandles (those that are recognised as such) are converted into
+     a pointer to platform data. This pointer can potentially be used to
+     access the referenced device (by searching for the pointer value).
+     This feature is not yet implemented, however.
+
+
+How it works
+------------
+
+The feature is enabled by CONFIG OF_PLATDATA. This is only available in
+SPL/TPL and should be tested with:
+
+.. code-block:: c
+
+    #if CONFIG_IS_ENABLED(OF_PLATDATA)
+
+A new tool called 'dtoc' converts a device tree file either into a set of
+struct declarations, one for each compatible node, and a set of
+U_BOOT_DEVICE() declarations along with the actual platform data for each
+device. As an example, consider this MMC node:
+
+.. code-block:: none
+
+    sdmmc: dwmmc@ff0c0000 {
+            compatible = "rockchip,rk3288-dw-mshc";
+            clock-freq-min-max = <400000 150000000>;
+            clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,
+                     <&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;
+            clock-names = "biu", "ciu", "ciu_drv", "ciu_sample";
+            fifo-depth = <0x100>;
+            interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
+            reg = <0xff0c0000 0x4000>;
+            bus-width = <4>;
+            cap-mmc-highspeed;
+            cap-sd-highspeed;
+            card-detect-delay = <200>;
+            disable-wp;
+            num-slots = <1>;
+            pinctrl-names = "default";
+            pinctrl-0 = <&sdmmc_clk>, <&sdmmc_cmd>, <&sdmmc_cd>, <&sdmmc_bus4>;
+                vmmc-supply = <&vcc_sd>;
+                status = "okay";
+                u-boot,dm-pre-reloc;
+        };
+
+
+Some of these properties are dropped by U-Boot under control of the
+CONFIG_OF_SPL_REMOVE_PROPS option. The rest are processed. This will produce
+the following C struct declaration:
+
+.. code-block:: c
+
+    struct dtd_rockchip_rk3288_dw_mshc {
+            fdt32_t         bus_width;
+            bool            cap_mmc_highspeed;
+            bool            cap_sd_highspeed;
+            fdt32_t         card_detect_delay;
+            fdt32_t         clock_freq_min_max[2];
+            struct phandle_1_arg clocks[4];
+            bool            disable_wp;
+            fdt32_t         fifo_depth;
+            fdt32_t         interrupts[3];
+            fdt32_t         num_slots;
+            fdt32_t         reg[2];
+            fdt32_t         vmmc_supply;
+    };
+
+and the following device declaration:
+
+.. code-block:: c
+
+    static struct dtd_rockchip_rk3288_dw_mshc dtv_dwmmc_at_ff0c0000 = {
+            .fifo_depth             = 0x100,
+            .cap_sd_highspeed       = true,
+            .interrupts             = {0x0, 0x20, 0x4},
+            .clock_freq_min_max     = {0x61a80, 0x8f0d180},
+            .vmmc_supply            = 0xb,
+            .num_slots              = 0x1,
+            .clocks                 = {{&dtv_clock_controller_at_ff760000, 456},
+                                       {&dtv_clock_controller_at_ff760000, 68},
+                                       {&dtv_clock_controller_at_ff760000, 114},
+                                       {&dtv_clock_controller_at_ff760000, 118}},
+            .cap_mmc_highspeed      = true,
+            .disable_wp             = true,
+            .bus_width              = 0x4,
+            .u_boot_dm_pre_reloc    = true,
+            .reg                    = {0xff0c0000, 0x4000},
+            .card_detect_delay      = 0xc8,
+    };
+
+    U_BOOT_DEVICE(dwmmc_at_ff0c0000) = {
+            .name           = "rockchip_rk3288_dw_mshc",
+            .platdata       = &dtv_dwmmc_at_ff0c0000,
+            .platdata_size  = sizeof(dtv_dwmmc_at_ff0c0000),
+    };
+
+The device is then instantiated at run-time and the platform data can be
+accessed using:
+
+.. code-block:: c
+
+    struct udevice *dev;
+    struct dtd_rockchip_rk3288_dw_mshc *plat = dev_get_platdata(dev);
+
+This avoids the code overhead of converting the device tree data to
+platform data in the driver. The ofdata_to_platdata() method should
+therefore do nothing in such a driver.
+
+Note that for the platform data to be matched with a driver, the 'name'
+property of the U_BOOT_DEVICE() declaration has to match a driver declared
+via U_BOOT_DRIVER(). This effectively means that a U_BOOT_DRIVER() with a
+'name' corresponding to the devicetree 'compatible' string (after converting
+it to a valid name for C) is needed, so a dedicated driver is required for
+each 'compatible' string.
+
+Where a node has multiple compatible strings, a #define is used to make them
+equivalent, e.g.:
+
+.. code-block:: c
+
+    #define dtd_rockchip_rk3299_dw_mshc dtd_rockchip_rk3288_dw_mshc
+
+
+Converting of-platdata to a useful form
+---------------------------------------
+
+Of course it would be possible to use the of-platdata directly in your driver
+whenever configuration information is required. However this means that the
+driver will not be able to support device tree, since the of-platdata
+structure is not available when device tree is used. It would make no sense
+to use this structure if device tree were available, since the structure has
+all the limitations metioned in caveats above.
