Driver/DDR: Moving Freescale DDR driver to a common driver

Freescale DDR driver has been used for mpc83xx, mpc85xx, mpc86xx SoCs.
The similar DDR controllers will be used for ARM-based SoCs.

Signed-off-by: York Sun <yorksun@freescale.com>
diff --git a/drivers/ddr/fsl/Makefile b/drivers/ddr/fsl/Makefile
new file mode 100644
index 0000000..a328b43
--- /dev/null
+++ b/drivers/ddr/fsl/Makefile
@@ -0,0 +1,34 @@
+#
+# Copyright 2008-2011 Freescale Semiconductor, Inc.
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# Version 2 as published by the Free Software Foundation.
+#
+
+obj-$(CONFIG_SYS_FSL_DDR1)	+= main.o util.o ctrl_regs.o options.o \
+				   lc_common_dimm_params.o
+
+obj-$(CONFIG_SYS_FSL_DDR2)	+= main.o util.o ctrl_regs.o options.o \
+				   lc_common_dimm_params.o
+
+obj-$(CONFIG_SYS_FSL_DDR3)	+= main.o util.o ctrl_regs.o options.o \
+				   lc_common_dimm_params.o
+ifdef CONFIG_DDR_SPD
+SPD := y
+endif
+ifdef CONFIG_SPD_EEPROM
+SPD := y
+endif
+ifdef SPD
+obj-$(CONFIG_SYS_FSL_DDR1)	+= ddr1_dimm_params.o
+obj-$(CONFIG_SYS_FSL_DDR2)	+= ddr2_dimm_params.o
+obj-$(CONFIG_SYS_FSL_DDR3)	+= ddr3_dimm_params.o
+endif
+
+obj-$(CONFIG_FSL_DDR_INTERACTIVE)	+= interactive.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN1)	+= mpc85xx_ddr_gen1.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN2)	+= mpc85xx_ddr_gen2.o
+obj-$(CONFIG_SYS_FSL_DDRC_GEN3)	+= mpc85xx_ddr_gen3.o
+obj-$(CONFIG_SYS_FSL_DDR_86XX)		+= mpc86xx_ddr.o
+obj-$(CONFIG_FSL_DDR_INTERACTIVE)	+= interactive.o
diff --git a/drivers/ddr/fsl/ctrl_regs.c b/drivers/ddr/fsl/ctrl_regs.c
new file mode 100644
index 0000000..aed4569c
--- /dev/null
+++ b/drivers/ddr/fsl/ctrl_regs.c
@@ -0,0 +1,1657 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+#include <asm/io.h>
+
+#define _DDR_ADDR CONFIG_SYS_FSL_DDR_ADDR
+
+static u32 fsl_ddr_get_version(void)
+{
+	ccsr_ddr_t *ddr;
+	u32 ver_major_minor_errata;
+
+	ddr = (void *)_DDR_ADDR;
+	ver_major_minor_errata = (in_be32(&ddr->ip_rev1) & 0xFFFF) << 8;
+	ver_major_minor_errata |= (in_be32(&ddr->ip_rev2) & 0xFF00) >> 8;
+
+	return ver_major_minor_errata;
+}
+
+unsigned int picos_to_mclk(unsigned int picos);
+
+/*
+ * Determine Rtt value.
+ *
+ * This should likely be either board or controller specific.
+ *
+ * Rtt(nominal) - DDR2:
+ *	0 = Rtt disabled
+ *	1 = 75 ohm
+ *	2 = 150 ohm
+ *	3 = 50 ohm
+ * Rtt(nominal) - DDR3:
+ *	0 = Rtt disabled
+ *	1 = 60 ohm
+ *	2 = 120 ohm
+ *	3 = 40 ohm
+ *	4 = 20 ohm
+ *	5 = 30 ohm
+ *
+ * FIXME: Apparently 8641 needs a value of 2
+ * FIXME: Old code seys if 667 MHz or higher, use 3 on 8572
+ *
+ * FIXME: There was some effort down this line earlier:
+ *
+ *	unsigned int i;
+ *	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL/2; i++) {
+ *		if (popts->dimmslot[i].num_valid_cs
+ *		    && (popts->cs_local_opts[2*i].odt_rd_cfg
+ *			|| popts->cs_local_opts[2*i].odt_wr_cfg)) {
+ *			rtt = 2;
+ *			break;
+ *		}
+ *	}
+ */
+static inline int fsl_ddr_get_rtt(void)
+{
+	int rtt;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+	rtt = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	rtt = 3;
+#else
+	rtt = 0;
+#endif
+
+	return rtt;
+}
+
+/*
+ * compute the CAS write latency according to DDR3 spec
+ * CWL = 5 if tCK >= 2.5ns
+ *       6 if 2.5ns > tCK >= 1.875ns
+ *       7 if 1.875ns > tCK >= 1.5ns
+ *       8 if 1.5ns > tCK >= 1.25ns
+ *       9 if 1.25ns > tCK >= 1.07ns
+ *       10 if 1.07ns > tCK >= 0.935ns
+ *       11 if 0.935ns > tCK >= 0.833ns
+ *       12 if 0.833ns > tCK >= 0.75ns
+ */
+static inline unsigned int compute_cas_write_latency(void)
+{
+	unsigned int cwl;
+	const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+	if (mclk_ps >= 2500)
+		cwl = 5;
+	else if (mclk_ps >= 1875)
+		cwl = 6;
+	else if (mclk_ps >= 1500)
+		cwl = 7;
+	else if (mclk_ps >= 1250)
+		cwl = 8;
+	else if (mclk_ps >= 1070)
+		cwl = 9;
+	else if (mclk_ps >= 935)
+		cwl = 10;
+	else if (mclk_ps >= 833)
+		cwl = 11;
+	else if (mclk_ps >= 750)
+		cwl = 12;
+	else {
+		cwl = 12;
+		printf("Warning: CWL is out of range\n");
+	}
+	return cwl;
+}
+
+/* Chip Select Configuration (CSn_CONFIG) */
+static void set_csn_config(int dimm_number, int i, fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const dimm_params_t *dimm_params)
+{
+	unsigned int cs_n_en = 0; /* Chip Select enable */
+	unsigned int intlv_en = 0; /* Memory controller interleave enable */
+	unsigned int intlv_ctl = 0; /* Interleaving control */
+	unsigned int ap_n_en = 0; /* Chip select n auto-precharge enable */
+	unsigned int odt_rd_cfg = 0; /* ODT for reads configuration */
+	unsigned int odt_wr_cfg = 0; /* ODT for writes configuration */
+	unsigned int ba_bits_cs_n = 0; /* Num of bank bits for SDRAM on CSn */
+	unsigned int row_bits_cs_n = 0; /* Num of row bits for SDRAM on CSn */
+	unsigned int col_bits_cs_n = 0; /* Num of ocl bits for SDRAM on CSn */
+	int go_config = 0;
+
+	/* Compute CS_CONFIG only for existing ranks of each DIMM.  */
+	switch (i) {
+	case 0:
+		if (dimm_params[dimm_number].n_ranks > 0) {
+			go_config = 1;
+			/* These fields only available in CS0_CONFIG */
+			if (!popts->memctl_interleaving)
+				break;
+			switch (popts->memctl_interleaving_mode) {
+			case FSL_DDR_CACHE_LINE_INTERLEAVING:
+			case FSL_DDR_PAGE_INTERLEAVING:
+			case FSL_DDR_BANK_INTERLEAVING:
+			case FSL_DDR_SUPERBANK_INTERLEAVING:
+				intlv_en = popts->memctl_interleaving;
+				intlv_ctl = popts->memctl_interleaving_mode;
+				break;
+			default:
+				break;
+			}
+		}
+		break;
+	case 1:
+		if ((dimm_number == 0 && dimm_params[0].n_ranks > 1) || \
+		    (dimm_number == 1 && dimm_params[1].n_ranks > 0))
+			go_config = 1;
+		break;
+	case 2:
+		if ((dimm_number == 0 && dimm_params[0].n_ranks > 2) || \
+		   (dimm_number >= 1 && dimm_params[dimm_number].n_ranks > 0))
+			go_config = 1;
+		break;
+	case 3:
+		if ((dimm_number == 0 && dimm_params[0].n_ranks > 3) || \
+		    (dimm_number == 1 && dimm_params[1].n_ranks > 1) || \
+		    (dimm_number == 3 && dimm_params[3].n_ranks > 0))
+			go_config = 1;
+		break;
+	default:
+		break;
+	}
+	if (go_config) {
+		unsigned int n_banks_per_sdram_device;
+		cs_n_en = 1;
+		ap_n_en = popts->cs_local_opts[i].auto_precharge;
+		odt_rd_cfg = popts->cs_local_opts[i].odt_rd_cfg;
+		odt_wr_cfg = popts->cs_local_opts[i].odt_wr_cfg;
+		n_banks_per_sdram_device
+			= dimm_params[dimm_number].n_banks_per_sdram_device;
+		ba_bits_cs_n = __ilog2(n_banks_per_sdram_device) - 2;
+		row_bits_cs_n = dimm_params[dimm_number].n_row_addr - 12;
+		col_bits_cs_n = dimm_params[dimm_number].n_col_addr - 8;
+	}
+	ddr->cs[i].config = (0
+		| ((cs_n_en & 0x1) << 31)
+		| ((intlv_en & 0x3) << 29)
+		| ((intlv_ctl & 0xf) << 24)
+		| ((ap_n_en & 0x1) << 23)
+
+		/* XXX: some implementation only have 1 bit starting at left */
+		| ((odt_rd_cfg & 0x7) << 20)
+
+		/* XXX: Some implementation only have 1 bit starting at left */
+		| ((odt_wr_cfg & 0x7) << 16)
+
+		| ((ba_bits_cs_n & 0x3) << 14)
+		| ((row_bits_cs_n & 0x7) << 8)
+		| ((col_bits_cs_n & 0x7) << 0)
+		);
+	debug("FSLDDR: cs[%d]_config = 0x%08x\n", i,ddr->cs[i].config);
+}
+
+/* Chip Select Configuration 2 (CSn_CONFIG_2) */
+/* FIXME: 8572 */
+static void set_csn_config_2(int i, fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int pasr_cfg = 0;	/* Partial array self refresh config */
+
+	ddr->cs[i].config_2 = ((pasr_cfg & 7) << 24);
+	debug("FSLDDR: cs[%d]_config_2 = 0x%08x\n", i, ddr->cs[i].config_2);
+}
+
+/* -3E = 667 CL5, -25 = CL6 800, -25E = CL5 800 */
+
+#if !defined(CONFIG_SYS_FSL_DDR1)
+static inline int avoid_odt_overlap(const dimm_params_t *dimm_params)
+{
+#if CONFIG_DIMM_SLOTS_PER_CTLR == 1
+	if (dimm_params[0].n_ranks == 4)
+		return 1;
+#endif
+
+#if CONFIG_DIMM_SLOTS_PER_CTLR == 2
+	if ((dimm_params[0].n_ranks == 2) &&
+		(dimm_params[1].n_ranks == 2))
+		return 1;
+
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+	if (dimm_params[0].n_ranks == 4)
+		return 1;
+#endif
+#endif
+	return 0;
+}
+
+/*
+ * DDR SDRAM Timing Configuration 0 (TIMING_CFG_0)
+ *
+ * Avoid writing for DDR I.  The new PQ38 DDR controller
+ * dreams up non-zero default values to be backwards compatible.
+ */
+static void set_timing_cfg_0(fsl_ddr_cfg_regs_t *ddr,
+				const memctl_options_t *popts,
+				const dimm_params_t *dimm_params)
+{
+	unsigned char trwt_mclk = 0;   /* Read-to-write turnaround */
+	unsigned char twrt_mclk = 0;   /* Write-to-read turnaround */
+	/* 7.5 ns on -3E; 0 means WL - CL + BL/2 + 1 */
+	unsigned char trrt_mclk = 0;   /* Read-to-read turnaround */
+	unsigned char twwt_mclk = 0;   /* Write-to-write turnaround */
+
+	/* Active powerdown exit timing (tXARD and tXARDS). */
+	unsigned char act_pd_exit_mclk;
+	/* Precharge powerdown exit timing (tXP). */
+	unsigned char pre_pd_exit_mclk;
+	/* ODT powerdown exit timing (tAXPD). */
+	unsigned char taxpd_mclk;
+	/* Mode register set cycle time (tMRD). */
+	unsigned char tmrd_mclk;
+
+#ifdef CONFIG_SYS_FSL_DDR3
+	/*
+	 * (tXARD and tXARDS). Empirical?
+	 * The DDR3 spec has not tXARD,
+	 * we use the tXP instead of it.
+	 * tXP=max(3nCK, 7.5ns) for DDR3.
+	 * spec has not the tAXPD, we use
+	 * tAXPD=1, need design to confirm.
+	 */
+	int tXP = max((get_memory_clk_period_ps() * 3), 7500); /* unit=ps */
+	unsigned int data_rate = get_ddr_freq(0);
+	tmrd_mclk = 4;
+	/* set the turnaround time */
+
+	/*
+	 * for single quad-rank DIMM and two dual-rank DIMMs
+	 * to avoid ODT overlap
+	 */
+	if (avoid_odt_overlap(dimm_params)) {
+		twwt_mclk = 2;
+		trrt_mclk = 1;
+	}
+	/* for faster clock, need more time for data setup */
+	trwt_mclk = (data_rate/1000000 > 1800) ? 2 : 1;
+
+	if ((data_rate/1000000 > 1150) || (popts->memctl_interleaving))
+		twrt_mclk = 1;
+
+	if (popts->dynamic_power == 0) {	/* powerdown is not used */
+		act_pd_exit_mclk = 1;
+		pre_pd_exit_mclk = 1;
+		taxpd_mclk = 1;
+	} else {
+		/* act_pd_exit_mclk = tXARD, see above */
+		act_pd_exit_mclk = picos_to_mclk(tXP);
+		/* Mode register MR0[A12] is '1' - fast exit */
+		pre_pd_exit_mclk = act_pd_exit_mclk;
+		taxpd_mclk = 1;
+	}
+#else /* CONFIG_SYS_FSL_DDR2 */
+	/*
+	 * (tXARD and tXARDS). Empirical?
+	 * tXARD = 2 for DDR2
+	 * tXP=2
+	 * tAXPD=8
+	 */
+	act_pd_exit_mclk = 2;
+	pre_pd_exit_mclk = 2;
+	taxpd_mclk = 8;
+	tmrd_mclk = 2;
+#endif
+
+	if (popts->trwt_override)
+		trwt_mclk = popts->trwt;
+
+	ddr->timing_cfg_0 = (0
+		| ((trwt_mclk & 0x3) << 30)	/* RWT */
+		| ((twrt_mclk & 0x3) << 28)	/* WRT */
+		| ((trrt_mclk & 0x3) << 26)	/* RRT */
+		| ((twwt_mclk & 0x3) << 24)	/* WWT */
+		| ((act_pd_exit_mclk & 0x7) << 20)  /* ACT_PD_EXIT */
+		| ((pre_pd_exit_mclk & 0xF) << 16)  /* PRE_PD_EXIT */
+		| ((taxpd_mclk & 0xf) << 8)	/* ODT_PD_EXIT */
+		| ((tmrd_mclk & 0xf) << 0)	/* MRS_CYC */
+		);
+	debug("FSLDDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
+}
+#endif	/* defined(CONFIG_SYS_FSL_DDR2) */
+
+/* DDR SDRAM Timing Configuration 3 (TIMING_CFG_3) */
+static void set_timing_cfg_3(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm,
+			       unsigned int cas_latency)
+{
+	/* Extended precharge to activate interval (tRP) */
+	unsigned int ext_pretoact = 0;
+	/* Extended Activate to precharge interval (tRAS) */
+	unsigned int ext_acttopre = 0;
+	/* Extended activate to read/write interval (tRCD) */
+	unsigned int ext_acttorw = 0;
+	/* Extended refresh recovery time (tRFC) */
+	unsigned int ext_refrec;
+	/* Extended MCAS latency from READ cmd */
+	unsigned int ext_caslat = 0;
+	/* Extended last data to precharge interval (tWR) */
+	unsigned int ext_wrrec = 0;
+	/* Control Adjust */
+	unsigned int cntl_adj = 0;
+
+	ext_pretoact = picos_to_mclk(common_dimm->trp_ps) >> 4;
+	ext_acttopre = picos_to_mclk(common_dimm->tras_ps) >> 4;
+	ext_acttorw = picos_to_mclk(common_dimm->trcd_ps) >> 4;
+	ext_caslat = (2 * cas_latency - 1) >> 4;
+	ext_refrec = (picos_to_mclk(common_dimm->trfc_ps) - 8) >> 4;
+	/* ext_wrrec only deals with 16 clock and above, or 14 with OTF */
+	ext_wrrec = (picos_to_mclk(common_dimm->twr_ps) +
+		(popts->otf_burst_chop_en ? 2 : 0)) >> 4;
+
+	ddr->timing_cfg_3 = (0
+		| ((ext_pretoact & 0x1) << 28)
+		| ((ext_acttopre & 0x3) << 24)
+		| ((ext_acttorw & 0x1) << 22)
+		| ((ext_refrec & 0x1F) << 16)
+		| ((ext_caslat & 0x3) << 12)
+		| ((ext_wrrec & 0x1) << 8)
+		| ((cntl_adj & 0x7) << 0)
+		);
+	debug("FSLDDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3);
+}
+
+/* DDR SDRAM Timing Configuration 1 (TIMING_CFG_1) */
+static void set_timing_cfg_1(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm,
+			       unsigned int cas_latency)
+{
+	/* Precharge-to-activate interval (tRP) */
+	unsigned char pretoact_mclk;
+	/* Activate to precharge interval (tRAS) */
+	unsigned char acttopre_mclk;
+	/*  Activate to read/write interval (tRCD) */
+	unsigned char acttorw_mclk;
+	/* CASLAT */
+	unsigned char caslat_ctrl;
+	/*  Refresh recovery time (tRFC) ; trfc_low */
+	unsigned char refrec_ctrl;
+	/* Last data to precharge minimum interval (tWR) */
+	unsigned char wrrec_mclk;
+	/* Activate-to-activate interval (tRRD) */
+	unsigned char acttoact_mclk;
+	/* Last write data pair to read command issue interval (tWTR) */
+	unsigned char wrtord_mclk;
+	/* DDR_SDRAM_MODE doesn't support 9,11,13,15 */
+	static const u8 wrrec_table[] = {
+		1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 12, 12, 14, 14, 0, 0};
+
+	pretoact_mclk = picos_to_mclk(common_dimm->trp_ps);
+	acttopre_mclk = picos_to_mclk(common_dimm->tras_ps);
+	acttorw_mclk = picos_to_mclk(common_dimm->trcd_ps);
+
+	/*
+	 * Translate CAS Latency to a DDR controller field value:
+	 *
+	 *      CAS Lat DDR I   DDR II  Ctrl
+	 *      Clocks  SPD Bit SPD Bit Value
+	 *      ------- ------- ------- -----
+	 *      1.0     0               0001
+	 *      1.5     1               0010
+	 *      2.0     2       2       0011
+	 *      2.5     3               0100
+	 *      3.0     4       3       0101
+	 *      3.5     5               0110
+	 *      4.0             4       0111
+	 *      4.5                     1000
+	 *      5.0             5       1001
+	 */
+#if defined(CONFIG_SYS_FSL_DDR1)
+	caslat_ctrl = (cas_latency + 1) & 0x07;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	caslat_ctrl = 2 * cas_latency - 1;
+#else
+	/*
+	 * if the CAS latency more than 8 cycle,
+	 * we need set extend bit for it at
+	 * TIMING_CFG_3[EXT_CASLAT]
+	 */
+	caslat_ctrl = 2 * cas_latency - 1;
+#endif
+
+	refrec_ctrl = picos_to_mclk(common_dimm->trfc_ps) - 8;
+	wrrec_mclk = picos_to_mclk(common_dimm->twr_ps);
+
+	if (wrrec_mclk > 16)
+		printf("Error: WRREC doesn't support more than 16 clocks\n");
+	else
+		wrrec_mclk = wrrec_table[wrrec_mclk - 1];
+	if (popts->otf_burst_chop_en)
+		wrrec_mclk += 2;
+
+	acttoact_mclk = picos_to_mclk(common_dimm->trrd_ps);
+	/*
+	 * JEDEC has min requirement for tRRD
+	 */
+#if defined(CONFIG_SYS_FSL_DDR3)
+	if (acttoact_mclk < 4)
+		acttoact_mclk = 4;
+#endif
+	wrtord_mclk = picos_to_mclk(common_dimm->twtr_ps);
+	/*
+	 * JEDEC has some min requirements for tWTR
+	 */
+#if defined(CONFIG_SYS_FSL_DDR2)
+	if (wrtord_mclk < 2)
+		wrtord_mclk = 2;
+#elif defined(CONFIG_SYS_FSL_DDR3)
+	if (wrtord_mclk < 4)
+		wrtord_mclk = 4;
+#endif
+	if (popts->otf_burst_chop_en)
+		wrtord_mclk += 2;
+
+	ddr->timing_cfg_1 = (0
+		| ((pretoact_mclk & 0x0F) << 28)
+		| ((acttopre_mclk & 0x0F) << 24)
+		| ((acttorw_mclk & 0xF) << 20)
+		| ((caslat_ctrl & 0xF) << 16)
+		| ((refrec_ctrl & 0xF) << 12)
+		| ((wrrec_mclk & 0x0F) << 8)
+		| ((acttoact_mclk & 0x0F) << 4)
+		| ((wrtord_mclk & 0x0F) << 0)
+		);
+	debug("FSLDDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
+}
+
+/* DDR SDRAM Timing Configuration 2 (TIMING_CFG_2) */
+static void set_timing_cfg_2(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm,
+			       unsigned int cas_latency,
+			       unsigned int additive_latency)
+{
+	/* Additive latency */
+	unsigned char add_lat_mclk;
+	/* CAS-to-preamble override */
+	unsigned short cpo;
+	/* Write latency */
+	unsigned char wr_lat;
+	/*  Read to precharge (tRTP) */
+	unsigned char rd_to_pre;
+	/* Write command to write data strobe timing adjustment */
+	unsigned char wr_data_delay;
+	/* Minimum CKE pulse width (tCKE) */
+	unsigned char cke_pls;
+	/* Window for four activates (tFAW) */
+	unsigned short four_act;
+
+	/* FIXME add check that this must be less than acttorw_mclk */
+	add_lat_mclk = additive_latency;
+	cpo = popts->cpo_override;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+	/*
+	 * This is a lie.  It should really be 1, but if it is
+	 * set to 1, bits overlap into the old controller's
+	 * otherwise unused ACSM field.  If we leave it 0, then
+	 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
+	 */
+	wr_lat = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	wr_lat = cas_latency - 1;
+#else
+	wr_lat = compute_cas_write_latency();
+#endif
+
+	rd_to_pre = picos_to_mclk(common_dimm->trtp_ps);
+	/*
+	 * JEDEC has some min requirements for tRTP
+	 */
+#if defined(CONFIG_SYS_FSL_DDR2)
+	if (rd_to_pre  < 2)
+		rd_to_pre  = 2;
+#elif defined(CONFIG_SYS_FSL_DDR3)
+	if (rd_to_pre < 4)
+		rd_to_pre = 4;
+#endif
+	if (additive_latency)
+		rd_to_pre += additive_latency;
+	if (popts->otf_burst_chop_en)
+		rd_to_pre += 2; /* according to UM */
+
+	wr_data_delay = popts->write_data_delay;
+	cke_pls = picos_to_mclk(popts->tcke_clock_pulse_width_ps);
+	four_act = picos_to_mclk(popts->tfaw_window_four_activates_ps);
+
+	ddr->timing_cfg_2 = (0
+		| ((add_lat_mclk & 0xf) << 28)
+		| ((cpo & 0x1f) << 23)
+		| ((wr_lat & 0xf) << 19)
+		| ((rd_to_pre & RD_TO_PRE_MASK) << RD_TO_PRE_SHIFT)
+		| ((wr_data_delay & WR_DATA_DELAY_MASK) << WR_DATA_DELAY_SHIFT)
+		| ((cke_pls & 0x7) << 6)
+		| ((four_act & 0x3f) << 0)
+		);
+	debug("FSLDDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
+}
+
+/* DDR SDRAM Register Control Word */
+static void set_ddr_sdram_rcw(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm)
+{
+	if (common_dimm->all_dimms_registered &&
+	    !common_dimm->all_dimms_unbuffered)	{
+		if (popts->rcw_override) {
+			ddr->ddr_sdram_rcw_1 = popts->rcw_1;
+			ddr->ddr_sdram_rcw_2 = popts->rcw_2;
+		} else {
+			ddr->ddr_sdram_rcw_1 =
+				common_dimm->rcw[0] << 28 | \
+				common_dimm->rcw[1] << 24 | \
+				common_dimm->rcw[2] << 20 | \
+				common_dimm->rcw[3] << 16 | \
+				common_dimm->rcw[4] << 12 | \
+				common_dimm->rcw[5] << 8 | \
+				common_dimm->rcw[6] << 4 | \
+				common_dimm->rcw[7];
+			ddr->ddr_sdram_rcw_2 =
+				common_dimm->rcw[8] << 28 | \
+				common_dimm->rcw[9] << 24 | \
+				common_dimm->rcw[10] << 20 | \
+				common_dimm->rcw[11] << 16 | \
+				common_dimm->rcw[12] << 12 | \
+				common_dimm->rcw[13] << 8 | \
+				common_dimm->rcw[14] << 4 | \
+				common_dimm->rcw[15];
+		}
+		debug("FSLDDR: ddr_sdram_rcw_1 = 0x%08x\n", ddr->ddr_sdram_rcw_1);
+		debug("FSLDDR: ddr_sdram_rcw_2 = 0x%08x\n", ddr->ddr_sdram_rcw_2);
+	}
+}
+
+/* DDR SDRAM control configuration (DDR_SDRAM_CFG) */
+static void set_ddr_sdram_cfg(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm)
+{
+	unsigned int mem_en;		/* DDR SDRAM interface logic enable */
+	unsigned int sren;		/* Self refresh enable (during sleep) */
+	unsigned int ecc_en;		/* ECC enable. */
+	unsigned int rd_en;		/* Registered DIMM enable */
+	unsigned int sdram_type;	/* Type of SDRAM */
+	unsigned int dyn_pwr;		/* Dynamic power management mode */
+	unsigned int dbw;		/* DRAM dta bus width */
+	unsigned int eight_be = 0;	/* 8-beat burst enable, DDR2 is zero */
+	unsigned int ncap = 0;		/* Non-concurrent auto-precharge */
+	unsigned int threet_en;		/* Enable 3T timing */
+	unsigned int twot_en;		/* Enable 2T timing */
+	unsigned int ba_intlv_ctl;	/* Bank (CS) interleaving control */
+	unsigned int x32_en = 0;	/* x32 enable */
+	unsigned int pchb8 = 0;		/* precharge bit 8 enable */
+	unsigned int hse;		/* Global half strength override */
+	unsigned int mem_halt = 0;	/* memory controller halt */
+	unsigned int bi = 0;		/* Bypass initialization */
+
+	mem_en = 1;
+	sren = popts->self_refresh_in_sleep;
+	if (common_dimm->all_dimms_ecc_capable) {
+		/* Allow setting of ECC only if all DIMMs are ECC. */
+		ecc_en = popts->ecc_mode;
+	} else {
+		ecc_en = 0;
+	}
+
+	if (common_dimm->all_dimms_registered &&
+	    !common_dimm->all_dimms_unbuffered)	{
+		rd_en = 1;
+		twot_en = 0;
+	} else {
+		rd_en = 0;
+		twot_en = popts->twot_en;
+	}
+
+	sdram_type = CONFIG_FSL_SDRAM_TYPE;
+
+	dyn_pwr = popts->dynamic_power;
+	dbw = popts->data_bus_width;
+	/* 8-beat burst enable DDR-III case
+	 * we must clear it when use the on-the-fly mode,
+	 * must set it when use the 32-bits bus mode.
+	 */
+	if (sdram_type == SDRAM_TYPE_DDR3) {
+		if (popts->burst_length == DDR_BL8)
+			eight_be = 1;
+		if (popts->burst_length == DDR_OTF)
+			eight_be = 0;
+		if (dbw == 0x1)
+			eight_be = 1;
+	}
+
+	threet_en = popts->threet_en;
+	ba_intlv_ctl = popts->ba_intlv_ctl;
+	hse = popts->half_strength_driver_enable;
+
+	ddr->ddr_sdram_cfg = (0
+			| ((mem_en & 0x1) << 31)
+			| ((sren & 0x1) << 30)
+			| ((ecc_en & 0x1) << 29)
+			| ((rd_en & 0x1) << 28)
+			| ((sdram_type & 0x7) << 24)
+			| ((dyn_pwr & 0x1) << 21)
+			| ((dbw & 0x3) << 19)
+			| ((eight_be & 0x1) << 18)
+			| ((ncap & 0x1) << 17)
+			| ((threet_en & 0x1) << 16)
+			| ((twot_en & 0x1) << 15)
+			| ((ba_intlv_ctl & 0x7F) << 8)
+			| ((x32_en & 0x1) << 5)
+			| ((pchb8 & 0x1) << 4)
+			| ((hse & 0x1) << 3)
+			| ((mem_halt & 0x1) << 1)
+			| ((bi & 0x1) << 0)
+			);
+	debug("FSLDDR: ddr_sdram_cfg = 0x%08x\n", ddr->ddr_sdram_cfg);
+}
+
+/* DDR SDRAM control configuration 2 (DDR_SDRAM_CFG_2) */
+static void set_ddr_sdram_cfg_2(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const unsigned int unq_mrs_en)
+{
+	unsigned int frc_sr = 0;	/* Force self refresh */
+	unsigned int sr_ie = 0;		/* Self-refresh interrupt enable */
+	unsigned int dll_rst_dis;	/* DLL reset disable */
+	unsigned int dqs_cfg;		/* DQS configuration */
+	unsigned int odt_cfg = 0;	/* ODT configuration */
+	unsigned int num_pr;		/* Number of posted refreshes */
+	unsigned int slow = 0;		/* DDR will be run less than 1250 */
+	unsigned int x4_en = 0;		/* x4 DRAM enable */
+	unsigned int obc_cfg;		/* On-The-Fly Burst Chop Cfg */
+	unsigned int ap_en;		/* Address Parity Enable */
+	unsigned int d_init;		/* DRAM data initialization */
+	unsigned int rcw_en = 0;	/* Register Control Word Enable */
+	unsigned int md_en = 0;		/* Mirrored DIMM Enable */
+	unsigned int qd_en = 0;		/* quad-rank DIMM Enable */
+	int i;
+
+	dll_rst_dis = 1;	/* Make this configurable */
+	dqs_cfg = popts->dqs_config;
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (popts->cs_local_opts[i].odt_rd_cfg
+			|| popts->cs_local_opts[i].odt_wr_cfg) {
+			odt_cfg = SDRAM_CFG2_ODT_ONLY_READ;
+			break;
+		}
+	}
+
+	num_pr = 1;	/* Make this configurable */
+
+	/*
+	 * 8572 manual says
+	 *     {TIMING_CFG_1[PRETOACT]
+	 *      + [DDR_SDRAM_CFG_2[NUM_PR]
+	 *        * ({EXT_REFREC || REFREC} + 8 + 2)]}
+	 *      << DDR_SDRAM_INTERVAL[REFINT]
+	 */
+#if defined(CONFIG_SYS_FSL_DDR3)
+	obc_cfg = popts->otf_burst_chop_en;
+#else
+	obc_cfg = 0;
+#endif
+
+#if (CONFIG_SYS_FSL_DDR_VER >= FSL_DDR_VER_4_7)
+	slow = get_ddr_freq(0) < 1249000000;
+#endif
+
+	if (popts->registered_dimm_en) {
+		rcw_en = 1;
+		ap_en = popts->ap_en;
+	} else {
+		ap_en = 0;
+	}
+
+	x4_en = popts->x4_en ? 1 : 0;
+
+#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+	/* Use the DDR controller to auto initialize memory. */
+	d_init = popts->ecc_init_using_memctl;
+	ddr->ddr_data_init = CONFIG_MEM_INIT_VALUE;
+	debug("DDR: ddr_data_init = 0x%08x\n", ddr->ddr_data_init);
+#else
+	/* Memory will be initialized via DMA, or not at all. */
+	d_init = 0;
+#endif
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+	md_en = popts->mirrored_dimm;
+#endif
+	qd_en = popts->quad_rank_present ? 1 : 0;
+	ddr->ddr_sdram_cfg_2 = (0
+		| ((frc_sr & 0x1) << 31)
+		| ((sr_ie & 0x1) << 30)
+		| ((dll_rst_dis & 0x1) << 29)
+		| ((dqs_cfg & 0x3) << 26)
+		| ((odt_cfg & 0x3) << 21)
+		| ((num_pr & 0xf) << 12)
+		| ((slow & 1) << 11)
+		| (x4_en << 10)
+		| (qd_en << 9)
+		| (unq_mrs_en << 8)
+		| ((obc_cfg & 0x1) << 6)
+		| ((ap_en & 0x1) << 5)
+		| ((d_init & 0x1) << 4)
+		| ((rcw_en & 0x1) << 2)
+		| ((md_en & 0x1) << 0)
+		);
+	debug("FSLDDR: ddr_sdram_cfg_2 = 0x%08x\n", ddr->ddr_sdram_cfg_2);
+}
+
+/* DDR SDRAM Mode configuration 2 (DDR_SDRAM_MODE_2) */
+static void set_ddr_sdram_mode_2(fsl_ddr_cfg_regs_t *ddr,
+				const memctl_options_t *popts,
+				const common_timing_params_t *common_dimm,
+				const unsigned int unq_mrs_en)
+{
+	unsigned short esdmode2 = 0;	/* Extended SDRAM mode 2 */
+	unsigned short esdmode3 = 0;	/* Extended SDRAM mode 3 */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+	int i;
+	unsigned int rtt_wr = 0;	/* Rtt_WR - dynamic ODT off */
+	unsigned int srt = 0;	/* self-refresh temerature, normal range */
+	unsigned int asr = 0;	/* auto self-refresh disable */
+	unsigned int cwl = compute_cas_write_latency() - 5;
+	unsigned int pasr = 0;	/* partial array self refresh disable */
+
+	if (popts->rtt_override)
+		rtt_wr = popts->rtt_wr_override_value;
+	else
+		rtt_wr = popts->cs_local_opts[0].odt_rtt_wr;
+
+	if (common_dimm->extended_op_srt)
+		srt = common_dimm->extended_op_srt;
+
+	esdmode2 = (0
+		| ((rtt_wr & 0x3) << 9)
+		| ((srt & 0x1) << 7)
+		| ((asr & 0x1) << 6)
+		| ((cwl & 0x7) << 3)
+		| ((pasr & 0x7) << 0));
+#endif
+	ddr->ddr_sdram_mode_2 = (0
+				 | ((esdmode2 & 0xFFFF) << 16)
+				 | ((esdmode3 & 0xFFFF) << 0)
+				 );
+	debug("FSLDDR: ddr_sdram_mode_2 = 0x%08x\n", ddr->ddr_sdram_mode_2);
+
+#ifdef CONFIG_SYS_FSL_DDR3
+	if (unq_mrs_en) {	/* unique mode registers are supported */
+		for (i = 1; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+			if (popts->rtt_override)
+				rtt_wr = popts->rtt_wr_override_value;
+			else
+				rtt_wr = popts->cs_local_opts[i].odt_rtt_wr;
+
+			esdmode2 &= 0xF9FF;	/* clear bit 10, 9 */
+			esdmode2 |= (rtt_wr & 0x3) << 9;
+			switch (i) {
+			case 1:
+				ddr->ddr_sdram_mode_4 = (0
+					| ((esdmode2 & 0xFFFF) << 16)
+					| ((esdmode3 & 0xFFFF) << 0)
+					);
+				break;
+			case 2:
+				ddr->ddr_sdram_mode_6 = (0
+					| ((esdmode2 & 0xFFFF) << 16)
+					| ((esdmode3 & 0xFFFF) << 0)
+					);
+				break;
+			case 3:
+				ddr->ddr_sdram_mode_8 = (0
+					| ((esdmode2 & 0xFFFF) << 16)
+					| ((esdmode3 & 0xFFFF) << 0)
+					);
+				break;
+			}
+		}
+		debug("FSLDDR: ddr_sdram_mode_4 = 0x%08x\n",
+			ddr->ddr_sdram_mode_4);
+		debug("FSLDDR: ddr_sdram_mode_6 = 0x%08x\n",
+			ddr->ddr_sdram_mode_6);
+		debug("FSLDDR: ddr_sdram_mode_8 = 0x%08x\n",
+			ddr->ddr_sdram_mode_8);
+	}
+#endif
+}
+
+/* DDR SDRAM Interval Configuration (DDR_SDRAM_INTERVAL) */
+static void set_ddr_sdram_interval(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm)
+{
+	unsigned int refint;	/* Refresh interval */
+	unsigned int bstopre;	/* Precharge interval */
+
+	refint = picos_to_mclk(common_dimm->refresh_rate_ps);
+
+	bstopre = popts->bstopre;
+
+	/* refint field used 0x3FFF in earlier controllers */
+	ddr->ddr_sdram_interval = (0
+				   | ((refint & 0xFFFF) << 16)
+				   | ((bstopre & 0x3FFF) << 0)
+				   );
+	debug("FSLDDR: ddr_sdram_interval = 0x%08x\n", ddr->ddr_sdram_interval);
+}
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm,
+			       unsigned int cas_latency,
+			       unsigned int additive_latency,
+			       const unsigned int unq_mrs_en)
+{
+	unsigned short esdmode;		/* Extended SDRAM mode */
+	unsigned short sdmode;		/* SDRAM mode */
+
+	/* Mode Register - MR1 */
+	unsigned int qoff = 0;		/* Output buffer enable 0=yes, 1=no */
+	unsigned int tdqs_en = 0;	/* TDQS Enable: 0=no, 1=yes */
+	unsigned int rtt;
+	unsigned int wrlvl_en = 0;	/* Write level enable: 0=no, 1=yes */
+	unsigned int al = 0;		/* Posted CAS# additive latency (AL) */
+	unsigned int dic = 0;		/* Output driver impedance, 40ohm */
+	unsigned int dll_en = 0;	/* DLL Enable  0=Enable (Normal),
+						       1=Disable (Test/Debug) */
+
+	/* Mode Register - MR0 */
+	unsigned int dll_on;	/* DLL control for precharge PD, 0=off, 1=on */
+	unsigned int wr = 0;	/* Write Recovery */
+	unsigned int dll_rst;	/* DLL Reset */
+	unsigned int mode;	/* Normal=0 or Test=1 */
+	unsigned int caslat = 4;/* CAS# latency, default set as 6 cycles */
+	/* BT: Burst Type (0=Nibble Sequential, 1=Interleaved) */
+	unsigned int bt;
+	unsigned int bl;	/* BL: Burst Length */
+
+	unsigned int wr_mclk;
+	/*
+	 * DDR_SDRAM_MODE doesn't support 9,11,13,15
+	 * Please refer JEDEC Standard No. 79-3E for Mode Register MR0
+	 * for this table
+	 */
+	static const u8 wr_table[] = {1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
+
+	const unsigned int mclk_ps = get_memory_clk_period_ps();
+	int i;
+
+	if (popts->rtt_override)
+		rtt = popts->rtt_override_value;
+	else
+		rtt = popts->cs_local_opts[0].odt_rtt_norm;
+
+	if (additive_latency == (cas_latency - 1))
+		al = 1;
+	if (additive_latency == (cas_latency - 2))
+		al = 2;
+
+	if (popts->quad_rank_present)
+		dic = 1;	/* output driver impedance 240/7 ohm */
+
+	/*
+	 * The esdmode value will also be used for writing
+	 * MR1 during write leveling for DDR3, although the
+	 * bits specifically related to the write leveling
+	 * scheme will be handled automatically by the DDR
+	 * controller. so we set the wrlvl_en = 0 here.
