blob: 832154ee3af1135282d26b3d44a6e500b6cb20cb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* (C) Copyright 2015 Google, Inc
* Copyright 2014 Rockchip Inc.
*
* Adapted from the very similar rk3188 ddr init.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <hang.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_rk3066.h>
#include <asm/arch-rockchip/ddr_rk3188.h>
#include <asm/arch-rockchip/grf_rk3066.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/arch-rockchip/pmu_rk3188.h>
#include <asm/arch-rockchip/sdram_rk3288.h>
#include <asm/arch-rockchip/sdram.h>
#include <linux/delay.h>
#include <linux/err.h>
struct rk3066_dmc_chan_info {
struct rk3288_ddr_pctl *pctl;
struct rk3288_ddr_publ *publ;
struct rk3188_msch *msch;
};
struct rk3066_dmc_dram_info {
struct rk3066_dmc_chan_info chan[1];
struct ram_info info;
struct clk ddr_clk;
struct rk3066_cru *cru;
struct rk3066_grf *grf;
struct rk3066_sgrf *sgrf;
struct rk3188_pmu *pmu;
};
struct rk3066_dmc_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3066_dmc of_plat;
#endif
struct rk3288_sdram_channel ch[2];
struct rk3288_sdram_pctl_timing pctl_timing;
struct rk3288_sdram_phy_timing phy_timing;
struct rk3288_base_params base;
int num_channels;
struct regmap *map;
};
const int rk3066_dmc_ddrconf_table[] = {
/*
* [5:4] row(13+n)
* [1:0] col(9+n), assume bw=2
* row col,bw
*/
0,
(2 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT,
(1 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT,
(0 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT,
(2 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT,
(1 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT,
(0 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT,
(1 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT,
(0 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT,
0,
0,
0,
0,
0,
0,
0,
};
#define TEST_PATTERN 0x5aa5f00f
#define DQS_GATE_TRAINING_ERROR_RANK0 BIT(4)
#define DQS_GATE_TRAINING_ERROR_RANK1 BIT(5)
static void rk3066_dmc_copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
writel(*src, dest);
src++;
dest++;
}
}
static void rk3066_dmc_ddr_reset(struct rk3066_cru *cru, u32 ch, u32 ctl, u32 phy)
{
u32 phy_ctl_srstn_shift = 13;
u32 ctl_psrstn_shift = 11;
u32 ctl_srstn_shift = 10;
u32 phy_psrstn_shift = 9;
u32 phy_srstn_shift = 8;
rk_clrsetreg(&cru->cru_softrst_con[5],
1 << phy_ctl_srstn_shift | 1 << ctl_psrstn_shift |
1 << ctl_srstn_shift | 1 << phy_psrstn_shift |
1 << phy_srstn_shift,
phy << phy_ctl_srstn_shift | ctl << ctl_psrstn_shift |
ctl << ctl_srstn_shift | phy << phy_psrstn_shift |
phy << phy_srstn_shift);
}
static void rk3066_dmc_ddr_phy_ctl_reset(struct rk3066_cru *cru, u32 ch, u32 n)
{
u32 phy_ctl_srstn_shift = 13;
rk_clrsetreg(&cru->cru_softrst_con[5],
1 << phy_ctl_srstn_shift, n << phy_ctl_srstn_shift);
}
static void rk3066_dmc_phy_pctrl_reset(struct rk3066_cru *cru,
struct rk3288_ddr_publ *publ,
int channel)
{
int i;
rk3066_dmc_ddr_reset(cru, channel, 1, 1);
udelay(1);
clrbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
rk3066_dmc_ddr_reset(cru, channel, 1, 0);
udelay(10);
rk3066_dmc_ddr_reset(cru, channel, 0, 0);
udelay(10);
}
static void rk3066_dmc_phy_dll_bypass_set(struct rk3288_ddr_publ *publ, u32 freq)
{
int i;
if (freq <= 250000000) {
if (freq <= 150000000)
clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
else
setbits_le32(&publ->dllgcr, SBIAS_BYPASS);
setbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
setbits_le32(&publ->pir, PIR_DLLBYP);
} else {
clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
clrbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++) {
clrbits_le32(&publ->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
}
clrbits_le32(&publ->pir, PIR_DLLBYP);
}
}
static void rk3066_dmc_dfi_cfg(struct rk3288_ddr_pctl *pctl, u32 dramtype)
{
writel(DFI_INIT_START, &pctl->dfistcfg0);
writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
&pctl->dfistcfg1);
writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
&pctl->dfilpcfg0);
writel(2 << TCTRL_DELAY_TIME_SHIFT, &pctl->dfitctrldelay);
writel(1 << TPHY_WRDATA_TIME_SHIFT, &pctl->dfitphywrdata);
writel(0xf << TPHY_RDLAT_TIME_SHIFT, &pctl->dfitphyrdlat);
writel(2 << TDRAM_CLK_DIS_TIME_SHIFT, &pctl->dfitdramclkdis);
writel(2 << TDRAM_CLK_EN_TIME_SHIFT, &pctl->dfitdramclken);
writel(1, &pctl->dfitphyupdtype0);
/* CS0 and CS1 write ODT enable. */
writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL),
&pctl->dfiodtcfg);
/* Write ODT length. */
writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
/* Disable phyupd and ctrlupd. */
writel(0, &pctl->dfiupdcfg);
}
static void rk3066_dmc_ddr_set_ddr3_mode(struct rk3066_grf *grf, uint channel,
bool ddr3_mode)
{
uint mask, val;
mask = MSCH4_MAINDDR3_MASK << MSCH4_MAINDDR3_SHIFT;
val = ddr3_mode << MSCH4_MAINDDR3_SHIFT;
rk_clrsetreg(&grf->soc_con2, mask, val);
}
static void rk3066_dmc_ddr_rank_2_row15en(struct rk3066_grf *grf, bool enable)
{
uint mask, val;
mask = RANK_TO_ROW15_EN_MASK << RANK_TO_ROW15_EN_SHIFT;
val = enable << RANK_TO_ROW15_EN_SHIFT;
rk_clrsetreg(&grf->soc_con2, mask, val);
}
static void rk3066_dmc_pctl_cfg(int channel, struct rk3288_ddr_pctl *pctl,
struct rk3066_dmc_sdram_params *sdram_params,
struct rk3066_grf *grf)
{
rk3066_dmc_copy_to_reg(&pctl->togcnt1u, &sdram_params->pctl_timing.togcnt1u,
sizeof(sdram_params->pctl_timing));
switch (sdram_params->base.dramtype) {
case DDR3:
if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE) {
writel(sdram_params->pctl_timing.tcl - 3,
&pctl->dfitrddataen);
} else {
writel(sdram_params->pctl_timing.tcl - 2,
&pctl->dfitrddataen);
}
writel(sdram_params->pctl_timing.tcwl - 1,
&pctl->dfitphywrlat);
writel(0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | DDR3_EN |
DDR2_DDR3_BL_8 | (6 - 4) << TFAW_SHIFT | PD_EXIT_SLOW |
1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT,
&pctl->mcfg);
rk3066_dmc_ddr_set_ddr3_mode(grf, channel, true);
break;
}
setbits_le32(&pctl->scfg, 1);
}
static void rk3066_dmc_phy_cfg(const struct rk3066_dmc_chan_info *chan, int channel,
struct rk3066_dmc_sdram_params *sdram_params)
{
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3188_msch *msch = chan->msch;
uint ddr_freq_mhz = sdram_params->base.ddr_freq / 1000000;
u32 dinit2;
int i;
dinit2 = DIV_ROUND_UP(ddr_freq_mhz * 200000, 1000);
/* Set DDR PHY timing. */
rk3066_dmc_copy_to_reg(&publ->dtpr[0], &sdram_params->phy_timing.dtpr0,
sizeof(sdram_params->phy_timing));
writel(sdram_params->base.noc_timing, &msch->ddrtiming);
writel(0x3f, &msch->readlatency);
writel(DIV_ROUND_UP(ddr_freq_mhz * 5120, 1000) << PRT_DLLLOCK_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 50, 1000) << PRT_DLLSRST_SHIFT |
8 << PRT_ITMSRST_SHIFT, &publ->ptr[0]);
writel(DIV_ROUND_UP(ddr_freq_mhz * 500000, 1000) << PRT_DINIT0_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 400, 1000) << PRT_DINIT1_SHIFT,
&publ->ptr[1]);
writel(min(dinit2, 0x1ffffU) << PRT_DINIT2_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 1000, 1000) << PRT_DINIT3_SHIFT,
&publ->ptr[2]);
switch (sdram_params->base.dramtype) {
