blob: 5d5b6f0d350b6cc58dd196dd0ed9ff361ce7fd6e [file] [log] [blame]
/*
* Copyright (C) 2012 Altera Corporation <www.altera.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the Altera Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <common.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <wait_bit.h>
#include <spi.h>
#include <bouncebuf.h>
#include "cadence_qspi.h"
#define CQSPI_REG_POLL_US 1 /* 1us */
#define CQSPI_REG_RETRY 10000
#define CQSPI_POLL_IDLE_RETRY 3
#define CQSPI_FIFO_WIDTH 4
#define CQSPI_REG_SRAM_THRESHOLD_WORDS 50
/* Transfer mode */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_STIG_DATA_LEN_MAX 8
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_REG_SRAM_FILL_THRESHOLD \
((CQSPI_REG_SRAM_SIZE_WORD / 2) * CQSPI_FIFO_WIDTH)
/****************************************************************************
* Controller's configuration and status register (offset from QSPI_BASE)
****************************************************************************/
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE BIT(0)
#define CQSPI_REG_CONFIG_CLK_POL BIT(1)
#define CQSPI_REG_CONFIG_CLK_PHA BIT(2)
#define CQSPI_REG_CONFIG_DIRECT BIT(7)
#define CQSPI_REG_CONFIG_DECODE BIT(9)
#define CQSPI_REG_CONFIG_XIP_IMM BIT(18)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_RD_DATA_CAPTURE 0x10
#define CQSPI_REG_RD_DATA_CAPTURE_BYPASS BIT(0)
#define CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB 1
#define CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL BIT(1)
#define CQSPI_REG_INDIRECTRD_INPROGRESS BIT(2)
#define CQSPI_REG_INDIRECTRD_DONE BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_OPCODE_MASK 0xFF
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL BIT(1)
#define CQSPI_REG_INDIRECTWR_INPROGRESS BIT(2)
#define CQSPI_REG_INDIRECTWR_DONE BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_IS_IDLE(base) \
((readl(base + CQSPI_REG_CONFIG) >> \
CQSPI_REG_CONFIG_IDLE_LSB) & 0x1)
#define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \
(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK)
#define CQSPI_GET_WR_SRAM_LEVEL(reg_base) \
(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK)
static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf,
unsigned int addr_width)
{
unsigned int addr;
addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2];
if (addr_width == 4)
addr = (addr << 8) | addr_buf[3];
return addr;
}
void cadence_qspi_apb_controller_enable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
void cadence_qspi_apb_controller_disable(void *reg_base)
{
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_ENABLE;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
/* Return 1 if idle, otherwise return 0 (busy). */
static unsigned int cadence_qspi_wait_idle(void *reg_base)
{
unsigned int start, count = 0;
/* timeout in unit of ms */
unsigned int timeout = 5000;
start = get_timer(0);
for ( ; get_timer(start) < timeout ; ) {
if (CQSPI_REG_IS_IDLE(reg_base))
count++;
else
count = 0;
/*
* Ensure the QSPI controller is in true idle state after
* reading back the same idle status consecutively
*/
if (count >= CQSPI_POLL_IDLE_RETRY)
return 1;
}
/* Timeout, still in busy mode. */
printf("QSPI: QSPI is still busy after poll for %d times.\n",
CQSPI_REG_RETRY);
return 0;
}
void cadence_qspi_apb_readdata_capture(void *reg_base,
unsigned int bypass, unsigned int delay)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_RD_DATA_CAPTURE);
if (bypass)
reg |= CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
else
reg &= ~CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
reg &= ~(CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK)
<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_RD_DATA_CAPTURE);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_config_baudrate_div(void *reg_base,
unsigned int ref_clk_hz, unsigned int sclk_hz)
{
unsigned int reg;
unsigned int div;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
/*
* The baud_div field in the config reg is 4 bits, and the ref clock is
* divided by 2 * (baud_div + 1). Round up the divider to ensure the
* SPI clock rate is less than or equal to the requested clock rate.