+	 */
+	esdmode = (0
+		| ((qoff & 0x1) << 12)
+		| ((tdqs_en & 0x1) << 11)
+		| ((rtt & 0x4) << 7)   /* rtt field is split */
+		| ((wrlvl_en & 0x1) << 7)
+		| ((rtt & 0x2) << 5)   /* rtt field is split */
+		| ((dic & 0x2) << 4)   /* DIC field is split */
+		| ((al & 0x3) << 3)
+		| ((rtt & 0x1) << 2)  /* rtt field is split */
+		| ((dic & 0x1) << 1)   /* DIC field is split */
+		| ((dll_en & 0x1) << 0)
+		);
+
+	/*
+	 * DLL control for precharge PD
+	 * 0=slow exit DLL off (tXPDLL)
+	 * 1=fast exit DLL on (tXP)
+	 */
+	dll_on = 1;
+
+	wr_mclk = (common_dimm->twr_ps + mclk_ps - 1) / mclk_ps;
+	if (wr_mclk <= 16) {
+		wr = wr_table[wr_mclk - 5];
+	} else {
+		printf("Error: unsupported write recovery for mode register "
+		       "wr_mclk = %d\n", wr_mclk);
+	}
+
+	dll_rst = 0;	/* dll no reset */
+	mode = 0;	/* normal mode */
+
+	/* look up table to get the cas latency bits */
+	if (cas_latency >= 5 && cas_latency <= 16) {
+		unsigned char cas_latency_table[] = {
+			0x2,	/* 5 clocks */
+			0x4,	/* 6 clocks */
+			0x6,	/* 7 clocks */
+			0x8,	/* 8 clocks */
+			0xa,	/* 9 clocks */
+			0xc,	/* 10 clocks */
+			0xe,	/* 11 clocks */
+			0x1,	/* 12 clocks */
+			0x3,	/* 13 clocks */
+			0x5,	/* 14 clocks */
+			0x7,	/* 15 clocks */
+			0x9,	/* 16 clocks */
+		};
+		caslat = cas_latency_table[cas_latency - 5];
+	} else {
+		printf("Error: unsupported cas latency for mode register\n");
+	}
+
+	bt = 0;	/* Nibble sequential */
+
+	switch (popts->burst_length) {
+	case DDR_BL8:
+		bl = 0;
+		break;
+	case DDR_OTF:
+		bl = 1;
+		break;
+	case DDR_BC4:
+		bl = 2;
+		break;
+	default:
+		printf("Error: invalid burst length of %u specified. "
+			" Defaulting to on-the-fly BC4 or BL8 beats.\n",
+			popts->burst_length);
+		bl = 1;
+		break;
+	}
+
+	sdmode = (0
+		  | ((dll_on & 0x1) << 12)
+		  | ((wr & 0x7) << 9)
+		  | ((dll_rst & 0x1) << 8)
+		  | ((mode & 0x1) << 7)
+		  | (((caslat >> 1) & 0x7) << 4)
+		  | ((bt & 0x1) << 3)
+		  | ((caslat & 1) << 2)
+		  | ((bl & 0x3) << 0)
+		  );
+
+	ddr->ddr_sdram_mode = (0
+			       | ((esdmode & 0xFFFF) << 16)
+			       | ((sdmode & 0xFFFF) << 0)
+			       );
+
+	debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+
+	if (unq_mrs_en) {	/* unique mode registers are supported */
+		for (i = 1; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+			if (popts->rtt_override)
+				rtt = popts->rtt_override_value;
+			else
+				rtt = popts->cs_local_opts[i].odt_rtt_norm;
+
+			esdmode &= 0xFDBB;	/* clear bit 9,6,2 */
+			esdmode |= (0
+				| ((rtt & 0x4) << 7)   /* rtt field is split */
+				| ((rtt & 0x2) << 5)   /* rtt field is split */
+				| ((rtt & 0x1) << 2)  /* rtt field is split */
+				);
+			switch (i) {
+			case 1:
+				ddr->ddr_sdram_mode_3 = (0
+				       | ((esdmode & 0xFFFF) << 16)
+				       | ((sdmode & 0xFFFF) << 0)
+				       );
+				break;
+			case 2:
+				ddr->ddr_sdram_mode_5 = (0
+				       | ((esdmode & 0xFFFF) << 16)
+				       | ((sdmode & 0xFFFF) << 0)
+				       );
+				break;
+			case 3:
+				ddr->ddr_sdram_mode_7 = (0
+				       | ((esdmode & 0xFFFF) << 16)
+				       | ((sdmode & 0xFFFF) << 0)
+				       );
+				break;
+			}
+		}
+		debug("FSLDDR: ddr_sdram_mode_3 = 0x%08x\n",
+			ddr->ddr_sdram_mode_3);
+		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+			ddr->ddr_sdram_mode_5);
+		debug("FSLDDR: ddr_sdram_mode_5 = 0x%08x\n",
+			ddr->ddr_sdram_mode_5);
+	}
+}
+
+#else /* !CONFIG_SYS_FSL_DDR3 */
+
+/* DDR SDRAM Mode configuration set (DDR_SDRAM_MODE) */
+static void set_ddr_sdram_mode(fsl_ddr_cfg_regs_t *ddr,
+			       const memctl_options_t *popts,
+			       const common_timing_params_t *common_dimm,
+			       unsigned int cas_latency,
+			       unsigned int additive_latency,
+			       const unsigned int unq_mrs_en)
+{
+	unsigned short esdmode;		/* Extended SDRAM mode */
+	unsigned short sdmode;		/* SDRAM mode */
+
+	/*
+	 * FIXME: This ought to be pre-calculated in a
+	 * technology-specific routine,
+	 * e.g. compute_DDR2_mode_register(), and then the
+	 * sdmode and esdmode passed in as part of common_dimm.
+	 */
+
+	/* Extended Mode Register */
+	unsigned int mrs = 0;		/* Mode Register Set */
+	unsigned int outputs = 0;	/* 0=Enabled, 1=Disabled */
+	unsigned int rdqs_en = 0;	/* RDQS Enable: 0=no, 1=yes */
+	unsigned int dqs_en = 0;	/* DQS# Enable: 0=enable, 1=disable */
+	unsigned int ocd = 0;		/* 0x0=OCD not supported,
+					   0x7=OCD default state */
+	unsigned int rtt;
+	unsigned int al;		/* Posted CAS# additive latency (AL) */
+	unsigned int ods = 0;		/* Output Drive Strength:
+						0 = Full strength (18ohm)
+						1 = Reduced strength (4ohm) */
+	unsigned int dll_en = 0;	/* DLL Enable  0=Enable (Normal),
+						       1=Disable (Test/Debug) */
+
+	/* Mode Register (MR) */
+	unsigned int mr;	/* Mode Register Definition */
+	unsigned int pd;	/* Power-Down Mode */
+	unsigned int wr;	/* Write Recovery */
+	unsigned int dll_res;	/* DLL Reset */
+	unsigned int mode;	/* Normal=0 or Test=1 */
+	unsigned int caslat = 0;/* CAS# latency */
+	/* BT: Burst Type (0=Sequential, 1=Interleaved) */
+	unsigned int bt;
+	unsigned int bl;	/* BL: Burst Length */
+
+#if defined(CONFIG_SYS_FSL_DDR2)
+	const unsigned int mclk_ps = get_memory_clk_period_ps();
+#endif
+	dqs_en = !popts->dqs_config;
+	rtt = fsl_ddr_get_rtt();
+
+	al = additive_latency;
+
+	esdmode = (0
+		| ((mrs & 0x3) << 14)
+		| ((outputs & 0x1) << 12)
+		| ((rdqs_en & 0x1) << 11)
+		| ((dqs_en & 0x1) << 10)
+		| ((ocd & 0x7) << 7)
+		| ((rtt & 0x2) << 5)   /* rtt field is split */
+		| ((al & 0x7) << 3)
+		| ((rtt & 0x1) << 2)   /* rtt field is split */
+		| ((ods & 0x1) << 1)
+		| ((dll_en & 0x1) << 0)
+		);
+
+	mr = 0;		 /* FIXME: CHECKME */
+
+	/*
+	 * 0 = Fast Exit (Normal)
+	 * 1 = Slow Exit (Low Power)
+	 */
+	pd = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+	wr = 0;       /* Historical */
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	wr = (common_dimm->twr_ps + mclk_ps - 1) / mclk_ps - 1;
+#endif
+	dll_res = 0;
+	mode = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR1)
+	if (1 <= cas_latency && cas_latency <= 4) {
+		unsigned char mode_caslat_table[4] = {
+			0x5,	/* 1.5 clocks */
+			0x2,	/* 2.0 clocks */
+			0x6,	/* 2.5 clocks */
+			0x3	/* 3.0 clocks */
+		};
+		caslat = mode_caslat_table[cas_latency - 1];
+	} else {
+		printf("Warning: unknown cas_latency %d\n", cas_latency);
+	}
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	caslat = cas_latency;
+#endif
+	bt = 0;
+
+	switch (popts->burst_length) {
+	case DDR_BL4:
+		bl = 2;
+		break;
+	case DDR_BL8:
+		bl = 3;
+		break;
+	default:
+		printf("Error: invalid burst length of %u specified. "
+			" Defaulting to 4 beats.\n",
+			popts->burst_length);
+		bl = 2;
+		break;
+	}
+
+	sdmode = (0
+		  | ((mr & 0x3) << 14)
+		  | ((pd & 0x1) << 12)
+		  | ((wr & 0x7) << 9)
+		  | ((dll_res & 0x1) << 8)
+		  | ((mode & 0x1) << 7)
+		  | ((caslat & 0x7) << 4)
+		  | ((bt & 0x1) << 3)
+		  | ((bl & 0x7) << 0)
+		  );
+
+	ddr->ddr_sdram_mode = (0
+			       | ((esdmode & 0xFFFF) << 16)
+			       | ((sdmode & 0xFFFF) << 0)
+			       );
+	debug("FSLDDR: ddr_sdram_mode = 0x%08x\n", ddr->ddr_sdram_mode);
+}
+#endif
+
+/* DDR SDRAM Data Initialization (DDR_DATA_INIT) */
+static void set_ddr_data_init(fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int init_value;	/* Initialization value */
+
+#ifdef CONFIG_MEM_INIT_VALUE
+	init_value = CONFIG_MEM_INIT_VALUE;
+#else
+	init_value = 0xDEADBEEF;
+#endif
+	ddr->ddr_data_init = init_value;
+}
+
+/*
+ * DDR SDRAM Clock Control (DDR_SDRAM_CLK_CNTL)
+ * The old controller on the 8540/60 doesn't have this register.
+ * Hope it's OK to set it (to 0) anyway.
+ */
+static void set_ddr_sdram_clk_cntl(fsl_ddr_cfg_regs_t *ddr,
+					 const memctl_options_t *popts)
+{
+	unsigned int clk_adjust;	/* Clock adjust */
+
+	clk_adjust = popts->clk_adjust;
+	ddr->ddr_sdram_clk_cntl = (clk_adjust & 0xF) << 23;
+	debug("FSLDDR: clk_cntl = 0x%08x\n", ddr->ddr_sdram_clk_cntl);
+}
+
+/* DDR Initialization Address (DDR_INIT_ADDR) */
+static void set_ddr_init_addr(fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int init_addr = 0;	/* Initialization address */
+
+	ddr->ddr_init_addr = init_addr;
+}
+
+/* DDR Initialization Address (DDR_INIT_EXT_ADDR) */
+static void set_ddr_init_ext_addr(fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int uia = 0;	/* Use initialization address */
+	unsigned int init_ext_addr = 0;	/* Initialization address */
+
+	ddr->ddr_init_ext_addr = (0
+				  | ((uia & 0x1) << 31)
+				  | (init_ext_addr & 0xF)
+				  );
+}
+
+/* DDR SDRAM Timing Configuration 4 (TIMING_CFG_4) */
+static void set_timing_cfg_4(fsl_ddr_cfg_regs_t *ddr,
+				const memctl_options_t *popts)
+{
+	unsigned int rwt = 0; /* Read-to-write turnaround for same CS */
+	unsigned int wrt = 0; /* Write-to-read turnaround for same CS */
+	unsigned int rrt = 0; /* Read-to-read turnaround for same CS */
+	unsigned int wwt = 0; /* Write-to-write turnaround for same CS */
+	unsigned int dll_lock = 0; /* DDR SDRAM DLL Lock Time */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+	if (popts->burst_length == DDR_BL8) {
+		/* We set BL/2 for fixed BL8 */
+		rrt = 0;	/* BL/2 clocks */
+		wwt = 0;	/* BL/2 clocks */
+	} else {
+		/* We need to set BL/2 + 2 to BC4 and OTF */
+		rrt = 2;	/* BL/2 + 2 clocks */
+		wwt = 2;	/* BL/2 + 2 clocks */
+	}
+	dll_lock = 1;	/* tDLLK = 512 clocks from spec */
+#endif
+	ddr->timing_cfg_4 = (0
+			     | ((rwt & 0xf) << 28)
+			     | ((wrt & 0xf) << 24)
+			     | ((rrt & 0xf) << 20)
+			     | ((wwt & 0xf) << 16)
+			     | (dll_lock & 0x3)
+			     );
+	debug("FSLDDR: timing_cfg_4 = 0x%08x\n", ddr->timing_cfg_4);
+}
+
+/* DDR SDRAM Timing Configuration 5 (TIMING_CFG_5) */
+static void set_timing_cfg_5(fsl_ddr_cfg_regs_t *ddr, unsigned int cas_latency)
+{
+	unsigned int rodt_on = 0;	/* Read to ODT on */
+	unsigned int rodt_off = 0;	/* Read to ODT off */
+	unsigned int wodt_on = 0;	/* Write to ODT on */
+	unsigned int wodt_off = 0;	/* Write to ODT off */
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+	/* rodt_on = timing_cfg_1[caslat] - timing_cfg_2[wrlat] + 1 */
+	rodt_on = cas_latency - ((ddr->timing_cfg_2 & 0x00780000) >> 19) + 1;
+	rodt_off = 4;	/*  4 clocks */
+	wodt_on = 1;	/*  1 clocks */
+	wodt_off = 4;	/*  4 clocks */
+#endif
+
+	ddr->timing_cfg_5 = (0
+			     | ((rodt_on & 0x1f) << 24)
+			     | ((rodt_off & 0x7) << 20)
+			     | ((wodt_on & 0x1f) << 12)
+			     | ((wodt_off & 0x7) << 8)
+			     );
+	debug("FSLDDR: timing_cfg_5 = 0x%08x\n", ddr->timing_cfg_5);
+}
+
+/* DDR ZQ Calibration Control (DDR_ZQ_CNTL) */
+static void set_ddr_zq_cntl(fsl_ddr_cfg_regs_t *ddr, unsigned int zq_en)
+{
+	unsigned int zqinit = 0;/* POR ZQ Calibration Time (tZQinit) */
+	/* Normal Operation Full Calibration Time (tZQoper) */
+	unsigned int zqoper = 0;
+	/* Normal Operation Short Calibration Time (tZQCS) */
+	unsigned int zqcs = 0;
+
+	if (zq_en) {
+		zqinit = 9;	/* 512 clocks */
+		zqoper = 8;	/* 256 clocks */
+		zqcs = 6;	/* 64 clocks */
+	}
+
+	ddr->ddr_zq_cntl = (0
+			    | ((zq_en & 0x1) << 31)
+			    | ((zqinit & 0xF) << 24)
+			    | ((zqoper & 0xF) << 16)
+			    | ((zqcs & 0xF) << 8)
+			    );
+	debug("FSLDDR: zq_cntl = 0x%08x\n", ddr->ddr_zq_cntl);
+}
+
+/* DDR Write Leveling Control (DDR_WRLVL_CNTL) */
+static void set_ddr_wrlvl_cntl(fsl_ddr_cfg_regs_t *ddr, unsigned int wrlvl_en,
+				const memctl_options_t *popts)
+{
+	/*
+	 * First DQS pulse rising edge after margining mode
+	 * is programmed (tWL_MRD)
+	 */
+	unsigned int wrlvl_mrd = 0;
+	/* ODT delay after margining mode is programmed (tWL_ODTEN) */
+	unsigned int wrlvl_odten = 0;
+	/* DQS/DQS_ delay after margining mode is programmed (tWL_DQSEN) */
+	unsigned int wrlvl_dqsen = 0;
+	/* WRLVL_SMPL: Write leveling sample time */
+	unsigned int wrlvl_smpl = 0;
+	/* WRLVL_WLR: Write leveling repeition time */
+	unsigned int wrlvl_wlr = 0;
+	/* WRLVL_START: Write leveling start time */
+	unsigned int wrlvl_start = 0;
+
+	/* suggest enable write leveling for DDR3 due to fly-by topology */
+	if (wrlvl_en) {
+		/* tWL_MRD min = 40 nCK, we set it 64 */
+		wrlvl_mrd = 0x6;
+		/* tWL_ODTEN 128 */
+		wrlvl_odten = 0x7;
+		/* tWL_DQSEN min = 25 nCK, we set it 32 */
+		wrlvl_dqsen = 0x5;
+		/*
+		 * Write leveling sample time at least need 6 clocks
+		 * higher than tWLO to allow enough time for progagation
+		 * delay and sampling the prime data bits.
+		 */
+		wrlvl_smpl = 0xf;
+		/*
+		 * Write leveling repetition time
+		 * at least tWLO + 6 clocks clocks
+		 * we set it 64
+		 */
+		wrlvl_wlr = 0x6;
+		/*
+		 * Write leveling start time
+		 * The value use for the DQS_ADJUST for the first sample
+		 * when write leveling is enabled. It probably needs to be
+		 * overriden per platform.
+		 */
+		wrlvl_start = 0x8;
+		/*
+		 * Override the write leveling sample and start time
+		 * according to specific board
+		 */
+		if (popts->wrlvl_override) {
+			wrlvl_smpl = popts->wrlvl_sample;
+			wrlvl_start = popts->wrlvl_start;
+		}
+	}
+
+	ddr->ddr_wrlvl_cntl = (0
+			       | ((wrlvl_en & 0x1) << 31)
+			       | ((wrlvl_mrd & 0x7) << 24)
+			       | ((wrlvl_odten & 0x7) << 20)
+			       | ((wrlvl_dqsen & 0x7) << 16)
+			       | ((wrlvl_smpl & 0xf) << 12)
+			       | ((wrlvl_wlr & 0x7) << 8)
+			       | ((wrlvl_start & 0x1F) << 0)
+			       );
+	debug("FSLDDR: wrlvl_cntl = 0x%08x\n", ddr->ddr_wrlvl_cntl);
+	ddr->ddr_wrlvl_cntl_2 = popts->wrlvl_ctl_2;
+	debug("FSLDDR: wrlvl_cntl_2 = 0x%08x\n", ddr->ddr_wrlvl_cntl_2);
+	ddr->ddr_wrlvl_cntl_3 = popts->wrlvl_ctl_3;
+	debug("FSLDDR: wrlvl_cntl_3 = 0x%08x\n", ddr->ddr_wrlvl_cntl_3);
+
+}
+
+/* DDR Self Refresh Counter (DDR_SR_CNTR) */
+static void set_ddr_sr_cntr(fsl_ddr_cfg_regs_t *ddr, unsigned int sr_it)
+{
+	/* Self Refresh Idle Threshold */
+	ddr->ddr_sr_cntr = (sr_it & 0xF) << 16;
+}
+
+static void set_ddr_eor(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+	if (popts->addr_hash) {
+		ddr->ddr_eor = 0x40000000;	/* address hash enable */
+		puts("Address hashing enabled.\n");
+	}
+}
+
+static void set_ddr_cdr1(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+	ddr->ddr_cdr1 = popts->ddr_cdr1;
+	debug("FSLDDR: ddr_cdr1 = 0x%08x\n", ddr->ddr_cdr1);
+}
+
+static void set_ddr_cdr2(fsl_ddr_cfg_regs_t *ddr, const memctl_options_t *popts)
+{
+	ddr->ddr_cdr2 = popts->ddr_cdr2;
+	debug("FSLDDR: ddr_cdr2 = 0x%08x\n", ddr->ddr_cdr2);
+}
+
+unsigned int
+check_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int res = 0;
+
+	/*
+	 * Check that DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] are
+	 * not set at the same time.
+	 */
+	if (ddr->ddr_sdram_cfg & 0x10000000
+	    && ddr->ddr_sdram_cfg & 0x00008000) {
+		printf("Error: DDR_SDRAM_CFG[RD_EN] and DDR_SDRAM_CFG[2T_EN] "
+				" should not be set at the same time.\n");
+		res++;
+	}
+
+	return res;
+}
+
+unsigned int
+compute_fsl_memctl_config_regs(const memctl_options_t *popts,
+			       fsl_ddr_cfg_regs_t *ddr,
+			       const common_timing_params_t *common_dimm,
+			       const dimm_params_t *dimm_params,
+			       unsigned int dbw_cap_adj,
+			       unsigned int size_only)
+{
+	unsigned int i;
+	unsigned int cas_latency;
+	unsigned int additive_latency;
+	unsigned int sr_it;
+	unsigned int zq_en;
+	unsigned int wrlvl_en;
+	unsigned int ip_rev = 0;
+	unsigned int unq_mrs_en = 0;
+	int cs_en = 1;
+
+	memset(ddr, 0, sizeof(fsl_ddr_cfg_regs_t));
+
+	if (common_dimm == NULL) {
+		printf("Error: subset DIMM params struct null pointer\n");
+		return 1;
+	}
+
+	/*
+	 * Process overrides first.
+	 *
+	 * FIXME: somehow add dereated caslat to this
+	 */
+	cas_latency = (popts->cas_latency_override)
+		? popts->cas_latency_override_value
+		: common_dimm->lowest_common_SPD_caslat;
+
+	additive_latency = (popts->additive_latency_override)
+		? popts->additive_latency_override_value
+		: common_dimm->additive_latency;
+
+	sr_it = (popts->auto_self_refresh_en)
+		? popts->sr_it
+		: 0;
+	/* ZQ calibration */
+	zq_en = (popts->zq_en) ? 1 : 0;
+	/* write leveling */
+	wrlvl_en = (popts->wrlvl_en) ? 1 : 0;
+
+	/* Chip Select Memory Bounds (CSn_BNDS) */
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		unsigned long long ea, sa;
+		unsigned int cs_per_dimm
+			= CONFIG_CHIP_SELECTS_PER_CTRL / CONFIG_DIMM_SLOTS_PER_CTLR;
+		unsigned int dimm_number
+			= i / cs_per_dimm;
+		unsigned long long rank_density
+			= dimm_params[dimm_number].rank_density >> dbw_cap_adj;
+
+		if (dimm_params[dimm_number].n_ranks == 0) {
+			debug("Skipping setup of CS%u "
+				"because n_ranks on DIMM %u is 0\n", i, dimm_number);
+			continue;
+		}
+		if (popts->memctl_interleaving) {
+			switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+			case FSL_DDR_CS0_CS1_CS2_CS3:
+				break;
+			case FSL_DDR_CS0_CS1:
+			case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+				if (i > 1)
+					cs_en = 0;
+				break;
+			case FSL_DDR_CS2_CS3:
+			default:
+				if (i > 0)
+					cs_en = 0;
+				break;
+			}
+			sa = common_dimm->base_address;
+			ea = sa + common_dimm->total_mem - 1;
+		} else if (!popts->memctl_interleaving) {
+			/*
+			 * If memory interleaving between controllers is NOT
+			 * enabled, the starting address for each memory
+			 * controller is distinct.  However, because rank
+			 * interleaving is enabled, the starting and ending
+			 * addresses of the total memory on that memory
+			 * controller needs to be programmed into its
+			 * respective CS0_BNDS.
+			 */
+			switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+			case FSL_DDR_CS0_CS1_CS2_CS3:
+				sa = common_dimm->base_address;
+				ea = sa + common_dimm->total_mem - 1;
+				break;
+			case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+				if ((i >= 2) && (dimm_number == 0)) {
+					sa = dimm_params[dimm_number].base_address +
+					      2 * rank_density;
+					ea = sa + 2 * rank_density - 1;
+				} else {
+					sa = dimm_params[dimm_number].base_address;
+					ea = sa + 2 * rank_density - 1;
+				}
+				break;
+			case FSL_DDR_CS0_CS1:
+				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+					sa = dimm_params[dimm_number].base_address;
+					ea = sa + rank_density - 1;
+					if (i != 1)
+						sa += (i % cs_per_dimm) * rank_density;
+					ea += (i % cs_per_dimm) * rank_density;
+				} else {
+					sa = 0;
+					ea = 0;
+				}
+				if (i == 0)
+					ea += rank_density;
+				break;
+			case FSL_DDR_CS2_CS3:
+				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+					sa = dimm_params[dimm_number].base_address;
+					ea = sa + rank_density - 1;
+					if (i != 3)
+						sa += (i % cs_per_dimm) * rank_density;
+					ea += (i % cs_per_dimm) * rank_density;
+				} else {
+					sa = 0;
+					ea = 0;
+				}
+				if (i == 2)
+					ea += (rank_density >> dbw_cap_adj);
+				break;
+			default:  /* No bank(chip-select) interleaving */
+				sa = dimm_params[dimm_number].base_address;
+				ea = sa + rank_density - 1;
+				if (dimm_params[dimm_number].n_ranks > (i % cs_per_dimm)) {
+					sa += (i % cs_per_dimm) * rank_density;
+					ea += (i % cs_per_dimm) * rank_density;
+				} else {
+					sa = 0;
+					ea = 0;
+				}
+				break;
+			}
+		}
+
+		sa >>= 24;
+		ea >>= 24;
+
+		if (cs_en) {
+			ddr->cs[i].bnds = (0
+				| ((sa & 0xFFF) << 16)/* starting address MSB */
+				| ((ea & 0xFFF) << 0)	/* ending address MSB */
+				);
+		} else {
+			/* setting bnds to 0xffffffff for inactive CS */
+			ddr->cs[i].bnds = 0xffffffff;
+		}
+
+		debug("FSLDDR: cs[%d]_bnds = 0x%08x\n", i, ddr->cs[i].bnds);
+		set_csn_config(dimm_number, i, ddr, popts, dimm_params);
+		set_csn_config_2(i, ddr);
+	}
+
+	/*
+	 * In the case we only need to compute the ddr sdram size, we only need
+	 * to set csn registers, so return from here.
+	 */
+	if (size_only)
+		return 0;
+
+	set_ddr_eor(ddr, popts);
+
+#if !defined(CONFIG_SYS_FSL_DDR1)
+	set_timing_cfg_0(ddr, popts, dimm_params);
+#endif
+
+	set_timing_cfg_3(ddr, popts, common_dimm, cas_latency);
+	set_timing_cfg_1(ddr, popts, common_dimm, cas_latency);
+	set_timing_cfg_2(ddr, popts, common_dimm,
+				cas_latency, additive_latency);
+
+	set_ddr_cdr1(ddr, popts);
+	set_ddr_cdr2(ddr, popts);
+	set_ddr_sdram_cfg(ddr, popts, common_dimm);
+	ip_rev = fsl_ddr_get_version();
+	if (ip_rev > 0x40400)
+		unq_mrs_en = 1;
+
+	set_ddr_sdram_cfg_2(ddr, popts, unq_mrs_en);
+	set_ddr_sdram_mode(ddr, popts, common_dimm,
+				cas_latency, additive_latency, unq_mrs_en);
+	set_ddr_sdram_mode_2(ddr, popts, common_dimm, unq_mrs_en);
+	set_ddr_sdram_interval(ddr, popts, common_dimm);
+	set_ddr_data_init(ddr);
+	set_ddr_sdram_clk_cntl(ddr, popts);
+	set_ddr_init_addr(ddr);
+	set_ddr_init_ext_addr(ddr);
+	set_timing_cfg_4(ddr, popts);
+	set_timing_cfg_5(ddr, cas_latency);
+
+	set_ddr_zq_cntl(ddr, zq_en);
+	set_ddr_wrlvl_cntl(ddr, wrlvl_en, popts);
+
+	set_ddr_sr_cntr(ddr, sr_it);
+
+	set_ddr_sdram_rcw(ddr, popts, common_dimm);
+
+#ifdef CONFIG_SYS_FSL_DDR_EMU
+	/* disble DDR training for emulator */
+	ddr->debug[2] = 0x00000400;
+	ddr->debug[4] = 0xff800000;
+#endif
+	return check_fsl_memctl_config_regs(ddr);
+}
diff --git a/drivers/ddr/fsl/ddr1_dimm_params.c b/drivers/ddr/fsl/ddr1_dimm_params.c
new file mode 100644
index 0000000..7df27b9
--- /dev/null
+++ b/drivers/ddr/fsl/ddr1_dimm_params.c
@@ -0,0 +1,343 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ *		DDR I	DDR II
+ *	Bit	Size	Size
+ *	---	-----	------
+ *	7 high	512MB	512MB
+ *	6	256MB	256MB
+ *	5	128MB	128MB
+ *	4	 64MB	 16GB
+ *	3	 32MB	  8GB
+ *	2	 16MB	  4GB
+ *	1	  2GB	  2GB
+ *	0 low	  1GB	  1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ */
+
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+	unsigned long long bsize;
+
+	/* Bottom 2 bits up to the top. */
+	bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
+	bsize <<= 24ULL;
+	debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
+
+	return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II.  No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+	/* Table look up the lower nibble, allow DDR I & II. */
+	unsigned int tenths_ps[16] = {
+		0,
+		100,
+		200,
+		300,
+		400,
+		500,
+		600,
+		700,
+		800,
+		900,
+		250,	/* This and the next 3 entries valid ... */
+		330,	/* ...  only for tCK calculations. */
+		660,
+		750,
+		0,	/* undefined */
+		0	/* undefined */
+	};
+
+	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+	unsigned int tenth_ns = spd_val & 0x0F;
+	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+	return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+	unsigned int hundredth_ns = spd_val & 0x0F;
+	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+	return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+	0,
+	250,
+	330,
+	500,
+	660,
+	750,
+	0,	/* supposed to be RFC, but not sure what that means */
+	0	/* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+	unsigned int trfc_ps;
+
+	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+	return trfc_ps;
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+	unsigned int trc_ps;
+
+	trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+	return trc_ps;
+}
+
+/*
+ * tCKmax from DDR I SPD Byte 43
+ *
+ * Bits 7:2 == whole ns
+ * Bits 1:0 == quarter ns
+ *    00    == 0.00 ns
+ *    01    == 0.25 ns
+ *    10    == 0.50 ns
+ *    11    == 0.75 ns
+ *
+ * Returns picoseconds.