case DDR3:
clrbits_le32(&publ->pgcr, 0x1f);
clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT,
DDRMD_DDR3 << DDRMD_SHIFT);
break;
}
if (sdram_params->base.odt) {
/* Enable dynamic RTT. */
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
} else {
/* Disable dynamic RTT. */
for (i = 0; i < 4; i++)
clrbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
}
}
static void rk3066_dmc_phy_init(struct rk3288_ddr_publ *publ)
{
setbits_le32(&publ->pir, PIR_INIT | PIR_DLLSRST
| PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR);
udelay(1);
while ((readl(&publ->pgsr) &
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) !=
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE))
;
}
static void rk3066_dmc_send_command(struct rk3288_ddr_pctl *pctl, u32 rank,
u32 cmd, u32 arg)
{
writel((START_CMD | (rank << 20) | arg | cmd), &pctl->mcmd);
udelay(1);
while (readl(&pctl->mcmd) & START_CMD)
;
}
static inline void rk3066_dmc_send_command_op(struct rk3288_ddr_pctl *pctl,
u32 rank, u32 cmd, u32 ma, u32 op)
{
rk3066_dmc_send_command(pctl, rank, cmd, (ma & LPDDR2_MA_MASK) << LPDDR2_MA_SHIFT |
(op & LPDDR2_OP_MASK) << LPDDR2_OP_SHIFT);
}
static void rk3066_dmc_memory_init(struct rk3288_ddr_publ *publ,
u32 dramtype)
{
setbits_le32(&publ->pir,
(PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP
| PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC
| (dramtype == DDR3 ? PIR_DRAMRST : 0)));
udelay(1);
while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE))
!= (PGSR_IDONE | PGSR_DLDONE))
;
}
static void rk3066_dmc_move_to_config_state(struct rk3288_ddr_publ *publ,
struct rk3288_ddr_pctl *pctl)
{
unsigned int state;
while (1) {
state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK)
!= ACCESS)
;
/* Wait DLL lock. */
while ((readl(&publ->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
/*
* If at low power state we need to wakeup first
* and then enter the config.
*/
fallthrough;
case ACCESS:
fallthrough;
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
;
break;
case CONFIG:
return;
default:
break;
}
}
}
static void rk3066_dmc_set_bandwidth_ratio(const struct rk3066_dmc_chan_info *chan, int channel,
u32 n, struct rk3066_grf *grf)
{
struct rk3288_ddr_pctl *pctl = chan->pctl;
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3188_msch *msch = chan->msch;
if (n == 1) {
setbits_le32(&pctl->ppcfg, 1);
setbits_le32(&msch->ddrtiming, 1 << 31);
/* Data byte disable. */
clrbits_le32(&publ->datx8[2].dxgcr, 1);
clrbits_le32(&publ->datx8[3].dxgcr, 1);
/* Disable DLL. */
setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
} else {
clrbits_le32(&pctl->ppcfg, 1);
clrbits_le32(&msch->ddrtiming, 1 << 31);
/* Data byte enable.*/
setbits_le32(&publ->datx8[2].dxgcr, 1);
setbits_le32(&publ->datx8[3].dxgcr, 1);
/* Enable DLL. */
clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
/* Reset DLL. */
clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
}
setbits_le32(&pctl->dfistcfg0, 1 << 2);
}
static int rk3066_dmc_data_training(const struct rk3066_dmc_chan_info *chan, int channel,
struct rk3066_dmc_sdram_params *sdram_params)
{
unsigned int j;
int ret = 0;
u32 rank;
int i;
u32 step[2] = { PIR_QSTRN, PIR_RVTRN };
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_ddr_pctl *pctl = chan->pctl;
/* Disable auto refresh. */
writel(0, &pctl->trefi);
if (sdram_params->base.dramtype != LPDDR3)
setbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);
rank = sdram_params->ch[channel].rank | 1;
for (j = 0; j < ARRAY_SIZE(step); j++) {
/*
* Trigger QSTRN and RVTRN.