+
+Therefore it is recommended that the of-platdata structure should be used
+only in the probe() method of your driver. It cannot be used in the
+ofdata_to_platdata() method since this is not called when platform data is
+already present.
+
+
+How to structure your driver
+----------------------------
+
+Drivers should always support device tree as an option. The of-platdata
+feature is intended as a add-on to existing drivers.
+
+Your driver should convert the platdata struct in its probe() method. The
+existing device tree decoding logic should be kept in the
+ofdata_to_platdata() method and wrapped with #if.
+
+For example:
+
+.. code-block:: c
+
+    #include <dt-structs.h>
+
+    struct mmc_platdata {
+    #if CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
+            /* Put this first since driver model will copy the data here */
+            struct dtd_mmc dtplat;
+    #endif
+            /*
+             * Other fields can go here, to be filled in by decoding from
+             * the device tree (or the C structures when of-platdata is used).
+             */
+            int fifo_depth;
+    };
+
+    static int mmc_ofdata_to_platdata(struct udevice *dev)
+    {
+    #if !CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
+            /* Decode the device tree data */
+            struct mmc_platdata *plat = dev_get_platdata(dev);
+            const void *blob = gd->fdt_blob;
+            int node = dev_of_offset(dev);
+
+            plat->fifo_depth = fdtdec_get_int(blob, node, "fifo-depth", 0);
+    #endif
+
+            return 0;
+    }
+
+    static int mmc_probe(struct udevice *dev)
+    {
+            struct mmc_platdata *plat = dev_get_platdata(dev);
+
+    #if CONFIG_IS_ENABLED(SPL_OF_PLATDATA)
+            /* Decode the of-platdata from the C structures */
+            struct dtd_mmc *dtplat = &plat->dtplat;
+
+            plat->fifo_depth = dtplat->fifo_depth;
+    #endif
+            /* Set up the device from the plat data */
+            writel(plat->fifo_depth, ...)
+    }
+
+    static const struct udevice_id mmc_ids[] = {
+            { .compatible = "vendor,mmc" },
+            { }
+    };
+
+    U_BOOT_DRIVER(mmc_drv) = {
+            .name           = "mmc",
+            .id             = UCLASS_MMC,
+            .of_match       = mmc_ids,
+            .ofdata_to_platdata = mmc_ofdata_to_platdata,
+            .probe          = mmc_probe,
+            .priv_auto_alloc_size = sizeof(struct mmc_priv),
+            .platdata_auto_alloc_size = sizeof(struct mmc_platdata),
+    };
+
+
+In the case where SPL_OF_PLATDATA is enabled, platdata_auto_alloc_size is
+still used to allocate space for the platform data. This is different from
+the normal behaviour and is triggered by the use of of-platdata (strictly
+speaking it is a non-zero platdata_size which triggers this).
+
+The of-platdata struct contents is copied from the C structure data to the
+start of the newly allocated area. In the case where device tree is used,
+the platform data is allocated, and starts zeroed. In this case the
+ofdata_to_platdata() method should still set up the platform data (and the
+of-platdata struct will not be present).
+
+SPL must use either of-platdata or device tree. Drivers cannot use both at
+the same time, but they must support device tree. Supporting of-platdata is
+optional.
+
+The device tree becomes in accessible when CONFIG_SPL_OF_PLATDATA is enabled,
+since the device-tree access code is not compiled in. A corollary is that
+a board can only move to using of-platdata if all the drivers it uses support
+it. There would be little point in having some drivers require the device
+tree data, since then libfdt would still be needed for those drivers and
+there would be no code-size benefit.
+
+Internals
+---------
+
+The dt-structs.h file includes the generated file
+(include/generated//dt-structs.h) if CONFIG_SPL_OF_PLATDATA is enabled.
+Otherwise (such as in U-Boot proper) these structs are not available. This
+prevents them being used inadvertently. All usage must be bracketed with
+#if CONFIG_IS_ENABLED(SPL_OF_PLATDATA).
+
+The dt-platdata.c file contains the device declarations and is is built in
+spl/dt-platdata.c.
+
+The beginnings of a libfdt Python module are provided. So far this only
+implements a subset of the features.
+
+The 'swig' tool is needed to build the libfdt Python module. If this is not
+found then the Python model is not used and a fallback is used instead, which
+makes use of fdtget.
+
+
+Credits
+-------
+
+This is an implementation of an idea by Tom Rini <trini@konsulko.com>.
+
+
+Future work
+-----------
+- Consider programmatically reading binding files instead of device tree
+  contents
+- Complete the phandle feature
+- Move to using a full Python libfdt module
+
+
+.. Simon Glass <sjg@chromium.org>
+.. Google, Inc
+.. 6/6/16
+.. Updated Independence Day 2016