+ */
+static unsigned int
+compute_tckmax_from_spd_ps(unsigned int byte43)
+{
+	return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
+}
+
+/*
+ * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+	unsigned int refresh_time_ps[8] = {
+		15625000,	/* 0 Normal    1.00x */
+		3900000,	/* 1 Reduced    .25x */
+		7800000,	/* 2 Extended   .50x */
+		31300000,	/* 3 Extended  2.00x */
+		62500000,	/* 4 Extended  4.00x */
+		125000000,	/* 5 Extended  8.00x */
+		15625000,	/* 6 Normal    1.00x  filler */
+		15625000,	/* 7 Normal    1.00x  filler */
+	};
+
+	return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period.  The SPD only
+ * defines at most 3 CAS latencies.  Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can be.
+ * If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD.  This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-E
+ * Table 11.
+ *
+ * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
+ */
+				  /*   CL2.0 CL2.5 CL3.0  */
+unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
+
+unsigned int
+compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
+{
+	const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
+	unsigned int lowest_tCKmin_found = 0;
+	unsigned int lowest_tCKmin_CL = 0;
+	unsigned int i;
+
+	debug("mclk_ps = %u\n", mclk_ps);
+
+	for (i = 0; i < num_speed_bins; i++) {
+		unsigned int x = ddr1_speed_bins[i];
+		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+		      i, x, lowest_tCKmin_found);
+		if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
+			lowest_tCKmin_found = x;
+			lowest_tCKmin_CL = i + 1;
+		}
+	}
+
+	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+	return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR1 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr1_spd_eeprom_t *spd,
+			     dimm_params_t *pdimm,
+			     unsigned int dimm_number)
+{
+	unsigned int retval;
+
+	if (spd->mem_type) {
+		if (spd->mem_type != SPD_MEMTYPE_DDR) {
+			printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
+			return 1;
+		}
+	} else {
+		memset(pdimm, 0, sizeof(dimm_params_t));
+		return 1;
+	}
+
+	retval = ddr1_spd_check(spd);
+	if (retval) {
+		printf("DIMM %u: failed checksum\n", dimm_number);
+		return 2;
+	}
+
+	/*
+	 * The part name in ASCII in the SPD EEPROM is not null terminated.
+	 * Guarantee null termination here by presetting all bytes to 0
+	 * and copying the part name in ASCII from the SPD onto it
+	 */
+	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+	/* DIMM organization parameters */
+	pdimm->n_ranks = spd->nrows;
+	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
+	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+	pdimm->data_width = spd->dataw_lsb;
+	pdimm->primary_sdram_width = spd->primw;
+	pdimm->ec_sdram_width = spd->ecw;
+
+	/*
+	 * FIXME: Need to determine registered_dimm status.
+	 *     1 == register buffered
+	 *     0 == unbuffered
+	 */
+	pdimm->registered_dimm = 0;	/* unbuffered */
+
+	/* SDRAM device parameters */
+	pdimm->n_row_addr = spd->nrow_addr;
+	pdimm->n_col_addr = spd->ncol_addr;
+	pdimm->n_banks_per_sdram_device = spd->nbanks;
+	pdimm->edc_config = spd->config;
+	pdimm->burst_lengths_bitmask = spd->burstl;
+	pdimm->row_density = spd->bank_dens;
+
+	/*
+	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
+	 * nanoseconds and represented as BCD.
+	 */
+	pdimm->tckmin_x_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+	pdimm->tckmin_x_minus_1_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+	pdimm->tckmin_x_minus_2_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+	pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
+
+	/*
+	 * Compute CAS latencies defined by SPD
+	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
+	 *
+	 * If cas_lat after masking is 0, the __ilog2 function returns
+	 * 255 into the variable.   This behavior is abused once.
+	 */
+	pdimm->caslat_x  = __ilog2(spd->cas_lat);
+	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_x));
+	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_x)
+					  & ~(1 << pdimm->caslat_x_minus_1));
+
+	/* Compute CAS latencies below that defined by SPD */
+	pdimm->caslat_lowest_derated
+		= compute_derated_DDR1_CAS_latency(get_memory_clk_period_ps());
+
+	/* Compute timing parameters */
+	pdimm->trcd_ps = spd->trcd * 250;
+	pdimm->trp_ps = spd->trp * 250;
+	pdimm->tras_ps = spd->tras * 1000;
+
+	pdimm->twr_ps = mclk_to_picos(3);
+	pdimm->twtr_ps = mclk_to_picos(1);
+	pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
+
+	pdimm->trrd_ps = spd->trrd * 250;
+	pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
+
+	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+	pdimm->tds_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+	pdimm->tdh_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+	pdimm->trtp_ps = mclk_to_picos(2);	/* By the book. */
+	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+	pdimm->tqhs_ps = spd->tqhs * 10;
+
+	return 0;
+}
diff --git a/drivers/ddr/fsl/ddr2_dimm_params.c b/drivers/ddr/fsl/ddr2_dimm_params.c
new file mode 100644
index 0000000..d865df7
--- /dev/null
+++ b/drivers/ddr/fsl/ddr2_dimm_params.c
@@ -0,0 +1,342 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * Study these table from Byte 31 of JEDEC SPD Spec.
+ *
+ *		DDR I	DDR II
+ *	Bit	Size	Size
+ *	---	-----	------
+ *	7 high	512MB	512MB
+ *	6	256MB	256MB
+ *	5	128MB	128MB
+ *	4	 64MB	 16GB
+ *	3	 32MB	  8GB
+ *	2	 16MB	  4GB
+ *	1	  2GB	  2GB
+ *	0 low	  1GB	  1GB
+ *
+ * Reorder Table to be linear by stripping the bottom
+ * 2 or 5 bits off and shifting them up to the top.
+ *
+ */
+static unsigned long long
+compute_ranksize(unsigned int mem_type, unsigned char row_dens)
+{
+	unsigned long long bsize;
+
+	/* Bottom 5 bits up to the top. */
+	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
+	bsize <<= 27ULL;
+	debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
+
+	return bsize;
+}
+
+/*
+ * Convert a two-nibble BCD value into a cycle time.
+ * While the spec calls for nano-seconds, picos are returned.
+ *
+ * This implements the tables for bytes 9, 23 and 25 for both
+ * DDR I and II.  No allowance for distinguishing the invalid
+ * fields absent for DDR I yet present in DDR II is made.
+ * (That is, cycle times of .25, .33, .66 and .75 ns are
+ * allowed for both DDR II and I.)
+ */
+static unsigned int
+convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
+{
+	/* Table look up the lower nibble, allow DDR I & II. */
+	unsigned int tenths_ps[16] = {
+		0,
+		100,
+		200,
+		300,
+		400,
+		500,
+		600,
+		700,
+		800,
+		900,
+		250,	/* This and the next 3 entries valid ... */
+		330,	/* ...  only for tCK calculations. */
+		660,
+		750,
+		0,	/* undefined */
+		0	/* undefined */
+	};
+
+	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
+	unsigned int tenth_ns = spd_val & 0x0F;
+	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
+
+	return ps;
+}
+
+static unsigned int
+convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
+{
+	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
+	unsigned int hundredth_ns = spd_val & 0x0F;
+	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
+
+	return ps;
+}
+
+static unsigned int byte40_table_ps[8] = {
+	0,
+	250,
+	330,
+	500,
+	660,
+	750,
+	0,	/* supposed to be RFC, but not sure what that means */
+	0	/* Undefined */
+};
+
+static unsigned int
+compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
+{
+	unsigned int trfc_ps;
+
+	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
+		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
+
+	return trfc_ps;
+}
+
+static unsigned int
+compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
+{
+	unsigned int trc_ps;
+
+	trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
+
+	return trc_ps;
+}
+
+/*
+ * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
+ * Table from SPD Spec, Byte 12, converted to picoseconds and
+ * filled in with "default" normal values.
+ */
+static unsigned int
+determine_refresh_rate_ps(const unsigned int spd_refresh)
+{
+	unsigned int refresh_time_ps[8] = {
+		15625000,	/* 0 Normal    1.00x */
+		3900000,	/* 1 Reduced    .25x */
+		7800000,	/* 2 Extended   .50x */
+		31300000,	/* 3 Extended  2.00x */
+		62500000,	/* 4 Extended  4.00x */
+		125000000,	/* 5 Extended  8.00x */
+		15625000,	/* 6 Normal    1.00x  filler */
+		15625000,	/* 7 Normal    1.00x  filler */
+	};
+
+	return refresh_time_ps[spd_refresh & 0x7];
+}
+
+/*
+ * The purpose of this function is to compute a suitable
+ * CAS latency given the DRAM clock period.  The SPD only
+ * defines at most 3 CAS latencies.  Typically the slower in
+ * frequency the DIMM runs at, the shorter its CAS latency can.
+ * be.  If the DIMM is operating at a sufficiently low frequency,
+ * it may be able to run at a CAS latency shorter than the
+ * shortest SPD-defined CAS latency.
+ *
+ * If a CAS latency is not found, 0 is returned.
+ *
+ * Do this by finding in the standard speed bin table the longest
+ * tCKmin that doesn't exceed the value of mclk_ps (tCK).
+ *
+ * An assumption made is that the SDRAM device allows the
+ * CL to be programmed for a value that is lower than those
+ * advertised by the SPD.  This is not always the case,
+ * as those modes not defined in the SPD are optional.
+ *
+ * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
+ * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
+ * and tRC for corresponding bin"
+ *
+ * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
+ * Not certain if any good value exists for CL=2
+ */
+				 /* CL2   CL3   CL4   CL5   CL6  CL7*/
+unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500, 1875 };
+
+unsigned int
+compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
+{
+	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
+	unsigned int lowest_tCKmin_found = 0;
+	unsigned int lowest_tCKmin_CL = 0;
+	unsigned int i;
+
+	debug("mclk_ps = %u\n", mclk_ps);
+
+	for (i = 0; i < num_speed_bins; i++) {
+		unsigned int x = ddr2_speed_bins[i];
+		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
+		      i, x, lowest_tCKmin_found);
+		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
+			lowest_tCKmin_found = x;
+			lowest_tCKmin_CL = i + 2;
+		}
+	}
+
+	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
+
+	return lowest_tCKmin_CL;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR2 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ * FIXME: use #define for the retvals
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr2_spd_eeprom_t *spd,
+			     dimm_params_t *pdimm,
+			     unsigned int dimm_number)
+{
+	unsigned int retval;
+
+	if (spd->mem_type) {
+		if (spd->mem_type != SPD_MEMTYPE_DDR2) {
+			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
+			return 1;
+		}
+	} else {
+		memset(pdimm, 0, sizeof(dimm_params_t));
+		return 1;
+	}
+
+	retval = ddr2_spd_check(spd);
+	if (retval) {
+		printf("DIMM %u: failed checksum\n", dimm_number);
+		return 2;
+	}
+
+	/*
+	 * The part name in ASCII in the SPD EEPROM is not null terminated.
+	 * Guarantee null termination here by presetting all bytes to 0
+	 * and copying the part name in ASCII from the SPD onto it
+	 */
+	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+	/* DIMM organization parameters */
+	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
+	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
+	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+	pdimm->data_width = spd->dataw;
+	pdimm->primary_sdram_width = spd->primw;
+	pdimm->ec_sdram_width = spd->ecw;
+
+	/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
+	switch (spd->dimm_type) {
+	case DDR2_SPD_DIMMTYPE_RDIMM:
+	case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
+	case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
+		/* Registered/buffered DIMMs */
+		pdimm->registered_dimm = 1;
+		break;
+
+	case DDR2_SPD_DIMMTYPE_UDIMM:
+	case DDR2_SPD_DIMMTYPE_SO_DIMM:
+	case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
+	case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
+		/* Unbuffered DIMMs */
+		pdimm->registered_dimm = 0;
+		break;
+
+	case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
+	default:
+		printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
+		return 1;
+	}
+
+	/* SDRAM device parameters */
+	pdimm->n_row_addr = spd->nrow_addr;
+	pdimm->n_col_addr = spd->ncol_addr;
+	pdimm->n_banks_per_sdram_device = spd->nbanks;
+	pdimm->edc_config = spd->config;
+	pdimm->burst_lengths_bitmask = spd->burstl;
+	pdimm->row_density = spd->rank_dens;
+
+	/*
+	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
+	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
+	 * nanoseconds and represented as BCD.
+	 */
+	pdimm->tckmin_x_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
+	pdimm->tckmin_x_minus_1_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
+	pdimm->tckmin_x_minus_2_ps
+		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
+
+	pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
+
+	/*
+	 * Compute CAS latencies defined by SPD
+	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
+	 *
+	 * If cas_lat after masking is 0, the __ilog2 function returns
+	 * 255 into the variable.   This behavior is abused once.
+	 */
+	pdimm->caslat_x  = __ilog2(spd->cas_lat);
+	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_x));
+	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
+					  & ~(1 << pdimm->caslat_x)
+					  & ~(1 << pdimm->caslat_x_minus_1));
+
+	/* Compute CAS latencies below that defined by SPD */
+	pdimm->caslat_lowest_derated
+		= compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
+
+	/* Compute timing parameters */
+	pdimm->trcd_ps = spd->trcd * 250;
+	pdimm->trp_ps = spd->trp * 250;
+	pdimm->tras_ps = spd->tras * 1000;
+
+	pdimm->twr_ps = spd->twr * 250;
+	pdimm->twtr_ps = spd->twtr * 250;
+	pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
+
+	pdimm->trrd_ps = spd->trrd * 250;
+	pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
+
+	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
+
+	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
+	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
+	pdimm->tds_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
+	pdimm->tdh_ps
+		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
+
+	pdimm->trtp_ps = spd->trtp * 250;
+	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
+	pdimm->tqhs_ps = spd->tqhs * 10;
+
+	return 0;
+}
diff --git a/drivers/ddr/fsl/ddr3_dimm_params.c b/drivers/ddr/fsl/ddr3_dimm_params.c
new file mode 100644
index 0000000..a4b8c10
--- /dev/null
+++ b/drivers/ddr/fsl/ddr3_dimm_params.c
@@ -0,0 +1,341 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *	Dave Liu <daveliu@freescale.com>
+ *
+ * calculate the organization and timing parameter
+ * from ddr3 spd, please refer to the spec
+ * JEDEC standard No.21-C 4_01_02_11R18.pdf
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Calculate the Density of each Physical Rank.
+ * Returned size is in bytes.
+ *
+ * each rank size =
+ * sdram capacity(bit) / 8 * primary bus width / sdram width
+ *
+ * where: sdram capacity  = spd byte4[3:0]
+ *        primary bus width = spd byte8[2:0]
+ *        sdram width = spd byte7[2:0]
+ *
+ * SPD byte4 - sdram density and banks
+ *	bit[3:0]	size(bit)	size(byte)
+ *	0000		256Mb		32MB
+ *	0001		512Mb		64MB
+ *	0010		1Gb		128MB
+ *	0011		2Gb		256MB
+ *	0100		4Gb		512MB
+ *	0101		8Gb		1GB
+ *	0110		16Gb		2GB
+ *
+ * SPD byte8 - module memory bus width
+ * 	bit[2:0]	primary bus width
+ *	000		8bits
+ * 	001		16bits
+ * 	010		32bits
+ * 	011		64bits
+ *
+ * SPD byte7 - module organiztion
+ * 	bit[2:0]	sdram device width
+ * 	000		4bits
+ * 	001		8bits
+ * 	010		16bits
+ * 	011		32bits
+ *
+ */
+static unsigned long long
+compute_ranksize(const ddr3_spd_eeprom_t *spd)
+{
+	unsigned long long bsize;
+
+	int nbit_sdram_cap_bsize = 0;
+	int nbit_primary_bus_width = 0;
+	int nbit_sdram_width = 0;
+
+	if ((spd->density_banks & 0xf) < 7)
+		nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
+	if ((spd->bus_width & 0x7) < 4)
+		nbit_primary_bus_width = (spd->bus_width & 0x7) + 3;
+	if ((spd->organization & 0x7) < 4)
+		nbit_sdram_width = (spd->organization & 0x7) + 2;
+
+	bsize = 1ULL << (nbit_sdram_cap_bsize - 3
+		    + nbit_primary_bus_width - nbit_sdram_width);
+
+	debug("DDR: DDR III rank density = 0x%16llx\n", bsize);
+
+	return bsize;
+}
+
+/*
+ * ddr_compute_dimm_parameters for DDR3 SPD
+ *
+ * Compute DIMM parameters based upon the SPD information in spd.
+ * Writes the results to the dimm_params_t structure pointed by pdimm.
+ *
+ */
+unsigned int
+ddr_compute_dimm_parameters(const ddr3_spd_eeprom_t *spd,
+			     dimm_params_t *pdimm,
+			     unsigned int dimm_number)
+{
+	unsigned int retval;
+	unsigned int mtb_ps;
+	int ftb_10th_ps;
+	int i;
+
+	if (spd->mem_type) {
+		if (spd->mem_type != SPD_MEMTYPE_DDR3) {
+			printf("DIMM %u: is not a DDR3 SPD.\n", dimm_number);
+			return 1;
+		}
+	} else {
+		memset(pdimm, 0, sizeof(dimm_params_t));
+		return 1;
+	}
+
+	retval = ddr3_spd_check(spd);
+	if (retval) {
+		printf("DIMM %u: failed checksum\n", dimm_number);
+		return 2;
+	}
+
+	/*
+	 * The part name in ASCII in the SPD EEPROM is not null terminated.
+	 * Guarantee null termination here by presetting all bytes to 0
+	 * and copying the part name in ASCII from the SPD onto it
+	 */
+	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
+	if ((spd->info_size_crc & 0xF) > 1)
+		memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
+
+	/* DIMM organization parameters */
+	pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
+	pdimm->rank_density = compute_ranksize(spd);
+	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
+	pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
+	if ((spd->bus_width >> 3) & 0x3)
+		pdimm->ec_sdram_width = 8;
+	else
+		pdimm->ec_sdram_width = 0;
+	pdimm->data_width = pdimm->primary_sdram_width
+			  + pdimm->ec_sdram_width;
+	pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
+
+	/* These are the types defined by the JEDEC DDR3 SPD spec */
+	pdimm->mirrored_dimm = 0;
+	pdimm->registered_dimm = 0;
+	switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
+	case DDR3_SPD_MODULETYPE_RDIMM:
+	case DDR3_SPD_MODULETYPE_MINI_RDIMM:
+	case DDR3_SPD_MODULETYPE_72B_SO_RDIMM:
+		/* Registered/buffered DIMMs */
+		pdimm->registered_dimm = 1;
+		for (i = 0; i < 16; i += 2) {
+			u8 rcw = spd->mod_section.registered.rcw[i/2];
+			pdimm->rcw[i]   = (rcw >> 0) & 0x0F;
+			pdimm->rcw[i+1] = (rcw >> 4) & 0x0F;
+		}
+		break;
+
+	case DDR3_SPD_MODULETYPE_UDIMM:
+	case DDR3_SPD_MODULETYPE_SO_DIMM:
+	case DDR3_SPD_MODULETYPE_MICRO_DIMM:
+	case DDR3_SPD_MODULETYPE_MINI_UDIMM:
+	case DDR3_SPD_MODULETYPE_MINI_CDIMM:
+	case DDR3_SPD_MODULETYPE_72B_SO_UDIMM:
+	case DDR3_SPD_MODULETYPE_72B_SO_CDIMM:
+	case DDR3_SPD_MODULETYPE_LRDIMM:
+	case DDR3_SPD_MODULETYPE_16B_SO_DIMM:
+	case DDR3_SPD_MODULETYPE_32B_SO_DIMM:
+		/* Unbuffered DIMMs */
+		if (spd->mod_section.unbuffered.addr_mapping & 0x1)
+			pdimm->mirrored_dimm = 1;
+		break;
+
+	default:
+		printf("unknown module_type 0x%02X\n", spd->module_type);
+		return 1;
+	}
+
+	/* SDRAM device parameters */
+	pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
+	pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
+	pdimm->n_banks_per_sdram_device = 8 << ((spd->density_banks >> 4) & 0x7);
+
+	/*
+	 * The SPD spec has not the ECC bit,
+	 * We consider the DIMM as ECC capability
+	 * when the extension bus exist
+	 */
+	if (pdimm->ec_sdram_width)
+		pdimm->edc_config = 0x02;
+	else
+		pdimm->edc_config = 0x00;
+
+	/*
+	 * The SPD spec has not the burst length byte
+	 * but DDR3 spec has nature BL8 and BC4,
+	 * BL8 -bit3, BC4 -bit2
+	 */
+	pdimm->burst_lengths_bitmask = 0x0c;
+	pdimm->row_density = __ilog2(pdimm->rank_density);
+
+	/* MTB - medium timebase
+	 * The unit in the SPD spec is ns,
+	 * We convert it to ps.
+	 * eg: MTB = 0.125ns (125ps)
+	 */
+	mtb_ps = (spd->mtb_dividend * 1000) /spd->mtb_divisor;
+	pdimm->mtb_ps = mtb_ps;
+
+	/*
+	 * FTB - fine timebase
+	 * use 1/10th of ps as our unit to avoid floating point
+	 * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps
+	 */
+	ftb_10th_ps =
+		((spd->ftb_div & 0xf0) >> 4) * 10 / (spd->ftb_div & 0x0f);
+	pdimm->ftb_10th_ps = ftb_10th_ps;
+	/*
+	 * sdram minimum cycle time
+	 * we assume the MTB is 0.125ns
+	 * eg:
+	 * tck_min=15 MTB (1.875ns) ->DDR3-1066
+	 *        =12 MTB (1.5ns) ->DDR3-1333
+	 *        =10 MTB (1.25ns) ->DDR3-1600
+	 */
+	pdimm->tckmin_x_ps = spd->tck_min * mtb_ps +
+		(spd->fine_tck_min * ftb_10th_ps) / 10;
+
+	/*
+	 * CAS latency supported
+	 * bit4 - CL4
+	 * bit5 - CL5
+	 * bit18 - CL18
+	 */
+	pdimm->caslat_x  = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
+
+	/*
+	 * min CAS latency time
+	 * eg: taa_min =
+	 * DDR3-800D	100 MTB (12.5ns)
+	 * DDR3-1066F	105 MTB (13.125ns)
+	 * DDR3-1333H	108 MTB (13.5ns)
+	 * DDR3-1600H	90 MTB (11.25ns)
+	 */
+	pdimm->taa_ps = spd->taa_min * mtb_ps +
+		(spd->fine_taa_min * ftb_10th_ps) / 10;
+
+	/*
+	 * min write recovery time
+	 * eg:
+	 * twr_min = 120 MTB (15ns) -> all speed grades.
+	 */
+	pdimm->twr_ps = spd->twr_min * mtb_ps;
+
+	/*
+	 * min RAS to CAS delay time
+	 * eg: trcd_min =
+	 * DDR3-800	100 MTB (12.5ns)
+	 * DDR3-1066F	105 MTB (13.125ns)
+	 * DDR3-1333H	108 MTB (13.5ns)
+	 * DDR3-1600H	90 MTB (11.25)
+	 */
+	pdimm->trcd_ps = spd->trcd_min * mtb_ps +
+		(spd->fine_trcd_min * ftb_10th_ps) / 10;
+
+	/*
+	 * min row active to row active delay time
+	 * eg: trrd_min =
+	 * DDR3-800(1KB page)	80 MTB (10ns)
+	 * DDR3-1333(1KB page)	48 MTB (6ns)
+	 */
+	pdimm->trrd_ps = spd->trrd_min * mtb_ps;
+
+	/*
+	 * min row precharge delay time
+	 * eg: trp_min =
+	 * DDR3-800D	100 MTB (12.5ns)
+	 * DDR3-1066F	105 MTB (13.125ns)
+	 * DDR3-1333H	108 MTB (13.5ns)
+	 * DDR3-1600H	90 MTB (11.25ns)
+	 */
+	pdimm->trp_ps = spd->trp_min * mtb_ps +
+		(spd->fine_trp_min * ftb_10th_ps) / 10;
+
+	/* min active to precharge delay time
+	 * eg: tRAS_min =
+	 * DDR3-800D	300 MTB (37.5ns)
+	 * DDR3-1066F	300 MTB (37.5ns)
+	 * DDR3-1333H	288 MTB (36ns)
+	 * DDR3-1600H	280 MTB (35ns)
+	 */
+	pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
+			* mtb_ps;
+	/*
+	 * min active to actice/refresh delay time
+	 * eg: tRC_min =
+	 * DDR3-800D	400 MTB (50ns)
+	 * DDR3-1066F	405 MTB (50.625ns)
+	 * DDR3-1333H	396 MTB (49.5ns)
+	 * DDR3-1600H	370 MTB (46.25ns)
+	 */
+	pdimm->trc_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb)
+			* mtb_ps + (spd->fine_trc_min * ftb_10th_ps) / 10;
+	/*
+	 * min refresh recovery delay time
+	 * eg: tRFC_min =
+	 * 512Mb	720 MTB (90ns)
+	 * 1Gb		880 MTB (110ns)
+	 * 2Gb		1280 MTB (160ns)
+	 */
+	pdimm->trfc_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
+			* mtb_ps;
+	/*
+	 * min internal write to read command delay time
+	 * eg: twtr_min = 40 MTB (7.5ns) - all speed bins.
+	 * tWRT is at least 4 mclk independent of operating freq.
+	 */
+	pdimm->twtr_ps = spd->twtr_min * mtb_ps;
+
+	/*
+	 * min internal read to precharge command delay time
+	 * eg: trtp_min = 40 MTB (7.5ns) - all speed bins.
+	 * tRTP is at least 4 mclk independent of operating freq.
+	 */
+	pdimm->trtp_ps = spd->trtp_min * mtb_ps;
+
+	/*
+	 * Average periodic refresh interval
+	 * tREFI = 7.8 us at normal temperature range
+	 *       = 3.9 us at ext temperature range
+	 */
+	pdimm->refresh_rate_ps = 7800000;
+	if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
+		pdimm->refresh_rate_ps = 3900000;
+		pdimm->extended_op_srt = 1;
+	}
+
+	/*
+	 * min four active window delay time
+	 * eg: tfaw_min =
+	 * DDR3-800(1KB page)	320 MTB (40ns)
+	 * DDR3-1066(1KB page)	300 MTB (37.5ns)
+	 * DDR3-1333(1KB page)	240 MTB (30ns)
+	 * DDR3-1600(1KB page)	240 MTB (30ns)
+	 */
+	pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
+			* mtb_ps;
+
+	return 0;
+}
diff --git a/drivers/ddr/fsl/interactive.c b/drivers/ddr/fsl/interactive.c
new file mode 100644
index 0000000..ebf3ed6
--- /dev/null
+++ b/drivers/ddr/fsl/interactive.c
@@ -0,0 +1,1871 @@
+/*
+ * Copyright 2010-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ *         York Sun [at freescale.com]
+ */
+
+#include <common.h>
+#include <linux/ctype.h>
+#include <asm/types.h>
+#include <asm/io.h>
+
+#include <fsl_ddr_sdram.h>
+#include <fsl_ddr.h>
+
+/* Option parameter Structures */
+struct options_string {
+	const char *option_name;
+	size_t offset;
+	unsigned int size;
+	const char printhex;
+};
+
+static unsigned int picos_to_mhz(unsigned int picos)
+{
+	return 1000000 / picos;
+}
+
+static void print_option_table(const struct options_string *table,
+			 int table_size,
+			 const void *base)
+{
+	unsigned int i;
+	unsigned int *ptr;
+	unsigned long long *ptr_l;
+
+	for (i = 0; i < table_size; i++) {
+		switch (table[i].size) {
+		case 4:
+			ptr = (unsigned int *) (base + table[i].offset);
+			if (table[i].printhex) {
+				printf("%s = 0x%08X\n",
+					table[i].option_name, *ptr);
+			} else {
+				printf("%s = %u\n",
+					table[i].option_name, *ptr);
+			}
+			break;
+		case 8:
+			ptr_l = (unsigned long long *) (base + table[i].offset);
+			printf("%s = %llu\n",
+				table[i].option_name, *ptr_l);
+			break;
+		default:
+			printf("Unrecognized size!\n");
+			break;
+		}
+	}
+}
+
+static int handle_option_table(const struct options_string *table,
+			 int table_size,
+			 void *base,
+			 const char *opt,
+			 const char *val)
+{
+	unsigned int i;
+	unsigned int value, *ptr;
+	unsigned long long value_l, *ptr_l;
+
+	for (i = 0; i < table_size; i++) {
+		if (strcmp(table[i].option_name, opt) != 0)
+			continue;
+		switch (table[i].size) {
+		case 4:
+			value = simple_strtoul(val, NULL, 0);
+			ptr = base + table[i].offset;
+			*ptr = value;
+			break;
+		case 8:
+			value_l = simple_strtoull(val, NULL, 0);
+			ptr_l = base + table[i].offset;
+			*ptr_l = value_l;
+			break;
+		default:
+			printf("Unrecognized size!\n");
+			break;
+		}
+		return 1;
+	}
+
+	return 0;
+}
+
+static void fsl_ddr_generic_edit(void *pdata,
+			   void *pend,
+			   unsigned int element_size,
+			   unsigned int element_num,
+			   unsigned int value)
+{
+	char *pcdata = (char *)pdata;		/* BIG ENDIAN ONLY */
+
+	pcdata += element_num * element_size;
+	if ((pcdata + element_size) > (char *) pend) {
+		printf("trying to write past end of data\n");
+		return;
+	}
+
+	switch (element_size) {
+	case 1:
+		__raw_writeb(value, pcdata);
+		break;
+	case 2:
+		__raw_writew(value, pcdata);
+		break;
+	case 4:
+		__raw_writel(value, pcdata);
+		break;
+	default:
+		printf("unexpected element size %u\n", element_size);
+		break;
+	}
+}
+
+static void fsl_ddr_spd_edit(fsl_ddr_info_t *pinfo,
+		       unsigned int ctrl_num,
+		       unsigned int dimm_num,
+		       unsigned int element_num,
+		       unsigned int value)
+{
+	generic_spd_eeprom_t *pspd;
+
+	pspd = &(pinfo->spd_installed_dimms[ctrl_num][dimm_num]);
+	fsl_ddr_generic_edit(pspd, pspd + 1, 1, element_num, value);
+}
+
+#define COMMON_TIMING(x) {#x, offsetof(common_timing_params_t, x), \
+	sizeof((common_timing_params_t *)0)->x, 0}
+
+static void lowest_common_dimm_parameters_edit(fsl_ddr_info_t *pinfo,
+					unsigned int ctrl_num,
+					const char *optname_str,
+					const char *value_str)
+{
+	common_timing_params_t *p = &pinfo->common_timing_params[ctrl_num];
+
+	static const struct options_string options[] = {
+		COMMON_TIMING(tckmin_x_ps),
+		COMMON_TIMING(tckmax_ps),
+		COMMON_TIMING(tckmax_max_ps),
+		COMMON_TIMING(trcd_ps),
+		COMMON_TIMING(trp_ps),
+		COMMON_TIMING(tras_ps),
+		COMMON_TIMING(twr_ps),
+		COMMON_TIMING(twtr_ps),
+		COMMON_TIMING(trfc_ps),
+		COMMON_TIMING(trrd_ps),
+		COMMON_TIMING(trc_ps),
+		COMMON_TIMING(refresh_rate_ps),
+		COMMON_TIMING(tis_ps),
+		COMMON_TIMING(tih_ps),
+		COMMON_TIMING(tds_ps),
+		COMMON_TIMING(tdh_ps),
+		COMMON_TIMING(trtp_ps),
+		COMMON_TIMING(tdqsq_max_ps),
+		COMMON_TIMING(tqhs_ps),
+		COMMON_TIMING(ndimms_present),
+		COMMON_TIMING(lowest_common_SPD_caslat),
+		COMMON_TIMING(highest_common_derated_caslat),
+		COMMON_TIMING(additive_latency),
+		COMMON_TIMING(all_dimms_burst_lengths_bitmask),
+		COMMON_TIMING(all_dimms_registered),
+		COMMON_TIMING(all_dimms_unbuffered),
+		COMMON_TIMING(all_dimms_ecc_capable),
+		COMMON_TIMING(total_mem),
+		COMMON_TIMING(base_address),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	if (handle_option_table(options, n_opts, p, optname_str, value_str))
+		return;
+
+	printf("Error: couldn't find option string %s\n", optname_str);
+}
+
+#define DIMM_PARM(x) {#x, offsetof(dimm_params_t, x), \
+	sizeof((dimm_params_t *)0)->x, 0}
+
+static void fsl_ddr_dimm_parameters_edit(fsl_ddr_info_t *pinfo,
+				   unsigned int ctrl_num,
+				   unsigned int dimm_num,
+				   const char *optname_str,
+				   const char *value_str)
+{
+	dimm_params_t *p = &(pinfo->dimm_params[ctrl_num][dimm_num]);
+
+	static const struct options_string options[] = {
+		DIMM_PARM(n_ranks),
+		DIMM_PARM(data_width),
+		DIMM_PARM(primary_sdram_width),
+		DIMM_PARM(ec_sdram_width),
+		DIMM_PARM(registered_dimm),
+		DIMM_PARM(device_width),
+
+		DIMM_PARM(n_row_addr),
+		DIMM_PARM(n_col_addr),
+		DIMM_PARM(edc_config),
+		DIMM_PARM(n_banks_per_sdram_device),
+		DIMM_PARM(burst_lengths_bitmask),
+		DIMM_PARM(row_density),
+
+		DIMM_PARM(tckmin_x_ps),
+		DIMM_PARM(tckmin_x_minus_1_ps),
+		DIMM_PARM(tckmin_x_minus_2_ps),
+		DIMM_PARM(tckmax_ps),
+
+		DIMM_PARM(caslat_x),
+		DIMM_PARM(caslat_x_minus_1),
+		DIMM_PARM(caslat_x_minus_2),
+
+		DIMM_PARM(caslat_lowest_derated),
+
+		DIMM_PARM(trcd_ps),
+		DIMM_PARM(trp_ps),
+		DIMM_PARM(tras_ps),
+		DIMM_PARM(twr_ps),
+		DIMM_PARM(twtr_ps),
+		DIMM_PARM(trfc_ps),
+		DIMM_PARM(trrd_ps),
+		DIMM_PARM(trc_ps),
+		DIMM_PARM(refresh_rate_ps),
+
+		DIMM_PARM(tis_ps),
+		DIMM_PARM(tih_ps),
+		DIMM_PARM(tds_ps),
+		DIMM_PARM(tdh_ps),
+		DIMM_PARM(trtp_ps),
+		DIMM_PARM(tdqsq_max_ps),
+		DIMM_PARM(tqhs_ps),
+
+		DIMM_PARM(rank_density),
+		DIMM_PARM(capacity),
+		DIMM_PARM(base_address),
+	};
+
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	if (handle_option_table(options, n_opts, p, optname_str, value_str))
+		return;
+
+	printf("couldn't find option string %s\n", optname_str);
+}
+
+static void print_dimm_parameters(const dimm_params_t *pdimm)
+{
+	static const struct options_string options[] = {
+		DIMM_PARM(n_ranks),
+		DIMM_PARM(data_width),
+		DIMM_PARM(primary_sdram_width),
+		DIMM_PARM(ec_sdram_width),
+		DIMM_PARM(registered_dimm),
+		DIMM_PARM(device_width),
+
+		DIMM_PARM(n_row_addr),
+		DIMM_PARM(n_col_addr),
+		DIMM_PARM(edc_config),
+		DIMM_PARM(n_banks_per_sdram_device),
+
+		DIMM_PARM(tckmin_x_ps),
+		DIMM_PARM(tckmin_x_minus_1_ps),
+		DIMM_PARM(tckmin_x_minus_2_ps),
+		DIMM_PARM(tckmax_ps),
+
+		DIMM_PARM(caslat_x),
+		DIMM_PARM(taa_ps),
+		DIMM_PARM(caslat_x_minus_1),
+		DIMM_PARM(caslat_x_minus_2),
+		DIMM_PARM(caslat_lowest_derated),
+
+		DIMM_PARM(trcd_ps),
+		DIMM_PARM(trp_ps),
+		DIMM_PARM(tras_ps),
+		DIMM_PARM(twr_ps),
+		DIMM_PARM(twtr_ps),
+		DIMM_PARM(trfc_ps),
+		DIMM_PARM(trrd_ps),
+		DIMM_PARM(trc_ps),
+		DIMM_PARM(refresh_rate_ps),
+
+		DIMM_PARM(tis_ps),
+		DIMM_PARM(tih_ps),
+		DIMM_PARM(tds_ps),
+		DIMM_PARM(tdh_ps),
+		DIMM_PARM(trtp_ps),
+		DIMM_PARM(tdqsq_max_ps),
+		DIMM_PARM(tqhs_ps),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	if (pdimm->n_ranks == 0) {
+		printf("DIMM not present\n");
+		return;
+	}
+	printf("DIMM organization parameters:\n");
+	printf("module part name = %s\n", pdimm->mpart);
+	printf("rank_density = %llu bytes (%llu megabytes)\n",
+	       pdimm->rank_density, pdimm->rank_density / 0x100000);
+	printf("capacity = %llu bytes (%llu megabytes)\n",
+	       pdimm->capacity, pdimm->capacity / 0x100000);
+	printf("burst_lengths_bitmask = %02X\n",
+	       pdimm->burst_lengths_bitmask);
+	printf("base_addresss = %llu (%08llX %08llX)\n",
+	       pdimm->base_address,
+	       (pdimm->base_address >> 32),
+	       pdimm->base_address & 0xFFFFFFFF);
+	print_option_table(options, n_opts, pdimm);
+}
+
+static void print_lowest_common_dimm_parameters(
+		const common_timing_params_t *plcd_dimm_params)
+{
+	static const struct options_string options[] = {
+		COMMON_TIMING(tckmax_max_ps),
+		COMMON_TIMING(trcd_ps),
+		COMMON_TIMING(trp_ps),
+		COMMON_TIMING(tras_ps),
+		COMMON_TIMING(twr_ps),
+		COMMON_TIMING(twtr_ps),
+		COMMON_TIMING(trfc_ps),
+		COMMON_TIMING(trrd_ps),
+		COMMON_TIMING(trc_ps),
+		COMMON_TIMING(refresh_rate_ps),
+		COMMON_TIMING(tis_ps),
+		COMMON_TIMING(tds_ps),
+		COMMON_TIMING(tdh_ps),
+		COMMON_TIMING(trtp_ps),
+		COMMON_TIMING(tdqsq_max_ps),
+		COMMON_TIMING(tqhs_ps),
+		COMMON_TIMING(lowest_common_SPD_caslat),
+		COMMON_TIMING(highest_common_derated_caslat),
+		COMMON_TIMING(additive_latency),
+		COMMON_TIMING(ndimms_present),
+		COMMON_TIMING(all_dimms_registered),
+		COMMON_TIMING(all_dimms_unbuffered),
+		COMMON_TIMING(all_dimms_ecc_capable),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	/* Clock frequencies */
+	printf("tckmin_x_ps = %u (%u MHz)\n",
+	       plcd_dimm_params->tckmin_x_ps,
+	       picos_to_mhz(plcd_dimm_params->tckmin_x_ps));
+	printf("tckmax_ps = %u (%u MHz)\n",
+	       plcd_dimm_params->tckmax_ps,
+	       picos_to_mhz(plcd_dimm_params->tckmax_ps));
+	printf("all_dimms_burst_lengths_bitmask = %02X\n",
+	       plcd_dimm_params->all_dimms_burst_lengths_bitmask);
+
+	print_option_table(options, n_opts, plcd_dimm_params);
+
+	printf("total_mem = %llu (%llu megabytes)\n",
+	       plcd_dimm_params->total_mem,
+	       plcd_dimm_params->total_mem / 0x100000);
+	printf("base_address = %llu (%llu megabytes)\n",
+	       plcd_dimm_params->base_address,
+	       plcd_dimm_params->base_address / 0x100000);
+}
+
+#define CTRL_OPTIONS(x) {#x, offsetof(memctl_options_t, x), \
+	sizeof((memctl_options_t *)0)->x, 0}
+#define CTRL_OPTIONS_CS(x, y) {"cs" #x "_" #y, \
+	offsetof(memctl_options_t, cs_local_opts[x].y), \
+	sizeof((memctl_options_t *)0)->cs_local_opts[x].y, 0}
+
+static void fsl_ddr_options_edit(fsl_ddr_info_t *pinfo,
+			   unsigned int ctl_num,
+			   const char *optname_str,
+			   const char *value_str)
+{
+	memctl_options_t *p = &(pinfo->memctl_opts[ctl_num]);
+	/*
+	 * This array all on the stack and *computed* each time this
+	 * function is rung.