* Clear DTDONE status.
*/
setbits_le32(&publ->pir, PIR_CLRSR);
/* Trigger DTT. */
setbits_le32(&publ->pir,
PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP |
PIR_CLRSR);
udelay(1);
/* Wait echo byte DTDONE. */
while ((readl(&publ->datx8[0].dxgsr[0]) & rank)
!= rank)
;
while ((readl(&publ->datx8[1].dxgsr[0]) & rank)
!= rank)
;
if (!(readl(&pctl->ppcfg) & 1)) {
while ((readl(&publ->datx8[2].dxgsr[0])
& rank) != rank)
;
while ((readl(&publ->datx8[3].dxgsr[0])
& rank) != rank)
;
}
if (readl(&publ->pgsr) &
(PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) {
ret = -1;
break;
}
}
/* Send some auto refresh to complement the lost while DTT. */
for (i = 0; i < (rank > 1 ? 8 : 4); i++)
rk3066_dmc_send_command(pctl, rank, REF_CMD, 0);
if (sdram_params->base.dramtype != LPDDR3)
clrbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);
/* Resume auto refresh. */
writel(sdram_params->pctl_timing.trefi, &pctl->trefi);
return ret;
}
static void rk3066_dmc_move_to_access_state(const struct rk3066_dmc_chan_info *chan)
{
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_ddr_pctl *pctl = chan->pctl;
unsigned int state;
while (1) {
state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
LP_TRIG_MASK) == 1)
return;
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
;
/* Wait DLL lock. */
while ((readl(&publ->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
break;
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
;
fallthrough;
case CONFIG:
writel(GO_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
;
break;
case ACCESS:
return;
default:
break;
}
}
}
static void rk3066_dmc_dram_cfg_rbc(const struct rk3066_dmc_chan_info *chan, u32 chnum,
struct rk3066_dmc_sdram_params *sdram_params)
{
struct rk3288_ddr_publ *publ = chan->publ;
if (sdram_params->ch[chnum].bk == 3)
clrsetbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT,
1 << PDQ_SHIFT);
else
clrbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT);
writel(sdram_params->base.ddrconfig, &chan->msch->ddrconf);
}
static void rk3066_dmc_dram_all_config(const struct rk3066_dmc_dram_info *dram,
struct rk3066_dmc_sdram_params *sdram_params)
{
unsigned int chan;
u32 sys_reg = 0;
sys_reg |= sdram_params->base.dramtype << SYS_REG_DDRTYPE_SHIFT;
sys_reg |= (sdram_params->num_channels - 1) << SYS_REG_NUM_CH_SHIFT;
for (chan = 0; chan < sdram_params->num_channels; chan++) {
const struct rk3288_sdram_channel *info =
&sdram_params->ch[chan];
sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
rk3066_dmc_dram_cfg_rbc(&dram->chan[chan], chan, sdram_params);
}
if (sdram_params->ch[0].rank == 2)
rk3066_dmc_ddr_rank_2_row15en(dram->grf, 0);
else
rk3066_dmc_ddr_rank_2_row15en(dram->grf, 1);
writel(sys_reg, &dram->pmu->sys_reg[2]);
}
static int rk3066_dmc_sdram_rank_bw_detect(struct rk3066_dmc_dram_info *dram, int channel,