+	 */
+	static const struct options_string options[] = {
+		CTRL_OPTIONS_CS(0, odt_rd_cfg),
+		CTRL_OPTIONS_CS(0, odt_wr_cfg),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CTRL_OPTIONS_CS(1, odt_rd_cfg),
+		CTRL_OPTIONS_CS(1, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(2, odt_rd_cfg),
+		CTRL_OPTIONS_CS(2, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(3, odt_rd_cfg),
+		CTRL_OPTIONS_CS(3, odt_wr_cfg),
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3)
+		CTRL_OPTIONS_CS(0, odt_rtt_norm),
+		CTRL_OPTIONS_CS(0, odt_rtt_wr),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CTRL_OPTIONS_CS(1, odt_rtt_norm),
+		CTRL_OPTIONS_CS(1, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(2, odt_rtt_norm),
+		CTRL_OPTIONS_CS(2, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(3, odt_rtt_norm),
+		CTRL_OPTIONS_CS(3, odt_rtt_wr),
+#endif
+#endif
+		CTRL_OPTIONS(memctl_interleaving),
+		CTRL_OPTIONS(memctl_interleaving_mode),
+		CTRL_OPTIONS(ba_intlv_ctl),
+		CTRL_OPTIONS(ecc_mode),
+		CTRL_OPTIONS(ecc_init_using_memctl),
+		CTRL_OPTIONS(dqs_config),
+		CTRL_OPTIONS(self_refresh_in_sleep),
+		CTRL_OPTIONS(dynamic_power),
+		CTRL_OPTIONS(data_bus_width),
+		CTRL_OPTIONS(burst_length),
+		CTRL_OPTIONS(cas_latency_override),
+		CTRL_OPTIONS(cas_latency_override_value),
+		CTRL_OPTIONS(use_derated_caslat),
+		CTRL_OPTIONS(additive_latency_override),
+		CTRL_OPTIONS(additive_latency_override_value),
+		CTRL_OPTIONS(clk_adjust),
+		CTRL_OPTIONS(cpo_override),
+		CTRL_OPTIONS(write_data_delay),
+		CTRL_OPTIONS(half_strength_driver_enable),
+
+		/*
+		 * These can probably be changed to 2T_EN and 3T_EN
+		 * (using a leading numerical character) without problem
+		 */
+		CTRL_OPTIONS(twot_en),
+		CTRL_OPTIONS(threet_en),
+		CTRL_OPTIONS(ap_en),
+		CTRL_OPTIONS(x4_en),
+		CTRL_OPTIONS(bstopre),
+		CTRL_OPTIONS(wrlvl_override),
+		CTRL_OPTIONS(wrlvl_sample),
+		CTRL_OPTIONS(wrlvl_start),
+		CTRL_OPTIONS(rcw_override),
+		CTRL_OPTIONS(rcw_1),
+		CTRL_OPTIONS(rcw_2),
+		CTRL_OPTIONS(ddr_cdr1),
+		CTRL_OPTIONS(ddr_cdr2),
+		CTRL_OPTIONS(tcke_clock_pulse_width_ps),
+		CTRL_OPTIONS(tfaw_window_four_activates_ps),
+		CTRL_OPTIONS(trwt_override),
+		CTRL_OPTIONS(trwt),
+	};
+
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	if (handle_option_table(options, n_opts, p,
+					optname_str, value_str))
+		return;
+
+	printf("couldn't find option string %s\n", optname_str);
+}
+
+#define CFG_REGS(x) {#x, offsetof(fsl_ddr_cfg_regs_t, x), \
+	sizeof((fsl_ddr_cfg_regs_t *)0)->x, 1}
+#define CFG_REGS_CS(x, y) {"cs" #x "_" #y, \
+	offsetof(fsl_ddr_cfg_regs_t, cs[x].y), \
+	sizeof((fsl_ddr_cfg_regs_t *)0)->cs[x].y, 1}
+
+static void print_fsl_memctl_config_regs(const fsl_ddr_cfg_regs_t *ddr)
+{
+	unsigned int i;
+	static const struct options_string options[] = {
+		CFG_REGS_CS(0, bnds),
+		CFG_REGS_CS(0, config),
+		CFG_REGS_CS(0, config_2),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CFG_REGS_CS(1, bnds),
+		CFG_REGS_CS(1, config),
+		CFG_REGS_CS(1, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CFG_REGS_CS(2, bnds),
+		CFG_REGS_CS(2, config),
+		CFG_REGS_CS(2, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CFG_REGS_CS(3, bnds),
+		CFG_REGS_CS(3, config),
+		CFG_REGS_CS(3, config_2),
+#endif
+		CFG_REGS(timing_cfg_3),
+		CFG_REGS(timing_cfg_0),
+		CFG_REGS(timing_cfg_1),
+		CFG_REGS(timing_cfg_2),
+		CFG_REGS(ddr_sdram_cfg),
+		CFG_REGS(ddr_sdram_cfg_2),
+		CFG_REGS(ddr_sdram_mode),
+		CFG_REGS(ddr_sdram_mode_2),
+		CFG_REGS(ddr_sdram_mode_3),
+		CFG_REGS(ddr_sdram_mode_4),
+		CFG_REGS(ddr_sdram_mode_5),
+		CFG_REGS(ddr_sdram_mode_6),
+		CFG_REGS(ddr_sdram_mode_7),
+		CFG_REGS(ddr_sdram_mode_8),
+		CFG_REGS(ddr_sdram_interval),
+		CFG_REGS(ddr_data_init),
+		CFG_REGS(ddr_sdram_clk_cntl),
+		CFG_REGS(ddr_init_addr),
+		CFG_REGS(ddr_init_ext_addr),
+		CFG_REGS(timing_cfg_4),
+		CFG_REGS(timing_cfg_5),
+		CFG_REGS(ddr_zq_cntl),
+		CFG_REGS(ddr_wrlvl_cntl),
+		CFG_REGS(ddr_wrlvl_cntl_2),
+		CFG_REGS(ddr_wrlvl_cntl_3),
+		CFG_REGS(ddr_sr_cntr),
+		CFG_REGS(ddr_sdram_rcw_1),
+		CFG_REGS(ddr_sdram_rcw_2),
+		CFG_REGS(ddr_cdr1),
+		CFG_REGS(ddr_cdr2),
+		CFG_REGS(err_disable),
+		CFG_REGS(err_int_en),
+		CFG_REGS(ddr_eor),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	print_option_table(options, n_opts, ddr);
+
+	for (i = 0; i < 32; i++)
+		printf("debug_%02d = 0x%08X\n", i+1, ddr->debug[i]);
+}
+
+static void fsl_ddr_regs_edit(fsl_ddr_info_t *pinfo,
+			unsigned int ctrl_num,
+			const char *regname,
+			const char *value_str)
+{
+	unsigned int i;
+	fsl_ddr_cfg_regs_t *ddr;
+	char buf[20];
+	static const struct options_string options[] = {
+		CFG_REGS_CS(0, bnds),
+		CFG_REGS_CS(0, config),
+		CFG_REGS_CS(0, config_2),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CFG_REGS_CS(1, bnds),
+		CFG_REGS_CS(1, config),
+		CFG_REGS_CS(1, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CFG_REGS_CS(2, bnds),
+		CFG_REGS_CS(2, config),
+		CFG_REGS_CS(2, config_2),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+		CFG_REGS_CS(3, bnds),
+		CFG_REGS_CS(3, config),
+		CFG_REGS_CS(3, config_2),
+#endif
+		CFG_REGS(timing_cfg_3),
+		CFG_REGS(timing_cfg_0),
+		CFG_REGS(timing_cfg_1),
+		CFG_REGS(timing_cfg_2),
+		CFG_REGS(ddr_sdram_cfg),
+		CFG_REGS(ddr_sdram_cfg_2),
+		CFG_REGS(ddr_sdram_mode),
+		CFG_REGS(ddr_sdram_mode_2),
+		CFG_REGS(ddr_sdram_mode_3),
+		CFG_REGS(ddr_sdram_mode_4),
+		CFG_REGS(ddr_sdram_mode_5),
+		CFG_REGS(ddr_sdram_mode_6),
+		CFG_REGS(ddr_sdram_mode_7),
+		CFG_REGS(ddr_sdram_mode_8),
+		CFG_REGS(ddr_sdram_interval),
+		CFG_REGS(ddr_data_init),
+		CFG_REGS(ddr_sdram_clk_cntl),
+		CFG_REGS(ddr_init_addr),
+		CFG_REGS(ddr_init_ext_addr),
+		CFG_REGS(timing_cfg_4),
+		CFG_REGS(timing_cfg_5),
+		CFG_REGS(ddr_zq_cntl),
+		CFG_REGS(ddr_wrlvl_cntl),
+		CFG_REGS(ddr_wrlvl_cntl_2),
+		CFG_REGS(ddr_wrlvl_cntl_3),
+		CFG_REGS(ddr_sr_cntr),
+		CFG_REGS(ddr_sdram_rcw_1),
+		CFG_REGS(ddr_sdram_rcw_2),
+		CFG_REGS(ddr_cdr1),
+		CFG_REGS(ddr_cdr2),
+		CFG_REGS(err_disable),
+		CFG_REGS(err_int_en),
+		CFG_REGS(ddr_sdram_rcw_2),
+		CFG_REGS(ddr_sdram_rcw_2),
+		CFG_REGS(ddr_eor),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	debug("fsl_ddr_regs_edit: ctrl_num = %u, "
+		"regname = %s, value = %s\n",
+		ctrl_num, regname, value_str);
+	if (ctrl_num > CONFIG_NUM_DDR_CONTROLLERS)
+		return;
+
+	ddr = &(pinfo->fsl_ddr_config_reg[ctrl_num]);
+
+	if (handle_option_table(options, n_opts, ddr, regname, value_str))
+		return;
+
+	for (i = 0; i < 32; i++) {
+		unsigned int value = simple_strtoul(value_str, NULL, 0);
+		sprintf(buf, "debug_%u", i + 1);
+		if (strcmp(buf, regname) == 0) {
+			ddr->debug[i] = value;
+			return;
+		}
+	}
+	printf("Error: couldn't find register string %s\n", regname);
+}
+
+#define CTRL_OPTIONS_HEX(x) {#x, offsetof(memctl_options_t, x), \
+	sizeof((memctl_options_t *)0)->x, 1}
+
+static void print_memctl_options(const memctl_options_t *popts)
+{
+	static const struct options_string options[] = {
+		CTRL_OPTIONS_CS(0, odt_rd_cfg),
+		CTRL_OPTIONS_CS(0, odt_wr_cfg),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CTRL_OPTIONS_CS(1, odt_rd_cfg),
+		CTRL_OPTIONS_CS(1, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(2, odt_rd_cfg),
+		CTRL_OPTIONS_CS(2, odt_wr_cfg),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+		CTRL_OPTIONS_CS(3, odt_rd_cfg),
+		CTRL_OPTIONS_CS(3, odt_wr_cfg),
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3)
+		CTRL_OPTIONS_CS(0, odt_rtt_norm),
+		CTRL_OPTIONS_CS(0, odt_rtt_wr),
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 1)
+		CTRL_OPTIONS_CS(1, odt_rtt_norm),
+		CTRL_OPTIONS_CS(1, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 2)
+		CTRL_OPTIONS_CS(2, odt_rtt_norm),
+		CTRL_OPTIONS_CS(2, odt_rtt_wr),
+#endif
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 3)
+		CTRL_OPTIONS_CS(3, odt_rtt_norm),
+		CTRL_OPTIONS_CS(3, odt_rtt_wr),
+#endif
+#endif
+		CTRL_OPTIONS(memctl_interleaving),
+		CTRL_OPTIONS(memctl_interleaving_mode),
+		CTRL_OPTIONS_HEX(ba_intlv_ctl),
+		CTRL_OPTIONS(ecc_mode),
+		CTRL_OPTIONS(ecc_init_using_memctl),
+		CTRL_OPTIONS(dqs_config),
+		CTRL_OPTIONS(self_refresh_in_sleep),
+		CTRL_OPTIONS(dynamic_power),
+		CTRL_OPTIONS(data_bus_width),
+		CTRL_OPTIONS(burst_length),
+		CTRL_OPTIONS(cas_latency_override),
+		CTRL_OPTIONS(cas_latency_override_value),
+		CTRL_OPTIONS(use_derated_caslat),
+		CTRL_OPTIONS(additive_latency_override),
+		CTRL_OPTIONS(additive_latency_override_value),
+		CTRL_OPTIONS(clk_adjust),
+		CTRL_OPTIONS(cpo_override),
+		CTRL_OPTIONS(write_data_delay),
+		CTRL_OPTIONS(half_strength_driver_enable),
+		/*
+		 * These can probably be changed to 2T_EN and 3T_EN
+		 * (using a leading numerical character) without problem
+		 */
+		CTRL_OPTIONS(twot_en),
+		CTRL_OPTIONS(threet_en),
+		CTRL_OPTIONS(registered_dimm_en),
+		CTRL_OPTIONS(ap_en),
+		CTRL_OPTIONS(x4_en),
+		CTRL_OPTIONS(bstopre),
+		CTRL_OPTIONS(wrlvl_override),
+		CTRL_OPTIONS(wrlvl_sample),
+		CTRL_OPTIONS(wrlvl_start),
+		CTRL_OPTIONS(rcw_override),
+		CTRL_OPTIONS(rcw_1),
+		CTRL_OPTIONS(rcw_2),
+		CTRL_OPTIONS_HEX(ddr_cdr1),
+		CTRL_OPTIONS_HEX(ddr_cdr2),
+		CTRL_OPTIONS(tcke_clock_pulse_width_ps),
+		CTRL_OPTIONS(tfaw_window_four_activates_ps),
+		CTRL_OPTIONS(trwt_override),
+		CTRL_OPTIONS(trwt),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	print_option_table(options, n_opts, popts);
+}
+
+#ifdef CONFIG_SYS_FSL_DDR1
+void ddr1_spd_dump(const ddr1_spd_eeprom_t *spd)
+{
+	unsigned int i;
+
+	printf("%-3d    : %02x %s\n", 0, spd->info_size,
+	       " spd->info_size,   *  0 # bytes written into serial memory *");
+	printf("%-3d    : %02x %s\n", 1, spd->chip_size,
+	       " spd->chip_size,   *  1 Total # bytes of SPD memory device *");
+	printf("%-3d    : %02x %s\n", 2, spd->mem_type,
+	       " spd->mem_type,    *  2 Fundamental memory type *");
+	printf("%-3d    : %02x %s\n", 3, spd->nrow_addr,
+	       " spd->nrow_addr,   *  3 # of Row Addresses on this assembly *");
+	printf("%-3d    : %02x %s\n", 4, spd->ncol_addr,
+	       " spd->ncol_addr,   *  4 # of Column Addrs on this assembly *");
+	printf("%-3d    : %02x %s\n", 5, spd->nrows,
+	       " spd->nrows        *  5 # of DIMM Banks *");
+	printf("%-3d    : %02x %s\n", 6, spd->dataw_lsb,
+	       " spd->dataw_lsb,   *  6 Data Width lsb of this assembly *");
+	printf("%-3d    : %02x %s\n", 7, spd->dataw_msb,
+	       " spd->dataw_msb,   *  7 Data Width msb of this assembly *");
+	printf("%-3d    : %02x %s\n", 8, spd->voltage,
+	       " spd->voltage,     *  8 Voltage intf std of this assembly *");
+	printf("%-3d    : %02x %s\n", 9, spd->clk_cycle,
+	       " spd->clk_cycle,   *  9 SDRAM Cycle time at CL=X *");
+	printf("%-3d    : %02x %s\n", 10, spd->clk_access,
+	       " spd->clk_access,  * 10 SDRAM Access from Clock at CL=X *");
+	printf("%-3d    : %02x %s\n", 11, spd->config,
+	       " spd->config,      * 11 DIMM Configuration type *");
+	printf("%-3d    : %02x %s\n", 12, spd->refresh,
+	       " spd->refresh,     * 12 Refresh Rate/Type *");
+	printf("%-3d    : %02x %s\n", 13, spd->primw,
+	       " spd->primw,       * 13 Primary SDRAM Width *");
+	printf("%-3d    : %02x %s\n", 14, spd->ecw,
+	       " spd->ecw,         * 14 Error Checking SDRAM width *");
+	printf("%-3d    : %02x %s\n", 15, spd->min_delay,
+	       " spd->min_delay,   * 15 Back to Back Random Access *");
+	printf("%-3d    : %02x %s\n", 16, spd->burstl,
+	       " spd->burstl,      * 16 Burst Lengths Supported *");
+	printf("%-3d    : %02x %s\n", 17, spd->nbanks,
+	       " spd->nbanks,      * 17 # of Banks on Each SDRAM Device *");
+	printf("%-3d    : %02x %s\n", 18, spd->cas_lat,
+	       " spd->cas_lat,     * 18 CAS# Latencies Supported *");
+	printf("%-3d    : %02x %s\n", 19, spd->cs_lat,
+	       " spd->cs_lat,      * 19 Chip Select Latency *");
+	printf("%-3d    : %02x %s\n", 20, spd->write_lat,
+	       " spd->write_lat,   * 20 Write Latency/Recovery *");
+	printf("%-3d    : %02x %s\n", 21, spd->mod_attr,
+	       " spd->mod_attr,    * 21 SDRAM Module Attributes *");
+	printf("%-3d    : %02x %s\n", 22, spd->dev_attr,
+	       " spd->dev_attr,    * 22 SDRAM Device Attributes *");
+	printf("%-3d    : %02x %s\n", 23, spd->clk_cycle2,
+	       " spd->clk_cycle2,  * 23 Min SDRAM Cycle time at CL=X-1 *");
+	printf("%-3d    : %02x %s\n", 24, spd->clk_access2,
+	       " spd->clk_access2, * 24 SDRAM Access from Clock at CL=X-1 *");
+	printf("%-3d    : %02x %s\n", 25, spd->clk_cycle3,
+	       " spd->clk_cycle3,  * 25 Min SDRAM Cycle time at CL=X-2 *");
+	printf("%-3d    : %02x %s\n", 26, spd->clk_access3,
+	       " spd->clk_access3, * 26 Max Access from Clock at CL=X-2 *");
+	printf("%-3d    : %02x %s\n", 27, spd->trp,
+	       " spd->trp,         * 27 Min Row Precharge Time (tRP)*");
+	printf("%-3d    : %02x %s\n", 28, spd->trrd,
+	       " spd->trrd,        * 28 Min Row Active to Row Active (tRRD) *");
+	printf("%-3d    : %02x %s\n", 29, spd->trcd,
+	       " spd->trcd,        * 29 Min RAS to CAS Delay (tRCD) *");
+	printf("%-3d    : %02x %s\n", 30, spd->tras,
+	       " spd->tras,        * 30 Minimum RAS Pulse Width (tRAS) *");
+	printf("%-3d    : %02x %s\n", 31, spd->bank_dens,
+	       " spd->bank_dens,   * 31 Density of each bank on module *");
+	printf("%-3d    : %02x %s\n", 32, spd->ca_setup,
+	       " spd->ca_setup,    * 32 Cmd + Addr signal input setup time *");
+	printf("%-3d    : %02x %s\n", 33, spd->ca_hold,
+	       " spd->ca_hold,     * 33 Cmd and Addr signal input hold time *");
+	printf("%-3d    : %02x %s\n", 34, spd->data_setup,
+	       " spd->data_setup,  * 34 Data signal input setup time *");
+	printf("%-3d    : %02x %s\n", 35, spd->data_hold,
+	       " spd->data_hold,   * 35 Data signal input hold time *");
+	printf("%-3d    : %02x %s\n", 36, spd->res_36_40[0],
+	       " spd->res_36_40[0], * 36 Reserved / tWR *");
+	printf("%-3d    : %02x %s\n", 37, spd->res_36_40[1],
+	       " spd->res_36_40[1], * 37 Reserved / tWTR *");
+	printf("%-3d    : %02x %s\n", 38, spd->res_36_40[2],
+	       " spd->res_36_40[2], * 38 Reserved / tRTP *");
+	printf("%-3d    : %02x %s\n", 39, spd->res_36_40[3],
+	       " spd->res_36_40[3], * 39 Reserved / mem_probe *");
+	printf("%-3d    : %02x %s\n", 40, spd->res_36_40[4],
+	       " spd->res_36_40[4], * 40 Reserved / trc,trfc extensions *");
+	printf("%-3d    : %02x %s\n", 41, spd->trc,
+	       " spd->trc,         * 41 Min Active to Auto refresh time tRC *");
+	printf("%-3d    : %02x %s\n", 42, spd->trfc,
+	       " spd->trfc,        * 42 Min Auto to Active period tRFC *");
+	printf("%-3d    : %02x %s\n", 43, spd->tckmax,
+	       " spd->tckmax,      * 43 Max device cycle time tCKmax *");
+	printf("%-3d    : %02x %s\n", 44, spd->tdqsq,
+	       " spd->tdqsq,       * 44 Max DQS to DQ skew *");
+	printf("%-3d    : %02x %s\n", 45, spd->tqhs,
+	       " spd->tqhs,        * 45 Max Read DataHold skew tQHS *");
+	printf("%-3d    : %02x %s\n", 46, spd->res_46,
+	       " spd->res_46,  * 46 Reserved/ PLL Relock time *");
+	printf("%-3d    : %02x %s\n", 47, spd->dimm_height,
+	       " spd->dimm_height  * 47 SDRAM DIMM Height *");
+
+	printf("%-3d-%3d: ",  48, 61);
+
+	for (i = 0; i < 14; i++)
+		printf("%02x", spd->res_48_61[i]);
+
+	printf(" * 48-61 IDD in SPD and Reserved space *\n");
+
+	printf("%-3d    : %02x %s\n", 62, spd->spd_rev,
+	       " spd->spd_rev,     * 62 SPD Data Revision Code *");
+	printf("%-3d    : %02x %s\n", 63, spd->cksum,
+	       " spd->cksum,       * 63 Checksum for bytes 0-62 *");
+	printf("%-3d-%3d: ",  64, 71);
+
+	for (i = 0; i < 8; i++)
+		printf("%02x", spd->mid[i]);
+
+	printf("* 64 Mfr's JEDEC ID code per JEP-108E *\n");
+	printf("%-3d    : %02x %s\n", 72, spd->mloc,
+	       " spd->mloc,        * 72 Manufacturing Location *");
+
+	printf("%-3d-%3d: >>",  73, 90);
+
+	for (i = 0; i < 18; i++)
+		printf("%c", spd->mpart[i]);
+
+	printf("<<* 73 Manufacturer's Part Number *\n");
+
+	printf("%-3d-%3d: %02x %02x %s\n", 91, 92, spd->rev[0], spd->rev[1],
+	       "* 91 Revision Code *");
+	printf("%-3d-%3d: %02x %02x %s\n", 93, 94, spd->mdate[0], spd->mdate[1],
+	       "* 93 Manufacturing Date *");
+	printf("%-3d-%3d: ", 95, 98);
+
+	for (i = 0; i < 4; i++)
+		printf("%02x", spd->sernum[i]);
+
+	printf("* 95 Assembly Serial Number *\n");
+
+	printf("%-3d-%3d: ", 99, 127);
+
+	for (i = 0; i < 27; i++)
+		printf("%02x", spd->mspec[i]);
+
+	printf("* 99 Manufacturer Specific Data *\n");
+}
+#endif
+
+#ifdef CONFIG_SYS_FSL_DDR2
+void ddr2_spd_dump(const ddr2_spd_eeprom_t *spd)
+{
+	unsigned int i;
+
+	printf("%-3d    : %02x %s\n", 0, spd->info_size,
+	       " spd->info_size,   *  0 # bytes written into serial memory *");
+	printf("%-3d    : %02x %s\n", 1, spd->chip_size,
+	       " spd->chip_size,   *  1 Total # bytes of SPD memory device *");
+	printf("%-3d    : %02x %s\n", 2, spd->mem_type,
+	       " spd->mem_type,    *  2 Fundamental memory type *");
+	printf("%-3d    : %02x %s\n", 3, spd->nrow_addr,
+	       " spd->nrow_addr,   *  3 # of Row Addresses on this assembly *");
+	printf("%-3d    : %02x %s\n", 4, spd->ncol_addr,
+	       " spd->ncol_addr,   *  4 # of Column Addrs on this assembly *");
+	printf("%-3d    : %02x %s\n", 5, spd->mod_ranks,
+	       " spd->mod_ranks    *  5 # of Module Rows on this assembly *");
+	printf("%-3d    : %02x %s\n", 6, spd->dataw,
+	       " spd->dataw,       *  6 Data Width of this assembly *");
+	printf("%-3d    : %02x %s\n", 7, spd->res_7,
+	       " spd->res_7,       *  7 Reserved *");
+	printf("%-3d    : %02x %s\n", 8, spd->voltage,
+	       " spd->voltage,     *  8 Voltage intf std of this assembly *");
+	printf("%-3d    : %02x %s\n", 9, spd->clk_cycle,
+	       " spd->clk_cycle,   *  9 SDRAM Cycle time at CL=X *");
+	printf("%-3d    : %02x %s\n", 10, spd->clk_access,
+	       " spd->clk_access,  * 10 SDRAM Access from Clock at CL=X *");
+	printf("%-3d    : %02x %s\n", 11, spd->config,
+	       " spd->config,      * 11 DIMM Configuration type *");
+	printf("%-3d    : %02x %s\n", 12, spd->refresh,
+	       " spd->refresh,     * 12 Refresh Rate/Type *");
+	printf("%-3d    : %02x %s\n", 13, spd->primw,
+	       " spd->primw,       * 13 Primary SDRAM Width *");
+	printf("%-3d    : %02x %s\n", 14, spd->ecw,
+	       " spd->ecw,         * 14 Error Checking SDRAM width *");
+	printf("%-3d    : %02x %s\n", 15, spd->res_15,
+	       " spd->res_15,      * 15 Reserved *");
+	printf("%-3d    : %02x %s\n", 16, spd->burstl,
+	       " spd->burstl,      * 16 Burst Lengths Supported *");
+	printf("%-3d    : %02x %s\n", 17, spd->nbanks,
+	       " spd->nbanks,      * 17 # of Banks on Each SDRAM Device *");
+	printf("%-3d    : %02x %s\n", 18, spd->cas_lat,
+	       " spd->cas_lat,     * 18 CAS# Latencies Supported *");
+	printf("%-3d    : %02x %s\n", 19, spd->mech_char,
+	       " spd->mech_char,   * 19 Mechanical Characteristics *");
+	printf("%-3d    : %02x %s\n", 20, spd->dimm_type,
+	       " spd->dimm_type,   * 20 DIMM type *");
+	printf("%-3d    : %02x %s\n", 21, spd->mod_attr,
+	       " spd->mod_attr,    * 21 SDRAM Module Attributes *");
+	printf("%-3d    : %02x %s\n", 22, spd->dev_attr,
+	       " spd->dev_attr,    * 22 SDRAM Device Attributes *");
+	printf("%-3d    : %02x %s\n", 23, spd->clk_cycle2,
+	       " spd->clk_cycle2,  * 23 Min SDRAM Cycle time at CL=X-1 *");
+	printf("%-3d    : %02x %s\n", 24, spd->clk_access2,
+	       " spd->clk_access2, * 24 SDRAM Access from Clock at CL=X-1 *");
+	printf("%-3d    : %02x %s\n", 25, spd->clk_cycle3,
+	       " spd->clk_cycle3,  * 25 Min SDRAM Cycle time at CL=X-2 *");
+	printf("%-3d    : %02x %s\n", 26, spd->clk_access3,
+	       " spd->clk_access3, * 26 Max Access from Clock at CL=X-2 *");
+	printf("%-3d    : %02x %s\n", 27, spd->trp,
+	       " spd->trp,         * 27 Min Row Precharge Time (tRP)*");
+	printf("%-3d    : %02x %s\n", 28, spd->trrd,
+	       " spd->trrd,        * 28 Min Row Active to Row Active (tRRD) *");
+	printf("%-3d    : %02x %s\n", 29, spd->trcd,
+	       " spd->trcd,        * 29 Min RAS to CAS Delay (tRCD) *");
+	printf("%-3d    : %02x %s\n", 30, spd->tras,
+	       " spd->tras,        * 30 Minimum RAS Pulse Width (tRAS) *");
+	printf("%-3d    : %02x %s\n", 31, spd->rank_dens,
+	       " spd->rank_dens,   * 31 Density of each rank on module *");
+	printf("%-3d    : %02x %s\n", 32, spd->ca_setup,
+	       " spd->ca_setup,    * 32 Cmd + Addr signal input setup time *");
+	printf("%-3d    : %02x %s\n", 33, spd->ca_hold,
+	       " spd->ca_hold,     * 33 Cmd and Addr signal input hold time *");
+	printf("%-3d    : %02x %s\n", 34, spd->data_setup,
+	       " spd->data_setup,  * 34 Data signal input setup time *");
+	printf("%-3d    : %02x %s\n", 35, spd->data_hold,
+	       " spd->data_hold,   * 35 Data signal input hold time *");
+	printf("%-3d    : %02x %s\n", 36, spd->twr,
+	       " spd->twr,         * 36 Write Recovery time tWR *");
+	printf("%-3d    : %02x %s\n", 37, spd->twtr,
+	       " spd->twtr,        * 37 Int write to read delay tWTR *");
+	printf("%-3d    : %02x %s\n", 38, spd->trtp,
+	       " spd->trtp,        * 38 Int read to precharge delay tRTP *");
+	printf("%-3d    : %02x %s\n", 39, spd->mem_probe,
+	       " spd->mem_probe,   * 39 Mem analysis probe characteristics *");
+	printf("%-3d    : %02x %s\n", 40, spd->trctrfc_ext,
+	       " spd->trctrfc_ext, * 40 Extensions to trc and trfc *");
+	printf("%-3d    : %02x %s\n", 41, spd->trc,
+	       " spd->trc,         * 41 Min Active to Auto refresh time tRC *");
+	printf("%-3d    : %02x %s\n", 42, spd->trfc,
+	       " spd->trfc,        * 42 Min Auto to Active period tRFC *");
+	printf("%-3d    : %02x %s\n", 43, spd->tckmax,
+	       " spd->tckmax,      * 43 Max device cycle time tCKmax *");
+	printf("%-3d    : %02x %s\n", 44, spd->tdqsq,
+	       " spd->tdqsq,       * 44 Max DQS to DQ skew *");
+	printf("%-3d    : %02x %s\n", 45, spd->tqhs,
+	       " spd->tqhs,        * 45 Max Read DataHold skew tQHS *");
+	printf("%-3d    : %02x %s\n", 46, spd->pll_relock,
+	       " spd->pll_relock,  * 46 PLL Relock time *");
+	printf("%-3d    : %02x %s\n", 47, spd->t_casemax,
+	       " spd->t_casemax,    * 47 t_casemax *");
+	printf("%-3d    : %02x %s\n", 48, spd->psi_ta_dram,
+	       " spd->psi_ta_dram,   * 48 Thermal Resistance of DRAM Package "
+	       "from Top (Case) to Ambient (Psi T-A DRAM) *");
+	printf("%-3d    : %02x %s\n", 49, spd->dt0_mode,
+	       " spd->dt0_mode,    * 49 DRAM Case Temperature Rise from "
+	       "Ambient due to Activate-Precharge/Mode Bits "
+	       "(DT0/Mode Bits) *)");
+	printf("%-3d    : %02x %s\n", 50, spd->dt2n_dt2q,
+	       " spd->dt2n_dt2q,   * 50 DRAM Case Temperature Rise from "
+	       "Ambient due to Precharge/Quiet Standby "
+	       "(DT2N/DT2Q) *");
+	printf("%-3d    : %02x %s\n", 51, spd->dt2p,
+	       " spd->dt2p,        * 51 DRAM Case Temperature Rise from "
+	       "Ambient due to Precharge Power-Down (DT2P) *");
+	printf("%-3d    : %02x %s\n", 52, spd->dt3n,
+	       " spd->dt3n,        * 52 DRAM Case Temperature Rise from "
+	       "Ambient due to Active Standby (DT3N) *");
+	printf("%-3d    : %02x %s\n", 53, spd->dt3pfast,
+	       " spd->dt3pfast,    * 53 DRAM Case Temperature Rise from "
+	       "Ambient due to Active Power-Down with Fast PDN Exit "
+	       "(DT3Pfast) *");
+	printf("%-3d    : %02x %s\n", 54, spd->dt3pslow,
+	       " spd->dt3pslow,    * 54 DRAM Case Temperature Rise from "
+	       "Ambient due to Active Power-Down with Slow PDN Exit "
+	       "(DT3Pslow) *");
+	printf("%-3d    : %02x %s\n", 55, spd->dt4r_dt4r4w,
+	       " spd->dt4r_dt4r4w, * 55 DRAM Case Temperature Rise from "
+	       "Ambient due to Page Open Burst Read/DT4R4W Mode Bit "
+	       "(DT4R/DT4R4W Mode Bit) *");
+	printf("%-3d    : %02x %s\n", 56, spd->dt5b,
+	       " spd->dt5b,        * 56 DRAM Case Temperature Rise from "
+	       "Ambient due to Burst Refresh (DT5B) *");
+	printf("%-3d    : %02x %s\n", 57, spd->dt7,
+	       " spd->dt7,         * 57 DRAM Case Temperature Rise from "
+	       "Ambient due to Bank Interleave Reads with "
+	       "Auto-Precharge (DT7) *");
+	printf("%-3d    : %02x %s\n", 58, spd->psi_ta_pll,
+	       " spd->psi_ta_pll,    * 58 Thermal Resistance of PLL Package form"
+	       " Top (Case) to Ambient (Psi T-A PLL) *");
+	printf("%-3d    : %02x %s\n", 59, spd->psi_ta_reg,
+	       " spd->psi_ta_reg,    * 59 Thermal Reisitance of Register Package"
+	       " from Top (Case) to Ambient (Psi T-A Register) *");
+	printf("%-3d    : %02x %s\n", 60, spd->dtpllactive,
+	       " spd->dtpllactive, * 60 PLL Case Temperature Rise from "
+	       "Ambient due to PLL Active (DT PLL Active) *");
+	printf("%-3d    : %02x %s\n", 61, spd->dtregact,
+	       " spd->dtregact,    "
+	       "* 61 Register Case Temperature Rise from Ambient due to "
+	       "Register Active/Mode Bit (DT Register Active/Mode Bit) *");
+	printf("%-3d    : %02x %s\n", 62, spd->spd_rev,
+	       " spd->spd_rev,     * 62 SPD Data Revision Code *");
+	printf("%-3d    : %02x %s\n", 63, spd->cksum,
+	       " spd->cksum,       * 63 Checksum for bytes 0-62 *");
+
+	printf("%-3d-%3d: ",  64, 71);
+
+	for (i = 0; i < 8; i++)
+		printf("%02x", spd->mid[i]);
+
+	printf("* 64 Mfr's JEDEC ID code per JEP-108E *\n");
+
+	printf("%-3d    : %02x %s\n", 72, spd->mloc,
+	       " spd->mloc,        * 72 Manufacturing Location *");
+
+	printf("%-3d-%3d: >>",  73, 90);
+	for (i = 0; i < 18; i++)
+		printf("%c", spd->mpart[i]);
+
+
+	printf("<<* 73 Manufacturer's Part Number *\n");
+
+	printf("%-3d-%3d: %02x %02x %s\n", 91, 92, spd->rev[0], spd->rev[1],
+	       "* 91 Revision Code *");
+	printf("%-3d-%3d: %02x %02x %s\n", 93, 94, spd->mdate[0], spd->mdate[1],
+	       "* 93 Manufacturing Date *");
+	printf("%-3d-%3d: ", 95, 98);
+
+	for (i = 0; i < 4; i++)
+		printf("%02x", spd->sernum[i]);
+
+	printf("* 95 Assembly Serial Number *\n");
+
+	printf("%-3d-%3d: ", 99, 127);
+	for (i = 0; i < 27; i++)
+		printf("%02x", spd->mspec[i]);
+
+
+	printf("* 99 Manufacturer Specific Data *\n");
+}
+#endif
+
+#ifdef CONFIG_SYS_FSL_DDR3
+void ddr3_spd_dump(const ddr3_spd_eeprom_t *spd)
+{
+	unsigned int i;
+
+	/* General Section: Bytes 0-59 */
+
+#define PRINT_NXS(x, y, z...) printf("%-3d    : %02x " z "\n", x, (u8)y);
+#define PRINT_NNXXS(n0, n1, x0, x1, s) \
+	printf("%-3d-%3d: %02x %02x " s "\n", n0, n1, x0, x1);
+
+	PRINT_NXS(0, spd->info_size_crc,
+		"info_size_crc  bytes written into serial memory, "
+		"CRC coverage");
+	PRINT_NXS(1, spd->spd_rev,
+		"spd_rev        SPD Revision");
+	PRINT_NXS(2, spd->mem_type,
+		"mem_type       Key Byte / DRAM Device Type");
+	PRINT_NXS(3, spd->module_type,
+		"module_type    Key Byte / Module Type");
+	PRINT_NXS(4, spd->density_banks,
+		"density_banks  SDRAM Density and Banks");
+	PRINT_NXS(5, spd->addressing,
+		"addressing     SDRAM Addressing");
+	PRINT_NXS(6, spd->module_vdd,
+		"module_vdd     Module Nominal Voltage, VDD");
+	PRINT_NXS(7, spd->organization,
+		"organization   Module Organization");
+	PRINT_NXS(8, spd->bus_width,
+		"bus_width      Module Memory Bus Width");
+	PRINT_NXS(9, spd->ftb_div,
+		"ftb_div        Fine Timebase (FTB) Dividend / Divisor");
+	PRINT_NXS(10, spd->mtb_dividend,
+		"mtb_dividend   Medium Timebase (MTB) Dividend");
+	PRINT_NXS(11, spd->mtb_divisor,
+		"mtb_divisor    Medium Timebase (MTB) Divisor");
+	PRINT_NXS(12, spd->tck_min,
+		  "tck_min        SDRAM Minimum Cycle Time");
+	PRINT_NXS(13, spd->res_13,
+		"res_13         Reserved");
+	PRINT_NXS(14, spd->caslat_lsb,
+		"caslat_lsb     CAS Latencies Supported, LSB");
+	PRINT_NXS(15, spd->caslat_msb,
+		"caslat_msb     CAS Latencies Supported, MSB");
+	PRINT_NXS(16, spd->taa_min,
+		  "taa_min        Min CAS Latency Time");
+	PRINT_NXS(17, spd->twr_min,
+		  "twr_min        Min Write REcovery Time");
+	PRINT_NXS(18, spd->trcd_min,
+		  "trcd_min       Min RAS# to CAS# Delay Time");
+	PRINT_NXS(19, spd->trrd_min,
+		  "trrd_min       Min Row Active to Row Active Delay Time");
+	PRINT_NXS(20, spd->trp_min,
+		  "trp_min        Min Row Precharge Delay Time");
+	PRINT_NXS(21, spd->tras_trc_ext,
+		  "tras_trc_ext   Upper Nibbles for tRAS and tRC");
+	PRINT_NXS(22, spd->tras_min_lsb,
+		  "tras_min_lsb   Min Active to Precharge Delay Time, LSB");
+	PRINT_NXS(23, spd->trc_min_lsb,
+		  "trc_min_lsb Min Active to Active/Refresh Delay Time, LSB");
+	PRINT_NXS(24, spd->trfc_min_lsb,
+		  "trfc_min_lsb   Min Refresh Recovery Delay Time LSB");
+	PRINT_NXS(25, spd->trfc_min_msb,
+		  "trfc_min_msb   Min Refresh Recovery Delay Time MSB");
+	PRINT_NXS(26, spd->twtr_min,
+		  "twtr_min Min Internal Write to Read Command Delay Time");
+	PRINT_NXS(27, spd->trtp_min,
+		  "trtp_min "
+		  "Min Internal Read to Precharge Command Delay Time");
+	PRINT_NXS(28, spd->tfaw_msb,
+		  "tfaw_msb       Upper Nibble for tFAW");
+	PRINT_NXS(29, spd->tfaw_min,
+		  "tfaw_min       Min Four Activate Window Delay Time");
+	PRINT_NXS(30, spd->opt_features,
+		"opt_features   SDRAM Optional Features");
+	PRINT_NXS(31, spd->therm_ref_opt,
+		"therm_ref_opt  SDRAM Thermal and Refresh Opts");
+	PRINT_NXS(32, spd->therm_sensor,
+		"therm_sensor  SDRAM Thermal Sensor");
+	PRINT_NXS(33, spd->device_type,
+		"device_type  SDRAM Device Type");
+	PRINT_NXS(34, spd->fine_tck_min,
+		  "fine_tck_min  Fine offset for tCKmin");
+	PRINT_NXS(35, spd->fine_taa_min,
+		  "fine_taa_min  Fine offset for tAAmin");
+	PRINT_NXS(36, spd->fine_trcd_min,
+		  "fine_trcd_min Fine offset for tRCDmin");
+	PRINT_NXS(37, spd->fine_trp_min,
+		  "fine_trp_min  Fine offset for tRPmin");
+	PRINT_NXS(38, spd->fine_trc_min,
+		  "fine_trc_min  Fine offset for tRCmin");
+
+	printf("%-3d-%3d: ",  39, 59);  /* Reserved, General Section */
+
+	for (i = 39; i <= 59; i++)
+		printf("%02x ", spd->res_39_59[i - 39]);
+
+	puts("\n");
+
+	switch (spd->module_type) {
+	case 0x02:  /* UDIMM */
+	case 0x03:  /* SO-DIMM */
+	case 0x04:  /* Micro-DIMM */
+	case 0x06:  /* Mini-UDIMM */
+		PRINT_NXS(60, spd->mod_section.unbuffered.mod_height,
+			"mod_height    (Unbuffered) Module Nominal Height");
+		PRINT_NXS(61, spd->mod_section.unbuffered.mod_thickness,
+			"mod_thickness (Unbuffered) Module Maximum Thickness");
+		PRINT_NXS(62, spd->mod_section.unbuffered.ref_raw_card,
+			"ref_raw_card  (Unbuffered) Reference Raw Card Used");
+		PRINT_NXS(63, spd->mod_section.unbuffered.addr_mapping,
+			"addr_mapping  (Unbuffered) Address mapping from "
+			"Edge Connector to DRAM");
+		break;
+	case 0x01:  /* RDIMM */
+	case 0x05:  /* Mini-RDIMM */
+		PRINT_NXS(60, spd->mod_section.registered.mod_height,
+			"mod_height    (Registered) Module Nominal Height");
+		PRINT_NXS(61, spd->mod_section.registered.mod_thickness,
+			"mod_thickness (Registered) Module Maximum Thickness");
+		PRINT_NXS(62, spd->mod_section.registered.ref_raw_card,
+			"ref_raw_card  (Registered) Reference Raw Card Used");
+		PRINT_NXS(63, spd->mod_section.registered.modu_attr,
+			"modu_attr     (Registered) DIMM Module Attributes");
+		PRINT_NXS(64, spd->mod_section.registered.thermal,
+			"thermal       (Registered) Thermal Heat "
+			"Spreader Solution");
+		PRINT_NXS(65, spd->mod_section.registered.reg_id_lo,
+			"reg_id_lo     (Registered) Register Manufacturer ID "
+			"Code, LSB");
+		PRINT_NXS(66, spd->mod_section.registered.reg_id_hi,
+			"reg_id_hi     (Registered) Register Manufacturer ID "
+			"Code, MSB");
+		PRINT_NXS(67, spd->mod_section.registered.reg_rev,
+			"reg_rev       (Registered) Register "
+			"Revision Number");
+		PRINT_NXS(68, spd->mod_section.registered.reg_type,
+			"reg_type      (Registered) Register Type");
+		for (i = 69; i <= 76; i++) {
+			printf("%-3d    : %02x rcw[%d]\n", i,
+				spd->mod_section.registered.rcw[i-69], i-69);
+		}
+		break;
+	default:
+		/* Module-specific Section, Unsupported Module Type */
+		printf("%-3d-%3d: ", 60, 116);
+
+		for (i = 60; i <= 116; i++)
+			printf("%02x", spd->mod_section.uc[i - 60]);
+
+		break;
+	}
+
+	/* Unique Module ID: Bytes 117-125 */
+	PRINT_NXS(117, spd->mmid_lsb, "Module MfgID Code LSB - JEP-106");
+	PRINT_NXS(118, spd->mmid_msb, "Module MfgID Code MSB - JEP-106");
+	PRINT_NXS(119, spd->mloc,     "Mfg Location");
+	PRINT_NNXXS(120, 121, spd->mdate[0], spd->mdate[1], "Mfg Date");
+
+	printf("%-3d-%3d: ", 122, 125);
+
+	for (i = 122; i <= 125; i++)
+		printf("%02x ", spd->sernum[i - 122]);
+	printf("   Module Serial Number\n");
+
+	/* CRC: Bytes 126-127 */
+	PRINT_NNXXS(126, 127, spd->crc[0], spd->crc[1], "  SPD CRC");
+
+	/* Other Manufacturer Fields and User Space: Bytes 128-255 */
+	printf("%-3d-%3d: ", 128, 145);
+	for (i = 128; i <= 145; i++)
+		printf("%02x ", spd->mpart[i - 128]);
+	printf("   Mfg's Module Part Number\n");
+
+	PRINT_NNXXS(146, 147, spd->mrev[0], spd->mrev[1],
+		"Module Revision code");
+
+	PRINT_NXS(148, spd->dmid_lsb, "DRAM MfgID Code LSB - JEP-106");
+	PRINT_NXS(149, spd->dmid_msb, "DRAM MfgID Code MSB - JEP-106");
+
+	printf("%-3d-%3d: ", 150, 175);
+	for (i = 150; i <= 175; i++)
+		printf("%02x ", spd->msd[i - 150]);
+	printf("   Mfg's Specific Data\n");
+
+	printf("%-3d-%3d: ", 176, 255);
+	for (i = 176; i <= 255; i++)
+		printf("%02x", spd->cust[i - 176]);
+	printf("   Mfg's Specific Data\n");
+
+}
+#endif
+
+static inline void generic_spd_dump(const generic_spd_eeprom_t *spd)
+{
+#if defined(CONFIG_SYS_FSL_DDR1)
+	ddr1_spd_dump(spd);
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	ddr2_spd_dump(spd);
+#elif defined(CONFIG_SYS_FSL_DDR3)
+	ddr3_spd_dump(spd);
+#endif
+}
+
+static void fsl_ddr_printinfo(const fsl_ddr_info_t *pinfo,
+			unsigned int ctrl_mask,
+			unsigned int dimm_mask,
+			unsigned int do_mask)
+{
+	unsigned int i, j, retval;
+
+	/* STEP 1:  DIMM SPD data */
+	if (do_mask & STEP_GET_SPD) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				if (!(dimm_mask & (1 << j)))
+					continue;
+
+				printf("SPD info:  Controller=%u "
+						"DIMM=%u\n", i, j);
+				generic_spd_dump(
+					&(pinfo->spd_installed_dimms[i][j]));
+				printf("\n");
+			}
+			printf("\n");
+		}
+		printf("\n");
+	}
+
+	/* STEP 2:  DIMM Parameters */
+	if (do_mask & STEP_COMPUTE_DIMM_PARMS) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				if (!(dimm_mask & (1 << j)))
+					continue;
+				printf("DIMM parameters:  Controller=%u "
+						"DIMM=%u\n", i, j);
+				print_dimm_parameters(
+					&(pinfo->dimm_params[i][j]));
+				printf("\n");
+			}
+			printf("\n");
+		}
+		printf("\n");
+	}
+
+	/* STEP 3:  Common Parameters */
+	if (do_mask & STEP_COMPUTE_COMMON_PARMS) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+			printf("\"lowest common\" DIMM parameters:  "
+					"Controller=%u\n", i);
+			print_lowest_common_dimm_parameters(
+				&pinfo->common_timing_params[i]);
+			printf("\n");
+		}
+		printf("\n");
+	}
+
+	/* STEP 4:  User Configuration Options */
+	if (do_mask & STEP_GATHER_OPTS) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+			printf("User Config Options: Controller=%u\n", i);
+			print_memctl_options(&pinfo->memctl_opts[i]);
+			printf("\n");
+		}
+		printf("\n");
+	}
+
+	/* STEP 5:  Address assignment */
+	if (do_mask & STEP_ASSIGN_ADDRESSES) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				printf("Address Assignment: Controller=%u "
+						"DIMM=%u\n", i, j);
+				printf("Don't have this functionality yet\n");
+			}
+			printf("\n");
+		}
+		printf("\n");
+	}
+
+	/* STEP 6:  computed controller register values */
+	if (do_mask & STEP_COMPUTE_REGS) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (!(ctrl_mask & (1 << i)))
+				continue;
+			printf("Computed Register Values: Controller=%u\n", i);
+			print_fsl_memctl_config_regs(
+				&pinfo->fsl_ddr_config_reg[i]);
+			retval = check_fsl_memctl_config_regs(
+				&pinfo->fsl_ddr_config_reg[i]);
+			if (retval) {
+				printf("check_fsl_memctl_config_regs "
+					"result = %u\n", retval);
+			}
+			printf("\n");
+		}
+		printf("\n");
+	}
+}
+
+struct data_strings {
+	const char *data_name;
+	unsigned int step_mask;
+	unsigned int dimm_number_required;
+};
+
+#define DATA_OPTIONS(name, step, dimm) {#name, step, dimm}
+
+static unsigned int fsl_ddr_parse_interactive_cmd(
+	char **argv,
+	int argc,
+	unsigned int *pstep_mask,
+	unsigned int *pctlr_mask,
+	unsigned int *pdimm_mask,
+	unsigned int *pdimm_number_required
+	 ) {
+
+	static const struct data_strings options[] = {
+		DATA_OPTIONS(spd, STEP_GET_SPD, 1),
+		DATA_OPTIONS(dimmparms, STEP_COMPUTE_DIMM_PARMS, 1),
+		DATA_OPTIONS(commonparms, STEP_COMPUTE_COMMON_PARMS, 0),
+		DATA_OPTIONS(opts, STEP_GATHER_OPTS, 0),
+		DATA_OPTIONS(addresses, STEP_ASSIGN_ADDRESSES, 0),
+		DATA_OPTIONS(regs, STEP_COMPUTE_REGS, 0),
+	};
+	static const unsigned int n_opts = ARRAY_SIZE(options);
+
+	unsigned int i, j;
+	unsigned int error = 0;
+
+	for (i = 1; i < argc; i++) {
+		unsigned int matched = 0;
+
+		for (j = 0; j < n_opts; j++) {
+			if (strcmp(options[j].data_name, argv[i]) != 0)
+				continue;
+			*pstep_mask |= options[j].step_mask;
+			*pdimm_number_required =
+				options[j].dimm_number_required;
+			matched = 1;
+			break;
+		}
+
+		if (matched)
+			continue;
+
+		if (argv[i][0] == 'c') {
+			char c = argv[i][1];
+			if (isdigit(c))
+				*pctlr_mask |= 1 << (c - '0');
+			continue;
+		}
+
+		if (argv[i][0] == 'd') {
+			char c = argv[i][1];
+			if (isdigit(c))
+				*pdimm_mask |= 1 << (c - '0');
+			continue;
+		}
+
+		printf("unknown arg %s\n", argv[i]);
+		*pstep_mask = 0;
+		error = 1;
+		break;
+	}
+
+	return error;
+}
+
+int fsl_ddr_interactive_env_var_exists(void)
+{
+	char buffer[CONFIG_SYS_CBSIZE];
+
+	if (getenv_f("ddr_interactive", buffer, CONFIG_SYS_CBSIZE) >= 0)
+		return 1;
+
+	return 0;
+}
+
+unsigned long long fsl_ddr_interactive(fsl_ddr_info_t *pinfo, int var_is_set)
+{
+	unsigned long long ddrsize;
+	const char *prompt = "FSL DDR>";
+	char buffer[CONFIG_SYS_CBSIZE];
+	char buffer2[CONFIG_SYS_CBSIZE];
+	char *p = NULL;
+	char *argv[CONFIG_SYS_MAXARGS + 1];	/* NULL terminated */
+	int argc;
+	unsigned int next_step = STEP_GET_SPD;
+	const char *usage = {
+		"commands:\n"
+		"print      print SPD and intermediate computed data\n"
+		"reset      reboot machine\n"
+		"recompute  reload SPD and options to default and recompute regs\n"
+		"edit       modify spd, parameter, or option\n"
+		"compute    recompute registers from current next_step to end\n"
+		"copy       copy parameters\n"
+		"next_step  shows current next_step\n"
+		"help       this message\n"
+		"go         program the memory controller and continue with u-boot\n"
+	};
+
+	if (var_is_set) {
+		if (getenv_f("ddr_interactive", buffer2, CONFIG_SYS_CBSIZE) > 0) {
+			p = buffer2;
+		} else {
+			var_is_set = 0;
+		}
+	}
+
+	/*
+	 * The strategy for next_step is that it points to the next
+	 * step in the computation process that needs to be done.
+	 */
+	while (1) {
+		if (var_is_set) {
+			char *pend = strchr(p, ';');
+			if (pend) {
+				/* found command separator, copy sub-command */
+				*pend = '\0';
+				strcpy(buffer, p);
+				p = pend + 1;
+			} else {
+				/* separator not found, copy whole string */
+				strcpy(buffer, p);
+				p = NULL;
+				var_is_set = 0;
+			}
+		} else {
+			/*
+			 * No need to worry for buffer overflow here in
+			 * this function;  readline() maxes out at CFG_CBSIZE
+			 */
+			readline_into_buffer(prompt, buffer, 0);
+		}
+		argc = parse_line(buffer, argv);
+		if (argc == 0)
+			continue;
+
+
+		if (strcmp(argv[0], "help") == 0) {
+			puts(usage);
+			continue;
+		}
+
+		if (strcmp(argv[0], "next_step") == 0) {
+			printf("next_step = 0x%02X (%s)\n",
+			       next_step,
+			       step_to_string(next_step));
+			continue;
+		}
+
+		if (strcmp(argv[0], "copy") == 0) {
+			unsigned int error = 0;
+			unsigned int step_mask = 0;
+			unsigned int src_ctlr_mask = 0;
+			unsigned int src_dimm_mask = 0;
+			unsigned int dimm_number_required = 0;
+			unsigned int src_ctlr_num = 0;
+			unsigned int src_dimm_num = 0;
+			unsigned int dst_ctlr_num = -1;
+			unsigned int dst_dimm_num = -1;
+			unsigned int i, num_dest_parms;
+
+			if (argc == 1) {
+				printf("copy <src c#> <src d#> <spd|dimmparms|commonparms|opts|addresses|regs> <dst c#> <dst d#>\n");
+				continue;
+			}
+
+			error = fsl_ddr_parse_interactive_cmd(
+				argv, argc,
+				&step_mask,
+				&src_ctlr_mask,
+				&src_dimm_mask,
+				&dimm_number_required
+			);
+
+			/* XXX: only dimm_number_required and step_mask will
+			   be used by this function.  Parse the controller and
+			   DIMM number separately because it is easier.  */
+
+			if (error)
+				continue;
+
+			/* parse source destination controller / DIMM */
+
+			num_dest_parms = dimm_number_required ? 2 : 1;
+
+			for (i = 0; i < argc; i++) {
+				if (argv[i][0] == 'c') {
+					char c = argv[i][1];
+					if (isdigit(c)) {
+						src_ctlr_num = (c - '0');
+						break;
+					}
+				}
+			}
+
+			for (i = 0; i < argc; i++) {
+				if (argv[i][0] == 'd') {
+					char c = argv[i][1];
+					if (isdigit(c)) {
+						src_dimm_num = (c - '0');
+						break;
+					}
+				}
+			}
+
+			/* parse destination controller / DIMM */
+
+			for (i = argc - 1; i >= argc - num_dest_parms; i--) {
+				if (argv[i][0] == 'c') {
+					char c = argv[i][1];
+					if (isdigit(c)) {
+						dst_ctlr_num = (c - '0');
+						break;
+					}
+				}
+			}
+
+			for (i = argc - 1; i >= argc - num_dest_parms; i--) {
+				if (argv[i][0] == 'd') {
+					char c = argv[i][1];
+					if (isdigit(c)) {
+						dst_dimm_num = (c - '0');
+						break;
+					}
+				}
+			}
+
+			/* TODO: validate inputs */
+
+			debug("src_ctlr_num = %u, src_dimm_num = %u, dst_ctlr_num = %u, dst_dimm_num = %u, step_mask = %x\n",
+				src_ctlr_num, src_dimm_num, dst_ctlr_num, dst_dimm_num, step_mask);
+
+
+			switch (step_mask) {
+
+			case STEP_GET_SPD:
+				memcpy(&(pinfo->spd_installed_dimms[dst_ctlr_num][dst_dimm_num]),
+					&(pinfo->spd_installed_dimms[src_ctlr_num][src_dimm_num]),
+					sizeof(pinfo->spd_installed_dimms[0][0]));
+				break;
+
+			case STEP_COMPUTE_DIMM_PARMS:
+				memcpy(&(pinfo->dimm_params[dst_ctlr_num][dst_dimm_num]),
+					&(pinfo->dimm_params[src_ctlr_num][src_dimm_num]),
+					sizeof(pinfo->dimm_params[0][0]));
+				break;
+
+			case STEP_COMPUTE_COMMON_PARMS:
+				memcpy(&(pinfo->common_timing_params[dst_ctlr_num]),
+					&(pinfo->common_timing_params[src_ctlr_num]),
+					sizeof(pinfo->common_timing_params[0]));
+				break;
+
+			case STEP_GATHER_OPTS:
+				memcpy(&(pinfo->memctl_opts[dst_ctlr_num]),
+					&(pinfo->memctl_opts[src_ctlr_num]),
+					sizeof(pinfo->memctl_opts[0]));
+				break;
+
+			/* someday be able to have addresses to copy addresses... */
+
+			case STEP_COMPUTE_REGS:
+				memcpy(&(pinfo->fsl_ddr_config_reg[dst_ctlr_num]),
+					&(pinfo->fsl_ddr_config_reg[src_ctlr_num]),
+					sizeof(pinfo->memctl_opts[0]));
+				break;
+
+			default:
+				printf("unexpected step_mask value\n");
+			}
+
+			continue;
+
+		}
+
+		if (strcmp(argv[0], "edit") == 0) {
+			unsigned int error = 0;
+			unsigned int step_mask = 0;
+			unsigned int ctlr_mask = 0;
+			unsigned int dimm_mask = 0;
+			char *p_element = NULL;
+			char *p_value = NULL;
+			unsigned int dimm_number_required = 0;
+			unsigned int ctrl_num;
+			unsigned int dimm_num;
+
+			if (argc == 1) {
+				/* Only the element and value must be last */
+				printf("edit <c#> <d#> "
+					"<spd|dimmparms|commonparms|opts|"
+					"addresses|regs> <element> <value>\n");
+				printf("for spd, specify byte number for "
+					"element\n");
+				continue;
+			}
+
+			error = fsl_ddr_parse_interactive_cmd(
+				argv, argc - 2,
+				&step_mask,
+				&ctlr_mask,
+				&dimm_mask,
+				&dimm_number_required
+			);
+
+			if (error)
+				continue;
+
+
+			/* Check arguments */
+
+			/* ERROR: If no steps were found */
+			if (step_mask == 0) {
+				printf("Error: No valid steps were specified "
+						"in argument.\n");
+				continue;
+			}
+
+			/* ERROR: If multiple steps were found */
+			if (step_mask & (step_mask - 1)) {
+				printf("Error: Multiple steps specified in "
+						"argument.\n");
+				continue;
+			}
+
+			/* ERROR: Controller not specified */
+			if (ctlr_mask == 0) {
+				printf("Error: controller number not "
+					"specified or no element and "
+					"value specified\n");
+				continue;
+			}
+
+			if (ctlr_mask & (ctlr_mask - 1)) {
+				printf("Error: multiple controllers "
+						"specified, %X\n", ctlr_mask);
+				continue;
+			}
+
+			/* ERROR: DIMM number not specified */
+			if (dimm_number_required && dimm_mask == 0) {
+				printf("Error: DIMM number number not "
+					"specified or no element and "
+					"value specified\n");
+				continue;
+			}
+
+			if (dimm_mask & (dimm_mask - 1)) {
+				printf("Error: multipled DIMMs specified\n");
+				continue;
+			}
+
+			p_element = argv[argc - 2];
+			p_value = argv[argc - 1];
+
+			ctrl_num = __ilog2(ctlr_mask);
+			dimm_num = __ilog2(dimm_mask);
+
+			switch (step_mask) {
+			case STEP_GET_SPD:
+				{
+					unsigned int element_num;
+					unsigned int value;
+
+					element_num = simple_strtoul(p_element,
+								     NULL, 0);
+					value = simple_strtoul(p_value,
+							       NULL, 0);
+					fsl_ddr_spd_edit(pinfo,
+							       ctrl_num,
+							       dimm_num,
+							       element_num,
+							       value);
+					next_step = STEP_COMPUTE_DIMM_PARMS;
+				}
+				break;
+
+			case STEP_COMPUTE_DIMM_PARMS:
+				fsl_ddr_dimm_parameters_edit(
+						 pinfo, ctrl_num, dimm_num,
+						 p_element, p_value);
+				next_step = STEP_COMPUTE_COMMON_PARMS;
+				break;
+
+			case STEP_COMPUTE_COMMON_PARMS:
+				lowest_common_dimm_parameters_edit(pinfo,
+						ctrl_num, p_element, p_value);
+				next_step = STEP_GATHER_OPTS;
+				break;
+
+			case STEP_GATHER_OPTS:
+				fsl_ddr_options_edit(pinfo, ctrl_num,
+							   p_element, p_value);
+				next_step = STEP_ASSIGN_ADDRESSES;
+				break;
+
+			case STEP_ASSIGN_ADDRESSES:
+				printf("editing of address assignment "
+						"not yet implemented\n");
+				break;
+
+			case STEP_COMPUTE_REGS:
+				{
+					fsl_ddr_regs_edit(pinfo,
+								ctrl_num,
+								p_element,
+								p_value);
+					next_step = STEP_PROGRAM_REGS;
+				}
+				break;
+
+			default:
+				printf("programming error\n");
+				while (1)
+					;
+				break;
+			}
+			continue;
+		}
+
+		if (strcmp(argv[0], "reset") == 0) {
+			/*
+			 * Reboot machine.