struct rk3066_dmc_sdram_params *sdram_params)
{
int reg;
int need_trainig = 0;
const struct rk3066_dmc_chan_info *chan = &dram->chan[channel];
struct rk3288_ddr_publ *publ = chan->publ;
rk3066_dmc_ddr_rank_2_row15en(dram->grf, 0);
if (rk3066_dmc_data_training(chan, channel, sdram_params) < 0) {
debug("first data training fail!\n");
reg = readl(&publ->datx8[0].dxgsr[0]);
/* Check the result for rank 0. */
if (channel == 0 && (reg & DQS_GATE_TRAINING_ERROR_RANK0)) {
debug("data training fail!\n");
return -EIO;
}
/* Check the result for rank 1. */
if (reg & DQS_GATE_TRAINING_ERROR_RANK1) {
sdram_params->ch[channel].rank = 1;
clrsetbits_le32(&publ->pgcr, 0xF << 18,
sdram_params->ch[channel].rank << 18);
need_trainig = 1;
}
reg = readl(&publ->datx8[2].dxgsr[0]);
if (reg & (1 << 4)) {
sdram_params->ch[channel].bw = 1;
rk3066_dmc_set_bandwidth_ratio(chan, channel,
sdram_params->ch[channel].bw,
dram->grf);
need_trainig = 1;
}
}
/* Assume that the die bit width is equel to the chip bit width. */
sdram_params->ch[channel].dbw = sdram_params->ch[channel].bw;
if (need_trainig &&
(rk3066_dmc_data_training(chan, channel, sdram_params) < 0)) {
if (sdram_params->base.dramtype == LPDDR3) {
rk3066_dmc_ddr_phy_ctl_reset(dram->cru, channel, 1);
udelay(10);
rk3066_dmc_ddr_phy_ctl_reset(dram->cru, channel, 0);
udelay(10);
}
debug("2nd data training failed!");
return -EIO;
}
return 0;
}
static int rk3066_dmc_sdram_col_row_detect(struct rk3066_dmc_dram_info *dram, int channel,
struct rk3066_dmc_sdram_params *sdram_params)
{
int row, col;
unsigned int addr;
const struct rk3066_dmc_chan_info *chan = &dram->chan[channel];
struct rk3288_ddr_pctl *pctl = chan->pctl;
struct rk3288_ddr_publ *publ = chan->publ;
int ret = 0;
/* Detect col. */
for (col = 11; col >= 9; col--) {
writel(0, CONFIG_SYS_SDRAM_BASE);
addr = CONFIG_SYS_SDRAM_BASE +
(1 << (col + sdram_params->ch[channel].bw - 1));
writel(TEST_PATTERN, addr);
if ((readl(addr) == TEST_PATTERN) &&
(readl(CONFIG_SYS_SDRAM_BASE) == 0))
break;
}
if (col == 8) {
debug("Col detect error\n");
ret = -EINVAL;
goto out;
} else {
sdram_params->ch[channel].col = col;
}
rk3066_dmc_ddr_rank_2_row15en(dram->grf, 1);
rk3066_dmc_move_to_config_state(publ, pctl);
writel(1, &chan->msch->ddrconf);
rk3066_dmc_move_to_access_state(chan);
/* Detect row, max 15, min13 for rk3066 */
for (row = 16; row >= 13; row--) {
writel(0, CONFIG_SYS_SDRAM_BASE);
addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
writel(TEST_PATTERN, addr);
if ((readl(addr) == TEST_PATTERN) &&
(readl(CONFIG_SYS_SDRAM_BASE) == 0))
break;
}
if (row == 12) {
debug("Row detect error\n");
ret = -EINVAL;
} else {
sdram_params->ch[channel].cs1_row = row;
sdram_params->ch[channel].row_3_4 = 0;
debug("chn %d col %d, row %d\n", channel, col, row);
sdram_params->ch[channel].cs0_row = row;
}
out:
return ret;
}