+			 * Args don't seem to matter because this
+			 * doesn't return
+			 */
+			do_reset(NULL, 0, 0, NULL);
+			printf("Reset didn't work\n");
+		}
+
+		if (strcmp(argv[0], "recompute") == 0) {
+			/*
+			 * Recalculate everything, starting with
+			 * loading SPD EEPROM from DIMMs
+			 */
+			next_step = STEP_GET_SPD;
+			ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+			continue;
+		}
+
+		if (strcmp(argv[0], "compute") == 0) {
+			/*
+			 * Compute rest of steps starting at
+			 * the current next_step/
+			 */
+			ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+			continue;
+		}
+
+		if (strcmp(argv[0], "print") == 0) {
+			unsigned int error = 0;
+			unsigned int step_mask = 0;
+			unsigned int ctlr_mask = 0;
+			unsigned int dimm_mask = 0;
+			unsigned int dimm_number_required = 0;
+
+			if (argc == 1) {
+				printf("print [c<n>] [d<n>] [spd] [dimmparms] "
+				  "[commonparms] [opts] [addresses] [regs]\n");
+				continue;
+			}
+
+			error = fsl_ddr_parse_interactive_cmd(
+				argv, argc,
+				&step_mask,
+				&ctlr_mask,
+				&dimm_mask,
+				&dimm_number_required
+			);
+
+			if (error)
+				continue;
+
+			/* If no particular controller was found, print all */
+			if (ctlr_mask == 0)
+				ctlr_mask = 0xFF;
+
+			/* If no particular dimm was found, print all dimms. */
+			if (dimm_mask == 0)
+				dimm_mask = 0xFF;
+
+			/* If no steps were found, print all steps. */
+			if (step_mask == 0)
+				step_mask = STEP_ALL;
+
+			fsl_ddr_printinfo(pinfo, ctlr_mask,
+						dimm_mask, step_mask);
+			continue;
+		}
+
+		if (strcmp(argv[0], "go") == 0) {
+			if (next_step)
+				ddrsize = fsl_ddr_compute(pinfo, next_step, 0);
+			break;
+		}
+
+		printf("unknown command %s\n", argv[0]);
+	}
+
+	debug("end of memory = %llu\n", (u64)ddrsize);
+
+	return ddrsize;
+}
diff --git a/drivers/ddr/fsl/lc_common_dimm_params.c b/drivers/ddr/fsl/lc_common_dimm_params.c
new file mode 100644
index 0000000..610318a
--- /dev/null
+++ b/drivers/ddr/fsl/lc_common_dimm_params.c
@@ -0,0 +1,526 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+static unsigned int
+compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
+			 common_timing_params_t *outpdimm,
+			 unsigned int number_of_dimms)
+{
+	unsigned int i;
+	unsigned int taamin_ps = 0;
+	unsigned int tckmin_x_ps = 0;
+	unsigned int common_caslat;
+	unsigned int caslat_actual;
+	unsigned int retry = 16;
+	unsigned int tmp;
+	const unsigned int mclk_ps = get_memory_clk_period_ps();
+
+	/* compute the common CAS latency supported between slots */
+	tmp = dimm_params[0].caslat_x;
+	for (i = 1; i < number_of_dimms; i++) {
+		if (dimm_params[i].n_ranks)
+			tmp &= dimm_params[i].caslat_x;
+	}
+	common_caslat = tmp;
+
+	/* compute the max tAAmin tCKmin between slots */
+	for (i = 0; i < number_of_dimms; i++) {
+		taamin_ps = max(taamin_ps, dimm_params[i].taa_ps);
+		tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
+	}
+	/* validate if the memory clk is in the range of dimms */
+	if (mclk_ps < tckmin_x_ps) {
+		printf("DDR clock (MCLK cycle %u ps) is faster than "
+			"the slowest DIMM(s) (tCKmin %u ps) can support.\n",
+			mclk_ps, tckmin_x_ps);
+	}
+	/* determine the acutal cas latency */
+	caslat_actual = (taamin_ps + mclk_ps - 1) / mclk_ps;
+	/* check if the dimms support the CAS latency */
+	while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
+		caslat_actual++;
+		retry--;
+	}
+	/* once the caculation of caslat_actual is completed
+	 * we must verify that this CAS latency value does not
+	 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
+	 */
+	if (caslat_actual * mclk_ps > 20000) {
+		printf("The choosen cas latency %d is too large\n",
+			caslat_actual);
+	}
+	outpdimm->lowest_common_SPD_caslat = caslat_actual;
+
+	return 0;
+}
+#endif
+
+/*
+ * compute_lowest_common_dimm_parameters()
+ *
+ * Determine the worst-case DIMM timing parameters from the set of DIMMs
+ * whose parameters have been computed into the array pointed to
+ * by dimm_params.
+ */
+unsigned int
+compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
+				      common_timing_params_t *outpdimm,
+				      const unsigned int number_of_dimms)
+{
+	unsigned int i, j;
+
+	unsigned int tckmin_x_ps = 0;
+	unsigned int tckmax_ps = 0xFFFFFFFF;
+	unsigned int tckmax_max_ps = 0;
+	unsigned int trcd_ps = 0;
+	unsigned int trp_ps = 0;
+	unsigned int tras_ps = 0;
+	unsigned int twr_ps = 0;
+	unsigned int twtr_ps = 0;
+	unsigned int trfc_ps = 0;
+	unsigned int trrd_ps = 0;
+	unsigned int trc_ps = 0;
+	unsigned int refresh_rate_ps = 0;
+	unsigned int extended_op_srt = 1;
+	unsigned int tis_ps = 0;
+	unsigned int tih_ps = 0;
+	unsigned int tds_ps = 0;
+	unsigned int tdh_ps = 0;
+	unsigned int trtp_ps = 0;
+	unsigned int tdqsq_max_ps = 0;
+	unsigned int tqhs_ps = 0;
+
+	unsigned int temp1, temp2;
+	unsigned int additive_latency = 0;
+#if !defined(CONFIG_SYS_FSL_DDR3)
+	const unsigned int mclk_ps = get_memory_clk_period_ps();
+	unsigned int lowest_good_caslat;
+	unsigned int not_ok;
+
+	debug("using mclk_ps = %u\n", mclk_ps);
+#endif
+
+	temp1 = 0;
+	for (i = 0; i < number_of_dimms; i++) {
+		/*
+		 * If there are no ranks on this DIMM,
+		 * it probably doesn't exist, so skip it.
+		 */
+		if (dimm_params[i].n_ranks == 0) {
+			temp1++;
+			continue;
+		}
+		if (dimm_params[i].n_ranks == 4 && i != 0) {
+			printf("Found Quad-rank DIMM in wrong bank, ignored."
+				" Software may not run as expected.\n");
+			temp1++;
+			continue;
+		}
+
+		/*
+		 * check if quad-rank DIMM is plugged if
+		 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
+		 * Only the board with proper design is capable
+		 */
+#ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+		if (dimm_params[i].n_ranks == 4 && \
+		  CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
+			printf("Found Quad-rank DIMM, not able to support.");
+			temp1++;
+			continue;
+		}
+#endif
+		/*
+		 * Find minimum tckmax_ps to find fastest slow speed,
+		 * i.e., this is the slowest the whole system can go.
+		 */
+		tckmax_ps = min(tckmax_ps, dimm_params[i].tckmax_ps);
+
+		/* Either find maximum value to determine slowest
+		 * speed, delay, time, period, etc */
+		tckmin_x_ps = max(tckmin_x_ps, dimm_params[i].tckmin_x_ps);
+		tckmax_max_ps = max(tckmax_max_ps, dimm_params[i].tckmax_ps);
+		trcd_ps = max(trcd_ps, dimm_params[i].trcd_ps);
+		trp_ps = max(trp_ps, dimm_params[i].trp_ps);
+		tras_ps = max(tras_ps, dimm_params[i].tras_ps);
+		twr_ps = max(twr_ps, dimm_params[i].twr_ps);
+		twtr_ps = max(twtr_ps, dimm_params[i].twtr_ps);
+		trfc_ps = max(trfc_ps, dimm_params[i].trfc_ps);
+		trrd_ps = max(trrd_ps, dimm_params[i].trrd_ps);
+		trc_ps = max(trc_ps, dimm_params[i].trc_ps);
+		tis_ps = max(tis_ps, dimm_params[i].tis_ps);
+		tih_ps = max(tih_ps, dimm_params[i].tih_ps);
+		tds_ps = max(tds_ps, dimm_params[i].tds_ps);
+		tdh_ps = max(tdh_ps, dimm_params[i].tdh_ps);
+		trtp_ps = max(trtp_ps, dimm_params[i].trtp_ps);
+		tqhs_ps = max(tqhs_ps, dimm_params[i].tqhs_ps);
+		refresh_rate_ps = max(refresh_rate_ps,
+				      dimm_params[i].refresh_rate_ps);
+		/* extended_op_srt is either 0 or 1, 0 having priority */
+		extended_op_srt = min(extended_op_srt,
+				      dimm_params[i].extended_op_srt);
+
+		/*
+		 * Find maximum tdqsq_max_ps to find slowest.
+		 *
+		 * FIXME: is finding the slowest value the correct
+		 * strategy for this parameter?
+		 */
+		tdqsq_max_ps = max(tdqsq_max_ps, dimm_params[i].tdqsq_max_ps);
+	}
+
+	outpdimm->ndimms_present = number_of_dimms - temp1;
+
+	if (temp1 == number_of_dimms) {
+		debug("no dimms this memory controller\n");
+		return 0;
+	}
+
+	outpdimm->tckmin_x_ps = tckmin_x_ps;
+	outpdimm->tckmax_ps = tckmax_ps;
+	outpdimm->tckmax_max_ps = tckmax_max_ps;
+	outpdimm->trcd_ps = trcd_ps;
+	outpdimm->trp_ps = trp_ps;
+	outpdimm->tras_ps = tras_ps;
+	outpdimm->twr_ps = twr_ps;
+	outpdimm->twtr_ps = twtr_ps;
+	outpdimm->trfc_ps = trfc_ps;
+	outpdimm->trrd_ps = trrd_ps;
+	outpdimm->trc_ps = trc_ps;
+	outpdimm->refresh_rate_ps = refresh_rate_ps;
+	outpdimm->extended_op_srt = extended_op_srt;
+	outpdimm->tis_ps = tis_ps;
+	outpdimm->tih_ps = tih_ps;
+	outpdimm->tds_ps = tds_ps;
+	outpdimm->tdh_ps = tdh_ps;
+	outpdimm->trtp_ps = trtp_ps;
+	outpdimm->tdqsq_max_ps = tdqsq_max_ps;
+	outpdimm->tqhs_ps = tqhs_ps;
+
+	/* Determine common burst length for all DIMMs. */
+	temp1 = 0xff;
+	for (i = 0; i < number_of_dimms; i++) {
+		if (dimm_params[i].n_ranks) {
+			temp1 &= dimm_params[i].burst_lengths_bitmask;
+		}
+	}
+	outpdimm->all_dimms_burst_lengths_bitmask = temp1;
+
+	/* Determine if all DIMMs registered buffered. */
+	temp1 = temp2 = 0;
+	for (i = 0; i < number_of_dimms; i++) {
+		if (dimm_params[i].n_ranks) {
+			if (dimm_params[i].registered_dimm) {
+				temp1 = 1;
+#ifndef CONFIG_SPL_BUILD
+				printf("Detected RDIMM %s\n",
+					dimm_params[i].mpart);
+#endif
+			} else {
+				temp2 = 1;
+#ifndef CONFIG_SPL_BUILD
+				printf("Detected UDIMM %s\n",
+					dimm_params[i].mpart);
+#endif
+			}
+		}
+	}
+
+	outpdimm->all_dimms_registered = 0;
+	outpdimm->all_dimms_unbuffered = 0;
+	if (temp1 && !temp2) {
+		outpdimm->all_dimms_registered = 1;
+	} else if (!temp1 && temp2) {
+		outpdimm->all_dimms_unbuffered = 1;
+	} else {
+		printf("ERROR:  Mix of registered buffered and unbuffered "
+				"DIMMs detected!\n");
+	}
+
+	temp1 = 0;
+	if (outpdimm->all_dimms_registered)
+		for (j = 0; j < 16; j++) {
+			outpdimm->rcw[j] = dimm_params[0].rcw[j];
+			for (i = 1; i < number_of_dimms; i++) {
+				if (!dimm_params[i].n_ranks)
+					continue;
+				if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
+					temp1 = 1;
+					break;
+				}
+			}
+		}
+
+	if (temp1 != 0)
+		printf("ERROR: Mix different RDIMM detected!\n");
+
+#if defined(CONFIG_SYS_FSL_DDR3)
+	if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
+		return 1;
+#else
+	/*
+	 * Compute a CAS latency suitable for all DIMMs
+	 *
+	 * Strategy for SPD-defined latencies: compute only
+	 * CAS latency defined by all DIMMs.
+	 */
+
+	/*
+	 * Step 1: find CAS latency common to all DIMMs using bitwise
+	 * operation.
+	 */
+	temp1 = 0xFF;
+	for (i = 0; i < number_of_dimms; i++) {
+		if (dimm_params[i].n_ranks) {
+			temp2 = 0;
+			temp2 |= 1 << dimm_params[i].caslat_x;
+			temp2 |= 1 << dimm_params[i].caslat_x_minus_1;
+			temp2 |= 1 << dimm_params[i].caslat_x_minus_2;
+			/*
+			 * FIXME: If there was no entry for X-2 (X-1) in
+			 * the SPD, then caslat_x_minus_2
+			 * (caslat_x_minus_1) contains either 255 or
+			 * 0xFFFFFFFF because that's what the glorious
+			 * __ilog2 function returns for an input of 0.
+			 * On 32-bit PowerPC, left shift counts with bit
+			 * 26 set (that the value of 255 or 0xFFFFFFFF
+			 * will have), cause the destination register to
+			 * be 0.  That is why this works.
+			 */
+			temp1 &= temp2;
+		}
+	}
+
+	/*
+	 * Step 2: check each common CAS latency against tCK of each
+	 * DIMM's SPD.
+	 */
+	lowest_good_caslat = 0;
+	temp2 = 0;
+	while (temp1) {
+		not_ok = 0;
+		temp2 =  __ilog2(temp1);
+		debug("checking common caslat = %u\n", temp2);
+
+		/* Check if this CAS latency will work on all DIMMs at tCK. */
+		for (i = 0; i < number_of_dimms; i++) {
+			if (!dimm_params[i].n_ranks) {
+				continue;
+			}
+			if (dimm_params[i].caslat_x == temp2) {
+				if (mclk_ps >= dimm_params[i].tckmin_x_ps) {
+					debug("CL = %u ok on DIMM %u at tCK=%u"
+					    " ps with its tCKmin_X_ps of %u\n",
+					       temp2, i, mclk_ps,
+					       dimm_params[i].tckmin_x_ps);
+					continue;
+				} else {
+					not_ok++;
+				}
+			}
+
+			if (dimm_params[i].caslat_x_minus_1 == temp2) {
+				unsigned int tckmin_x_minus_1_ps
+					= dimm_params[i].tckmin_x_minus_1_ps;
+				if (mclk_ps >= tckmin_x_minus_1_ps) {
+					debug("CL = %u ok on DIMM %u at "
+						"tCK=%u ps with its "
+						"tckmin_x_minus_1_ps of %u\n",
+					       temp2, i, mclk_ps,
+					       tckmin_x_minus_1_ps);
+					continue;
+				} else {
+					not_ok++;
+				}
+			}
+
+			if (dimm_params[i].caslat_x_minus_2 == temp2) {
+				unsigned int tckmin_x_minus_2_ps
+					= dimm_params[i].tckmin_x_minus_2_ps;
+				if (mclk_ps >= tckmin_x_minus_2_ps) {
+					debug("CL = %u ok on DIMM %u at "
+						"tCK=%u ps with its "
+						"tckmin_x_minus_2_ps of %u\n",
+					       temp2, i, mclk_ps,
+					       tckmin_x_minus_2_ps);
+					continue;
+				} else {
+					not_ok++;
+				}
+			}
+		}
+
+		if (!not_ok) {
+			lowest_good_caslat = temp2;
+		}
+
+		temp1 &= ~(1 << temp2);
+	}
+
+	debug("lowest common SPD-defined CAS latency = %u\n",
+	       lowest_good_caslat);
+	outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
+
+
+	/*
+	 * Compute a common 'de-rated' CAS latency.
+	 *
+	 * The strategy here is to find the *highest* dereated cas latency
+	 * with the assumption that all of the DIMMs will support a dereated
+	 * CAS latency higher than or equal to their lowest dereated value.
+	 */
+	temp1 = 0;
+	for (i = 0; i < number_of_dimms; i++) {
+		temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
+	}
+	outpdimm->highest_common_derated_caslat = temp1;
+	debug("highest common dereated CAS latency = %u\n", temp1);
+#endif /* #if defined(CONFIG_SYS_FSL_DDR3) */
+
+	/* Determine if all DIMMs ECC capable. */
+	temp1 = 1;
+	for (i = 0; i < number_of_dimms; i++) {
+		if (dimm_params[i].n_ranks &&
+			!(dimm_params[i].edc_config & EDC_ECC)) {
+			temp1 = 0;
+			break;
+		}
+	}
+	if (temp1) {
+		debug("all DIMMs ECC capable\n");
+	} else {
+		debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
+	}
+	outpdimm->all_dimms_ecc_capable = temp1;
+
+#ifndef CONFIG_SYS_FSL_DDR3
+	/* FIXME: move to somewhere else to validate. */
+	if (mclk_ps > tckmax_max_ps) {
+		printf("Warning: some of the installed DIMMs "
+				"can not operate this slowly.\n");
+		return 1;
+	}
+#endif
+	/*
+	 * Compute additive latency.
+	 *
+	 * For DDR1, additive latency should be 0.
+	 *
+	 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
+	 *	which comes from Trcd, and also note that:
+	 *	    add_lat + caslat must be >= 4
+	 *
+	 * For DDR3, we use the AL=0
+	 *
+	 * When to use additive latency for DDR2:
+	 *
+	 * I. Because you are using CL=3 and need to do ODT on writes and
+	 *    want functionality.
+	 *    1. Are you going to use ODT? (Does your board not have
+	 *      additional termination circuitry for DQ, DQS, DQS_,
+	 *      DM, RDQS, RDQS_ for x4/x8 configs?)
+	 *    2. If so, is your lowest supported CL going to be 3?
+	 *    3. If so, then you must set AL=1 because
+	 *
+	 *       WL >= 3 for ODT on writes
+	 *       RL = AL + CL
+	 *       WL = RL - 1
+	 *       ->
+	 *       WL = AL + CL - 1
+	 *       AL + CL - 1 >= 3
+	 *       AL + CL >= 4
+	 *  QED
+	 *
+	 *  RL >= 3 for ODT on reads
+	 *  RL = AL + CL
+	 *
+	 *  Since CL aren't usually less than 2, AL=0 is a minimum,
+	 *  so the WL-derived AL should be the  -- FIXME?
+	 *
+	 * II. Because you are using auto-precharge globally and want to
+	 *     use additive latency (posted CAS) to get more bandwidth.
+	 *     1. Are you going to use auto-precharge mode globally?
+	 *
+	 *        Use addtivie latency and compute AL to be 1 cycle less than
+	 *        tRCD, i.e. the READ or WRITE command is in the cycle
+	 *        immediately following the ACTIVATE command..
+	 *
+	 * III. Because you feel like it or want to do some sort of
+	 *      degraded-performance experiment.
+	 *     1.  Do you just want to use additive latency because you feel
+	 *         like it?
+	 *
+	 * Validation:  AL is less than tRCD, and within the other
+	 * read-to-precharge constraints.
+	 */
+
+	additive_latency = 0;
+
+#if defined(CONFIG_SYS_FSL_DDR2)
+	if (lowest_good_caslat < 4) {
+		additive_latency = (picos_to_mclk(trcd_ps) > lowest_good_caslat)
+			? picos_to_mclk(trcd_ps) - lowest_good_caslat : 0;
+		if (mclk_to_picos(additive_latency) > trcd_ps) {
+			additive_latency = picos_to_mclk(trcd_ps);
+			debug("setting additive_latency to %u because it was "
+				" greater than tRCD_ps\n", additive_latency);
+		}
+	}
+
+#elif defined(CONFIG_SYS_FSL_DDR3)
+	/*
+	 * The system will not use the global auto-precharge mode.
+	 * However, it uses the page mode, so we set AL=0
+	 */
+	additive_latency = 0;
+#endif
+
+	/*
+	 * Validate additive latency
+	 * FIXME: move to somewhere else to validate
+	 *
+	 * AL <= tRCD(min)
+	 */
+	if (mclk_to_picos(additive_latency) > trcd_ps) {
+		printf("Error: invalid additive latency exceeds tRCD(min).\n");
+		return 1;
+	}
+
+	/*
+	 * RL = CL + AL;  RL >= 3 for ODT_RD_CFG to be enabled
+	 * WL = RL - 1;  WL >= 3 for ODT_WL_CFG to be enabled
+	 * ADD_LAT (the register) must be set to a value less
+	 * than ACTTORW if WL = 1, then AL must be set to 1
+	 * RD_TO_PRE (the register) must be set to a minimum
+	 * tRTP + AL if AL is nonzero
+	 */
+
+	/*
+	 * Additive latency will be applied only if the memctl option to
+	 * use it.
+	 */
+	outpdimm->additive_latency = additive_latency;
+
+	debug("tCKmin_ps = %u\n", outpdimm->tckmin_x_ps);
+	debug("trcd_ps   = %u\n", outpdimm->trcd_ps);
+	debug("trp_ps    = %u\n", outpdimm->trp_ps);
+	debug("tras_ps   = %u\n", outpdimm->tras_ps);
+	debug("twr_ps    = %u\n", outpdimm->twr_ps);
+	debug("twtr_ps   = %u\n", outpdimm->twtr_ps);
+	debug("trfc_ps   = %u\n", outpdimm->trfc_ps);
+	debug("trrd_ps   = %u\n", outpdimm->trrd_ps);
+	debug("trc_ps    = %u\n", outpdimm->trc_ps);
+
+	return 0;
+}
diff --git a/drivers/ddr/fsl/main.c b/drivers/ddr/fsl/main.c
new file mode 100644
index 0000000..c1cdbdf
--- /dev/null
+++ b/drivers/ddr/fsl/main.c
@@ -0,0 +1,718 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+/*
+ * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
+ * Based on code from spd_sdram.c
+ * Author: James Yang [at freescale.com]
+ */
+
+#include <common.h>
+#include <i2c.h>
+#include <fsl_ddr_sdram.h>
+#include <asm/fsl_law.h>
+
+#include <fsl_ddr.h>
+
+void fsl_ddr_set_lawbar(
+		const common_timing_params_t *memctl_common_params,
+		unsigned int memctl_interleaved,
+		unsigned int ctrl_num);
+void fsl_ddr_set_intl3r(const unsigned int granule_size);
+
+#if defined(SPD_EEPROM_ADDRESS) || \
+    defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
+    defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
+#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS,
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
+	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
+	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
+};
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
+	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
+	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
+	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
+	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
+	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
+	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
+};
+
+#endif
+
+static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
+{
+	int ret;
+
+	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
+
+	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
+				sizeof(generic_spd_eeprom_t));
+
+	if (ret) {
+		if (i2c_address ==
+#ifdef SPD_EEPROM_ADDRESS
+				SPD_EEPROM_ADDRESS
+#elif defined(SPD_EEPROM_ADDRESS1)
+				SPD_EEPROM_ADDRESS1
+#endif
+				) {
+			printf("DDR: failed to read SPD from address %u\n",
+				i2c_address);
+		} else {
+			debug("DDR: failed to read SPD from address %u\n",
+				i2c_address);
+		}
+		memset(spd, 0, sizeof(generic_spd_eeprom_t));
+	}
+}
+
+__attribute__((weak, alias("__get_spd")))
+void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
+
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+		      unsigned int ctrl_num)
+{
+	unsigned int i;
+	unsigned int i2c_address = 0;
+
+	if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+	for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
+		i2c_address = spd_i2c_addr[ctrl_num][i];
+		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
+	}
+}
+#else
+void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
+		      unsigned int ctrl_num)
+{
+}
+#endif /* SPD_EEPROM_ADDRESSx */
+
+/*
+ * ASSUMPTIONS:
+ *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
+ *    - Same memory data bus width on all controllers
+ *
+ * NOTES:
+ *
+ * The memory controller and associated documentation use confusing
+ * terminology when referring to the orgranization of DRAM.
+ *
+ * Here is a terminology translation table:
+ *
+ * memory controller/documention  |industry   |this code  |signals
+ * -------------------------------|-----------|-----------|-----------------
+ * physical bank/bank		  |rank       |rank	  |chip select (CS)
+ * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
+ * page/row			  |row	      |page	  |row address
+ * ???				  |column     |column	  |column address
+ *
+ * The naming confusion is further exacerbated by the descriptions of the
+ * memory controller interleaving feature, where accesses are interleaved
+ * _BETWEEN_ two seperate memory controllers.  This is configured only in
+ * CS0_CONFIG[INTLV_CTL] of each memory controller.
+ *
+ * memory controller documentation | number of chip selects
+ *				   | per memory controller supported
+ * --------------------------------|-----------------------------------------
+ * cache line interleaving	   | 1 (CS0 only)
+ * page interleaving		   | 1 (CS0 only)
+ * bank interleaving		   | 1 (CS0 only)
+ * superbank interleraving	   | depends on bank (chip select)
+ *				   |   interleraving [rank interleaving]
+ *				   |   mode used on every memory controller
+ *
+ * Even further confusing is the existence of the interleaving feature
+ * _WITHIN_ each memory controller.  The feature is referred to in
+ * documentation as chip select interleaving or bank interleaving,
+ * although it is configured in the DDR_SDRAM_CFG field.
+ *
+ * Name of field		| documentation name	| this code
+ * -----------------------------|-----------------------|------------------
+ * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
+ *				|  interleaving
+ */
+
+const char *step_string_tbl[] = {
+	"STEP_GET_SPD",
+	"STEP_COMPUTE_DIMM_PARMS",
+	"STEP_COMPUTE_COMMON_PARMS",
+	"STEP_GATHER_OPTS",
+	"STEP_ASSIGN_ADDRESSES",
+	"STEP_COMPUTE_REGS",
+	"STEP_PROGRAM_REGS",
+	"STEP_ALL"
+};
+
+const char * step_to_string(unsigned int step) {
+
+	unsigned int s = __ilog2(step);
+
+	if ((1 << s) != step)
+		return step_string_tbl[7];
+
+	return step_string_tbl[s];
+}
+
+static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
+			  unsigned int dbw_cap_adj[])
+{
+	int i, j;
+	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
+	unsigned long long rank_density, ctlr_density = 0;
+
+	/*
+	 * If a reduced data width is requested, but the SPD
+	 * specifies a physically wider device, adjust the
+	 * computed dimm capacities accordingly before
+	 * assigning addresses.
+	 */
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		unsigned int found = 0;
+
+		switch (pinfo->memctl_opts[i].data_bus_width) {
+		case 2:
+			/* 16-bit */
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int dw;
+				if (!pinfo->dimm_params[i][j].n_ranks)
+					continue;
+				dw = pinfo->dimm_params[i][j].primary_sdram_width;
+				if ((dw == 72 || dw == 64)) {
+					dbw_cap_adj[i] = 2;
+					break;
+				} else if ((dw == 40 || dw == 32)) {
+					dbw_cap_adj[i] = 1;
+					break;
+				}
+			}
+			break;
+
+		case 1:
+			/* 32-bit */
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int dw;
+				dw = pinfo->dimm_params[i][j].data_width;
+				if (pinfo->dimm_params[i][j].n_ranks
+				    && (dw == 72 || dw == 64)) {
+					/*
+					 * FIXME: can't really do it
+					 * like this because this just
+					 * further reduces the memory
+					 */
+					found = 1;
+					break;
+				}
+			}
+			if (found) {
+				dbw_cap_adj[i] = 1;
+			}
+			break;
+
+		case 0:
+			/* 64-bit */
+			break;
+
+		default:
+			printf("unexpected data bus width "
+				"specified controller %u\n", i);
+			return 1;
+		}
+		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
+	}
+
+	current_mem_base = 0ull;
+	total_mem = 0;
+	if (pinfo->memctl_opts[0].memctl_interleaving) {
+		rank_density = pinfo->dimm_params[0][0].rank_density >>
+					dbw_cap_adj[0];
+		switch (pinfo->memctl_opts[0].ba_intlv_ctl &
+					FSL_DDR_CS0_CS1_CS2_CS3) {
+		case FSL_DDR_CS0_CS1_CS2_CS3:
+			ctlr_density = 4 * rank_density;
+			break;
+		case FSL_DDR_CS0_CS1:
+		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+			ctlr_density = 2 * rank_density;
+			break;
+		case FSL_DDR_CS2_CS3:
+		default:
+			ctlr_density = rank_density;
+			break;
+		}
+		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
+			rank_density, ctlr_density);
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (pinfo->memctl_opts[i].memctl_interleaving) {
+				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
+				case FSL_DDR_CACHE_LINE_INTERLEAVING:
+				case FSL_DDR_PAGE_INTERLEAVING:
+				case FSL_DDR_BANK_INTERLEAVING:
+				case FSL_DDR_SUPERBANK_INTERLEAVING:
+					total_ctlr_mem = 2 * ctlr_density;
+					break;
+				case FSL_DDR_3WAY_1KB_INTERLEAVING:
+				case FSL_DDR_3WAY_4KB_INTERLEAVING:
+				case FSL_DDR_3WAY_8KB_INTERLEAVING:
+					total_ctlr_mem = 3 * ctlr_density;
+					break;
+				case FSL_DDR_4WAY_1KB_INTERLEAVING:
+				case FSL_DDR_4WAY_4KB_INTERLEAVING:
+				case FSL_DDR_4WAY_8KB_INTERLEAVING:
+					total_ctlr_mem = 4 * ctlr_density;
+					break;
+				default:
+					panic("Unknown interleaving mode");
+				}
+				pinfo->common_timing_params[i].base_address =
+							current_mem_base;
+				pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+				total_mem = current_mem_base + total_ctlr_mem;
+				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
+				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+			} else {
+				/* when 3rd controller not interleaved */
+				current_mem_base = total_mem;
+				total_ctlr_mem = 0;
+				pinfo->common_timing_params[i].base_address =
+							current_mem_base;
+				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+					unsigned long long cap =
+						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+					pinfo->dimm_params[i][j].base_address =
+						current_mem_base;
+					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+					current_mem_base += cap;
+					total_ctlr_mem += cap;
+				}
+				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+				pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+				total_mem += total_ctlr_mem;
+			}
+		}
+	} else {
+		/*
+		 * Simple linear assignment if memory
+		 * controllers are not interleaved.
+		 */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			total_ctlr_mem = 0;
+			pinfo->common_timing_params[i].base_address =
+						current_mem_base;
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				/* Compute DIMM base addresses. */
+				unsigned long long cap =
+					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
+				pinfo->dimm_params[i][j].base_address =
+					current_mem_base;
+				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
+				current_mem_base += cap;
+				total_ctlr_mem += cap;
+			}
+			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
+			pinfo->common_timing_params[i].total_mem =
+							total_ctlr_mem;
+			total_mem += total_ctlr_mem;
+		}
+	}
+	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
+
+	return total_mem;
+}
+
+/* Use weak function to allow board file to override the address assignment */
+__attribute__((weak, alias("__step_assign_addresses")))
+unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
+			  unsigned int dbw_cap_adj[]);
+
+unsigned long long
+fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
+				       unsigned int size_only)
+{
+	unsigned int i, j;
+	unsigned long long total_mem = 0;
+	int assert_reset;
+
+	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
+	common_timing_params_t *timing_params = pinfo->common_timing_params;
+	assert_reset = board_need_mem_reset();
+
+	/* data bus width capacity adjust shift amount */
+	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
+
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		dbw_capacity_adjust[i] = 0;
+	}
+
+	debug("starting at step %u (%s)\n",
+	      start_step, step_to_string(start_step));
+
+	switch (start_step) {
+	case STEP_GET_SPD:
+#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
+		/* STEP 1:  Gather all DIMM SPD data */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);
+		}
+
+	case STEP_COMPUTE_DIMM_PARMS:
+		/* STEP 2:  Compute DIMM parameters from SPD data */
+
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				unsigned int retval;
+				generic_spd_eeprom_t *spd =
+					&(pinfo->spd_installed_dimms[i][j]);
+				dimm_params_t *pdimm =
+					&(pinfo->dimm_params[i][j]);
+
+				retval = compute_dimm_parameters(spd, pdimm, i);
+#ifdef CONFIG_SYS_DDR_RAW_TIMING
+				if (!i && !j && retval) {
+					printf("SPD error on controller %d! "
+					"Trying fallback to raw timing "
+					"calculation\n", i);
+					fsl_ddr_get_dimm_params(pdimm, i, j);
+				}
+#else
+				if (retval == 2) {
+					printf("Error: compute_dimm_parameters"
+					" non-zero returned FATAL value "
+					"for memctl=%u dimm=%u\n", i, j);
+					return 0;
+				}
+#endif
+				if (retval) {
+					debug("Warning: compute_dimm_parameters"
+					" non-zero return value for memctl=%u "
+					"dimm=%u\n", i, j);
+				}
+			}
+		}
+
+#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
+	case STEP_COMPUTE_DIMM_PARMS:
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
+				dimm_params_t *pdimm =
+					&(pinfo->dimm_params[i][j]);
+				fsl_ddr_get_dimm_params(pdimm, i, j);
+			}
+		}
+		debug("Filling dimm parameters from board specific file\n");
+#endif
+	case STEP_COMPUTE_COMMON_PARMS:
+		/*
+		 * STEP 3: Compute a common set of timing parameters
+		 * suitable for all of the DIMMs on each memory controller
+		 */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			debug("Computing lowest common DIMM"
+				" parameters for memctl=%u\n", i);
+			compute_lowest_common_dimm_parameters(
+				pinfo->dimm_params[i],
+				&timing_params[i],
+				CONFIG_DIMM_SLOTS_PER_CTLR);
+		}
+
+	case STEP_GATHER_OPTS:
+		/* STEP 4:  Gather configuration requirements from user */
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			debug("Reloading memory controller "
+				"configuration options for memctl=%u\n", i);
+			/*
+			 * This "reloads" the memory controller options
+			 * to defaults.  If the user "edits" an option,
+			 * next_step points to the step after this,
+			 * which is currently STEP_ASSIGN_ADDRESSES.
+			 */
+			populate_memctl_options(
+					timing_params[i].all_dimms_registered,
+					&pinfo->memctl_opts[i],
+					pinfo->dimm_params[i], i);
+			/*
+			 * For RDIMMs, JEDEC spec requires clocks to be stable
+			 * before reset signal is deasserted. For the boards
+			 * using fixed parameters, this function should be
+			 * be called from board init file.
+			 */
+			if (timing_params[i].all_dimms_registered)
+				assert_reset = 1;
+		}
+		if (assert_reset) {
+			debug("Asserting mem reset\n");
+			board_assert_mem_reset();
+		}
+
+	case STEP_ASSIGN_ADDRESSES:
+		/* STEP 5:  Assign addresses to chip selects */
+		check_interleaving_options(pinfo);
+		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
+
+	case STEP_COMPUTE_REGS:
+		/* STEP 6:  compute controller register values */
+		debug("FSL Memory ctrl register computation\n");
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			if (timing_params[i].ndimms_present == 0) {
+				memset(&ddr_reg[i], 0,
+					sizeof(fsl_ddr_cfg_regs_t));
+				continue;
+			}
+
+			compute_fsl_memctl_config_regs(
+					&pinfo->memctl_opts[i],
+					&ddr_reg[i], &timing_params[i],
+					pinfo->dimm_params[i],
+					dbw_capacity_adjust[i],
+					size_only);
+		}
+
+	default:
+		break;
+	}
+
+	{
+		/*
+		 * Compute the amount of memory available just by
+		 * looking for the highest valid CSn_BNDS value.
+		 * This allows us to also experiment with using
+		 * only CS0 when using dual-rank DIMMs.
+		 */
+		unsigned int max_end = 0;
+
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
+				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
+				if (reg->cs[j].config & 0x80000000) {
+					unsigned int end;
+					/*
+					 * 0xfffffff is a special value we put
+					 * for unused bnds
+					 */
+					if (reg->cs[j].bnds == 0xffffffff)
+						continue;
+					end = reg->cs[j].bnds & 0xffff;
+					if (end > max_end) {
+						max_end = end;
+					}
+				}
+			}
+		}
+
+		total_mem = 1 + (((unsigned long long)max_end << 24ULL)
+				    | 0xFFFFFFULL);
+	}
+
+	return total_mem;
+}
+
+/*
+ * fsl_ddr_sdram() -- this is the main function to be called by
+ *	initdram() in the board file.
+ *
+ * It returns amount of memory configured in bytes.
+ */
+phys_size_t fsl_ddr_sdram(void)
+{
+	unsigned int i;
+	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
+	unsigned long long total_memory;
+	fsl_ddr_info_t info;
+	int deassert_reset;
+
+	/* Reset info structure. */
+	memset(&info, 0, sizeof(fsl_ddr_info_t));
+
+	/* Compute it once normally. */
+#ifdef CONFIG_FSL_DDR_INTERACTIVE
+	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
+		total_memory = fsl_ddr_interactive(&info, 0);
+	} else if (fsl_ddr_interactive_env_var_exists()) {
+		total_memory = fsl_ddr_interactive(&info, 1);
+	} else
+#endif
+		total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 0);
+
+	/* setup 3-way interleaving before enabling DDRC */
+	if (info.memctl_opts[0].memctl_interleaving) {
+		switch (info.memctl_opts[0].memctl_interleaving_mode) {
+		case FSL_DDR_3WAY_1KB_INTERLEAVING:
+		case FSL_DDR_3WAY_4KB_INTERLEAVING:
+		case FSL_DDR_3WAY_8KB_INTERLEAVING:
+			fsl_ddr_set_intl3r(
+				info.memctl_opts[0].memctl_interleaving_mode);
+			break;
+		default:
+			break;
+		}
+	}
+
+	/*
+	 * Program configuration registers.
+	 * JEDEC specs requires clocks to be stable before deasserting reset
+	 * for RDIMMs. Clocks start after chip select is enabled and clock
+	 * control register is set. During step 1, all controllers have their
+	 * registers set but not enabled. Step 2 proceeds after deasserting
+	 * reset through board FPGA or GPIO.
+	 * For non-registered DIMMs, initialization can go through but it is
+	 * also OK to follow the same flow.
+	 */
+	deassert_reset = board_need_mem_reset();
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		if (info.common_timing_params[i].all_dimms_registered)
+			deassert_reset = 1;
+	}
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		debug("Programming controller %u\n", i);
+		if (info.common_timing_params[i].ndimms_present == 0) {
+			debug("No dimms present on controller %u; "
+					"skipping programming\n", i);
+			continue;
+		}
+		/*
+		 * The following call with step = 1 returns before enabling
+		 * the controller. It has to finish with step = 2 later.
+		 */
+		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i,
+					deassert_reset ? 1 : 0);
+	}
+	if (deassert_reset) {
+		/* Use board FPGA or GPIO to deassert reset signal */
+		debug("Deasserting mem reset\n");
+		board_deassert_mem_reset();
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+			/* Call with step = 2 to continue initialization */
+			fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]),
+						i, 2);
+		}
+	}
+
+	/* program LAWs */
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		if (info.memctl_opts[i].memctl_interleaving) {
+			switch (info.memctl_opts[i].memctl_interleaving_mode) {
+			case FSL_DDR_CACHE_LINE_INTERLEAVING:
+			case FSL_DDR_PAGE_INTERLEAVING:
+			case FSL_DDR_BANK_INTERLEAVING:
+			case FSL_DDR_SUPERBANK_INTERLEAVING:
+				if (i == 0) {
+					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				} else if (i == 2) {
+					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				}
+				break;
+			case FSL_DDR_3WAY_1KB_INTERLEAVING:
+			case FSL_DDR_3WAY_4KB_INTERLEAVING:
+			case FSL_DDR_3WAY_8KB_INTERLEAVING:
+				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
+				if (i == 0) {
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				}
+				break;
+			case FSL_DDR_4WAY_1KB_INTERLEAVING:
+			case FSL_DDR_4WAY_4KB_INTERLEAVING:
+			case FSL_DDR_4WAY_8KB_INTERLEAVING:
+				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
+				if (i == 0)
+					fsl_ddr_set_lawbar(&info.common_timing_params[i],
+						law_memctl, i);
+				/* place holder for future 4-way interleaving */
+				break;
+			default:
+				break;
+			}
+		} else {
+			switch (i) {
+			case 0:
+				law_memctl = LAW_TRGT_IF_DDR_1;
+				break;
+			case 1:
+				law_memctl = LAW_TRGT_IF_DDR_2;
+				break;
+			case 2:
+				law_memctl = LAW_TRGT_IF_DDR_3;
+				break;
+			case 3:
+				law_memctl = LAW_TRGT_IF_DDR_4;
+				break;
+			default:
+				break;
+			}
+			fsl_ddr_set_lawbar(&info.common_timing_params[i],
+					law_memctl, i);
+		}
+	}
+
+	debug("total_memory by %s = %llu\n", __func__, total_memory);
+
+#if !defined(CONFIG_PHYS_64BIT)
+	/* Check for 4G or more.  Bad. */
+	if (total_memory >= (1ull << 32)) {
+		puts("Detected ");
+		print_size(total_memory, " of memory\n");
+		printf("       This U-Boot only supports < 4G of DDR\n");
+		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
+		printf("       "); /* re-align to match init_func_ram print */
+		total_memory = CONFIG_MAX_MEM_MAPPED;
+	}
+#endif
+
+	return total_memory;
+}
+
+/*
+ * fsl_ddr_sdram_size() - This function only returns the size of the total
+ * memory without setting ddr control registers.
+ */
+phys_size_t
+fsl_ddr_sdram_size(void)
+{
+	fsl_ddr_info_t  info;
+	unsigned long long total_memory = 0;
+
+	memset(&info, 0 , sizeof(fsl_ddr_info_t));
+
+	/* Compute it once normally. */
+	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
+
+	return total_memory;
+}
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen1.c b/drivers/ddr/fsl/mpc85xx_ddr_gen1.c
new file mode 100644
index 0000000..ff7d979
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen1.c
@@ -0,0 +1,89 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+			     unsigned int ctrl_num, int step)
+{
+	unsigned int i;
+	volatile ccsr_ddr_t *ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+
+	if (ctrl_num != 0) {
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (i == 0) {
+			out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+		} else if (i == 1) {
+			out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+		} else if (i == 2) {
+			out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+		} else if (i == 3) {
+			out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs3_config, regs->cs[i].config);
+		}
+	}
+
+	out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+	out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+	out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+	out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+#if defined(CONFIG_MPC8555) || defined(CONFIG_MPC8541)
+	out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+#endif
+
+	/*
+	 * 200 painful micro-seconds must elapse between
+	 * the DDR clock setup and the DDR config enable.
+	 */
+	udelay(200);
+	asm volatile("sync;isync");
+
+	out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+	asm("sync;isync;msync");
+	udelay(500);
+}
+
+#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
+/*
+ * Initialize all of memory for ECC, then enable errors.
+ */
+
+void
+ddr_enable_ecc(unsigned int dram_size)
+{
+	volatile ccsr_ddr_t *ddr = (void *)(CONFIG_SYS_FSL_DDR_ADDR);
+
+	dma_meminit(CONFIG_MEM_INIT_VALUE, dram_size);
+
+	/*
+	 * Enable errors for ECC.
+	 */
+	debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+	ddr->err_disable = 0x00000000;
+	asm("sync;isync;msync");
+	debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
+}
+
+#endif	/* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen2.c b/drivers/ddr/fsl/mpc85xx_ddr_gen2.c
new file mode 100644
index 0000000..c22dea5
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen2.c
@@ -0,0 +1,95 @@
+/*
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/processor.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+			     unsigned int ctrl_num, int step)
+{
+	unsigned int i;
+	ccsr_ddr_t *ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+
+#if defined(CONFIG_SYS_FSL_ERRATUM_NMG_DDR120) && defined(CONFIG_MPC85xx)
+	ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
+	uint svr;
+#endif
+
+	if (ctrl_num) {
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_NMG_DDR120
+	/*
+	 * Set the DDR IO receiver to an acceptable bias point.
+	 * Fixed in Rev 2.1.
+	 */
+	svr = get_svr();
+	if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0)) {
+		if ((regs->ddr_sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) ==
+		   SDRAM_CFG_SDRAM_TYPE_DDR2)
+			out_be32(&gur->ddrioovcr, 0x90000000);
+		else
+			out_be32(&gur->ddrioovcr, 0xA8000000);
+	}
+#endif
+
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (i == 0) {
+			out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+		} else if (i == 1) {
+			out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+		} else if (i == 2) {
+			out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+		} else if (i == 3) {
+			out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs3_config, regs->cs[i].config);
+		}
+	}
+
+	out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+	out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+	out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+	out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+	out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+	out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+	out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+	out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+	out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+	out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+	out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+	out_be32(&ddr->init_addr, regs->ddr_init_addr);
+	out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+	/*
+	 * 200 painful micro-seconds must elapse between
+	 * the DDR clock setup and the DDR config enable.
+	 */
+	udelay(200);
+	asm volatile("sync;isync");
+
+	out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+	/* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done.  */
+	while (in_be32(&ddr->sdram_cfg_2) & 0x10) {
+		udelay(10000);		/* throttle polling rate */
+	}
+}
diff --git a/drivers/ddr/fsl/mpc85xx_ddr_gen3.c b/drivers/ddr/fsl/mpc85xx_ddr_gen3.c
new file mode 100644
index 0000000..7b4e8ec
--- /dev/null
+++ b/drivers/ddr/fsl/mpc85xx_ddr_gen3.c
@@ -0,0 +1,464 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+#include <asm/processor.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+
+/*
+ * regs has the to-be-set values for DDR controller registers
+ * ctrl_num is the DDR controller number
+ * step: 0 goes through the initialization in one pass
+ *       1 sets registers and returns before enabling controller
+ *       2 resumes from step 1 and continues to initialize
+ * Dividing the initialization to two steps to deassert DDR reset signal
+ * to comply with JEDEC specs for RDIMMs.
+ */
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+			     unsigned int ctrl_num, int step)
+{
+	unsigned int i, bus_width;
+	volatile ccsr_ddr_t *ddr;
+	u32 temp_sdram_cfg;
+	u32 total_gb_size_per_controller;
+	int timeout;
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+	int timeout_save;
+	volatile ccsr_local_ecm_t *ecm = (void *)CONFIG_SYS_MPC85xx_ECM_ADDR;
+	unsigned int csn_bnds_backup = 0, cs_sa, cs_ea, *csn_bnds_t;
+	int csn = -1;
+#endif
+
+	switch (ctrl_num) {
+	case 0:
+		ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+		break;
+#if defined(CONFIG_SYS_FSL_DDR2_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 1)
+	case 1:
+		ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
+		break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR3_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 2)
+	case 2:
+		ddr = (void *)CONFIG_SYS_FSL_DDR3_ADDR;
+		break;
+#endif
+#if defined(CONFIG_SYS_FSL_DDR4_ADDR) && (CONFIG_NUM_DDR_CONTROLLERS > 3)
+	case 3:
+		ddr = (void *)CONFIG_SYS_FSL_DDR4_ADDR;
+		break;
+#endif
+	default:
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+	if (step == 2)
+		goto step2;
+
+	if (regs->ddr_eor)
+		out_be32(&ddr->eor, regs->ddr_eor);
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+	debug("Workaround for ERRATUM_DDR111_DDR134\n");
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		cs_sa = (regs->cs[i].bnds >> 16) & 0xfff;
+		cs_ea = regs->cs[i].bnds & 0xfff;
+		if ((cs_sa <= 0xff) && (cs_ea >= 0xff)) {
+			csn = i;
+			csn_bnds_backup = regs->cs[i].bnds;
+			csn_bnds_t = (unsigned int *) &regs->cs[i].bnds;
+			if (cs_ea > 0xeff)
+				*csn_bnds_t = regs->cs[i].bnds + 0x01000000;
+			else
+				*csn_bnds_t = regs->cs[i].bnds + 0x01000100;
+			debug("Found cs%d_bns (0x%08x) covering 0xff000000, "
+				"change it to 0x%x\n",
+				csn, csn_bnds_backup, regs->cs[i].bnds);
+			break;
+		}
+	}
+#endif
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (i == 0) {
+			out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs0_config, regs->cs[i].config);
+			out_be32(&ddr->cs0_config_2, regs->cs[i].config_2);
+
+		} else if (i == 1) {
+			out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs1_config, regs->cs[i].config);
+			out_be32(&ddr->cs1_config_2, regs->cs[i].config_2);
+
+		} else if (i == 2) {
+			out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs2_config, regs->cs[i].config);
+			out_be32(&ddr->cs2_config_2, regs->cs[i].config_2);
+
+		} else if (i == 3) {
+			out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs3_config, regs->cs[i].config);
+			out_be32(&ddr->cs3_config_2, regs->cs[i].config_2);
+		}
+	}
+
+	out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+	out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+	out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+	out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+	out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+	out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+	out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+	out_be32(&ddr->sdram_mode_3, regs->ddr_sdram_mode_3);
+	out_be32(&ddr->sdram_mode_4, regs->ddr_sdram_mode_4);
+	out_be32(&ddr->sdram_mode_5, regs->ddr_sdram_mode_5);
+	out_be32(&ddr->sdram_mode_6, regs->ddr_sdram_mode_6);
+	out_be32(&ddr->sdram_mode_7, regs->ddr_sdram_mode_7);
+	out_be32(&ddr->sdram_mode_8, regs->ddr_sdram_mode_8);
+	out_be32(&ddr->sdram_md_cntl, regs->ddr_sdram_md_cntl);
+	out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+	out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+	out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+	out_be32(&ddr->init_addr, regs->ddr_init_addr);
+	out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+	out_be32(&ddr->timing_cfg_4, regs->timing_cfg_4);
+	out_be32(&ddr->timing_cfg_5, regs->timing_cfg_5);
+	out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+	out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+#ifndef CONFIG_SYS_FSL_DDR_EMU
+	/*
+	 * Skip these two registers if running on emulator
+	 * because emulator doesn't have skew between bytes.
+	 */
+
+	if (regs->ddr_wrlvl_cntl_2)
+		out_be32(&ddr->ddr_wrlvl_cntl_2, regs->ddr_wrlvl_cntl_2);
+	if (regs->ddr_wrlvl_cntl_3)
+		out_be32(&ddr->ddr_wrlvl_cntl_3, regs->ddr_wrlvl_cntl_3);
+#endif
+
+	out_be32(&ddr->ddr_sr_cntr, regs->ddr_sr_cntr);
+	out_be32(&ddr->ddr_sdram_rcw_1, regs->ddr_sdram_rcw_1);
+	out_be32(&ddr->ddr_sdram_rcw_2, regs->ddr_sdram_rcw_2);
+	out_be32(&ddr->ddr_cdr1, regs->ddr_cdr1);
+	out_be32(&ddr->ddr_cdr2, regs->ddr_cdr2);
+	out_be32(&ddr->err_disable, regs->err_disable);
+	out_be32(&ddr->err_int_en, regs->err_int_en);
+	for (i = 0; i < 32; i++) {
+		if (regs->debug[i]) {
+			debug("Write to debug_%d as %08x\n", i+1, regs->debug[i]);
+			out_be32(&ddr->debug[i], regs->debug[i]);
+		}
+	}
+#ifdef CONFIG_SYS_FSL_ERRATUM_A_004934
+	out_be32(&ddr->debug[28], 0x30003000);
+#endif
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_A003474
+	out_be32(&ddr->debug[12], 0x00000015);
+	out_be32(&ddr->debug[21], 0x24000000);
+#endif /* CONFIG_SYS_FSL_ERRATUM_DDR_A003474 */
+
+	/*
+	 * For RDIMMs, JEDEC spec requires clocks to be stable before reset is
+	 * deasserted. Clocks start when any chip select is enabled and clock
+	 * control register is set. Because all DDR components are connected to
+	 * one reset signal, this needs to be done in two steps. Step 1 is to
+	 * get the clocks started. Step 2 resumes after reset signal is
+	 * deasserted.
+	 */
+	if (step == 1) {
+		udelay(200);
+		return;
+	}
+
+step2:
+	/* Set, but do not enable the memory */
+	temp_sdram_cfg = regs->ddr_sdram_cfg;
+	temp_sdram_cfg &= ~(SDRAM_CFG_MEM_EN);
+	out_be32(&ddr->sdram_cfg, temp_sdram_cfg);
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_A003
+	debug("Workaround for ERRATUM_DDR_A003\n");
+	if (regs->ddr_sdram_rcw_2 & 0x00f00000) {
+		out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2 & 0xf07fffff);
+		out_be32(&ddr->debug[2], 0x00000400);
+		out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl & 0x7fffffff);
+		out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl & 0x7fffffff);
+		out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2 & 0xffffffeb);
+		out_be32(&ddr->mtcr, 0);
+		out_be32(&ddr->debug[12], 0x00000015);
+		out_be32(&ddr->debug[21], 0x24000000);
+		out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval & 0xffff);
+		out_be32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_BI | SDRAM_CFG_MEM_EN);
+
+		asm volatile("sync;isync");
+		while (!(in_be32(&ddr->debug[1]) & 0x2))
+			;
+
+		switch (regs->ddr_sdram_rcw_2 & 0x00f00000) {
+		case 0x00000000:
+			out_be32(&ddr->sdram_md_cntl,
+				MD_CNTL_MD_EN		|
+				MD_CNTL_CS_SEL_CS0_CS1	|
+				0x04000000		|
+				MD_CNTL_WRCW		|
+				MD_CNTL_MD_VALUE(0x02));
+			break;
+		case 0x00100000:
+			out_be32(&ddr->sdram_md_cntl,
+				MD_CNTL_MD_EN		|
+				MD_CNTL_CS_SEL_CS0_CS1	|
+				0x04000000		|
+				MD_CNTL_WRCW		|
+				MD_CNTL_MD_VALUE(0x0a));
+			break;
+		case 0x00200000:
+			out_be32(&ddr->sdram_md_cntl,
+				MD_CNTL_MD_EN		|
+				MD_CNTL_CS_SEL_CS0_CS1	|
+				0x04000000		|
+				MD_CNTL_WRCW		|
+				MD_CNTL_MD_VALUE(0x12));
+			break;
+		case 0x00300000:
+			out_be32(&ddr->sdram_md_cntl,
+				MD_CNTL_MD_EN		|
+				MD_CNTL_CS_SEL_CS0_CS1	|
+				0x04000000		|
+				MD_CNTL_WRCW		|
+				MD_CNTL_MD_VALUE(0x1a));
+			break;
+		default:
+			out_be32(&ddr->sdram_md_cntl,
+				MD_CNTL_MD_EN		|
+				MD_CNTL_CS_SEL_CS0_CS1	|
+				0x04000000		|
+				MD_CNTL_WRCW		|
+				MD_CNTL_MD_VALUE(0x02));
+			printf("Unsupported RC10\n");
+			break;
+		}
+
+		while (in_be32(&ddr->sdram_md_cntl) & 0x80000000)
+			;
+		udelay(6);
+		out_be32(&ddr->sdram_cfg, temp_sdram_cfg);
+		out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+		out_be32(&ddr->debug[2], 0x0);
+		out_be32(&ddr->ddr_zq_cntl, regs->ddr_zq_cntl);
+		out_be32(&ddr->ddr_wrlvl_cntl, regs->ddr_wrlvl_cntl);
+		out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+		out_be32(&ddr->debug[12], 0x0);
+		out_be32(&ddr->debug[21], 0x0);
+		out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+
+	}
+#endif
+	/*
+	 * For 8572 DDR1 erratum - DDR controller may enter illegal state
+	 * when operatiing in 32-bit bus mode with 4-beat bursts,
+	 * This erratum does not affect DDR3 mode, only for DDR2 mode.
+	 */
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR_115
+	debug("Workaround for ERRATUM_DDR_115\n");
+	if ((((in_be32(&ddr->sdram_cfg) >> 24) & 0x7) == SDRAM_TYPE_DDR2)
+	    && in_be32(&ddr->sdram_cfg) & 0x80000) {
+		/* set DEBUG_1[31] */
+		setbits_be32(&ddr->debug[0], 1);
+	}
+#endif
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+	debug("Workaround for ERRATUM_DDR111_DDR134\n");
+	/*
+	 * This is the combined workaround for DDR111 and DDR134
+	 * following the published errata for MPC8572
+	 */
+
+	/* 1. Set EEBACR[3] */
+	setbits_be32(&ecm->eebacr, 0x10000000);
+	debug("Setting EEBACR[3] to 0x%08x\n", in_be32(&ecm->eebacr));
+
+	/* 2. Set DINIT in SDRAM_CFG_2*/
+	setbits_be32(&ddr->sdram_cfg_2, SDRAM_CFG2_D_INIT);
+	debug("Setting sdram_cfg_2[D_INIT] to 0x%08x\n",
+		in_be32(&ddr->sdram_cfg_2));
+
+	/* 3. Set DEBUG_3[21] */
+	setbits_be32(&ddr->debug[2], 0x400);
+	debug("Setting DEBUG_3[21] to 0x%08x\n", in_be32(&ddr->debug[2]));
+
+#endif	/* part 1 of the workaound */
+
+	/*
+	 * 500 painful micro-seconds must elapse between
+	 * the DDR clock setup and the DDR config enable.
+	 * DDR2 need 200 us, and DDR3 need 500 us from spec,
+	 * we choose the max, that is 500 us for all of case.
+	 */
+	udelay(500);
+	asm volatile("sync;isync");
+
+	/* Let the controller go */
+	temp_sdram_cfg = in_be32(&ddr->sdram_cfg) & ~SDRAM_CFG_BI;
+	out_be32(&ddr->sdram_cfg, temp_sdram_cfg | SDRAM_CFG_MEM_EN);
+	asm volatile("sync;isync");
+
+	total_gb_size_per_controller = 0;
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (!(regs->cs[i].config & 0x80000000))
+			continue;
+		total_gb_size_per_controller += 1 << (
+			((regs->cs[i].config >> 14) & 0x3) + 2 +
+			((regs->cs[i].config >> 8) & 0x7) + 12 +
+			((regs->cs[i].config >> 0) & 0x7) + 8 +
+			3 - ((regs->ddr_sdram_cfg >> 19) & 0x3) -
+			26);			/* minus 26 (count of 64M) */
+	}
+	if (fsl_ddr_get_intl3r() & 0x80000000)	/* 3-way interleaving */
+		total_gb_size_per_controller *= 3;
+	else if (regs->cs[0].config & 0x20000000) /* 2-way interleaving */
+		total_gb_size_per_controller <<= 1;
+	/*
+	 * total memory / bus width = transactions needed
+	 * transactions needed / data rate = seconds
+	 * to add plenty of buffer, double the time
+	 * For example, 2GB on 666MT/s 64-bit bus takes about 402ms
+	 * Let's wait for 800ms
+	 */
+	bus_width = 3 - ((ddr->sdram_cfg & SDRAM_CFG_DBW_MASK)
+			>> SDRAM_CFG_DBW_SHIFT);
+	timeout = ((total_gb_size_per_controller << (6 - bus_width)) * 100 /
+		(get_ddr_freq(0) >> 20)) << 1;
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+	timeout_save = timeout;
+#endif
+	total_gb_size_per_controller >>= 4;	/* shift down to gb size */
+	debug("total %d GB\n", total_gb_size_per_controller);
+	debug("Need to wait up to %d * 10ms\n", timeout);
+
+	/* Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done.  */
+	while ((in_be32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+		(timeout >= 0)) {
+		udelay(10000);		/* throttle polling rate */
+		timeout--;
+	}
+
+	if (timeout <= 0)
+		printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+#ifdef CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134
+	/* continue this workaround */
+
+	/* 4. Clear DEBUG3[21] */
+	clrbits_be32(&ddr->debug[2], 0x400);
+	debug("Clearing D3[21] to 0x%08x\n", in_be32(&ddr->debug[2]));
+
+	/* DDR134 workaround starts */
+	/* A: Clear sdram_cfg_2[odt_cfg] */
+	clrbits_be32(&ddr->sdram_cfg_2, SDRAM_CFG2_ODT_CFG_MASK);
+	debug("Clearing SDRAM_CFG2[ODT_CFG] to 0x%08x\n",
+		in_be32(&ddr->sdram_cfg_2));
+
+	/* B: Set DEBUG1[15] */
+	setbits_be32(&ddr->debug[0], 0x10000);
+	debug("Setting D1[15] to 0x%08x\n", in_be32(&ddr->debug[0]));
+
+	/* C: Set timing_cfg_2[cpo] to 0b11111 */
+	setbits_be32(&ddr->timing_cfg_2, TIMING_CFG_2_CPO_MASK);
+	debug("Setting TMING_CFG_2[CPO] to 0x%08x\n",
+		in_be32(&ddr->timing_cfg_2));
+
+	/* D: Set D6 to 0x9f9f9f9f */
+	out_be32(&ddr->debug[5], 0x9f9f9f9f);
+	debug("Setting D6 to 0x%08x\n", in_be32(&ddr->debug[5]));
+
+	/* E: Set D7 to 0x9f9f9f9f */
+	out_be32(&ddr->debug[6], 0x9f9f9f9f);
+	debug("Setting D7 to 0x%08x\n", in_be32(&ddr->debug[6]));
+
+	/* F: Set D2[20] */
+	setbits_be32(&ddr->debug[1], 0x800);
+	debug("Setting D2[20] to 0x%08x\n", in_be32(&ddr->debug[1]));
+
+	/* G: Poll on D2[20] until cleared */
+	while (in_be32(&ddr->debug[1]) & 0x800)
+		udelay(10000);          /* throttle polling rate */
+
+	/* H: Clear D1[15] */
+	clrbits_be32(&ddr->debug[0], 0x10000);
+	debug("Setting D1[15] to 0x%08x\n", in_be32(&ddr->debug[0]));
+
+	/* I: Set sdram_cfg_2[odt_cfg] */
+	setbits_be32(&ddr->sdram_cfg_2,
+		regs->ddr_sdram_cfg_2 & SDRAM_CFG2_ODT_CFG_MASK);
+	debug("Setting sdram_cfg_2 to 0x%08x\n", in_be32(&ddr->sdram_cfg_2));
+
+	/* Continuing with the DDR111 workaround */
+	/* 5. Set D2[21] */
+	setbits_be32(&ddr->debug[1], 0x400);
+	debug("Setting D2[21] to 0x%08x\n", in_be32(&ddr->debug[1]));
+
+	/* 6. Poll D2[21] until its cleared */
+	while (in_be32(&ddr->debug[1]) & 0x400)
+		udelay(10000);          /* throttle polling rate */
+
+	/* 7. Wait for state machine 2nd run, roughly 400ms/GB */
+	debug("Wait for %d * 10ms\n", timeout_save);
+	udelay(timeout_save * 10000);
+
+	/* 8. Set sdram_cfg_2[dinit] if options requires */
+	setbits_be32(&ddr->sdram_cfg_2,
+		regs->ddr_sdram_cfg_2 & SDRAM_CFG2_D_INIT);
+	debug("Setting sdram_cfg_2 to 0x%08x\n", in_be32(&ddr->sdram_cfg_2));
+
+	/* 9. Poll until dinit is cleared */
+	timeout = timeout_save;
+	debug("Need to wait up to %d * 10ms\n", timeout);
+	while ((in_be32(&ddr->sdram_cfg_2) & SDRAM_CFG2_D_INIT) &&
+		(timeout >= 0)) {
+		udelay(10000);		/* throttle polling rate */
+		timeout--;
+	}
+
+	if (timeout <= 0)
+		printf("Waiting for D_INIT timeout. Memory may not work.\n");
+
+	/* 10. Clear EEBACR[3] */
+	clrbits_be32(&ecm->eebacr, 10000000);
+	debug("Clearing EEBACR[3] to 0x%08x\n", in_be32(&ecm->eebacr));
+
+	if (csn != -1) {
+		csn_bnds_t = (unsigned int *) &regs->cs[csn].bnds;
+		*csn_bnds_t = csn_bnds_backup;
+		debug("Change cs%d_bnds back to 0x%08x\n",
+			csn, regs->cs[csn].bnds);
+		setbits_be32(&ddr->sdram_cfg, 0x2);	/* MEM_HALT */
+		switch (csn) {
+		case 0:
+			out_be32(&ddr->cs0_bnds, regs->cs[csn].bnds);
+			break;
+		case 1:
+			out_be32(&ddr->cs1_bnds, regs->cs[csn].bnds);
+			break;
+		case 2:
+			out_be32(&ddr->cs2_bnds, regs->cs[csn].bnds);
+			break;
+		case 3:
+			out_be32(&ddr->cs3_bnds, regs->cs[csn].bnds);
+			break;
+		}
+		clrbits_be32(&ddr->sdram_cfg, 0x2);
+	}
+#endif /* CONFIG_SYS_FSL_ERRATUM_DDR111_DDR134 */
+}
diff --git a/drivers/ddr/fsl/mpc86xx_ddr.c b/drivers/ddr/fsl/mpc86xx_ddr.c
new file mode 100644
index 0000000..caffbaf
--- /dev/null
+++ b/drivers/ddr/fsl/mpc86xx_ddr.c
@@ -0,0 +1,85 @@
+/*
+ * Copyright 2008 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ddr_sdram.h>
+
+#if (CONFIG_CHIP_SELECTS_PER_CTRL > 4)
+#error Invalid setting for CONFIG_CHIP_SELECTS_PER_CTRL
+#endif
+
+void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
+			     unsigned int ctrl_num, int step)
+{
+	unsigned int i;
+	volatile ccsr_ddr_t *ddr;
+
+	switch (ctrl_num) {
+	case 0:
+		ddr = (void *)CONFIG_SYS_FSL_DDR_ADDR;
+		break;
+	case 1:
+		ddr = (void *)CONFIG_SYS_FSL_DDR2_ADDR;
+		break;
+	default:
+		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
+		return;
+	}
+
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+		if (i == 0) {
+			out_be32(&ddr->cs0_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs0_config, regs->cs[i].config);
+
+		} else if (i == 1) {
+			out_be32(&ddr->cs1_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs1_config, regs->cs[i].config);
+
+		} else if (i == 2) {
+			out_be32(&ddr->cs2_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs2_config, regs->cs[i].config);
+
+		} else if (i == 3) {
+			out_be32(&ddr->cs3_bnds, regs->cs[i].bnds);
+			out_be32(&ddr->cs3_config, regs->cs[i].config);
+		}
+	}
+
+	out_be32(&ddr->timing_cfg_3, regs->timing_cfg_3);
+	out_be32(&ddr->timing_cfg_0, regs->timing_cfg_0);
+	out_be32(&ddr->timing_cfg_1, regs->timing_cfg_1);
+	out_be32(&ddr->timing_cfg_2, regs->timing_cfg_2);
+	out_be32(&ddr->sdram_cfg_2, regs->ddr_sdram_cfg_2);
+	out_be32(&ddr->sdram_mode, regs->ddr_sdram_mode);
+	out_be32(&ddr->sdram_mode_2, regs->ddr_sdram_mode_2);
+	out_be32(&ddr->sdram_mode_cntl, regs->ddr_sdram_md_cntl);
+	out_be32(&ddr->sdram_interval, regs->ddr_sdram_interval);
+	out_be32(&ddr->sdram_data_init, regs->ddr_data_init);
+	out_be32(&ddr->sdram_clk_cntl, regs->ddr_sdram_clk_cntl);
+	out_be32(&ddr->init_addr, regs->ddr_init_addr);
+	out_be32(&ddr->init_ext_addr, regs->ddr_init_ext_addr);
+
+	debug("before go\n");
+
+	/*
+	 * 200 painful micro-seconds must elapse between
+	 * the DDR clock setup and the DDR config enable.
+	 */
+	udelay(200);
+	asm volatile("sync;isync");
+
+	out_be32(&ddr->sdram_cfg, regs->ddr_sdram_cfg);
+
+	/*
+	 * Poll DDR_SDRAM_CFG_2[D_INIT] bit until auto-data init is done
+	 */
+	while (in_be32(&ddr->sdram_cfg_2) & 0x10) {
+		udelay(10000);		/* throttle polling rate */
+	}
+}
diff --git a/drivers/ddr/fsl/options.c b/drivers/ddr/fsl/options.c
new file mode 100644
index 0000000..4aafcce
--- /dev/null
+++ b/drivers/ddr/fsl/options.c
@@ -0,0 +1,1147 @@
+/*
+ * Copyright 2008, 2010-2012 Freescale Semiconductor, Inc.
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <common.h>
+#include <hwconfig.h>
+#include <fsl_ddr_sdram.h>
+
+#include <fsl_ddr.h>
+
+/*
+ * Use our own stack based buffer before relocation to allow accessing longer
+ * hwconfig strings that might be in the environment before we've relocated.
+ * This is pretty fragile on both the use of stack and if the buffer is big
+ * enough. However we will get a warning from getenv_f for the later.