static int rk3066_dmc_sdram_get_niu_config(struct rk3066_dmc_sdram_params *sdram_params)
{
int i, tmp, size, ret = 0;
tmp = sdram_params->ch[0].col - 9;
tmp -= (sdram_params->ch[0].bw == 2) ? 0 : 1;
tmp |= ((sdram_params->ch[0].cs0_row - 13) << 4);
size = ARRAY_SIZE(rk3066_dmc_ddrconf_table) / sizeof(rk3066_dmc_ddrconf_table[0]);
for (i = 0; i < size; i++)
if (tmp == rk3066_dmc_ddrconf_table[i])
break;
if (i >= size) {
debug("niu config not found\n");
ret = -EINVAL;
} else {
debug("niu config %d\n", i);
sdram_params->base.ddrconfig = i;
}
return ret;
}
static int rk3066_dmc_sdram_init(struct rk3066_dmc_dram_info *dram,
struct rk3066_dmc_sdram_params *sdram_params)
{
int channel;
int zqcr;
int ret;
if ((sdram_params->base.dramtype == DDR3 &&
sdram_params->base.ddr_freq > 800000000)) {
debug("SDRAM frequency is too high!");
return -E2BIG;
}
ret = clk_set_rate(&dram->ddr_clk, sdram_params->base.ddr_freq);
if (ret) {
debug("Could not set DDR clock\n");
return ret;
}
for (channel = 0; channel < 1; channel++) {
const struct rk3066_dmc_chan_info *chan = &dram->chan[channel];
struct rk3288_ddr_pctl *pctl = chan->pctl;
struct rk3288_ddr_publ *publ = chan->publ;
rk3066_dmc_phy_pctrl_reset(dram->cru, publ, channel);
rk3066_dmc_phy_dll_bypass_set(publ, sdram_params->base.ddr_freq);
rk3066_dmc_dfi_cfg(pctl, sdram_params->base.dramtype);
rk3066_dmc_pctl_cfg(channel, pctl, sdram_params, dram->grf);
rk3066_dmc_phy_cfg(chan, channel, sdram_params);
rk3066_dmc_phy_init(publ);
writel(POWER_UP_START, &pctl->powctl);
while (!(readl(&pctl->powstat) & POWER_UP_DONE))
;
rk3066_dmc_memory_init(publ, sdram_params->base.dramtype);
rk3066_dmc_move_to_config_state(publ, pctl);
/* Use 32bit bus width for detection. */
sdram_params->ch[channel].bw = 2;
rk3066_dmc_set_bandwidth_ratio(chan, channel,
sdram_params->ch[channel].bw, dram->grf);
/*
* set cs, using n=3 for detect
* CS0, n=1
* CS1, n=2
* CS0 & CS1, n = 3
*/
sdram_params->ch[channel].rank = 2;
clrsetbits_le32(&publ->pgcr, 0xF << 18,
(sdram_params->ch[channel].rank | 1) << 18);
/* DS=40ohm,ODT=155ohm */
zqcr = 1 << ZDEN_SHIFT | 2 << PU_ONDIE_SHIFT |
2 << PD_ONDIE_SHIFT | 0x19 << PU_OUTPUT_SHIFT |
0x19 << PD_OUTPUT_SHIFT;
writel(zqcr, &publ->zq1cr[0]);
writel(zqcr, &publ->zq0cr[0]);
/* Detect the rank and bit-width with data-training. */
writel(1, &chan->msch->ddrconf);
rk3066_dmc_sdram_rank_bw_detect(dram, channel, sdram_params);
if (sdram_params->base.dramtype == LPDDR3) {
u32 i;
writel(0, &pctl->mrrcfg0);
for (i = 0; i < 17; i++)
rk3066_dmc_send_command_op(pctl, 1, MRR_CMD, i, 0);
}
writel(4, &chan->msch->ddrconf);
rk3066_dmc_move_to_access_state(chan);
/* DDR3 and LPDDR3 are always 8 bank, no need to detect. */
sdram_params->ch[channel].bk = 3;
/* Detect Col and Row number. */
ret = rk3066_dmc_sdram_col_row_detect(dram, channel, sdram_params);
if (ret)
goto error;
}
/* Find NIU DDR configuration. */
ret = rk3066_dmc_sdram_get_niu_config(sdram_params);
if (ret)
goto error;
rk3066_dmc_dram_all_config(dram, sdram_params);
debug("SDRAM init OK!\n");
return 0;
error:
debug("SDRAM init failed!\n");
hang();
}
static int rk3066_dmc_setup_sdram(struct udevice *dev)
{
struct rk3066_dmc_dram_info *priv = dev_get_priv(dev);
struct rk3066_dmc_sdram_params *params = dev_get_plat(dev);
return rk3066_dmc_sdram_init(priv, params);
}
static int rk3066_dmc_conv_of_plat(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3066_dmc_sdram_params *plat = dev_get_plat(dev);
struct dtd_rockchip_rk3066_dmc *of_plat = &plat->of_plat;
int ret;
memcpy(&plat->pctl_timing, of_plat->rockchip_pctl_timing,
sizeof(plat->pctl_timing));
memcpy(&plat->phy_timing, of_plat->rockchip_phy_timing,
sizeof(plat->phy_timing));
memcpy(&plat->base, of_plat->rockchip_sdram_params, sizeof(plat->base));
/* RK3066 supports dual-channel, set default channel num to 2. */
plat->num_channels = 1;
ret = regmap_init_mem_plat(dev, of_plat->reg,
ARRAY_SIZE(of_plat->reg) / 2, &plat->map);
if (ret)
return ret;
return 0;
#else
return -EINVAL;
#endif
}
static int rk3066_dmc_probe(struct udevice *dev)
{
struct rk3066_dmc_dram_info *priv = dev_get_priv(dev);
priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU);
if (IS_ENABLED(CONFIG_TPL_BUILD)) {
struct rk3066_dmc_sdram_params *plat = dev_get_plat(dev);
struct regmap *map;
struct udevice *dev_clk;
int ret;
ret = rk3066_dmc_conv_of_plat(dev);
if (ret)
return ret;
map = syscon_get_regmap_by_driver_data(ROCKCHIP_SYSCON_NOC);
if (IS_ERR(map))
return PTR_ERR(map);
priv->chan[0].msch = regmap_get_range(map, 0);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
priv->chan[0].pctl = regmap_get_range(plat->map, 0);
priv->chan[0].publ = regmap_get_range(plat->map, 1);
ret = rockchip_get_clk(&dev_clk);
if (ret)
return ret;
priv->ddr_clk.id = CLK_DDR;
ret = clk_request(dev_clk, &priv->ddr_clk);
if (ret)
return ret;
priv->cru = rockchip_get_cru();
if (IS_ERR(priv->cru))
return PTR_ERR(priv->cru);
ret = rk3066_dmc_setup_sdram(dev);
if (ret)
return ret;
} else {
priv->info.base = CONFIG_SYS_SDRAM_BASE;
priv->info.size = rockchip_sdram_size((phys_addr_t)&priv->pmu->sys_reg[2]);
}
return 0;
}
static int rk3066_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct rk3066_dmc_dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3066_dmc_ops = {
.get_info = rk3066_dmc_get_info,
};
static const struct udevice_id rk3066_dmc_ids[] = {
{ .compatible = "rockchip,rk3066-dmc" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3066_dmc) = {
.name = "rockchip_rk3066_dmc",
.id = UCLASS_RAM,
.ops = &rk3066_dmc_ops,
.probe = rk3066_dmc_probe,
.of_match = rk3066_dmc_ids,
.priv_auto = sizeof(struct rk3066_dmc_dram_info),
#if IS_ENABLED(CONFIG_TPL_BUILD)
.plat_auto = sizeof(struct rk3066_dmc_sdram_params),
#endif
};