+ */
+
+/* Board-specific functions defined in each board's ddr.c */
+extern void fsl_ddr_board_options(memctl_options_t *popts,
+		dimm_params_t *pdimm,
+		unsigned int ctrl_num);
+
+struct dynamic_odt {
+	unsigned int odt_rd_cfg;
+	unsigned int odt_wr_cfg;
+	unsigned int odt_rtt_norm;
+	unsigned int odt_rtt_wr;
+};
+
+#ifdef CONFIG_SYS_FSL_DDR3
+static const struct dynamic_odt single_Q[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+		DDR3_RTT_20_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,	/* tied high */
+		DDR3_RTT_OFF,
+		DDR3_RTT_120_OHM
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS_AND_OTHER_DIMM,
+		DDR3_RTT_20_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,	/* tied high */
+		DDR3_RTT_OFF,
+		DDR3_RTT_120_OHM
+	}
+};
+
+static const struct dynamic_odt single_D[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR3_RTT_OFF,
+		DDR3_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR3_RTT_30_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR3_RTT_30_OHM,
+		DDR3_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_DS[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR3_RTT_30_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_20_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{0, 0, 0, 0}
+};
+static const struct dynamic_odt dual_SD[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_20_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR3_RTT_20_OHM,
+		DDR3_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_30_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_ALL,
+		DDR3_RTT_30_OHM,
+		DDR3_RTT_120_OHM
+	},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR3_RTT_OFF,
+		DDR3_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D[4] = {
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_SAME_DIMM,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR3_RTT_OFF,
+		DDR3_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S[4] = {
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_40_OHM,
+		DDR3_RTT_OFF
+	},
+	{0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR3_RTT_120_OHM,
+		DDR3_RTT_OFF
+	}
+};
+#else	/* CONFIG_SYS_FSL_DDR3 */
+static const struct dynamic_odt single_Q[4] = {
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_D[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt single_S[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+};
+
+static const struct dynamic_odt dual_DD[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_DS[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_SD[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_SS[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_OTHER_DIMM,
+		FSL_DDR_ODT_OTHER_DIMM,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_D0[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+};
+
+static const struct dynamic_odt dual_0D[4] = {
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_ALL,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	}
+};
+
+static const struct dynamic_odt dual_S0[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt dual_0S[4] = {
+	{0, 0, 0, 0},
+	{0, 0, 0, 0},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR2_RTT_150_OHM,
+		DDR2_RTT_OFF
+	},
+	{0, 0, 0, 0}
+
+};
+
+static const struct dynamic_odt odt_unknown[4] = {
+	{	/* cs0 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs1 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	},
+	{	/* cs2 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_CS,
+		DDR2_RTT_75_OHM,
+		DDR2_RTT_OFF
+	},
+	{	/* cs3 */
+		FSL_DDR_ODT_NEVER,
+		FSL_DDR_ODT_NEVER,
+		DDR2_RTT_OFF,
+		DDR2_RTT_OFF
+	}
+};
+#endif
+
+/*
+ * Automatically seleect bank interleaving mode based on DIMMs
+ * in this order: cs0_cs1_cs2_cs3, cs0_cs1, null.
+ * This function only deal with one or two slots per controller.
+ */
+static inline unsigned int auto_bank_intlv(dimm_params_t *pdimm)
+{
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+	if (pdimm[0].n_ranks == 4)
+		return FSL_DDR_CS0_CS1_CS2_CS3;
+	else if (pdimm[0].n_ranks == 2)
+		return FSL_DDR_CS0_CS1;
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+	if (pdimm[0].n_ranks == 4)
+		return FSL_DDR_CS0_CS1_CS2_CS3;
+#endif
+	if (pdimm[0].n_ranks == 2) {
+		if (pdimm[1].n_ranks == 2)
+			return FSL_DDR_CS0_CS1_CS2_CS3;
+		else
+			return FSL_DDR_CS0_CS1;
+	}
+#endif
+	return 0;
+}
+
+unsigned int populate_memctl_options(int all_dimms_registered,
+			memctl_options_t *popts,
+			dimm_params_t *pdimm,
+			unsigned int ctrl_num)
+{
+	unsigned int i;
+	char buffer[HWCONFIG_BUFFER_SIZE];
+	char *buf = NULL;
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+	const struct dynamic_odt *pdodt = odt_unknown;
+#endif
+	ulong ddr_freq;
+
+	/*
+	 * Extract hwconfig from environment since we have not properly setup
+	 * the environment but need it for ddr config params
+	 */
+	if (getenv_f("hwconfig", buffer, sizeof(buffer)) > 0)
+		buf = buffer;
+
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+	/* Chip select options. */
+	if (CONFIG_DIMM_SLOTS_PER_CTLR == 1) {
+		switch (pdimm[0].n_ranks) {
+		case 1:
+			pdodt = single_S;
+			break;
+		case 2:
+			pdodt = single_D;
+			break;
+		case 4:
+			pdodt = single_Q;
+			break;
+		}
+	} else if (CONFIG_DIMM_SLOTS_PER_CTLR == 2) {
+		switch (pdimm[0].n_ranks) {
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+		case 4:
+			pdodt = single_Q;
+			if (pdimm[1].n_ranks)
+				printf("Error: Quad- and Dual-rank DIMMs "
+					"cannot be used together\n");
+			break;
+#endif
+		case 2:
+			switch (pdimm[1].n_ranks) {
+			case 2:
+				pdodt = dual_DD;
+				break;
+			case 1:
+				pdodt = dual_DS;
+				break;
+			case 0:
+				pdodt = dual_D0;
+				break;
+			}
+			break;
+		case 1:
+			switch (pdimm[1].n_ranks) {
+			case 2:
+				pdodt = dual_SD;
+				break;
+			case 1:
+				pdodt = dual_SS;
+				break;
+			case 0:
+				pdodt = dual_S0;
+				break;
+			}
+			break;
+		case 0:
+			switch (pdimm[1].n_ranks) {
+			case 2:
+				pdodt = dual_0D;
+				break;
+			case 1:
+				pdodt = dual_0S;
+				break;
+			}
+			break;
+		}
+	}
+#endif
+
+	/* Pick chip-select local options. */
+	for (i = 0; i < CONFIG_CHIP_SELECTS_PER_CTRL; i++) {
+#if defined(CONFIG_SYS_FSL_DDR3) || defined(CONFIG_SYS_FSL_DDR2)
+		popts->cs_local_opts[i].odt_rd_cfg = pdodt[i].odt_rd_cfg;
+		popts->cs_local_opts[i].odt_wr_cfg = pdodt[i].odt_wr_cfg;
+		popts->cs_local_opts[i].odt_rtt_norm = pdodt[i].odt_rtt_norm;
+		popts->cs_local_opts[i].odt_rtt_wr = pdodt[i].odt_rtt_wr;
+#else
+		popts->cs_local_opts[i].odt_rd_cfg = FSL_DDR_ODT_NEVER;
+		popts->cs_local_opts[i].odt_wr_cfg = FSL_DDR_ODT_CS;
+#endif
+		popts->cs_local_opts[i].auto_precharge = 0;
+	}
+
+	/* Pick interleaving mode. */
+
+	/*
+	 * 0 = no interleaving
+	 * 1 = interleaving between 2 controllers
+	 */
+	popts->memctl_interleaving = 0;
+
+	/*
+	 * 0 = cacheline
+	 * 1 = page
+	 * 2 = (logical) bank
+	 * 3 = superbank (only if CS interleaving is enabled)
+	 */
+	popts->memctl_interleaving_mode = 0;
+
+	/*
+	 * 0: cacheline: bit 30 of the 36-bit physical addr selects the memctl
+	 * 1: page:      bit to the left of the column bits selects the memctl
+	 * 2: bank:      bit to the left of the bank bits selects the memctl
+	 * 3: superbank: bit to the left of the chip select selects the memctl
+	 *
+	 * NOTE: ba_intlv (rank interleaving) is independent of memory
+	 * controller interleaving; it is only within a memory controller.
+	 * Must use superbank interleaving if rank interleaving is used and
+	 * memory controller interleaving is enabled.
+	 */
+
+	/*
+	 * 0 = no
+	 * 0x40 = CS0,CS1
+	 * 0x20 = CS2,CS3
+	 * 0x60 = CS0,CS1 + CS2,CS3
+	 * 0x04 = CS0,CS1,CS2,CS3
+	 */
+	popts->ba_intlv_ctl = 0;
+
+	/* Memory Organization Parameters */
+	popts->registered_dimm_en = all_dimms_registered;
+
+	/* Operational Mode Paramters */
+
+	/* Pick ECC modes */
+	popts->ecc_mode = 0;		  /* 0 = disabled, 1 = enabled */
+#ifdef CONFIG_DDR_ECC
+	if (hwconfig_sub_f("fsl_ddr", "ecc", buf)) {
+		if (hwconfig_subarg_cmp_f("fsl_ddr", "ecc", "on", buf))
+			popts->ecc_mode = 1;
+	} else
+		popts->ecc_mode = 1;
+#endif
+	popts->ecc_init_using_memctl = 1; /* 0 = use DMA, 1 = use memctl */
+
+	/*
+	 * Choose DQS config
+	 * 0 for DDR1
+	 * 1 for DDR2
+	 */
+#if defined(CONFIG_SYS_FSL_DDR1)
+	popts->dqs_config = 0;
+#elif defined(CONFIG_SYS_FSL_DDR2) || defined(CONFIG_SYS_FSL_DDR3)
+	popts->dqs_config = 1;
+#endif
+
+	/* Choose self-refresh during sleep. */
+	popts->self_refresh_in_sleep = 1;
+
+	/* Choose dynamic power management mode. */
+	popts->dynamic_power = 0;
+
+	/*
+	 * check first dimm for primary sdram width
+	 * presuming all dimms are similar
+	 * 0 = 64-bit, 1 = 32-bit, 2 = 16-bit
+	 */
+#if defined(CONFIG_SYS_FSL_DDR1) || defined(CONFIG_SYS_FSL_DDR2)
+	if (pdimm[0].n_ranks != 0) {
+		if ((pdimm[0].data_width >= 64) && \
+			(pdimm[0].data_width <= 72))
+			popts->data_bus_width = 0;
+		else if ((pdimm[0].data_width >= 32) || \
+			(pdimm[0].data_width <= 40))
+			popts->data_bus_width = 1;
+		else {
+			panic("Error: data width %u is invalid!\n",
+				pdimm[0].data_width);
+		}
+	}
+#else
+	if (pdimm[0].n_ranks != 0) {
+		if (pdimm[0].primary_sdram_width == 64)
+			popts->data_bus_width = 0;
+		else if (pdimm[0].primary_sdram_width == 32)
+			popts->data_bus_width = 1;
+		else if (pdimm[0].primary_sdram_width == 16)
+			popts->data_bus_width = 2;
+		else {
+			panic("Error: primary sdram width %u is invalid!\n",
+				pdimm[0].primary_sdram_width);
+		}
+	}
+#endif
+
+	popts->x4_en = (pdimm[0].device_width == 4) ? 1 : 0;
+
+	/* Choose burst length. */
+#if defined(CONFIG_SYS_FSL_DDR3)
+#if defined(CONFIG_E500MC)
+	popts->otf_burst_chop_en = 0;	/* on-the-fly burst chop disable */
+	popts->burst_length = DDR_BL8;	/* Fixed 8-beat burst len */
+#else
+	if ((popts->data_bus_width == 1) || (popts->data_bus_width == 2)) {
+		/* 32-bit or 16-bit bus */
+		popts->otf_burst_chop_en = 0;
+		popts->burst_length = DDR_BL8;
+	} else {
+		popts->otf_burst_chop_en = 1;	/* on-the-fly burst chop */
+		popts->burst_length = DDR_OTF;	/* on-the-fly BC4 and BL8 */
+	}
+#endif
+#else
+	popts->burst_length = DDR_BL4;	/* has to be 4 for DDR2 */
+#endif
+
+	/* Choose ddr controller address mirror mode */
+#if defined(CONFIG_SYS_FSL_DDR3)
+	popts->mirrored_dimm = pdimm[0].mirrored_dimm;
+#endif
+
+	/* Global Timing Parameters. */
+	debug("mclk_ps = %u ps\n", get_memory_clk_period_ps());
+
+	/* Pick a caslat override. */
+	popts->cas_latency_override = 0;
+	popts->cas_latency_override_value = 3;
+	if (popts->cas_latency_override) {
+		debug("using caslat override value = %u\n",
+		       popts->cas_latency_override_value);
+	}
+
+	/* Decide whether to use the computed derated latency */
+	popts->use_derated_caslat = 0;
+
+	/* Choose an additive latency. */
+	popts->additive_latency_override = 0;
+	popts->additive_latency_override_value = 3;
+	if (popts->additive_latency_override) {
+		debug("using additive latency override value = %u\n",
+		       popts->additive_latency_override_value);
+	}
+
+	/*
+	 * 2T_EN setting
+	 *
+	 * Factors to consider for 2T_EN:
+	 *	- number of DIMMs installed
+	 *	- number of components, number of active ranks
+	 *	- how much time you want to spend playing around
+	 */
+	popts->twot_en = 0;
+	popts->threet_en = 0;
+
+	/* for RDIMM, address parity enable */
+	popts->ap_en = 1;
+
+	/*
+	 * BSTTOPRE precharge interval
+	 *
+	 * Set this to 0 for global auto precharge
+	 *
+	 * FIXME: Should this be configured in picoseconds?
+	 * Why it should be in ps:  better understanding of this
+	 * relative to actual DRAM timing parameters such as tRAS.
+	 * e.g. tRAS(min) = 40 ns
+	 */
+	popts->bstopre = 0x100;
+
+	/* Minimum CKE pulse width -- tCKE(MIN) */
+	popts->tcke_clock_pulse_width_ps
+		= mclk_to_picos(FSL_DDR_MIN_TCKE_PULSE_WIDTH_DDR);
+
+	/*
+	 * Window for four activates -- tFAW
+	 *
+	 * FIXME: UM: applies only to DDR2/DDR3 with eight logical banks only
+	 * FIXME: varies depending upon number of column addresses or data
+	 * FIXME: width, was considering looking at pdimm->primary_sdram_width
+	 */
+#if defined(CONFIG_SYS_FSL_DDR1)
+	popts->tfaw_window_four_activates_ps = mclk_to_picos(1);
+
+#elif defined(CONFIG_SYS_FSL_DDR2)
+	/*
+	 * x4/x8;  some datasheets have 35000
+	 * x16 wide columns only?  Use 50000?
+	 */
+	popts->tfaw_window_four_activates_ps = 37500;
+
+#elif defined(CONFIG_SYS_FSL_DDR3)
+	popts->tfaw_window_four_activates_ps = pdimm[0].tfaw_ps;
+#endif
+	popts->zq_en = 0;
+	popts->wrlvl_en = 0;
+#if defined(CONFIG_SYS_FSL_DDR3)
+	/*
+	 * due to ddr3 dimm is fly-by topology
+	 * we suggest to enable write leveling to
+	 * meet the tQDSS under different loading.
+	 */
+	popts->wrlvl_en = 1;
+	popts->zq_en = 1;
+	popts->wrlvl_override = 0;
+#endif
+
+	/*
+	 * Check interleaving configuration from environment.
+	 * Please refer to doc/README.fsl-ddr for the detail.
+	 *
+	 * If memory controller interleaving is enabled, then the data
+	 * bus widths must be programmed identically for all memory controllers.
+	 *
+	 * XXX: Attempt to set all controllers to the same chip select
+	 * interleaving mode. It will do a best effort to get the
+	 * requested ranks interleaved together such that the result
+	 * should be a subset of the requested configuration.
+	 */
+#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
+	if (!hwconfig_sub_f("fsl_ddr", "ctlr_intlv", buf))
+		goto done;
+
+	if (pdimm[0].n_ranks == 0) {
+		printf("There is no rank on CS0 for controller %d.\n", ctrl_num);
+		popts->memctl_interleaving = 0;
+		goto done;
+	}
+	popts->memctl_interleaving = 1;
+	/*
+	 * test null first. if CONFIG_HWCONFIG is not defined
+	 * hwconfig_arg_cmp returns non-zero
+	 */
+	if (hwconfig_subarg_cmp_f("fsl_ddr", "ctlr_intlv",
+				    "null", buf)) {
+		popts->memctl_interleaving = 0;
+		debug("memory controller interleaving disabled.\n");
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"cacheline", buf)) {
+		popts->memctl_interleaving_mode =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : FSL_DDR_CACHE_LINE_INTERLEAVING;
+		popts->memctl_interleaving =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : 1;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"page", buf)) {
+		popts->memctl_interleaving_mode =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : FSL_DDR_PAGE_INTERLEAVING;
+		popts->memctl_interleaving =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : 1;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"bank", buf)) {
+		popts->memctl_interleaving_mode =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : FSL_DDR_BANK_INTERLEAVING;
+		popts->memctl_interleaving =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : 1;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"superbank", buf)) {
+		popts->memctl_interleaving_mode =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : FSL_DDR_SUPERBANK_INTERLEAVING;
+		popts->memctl_interleaving =
+			((CONFIG_NUM_DDR_CONTROLLERS == 3) && ctrl_num == 2) ?
+			0 : 1;
+#if (CONFIG_NUM_DDR_CONTROLLERS == 3)
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"3way_1KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_3WAY_1KB_INTERLEAVING;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"3way_4KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_3WAY_4KB_INTERLEAVING;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"3way_8KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_3WAY_8KB_INTERLEAVING;
+#elif (CONFIG_NUM_DDR_CONTROLLERS == 4)
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"4way_1KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_4WAY_1KB_INTERLEAVING;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"4way_4KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_4WAY_4KB_INTERLEAVING;
+	} else if (hwconfig_subarg_cmp_f("fsl_ddr",
+					"ctlr_intlv",
+					"4way_8KB", buf)) {
+		popts->memctl_interleaving_mode =
+			FSL_DDR_4WAY_8KB_INTERLEAVING;
+#endif
+	} else {
+		popts->memctl_interleaving = 0;
+		printf("hwconfig has unrecognized parameter for ctlr_intlv.\n");
+	}
+done:
+#endif
+	if ((hwconfig_sub_f("fsl_ddr", "bank_intlv", buf)) &&
+		(CONFIG_CHIP_SELECTS_PER_CTRL > 1)) {
+		/* test null first. if CONFIG_HWCONFIG is not defined,
+		 * hwconfig_subarg_cmp_f returns non-zero */
+		if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+					    "null", buf))
+			debug("bank interleaving disabled.\n");
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+						 "cs0_cs1", buf))
+			popts->ba_intlv_ctl = FSL_DDR_CS0_CS1;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+						 "cs2_cs3", buf))
+			popts->ba_intlv_ctl = FSL_DDR_CS2_CS3;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+						 "cs0_cs1_and_cs2_cs3", buf))
+			popts->ba_intlv_ctl = FSL_DDR_CS0_CS1_AND_CS2_CS3;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+						 "cs0_cs1_cs2_cs3", buf))
+			popts->ba_intlv_ctl = FSL_DDR_CS0_CS1_CS2_CS3;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "bank_intlv",
+						"auto", buf))
+			popts->ba_intlv_ctl = auto_bank_intlv(pdimm);
+		else
+			printf("hwconfig has unrecognized parameter for bank_intlv.\n");
+		switch (popts->ba_intlv_ctl & FSL_DDR_CS0_CS1_CS2_CS3) {
+		case FSL_DDR_CS0_CS1_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+			if (pdimm[0].n_ranks < 4) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(chip-select) for "
+					"CS0+CS1+CS2+CS3 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+#ifdef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
+			if (pdimm[0].n_ranks == 4)
+				break;
+#endif
+			if ((pdimm[0].n_ranks < 2) && (pdimm[1].n_ranks < 2)) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(chip-select) for "
+					"CS0+CS1+CS2+CS3 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+			if (pdimm[0].capacity != pdimm[1].capacity) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not identical DIMM size for "
+					"CS0+CS1+CS2+CS3 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+#endif
+			break;
+		case FSL_DDR_CS0_CS1:
+			if (pdimm[0].n_ranks < 2) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(chip-select) for "
+					"CS0+CS1 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+			break;
+		case FSL_DDR_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+			if (pdimm[0].n_ranks < 4) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(chip-select) for CS2+CS3 "
+					"on controller %d, interleaving disabled!\n", ctrl_num);
+			}
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+			if (pdimm[1].n_ranks < 2) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(chip-select) for CS2+CS3 "
+					"on controller %d, interleaving disabled!\n", ctrl_num);
+			}
+#endif
+			break;
+		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+#if (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
+			if (pdimm[0].n_ranks < 4) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(CS) for CS0+CS1 and "
+					"CS2+CS3 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+#elif (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
+			if ((pdimm[0].n_ranks < 2) || (pdimm[1].n_ranks < 2)) {
+				popts->ba_intlv_ctl = 0;
+				printf("Not enough bank(CS) for CS0+CS1 and "
+					"CS2+CS3 on controller %d, "
+					"interleaving disabled!\n", ctrl_num);
+			}
+#endif
+			break;
+		default:
+			popts->ba_intlv_ctl = 0;
+			break;
+		}
+	}
+
+	if (hwconfig_sub_f("fsl_ddr", "addr_hash", buf)) {
+		if (hwconfig_subarg_cmp_f("fsl_ddr", "addr_hash", "null", buf))
+			popts->addr_hash = 0;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "addr_hash",
+					       "true", buf))
+			popts->addr_hash = 1;
+	}
+
+	if (pdimm[0].n_ranks == 4)
+		popts->quad_rank_present = 1;
+
+	ddr_freq = get_ddr_freq(0) / 1000000;
+	if (popts->registered_dimm_en) {
+		popts->rcw_override = 1;
+		popts->rcw_1 = 0x000a5a00;
+		if (ddr_freq <= 800)
+			popts->rcw_2 = 0x00000000;
+		else if (ddr_freq <= 1066)
+			popts->rcw_2 = 0x00100000;
+		else if (ddr_freq <= 1333)
+			popts->rcw_2 = 0x00200000;
+		else
+			popts->rcw_2 = 0x00300000;
+	}
+
+	fsl_ddr_board_options(popts, pdimm, ctrl_num);
+
+	return 0;
+}
+
+void check_interleaving_options(fsl_ddr_info_t *pinfo)
+{
+	int i, j, k, check_n_ranks, intlv_invalid = 0;
+	unsigned int check_intlv, check_n_row_addr, check_n_col_addr;
+	unsigned long long check_rank_density;
+	struct dimm_params_s *dimm;
+	/*
+	 * Check if all controllers are configured for memory
+	 * controller interleaving. Identical dimms are recommended. At least
+	 * the size, row and col address should be checked.
+	 */
+	j = 0;
+	check_n_ranks = pinfo->dimm_params[0][0].n_ranks;
+	check_rank_density = pinfo->dimm_params[0][0].rank_density;
+	check_n_row_addr =  pinfo->dimm_params[0][0].n_row_addr;
+	check_n_col_addr = pinfo->dimm_params[0][0].n_col_addr;
+	check_intlv = pinfo->memctl_opts[0].memctl_interleaving_mode;
+	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {
+		dimm = &pinfo->dimm_params[i][0];
+		if (!pinfo->memctl_opts[i].memctl_interleaving) {
+			continue;
+		} else if (((check_rank_density != dimm->rank_density) ||
+		     (check_n_ranks != dimm->n_ranks) ||
+		     (check_n_row_addr != dimm->n_row_addr) ||
+		     (check_n_col_addr != dimm->n_col_addr) ||
+		     (check_intlv !=
+			pinfo->memctl_opts[i].memctl_interleaving_mode))){
+			intlv_invalid = 1;
+			break;
+		} else {
+			j++;
+		}
+
+	}
+	if (intlv_invalid) {
+		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
+			pinfo->memctl_opts[i].memctl_interleaving = 0;
+		printf("Not all DIMMs are identical. "
+			"Memory controller interleaving disabled.\n");
+	} else {
+		switch (check_intlv) {
+		case FSL_DDR_CACHE_LINE_INTERLEAVING:
+		case FSL_DDR_PAGE_INTERLEAVING:
+		case FSL_DDR_BANK_INTERLEAVING:
+		case FSL_DDR_SUPERBANK_INTERLEAVING:
+			if (3 == CONFIG_NUM_DDR_CONTROLLERS)
+				k = 2;
+			else
+				k = CONFIG_NUM_DDR_CONTROLLERS;
+			break;
+		case FSL_DDR_3WAY_1KB_INTERLEAVING:
+		case FSL_DDR_3WAY_4KB_INTERLEAVING:
+		case FSL_DDR_3WAY_8KB_INTERLEAVING:
+		case FSL_DDR_4WAY_1KB_INTERLEAVING:
+		case FSL_DDR_4WAY_4KB_INTERLEAVING:
+		case FSL_DDR_4WAY_8KB_INTERLEAVING:
+		default:
+			k = CONFIG_NUM_DDR_CONTROLLERS;
+			break;
+		}
+		debug("%d of %d controllers are interleaving.\n", j, k);
+		if (j && (j != k)) {
+			for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)
+				pinfo->memctl_opts[i].memctl_interleaving = 0;
+			printf("Not all controllers have compatible "
+				"interleaving mode. All disabled.\n");
+		}
+	}
+	debug("Checking interleaving options completed\n");
+}
+
+int fsl_use_spd(void)
+{
+	int use_spd = 0;
+
+#ifdef CONFIG_DDR_SPD
+	char buffer[HWCONFIG_BUFFER_SIZE];
+	char *buf = NULL;
+
+	/*
+	 * Extract hwconfig from environment since we have not properly setup
+	 * the environment but need it for ddr config params
+	 */
+	if (getenv_f("hwconfig", buffer, sizeof(buffer)) > 0)
+		buf = buffer;
+
+	/* if hwconfig is not enabled, or "sdram" is not defined, use spd */
+	if (hwconfig_sub_f("fsl_ddr", "sdram", buf)) {
+		if (hwconfig_subarg_cmp_f("fsl_ddr", "sdram", "spd", buf))
+			use_spd = 1;
+		else if (hwconfig_subarg_cmp_f("fsl_ddr", "sdram",
+					       "fixed", buf))
+			use_spd = 0;
+		else
+			use_spd = 1;
+	} else
+		use_spd = 1;
+#endif
+
+	return use_spd;
+}
diff --git a/drivers/ddr/fsl/util.c b/drivers/ddr/fsl/util.c
new file mode 100644
index 0000000..45a7bcc
--- /dev/null
+++ b/drivers/ddr/fsl/util.c
@@ -0,0 +1,265 @@
+/*
+ * Copyright 2008-2012 Freescale Semiconductor, Inc.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * Version 2 as published by the Free Software Foundation.
+ */
+
+#include <common.h>
+#include <asm/fsl_law.h>
+#include <div64.h>
+
+#include <fsl_ddr.h>
+#include <asm/io.h>
+
+/* To avoid 64-bit full-divides, we factor this here */
+#define ULL_2E12 2000000000000ULL
+#define UL_5POW12 244140625UL
+#define UL_2POW13 (1UL << 13)
+
+#define ULL_8FS 0xFFFFFFFFULL
+
+/*
+ * Round up mclk_ps to nearest 1 ps in memory controller code
+ * if the error is 0.5ps or more.
+ *
+ * If an imprecise data rate is too high due to rounding error
+ * propagation, compute a suitably rounded mclk_ps to compute
+ * a working memory controller configuration.
+ */
+unsigned int get_memory_clk_period_ps(void)
+{
+	unsigned int data_rate = get_ddr_freq(0);
+	unsigned int result;
+
+	/* Round to nearest 10ps, being careful about 64-bit multiply/divide */
+	unsigned long long rem, mclk_ps = ULL_2E12;
+
+	/* Now perform the big divide, the result fits in 32-bits */
+	rem = do_div(mclk_ps, data_rate);
+	result = (rem >= (data_rate >> 1)) ? mclk_ps + 1 : mclk_ps;
+
+	return result;
+}
+
+/* Convert picoseconds into DRAM clock cycles (rounding up if needed). */
+unsigned int picos_to_mclk(unsigned int picos)
+{
+	unsigned long long clks, clks_rem;
+	unsigned long data_rate = get_ddr_freq(0);
+
+	/* Short circuit for zero picos */
+	if (!picos)
+		return 0;
+
+	/* First multiply the time by the data rate (32x32 => 64) */
+	clks = picos * (unsigned long long)data_rate;
+	/*
+	 * Now divide by 5^12 and track the 32-bit remainder, then divide
+	 * by 2*(2^12) using shifts (and updating the remainder).
+	 */
+	clks_rem = do_div(clks, UL_5POW12);
+	clks_rem += (clks & (UL_2POW13-1)) * UL_5POW12;
+	clks >>= 13;
+
+	/* If we had a remainder greater than the 1ps error, then round up */
+	if (clks_rem > data_rate)
+		clks++;
+
+	/* Clamp to the maximum representable value */
+	if (clks > ULL_8FS)
+		clks = ULL_8FS;
+	return (unsigned int) clks;
+}
+
+unsigned int mclk_to_picos(unsigned int mclk)
+{
+	return get_memory_clk_period_ps() * mclk;
+}
+
+void
+__fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
+			   unsigned int law_memctl,
+			   unsigned int ctrl_num)
+{
+	unsigned long long base = memctl_common_params->base_address;
+	unsigned long long size = memctl_common_params->total_mem;
+
+	/*
+	 * If no DIMMs on this controller, do not proceed any further.
+	 */
+	if (!memctl_common_params->ndimms_present) {
+		return;
+	}
+
+#if !defined(CONFIG_PHYS_64BIT)
+	if (base >= CONFIG_MAX_MEM_MAPPED)
+		return;
+	if ((base + size) >= CONFIG_MAX_MEM_MAPPED)
+		size = CONFIG_MAX_MEM_MAPPED - base;
+#endif
+	if (set_ddr_laws(base, size, law_memctl) < 0) {
+		printf("%s: ERROR (ctrl #%d, TRGT ID=%x)\n", __func__, ctrl_num,
+			law_memctl);
+		return ;
+	}
+	debug("setup ddr law base = 0x%llx, size 0x%llx, TRGT_ID 0x%x\n",
+		base, size, law_memctl);
+}
+
+__attribute__((weak, alias("__fsl_ddr_set_lawbar"))) void
+fsl_ddr_set_lawbar(const common_timing_params_t *memctl_common_params,
+			 unsigned int memctl_interleaved,
+			 unsigned int ctrl_num);
+
+void fsl_ddr_set_intl3r(const unsigned int granule_size)
+{
+#ifdef CONFIG_E6500
+	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+	*mcintl3r = 0x80000000 | (granule_size & 0x1f);
+	debug("Enable MCINTL3R with granule size 0x%x\n", granule_size);
+#endif
+}
+
+u32 fsl_ddr_get_intl3r(void)
+{
+	u32 val = 0;
+#ifdef CONFIG_E6500
+	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+	val = *mcintl3r;
+#endif
+	return val;
+}
+
+void board_add_ram_info(int use_default)
+{
+	ccsr_ddr_t *ddr = (void *)(CONFIG_SYS_FSL_DDR_ADDR);
+
+#if	defined(CONFIG_E6500) && (CONFIG_NUM_DDR_CONTROLLERS == 3)
+	u32 *mcintl3r = (void *) (CONFIG_SYS_IMMR + 0x18004);
+#endif
+#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
+	uint32_t cs0_config = in_be32(&ddr->cs0_config);
+#endif
+	uint32_t sdram_cfg = in_be32(&ddr->sdram_cfg);
+	int cas_lat;
+
+#if CONFIG_NUM_DDR_CONTROLLERS >= 2
+	if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
+		ddr = (void __iomem *)CONFIG_SYS_FSL_DDR2_ADDR;
+		sdram_cfg = in_be32(&ddr->sdram_cfg);
+	}
+#endif
+#if CONFIG_NUM_DDR_CONTROLLERS >= 3
+	if (!(sdram_cfg & SDRAM_CFG_MEM_EN)) {
+		ddr = (void __iomem *)CONFIG_SYS_FSL_DDR3_ADDR;
+		sdram_cfg = in_be32(&ddr->sdram_cfg);
+	}
+#endif
+	puts(" (DDR");
+	switch ((sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) >>
+		SDRAM_CFG_SDRAM_TYPE_SHIFT) {
+	case SDRAM_TYPE_DDR1:
+		puts("1");
+		break;
+	case SDRAM_TYPE_DDR2:
+		puts("2");
+		break;
+	case SDRAM_TYPE_DDR3:
+		puts("3");
+		break;
+	default:
+		puts("?");
+		break;
+	}
+
+	if (sdram_cfg & SDRAM_CFG_32_BE)
+		puts(", 32-bit");
+	else if (sdram_cfg & SDRAM_CFG_16_BE)
+		puts(", 16-bit");
+	else
+		puts(", 64-bit");
+
+	/* Calculate CAS latency based on timing cfg values */
+	cas_lat = ((in_be32(&ddr->timing_cfg_1) >> 16) & 0xf) + 1;
+	if ((in_be32(&ddr->timing_cfg_3) >> 12) & 1)
+		cas_lat += (8 << 1);
+	printf(", CL=%d", cas_lat >> 1);
+	if (cas_lat & 0x1)
+		puts(".5");
+
+	if (sdram_cfg & SDRAM_CFG_ECC_EN)
+		puts(", ECC on)");
+	else
+		puts(", ECC off)");
+
+#if (CONFIG_NUM_DDR_CONTROLLERS == 3)
+#ifdef CONFIG_E6500
+	if (*mcintl3r & 0x80000000) {
+		puts("\n");
+		puts("       DDR Controller Interleaving Mode: ");
+		switch (*mcintl3r & 0x1f) {
+		case FSL_DDR_3WAY_1KB_INTERLEAVING:
+			puts("3-way 1KB");
+			break;
+		case FSL_DDR_3WAY_4KB_INTERLEAVING:
+			puts("3-way 4KB");
+			break;
+		case FSL_DDR_3WAY_8KB_INTERLEAVING:
+			puts("3-way 8KB");
+			break;
+		default:
+			puts("3-way UNKNOWN");
+			break;
+		}
+	}
+#endif
+#endif
+#if (CONFIG_NUM_DDR_CONTROLLERS >= 2)
+	if (cs0_config & 0x20000000) {
+		puts("\n");
+		puts("       DDR Controller Interleaving Mode: ");
+
+		switch ((cs0_config >> 24) & 0xf) {
+		case FSL_DDR_CACHE_LINE_INTERLEAVING:
+			puts("cache line");
+			break;
+		case FSL_DDR_PAGE_INTERLEAVING:
+			puts("page");
+			break;
+		case FSL_DDR_BANK_INTERLEAVING:
+			puts("bank");
+			break;
+		case FSL_DDR_SUPERBANK_INTERLEAVING:
+			puts("super-bank");
+			break;
+		default:
+			puts("invalid");
+			break;
+		}
+	}
+#endif
+
+	if ((sdram_cfg >> 8) & 0x7f) {
+		puts("\n");
+		puts("       DDR Chip-Select Interleaving Mode: ");
+		switch(sdram_cfg >> 8 & 0x7f) {
+		case FSL_DDR_CS0_CS1_CS2_CS3:
+			puts("CS0+CS1+CS2+CS3");
+			break;
+		case FSL_DDR_CS0_CS1:
+			puts("CS0+CS1");
+			break;
+		case FSL_DDR_CS2_CS3:
+			puts("CS2+CS3");
+			break;
+		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
+			puts("CS0+CS1 and CS2+CS3");
+			break;
+		default:
+			puts("invalid");
+			break;
+		}
+	}
+}