*/
div = DIV_ROUND_UP(ref_clk_hz, sclk_hz * 2) - 1;
/* ensure the baud rate doesn't exceed the max value */
if (div > CQSPI_REG_CONFIG_BAUD_MASK)
div = CQSPI_REG_CONFIG_BAUD_MASK;
debug("%s: ref_clk %dHz sclk %dHz Div 0x%x, actual %dHz\n", __func__,
ref_clk_hz, sclk_hz, div, ref_clk_hz / (2 * (div + 1)));
reg |= (div << CQSPI_REG_CONFIG_BAUD_LSB);
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_set_clk_mode(void *reg_base, uint mode)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_CLK_POL | CQSPI_REG_CONFIG_CLK_PHA);
if (mode & SPI_CPOL)
reg |= CQSPI_REG_CONFIG_CLK_POL;
if (mode & SPI_CPHA)
reg |= CQSPI_REG_CONFIG_CLK_PHA;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_chipselect(void *reg_base,
unsigned int chip_select, unsigned int decoder_enable)
{
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
debug("%s : chipselect %d decode %d\n", __func__, chip_select,
decoder_enable);
reg = readl(reg_base + CQSPI_REG_CONFIG);
/* docoder */
if (decoder_enable) {
reg |= CQSPI_REG_CONFIG_DECODE;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_delay(void *reg_base,
unsigned int ref_clk, unsigned int sclk_hz,
unsigned int tshsl_ns, unsigned int tsd2d_ns,
unsigned int tchsh_ns, unsigned int tslch_ns)
{
unsigned int ref_clk_ns;
unsigned int sclk_ns;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
cadence_qspi_apb_controller_disable(reg_base);
/* Convert to ns. */
ref_clk_ns = DIV_ROUND_UP(1000000000, ref_clk);
/* Convert to ns. */
sclk_ns = DIV_ROUND_UP(1000000000, sclk_hz);
/* The controller adds additional delay to that programmed in the reg */
if (tshsl_ns >= sclk_ns + ref_clk_ns)
tshsl_ns -= sclk_ns + ref_clk_ns;
if (tchsh_ns >= sclk_ns + 3 * ref_clk_ns)
tchsh_ns -= sclk_ns + 3 * ref_clk_ns;
tshsl = DIV_ROUND_UP(tshsl_ns, ref_clk_ns);
tchsh = DIV_ROUND_UP(tchsh_ns, ref_clk_ns);
tslch = DIV_ROUND_UP(tslch_ns, ref_clk_ns);
tsd2d = DIV_ROUND_UP(tsd2d_ns, ref_clk_ns);
reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB);
reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB);
reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB);
reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB);
writel(reg, reg_base + CQSPI_REG_DELAY);
cadence_qspi_apb_controller_enable(reg_base);
}
void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat)
{
unsigned reg;
cadence_qspi_apb_controller_disable(plat->regbase);
/* Configure the device size and address bytes */
reg = readl(plat->regbase + CQSPI_REG_SIZE);
/* Clear the previous value */
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB);
reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
/* Configure the remap address register, no remap */
writel(0, plat->regbase + CQSPI_REG_REMAP);
/* Indirect mode configurations */
writel((plat->sram_size/2), plat->regbase + CQSPI_REG_SRAMPARTITION);
/* Disable all interrupts */
writel(0, plat->regbase + CQSPI_REG_IRQMASK);
cadence_qspi_apb_controller_enable(plat->regbase);
}
static int cadence_qspi_apb_exec_flash_cmd(void *reg_base,
unsigned int reg)
{
unsigned int retry = CQSPI_REG_RETRY;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
while (retry--) {
reg = readl(reg_base + CQSPI_REG_CMDCTRL);
if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS) == 0)
break;
udelay(1);
}
if (!retry) {
printf("QSPI: flash command execution timeout\n");
return -EIO;
}
/* Polling QSPI idle status. */
if (!cadence_qspi_wait_idle(reg_base))
return -EIO;
return 0;
}
/* For command RDID, RDSR. */
int cadence_qspi_apb_command_read(void *reg_base,
unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen,
u8 *rxbuf)
{
unsigned int reg;
unsigned int read_len;
int status;
if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) {
printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n",
cmdlen, rxlen);
return -EINVAL;
}
reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
if (status != 0)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (rxlen > 4) ? 4 : rxlen;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (rxlen > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = rxlen - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen,
const u8 *cmdbuf, unsigned int txlen, const u8 *txbuf)
{
unsigned int reg = 0;
unsigned int addr_value;
unsigned int wr_data;
unsigned int wr_len;
if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) {
printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n",
cmdlen, txlen);
return -EINVAL;
}
reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (cmdlen == 4 || cmdlen == 5) {
/* Command with address */
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
/* Number of bytes to write. */
reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
/* Get address */
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1],
cmdlen >= 5 ? 4 : 3);
writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS);
}
if (txlen) {
/* writing data = yes */
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
wr_len = txlen > 4 ? 4 : txlen;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATALOWER);
if (txlen > 4) {
txbuf += wr_len;
wr_len = txlen - wr_len;
memcpy(&wr_data, txbuf, wr_len);
writel(wr_data, reg_base +
CQSPI_REG_CMDWRITEDATAUPPER);
}
}
/* Execute the command */
return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
}
/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, unsigned int rx_width, const u8 *cmdbuf)
{
unsigned int reg;
unsigned int rd_reg;
unsigned int addr_value;
unsigned int dummy_clk;
unsigned int dummy_bytes;
unsigned int addr_bytes;
/*
* Identify addr_byte. All NOR flash device drivers are using fast read
* which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte.
* With that, the length is in value of 5 or 6. Only FRAM chip from
* ramtron using normal read (which won't need dummy byte).
* Unlikely NOR flash using normal read due to performance issue.
*/
if (cmdlen >= 5)
/* to cater fast read where cmd + addr + dummy */
addr_bytes = cmdlen - 2;
else
/* for normal read (only ramtron as of now) */
addr_bytes = cmdlen - 1;
/* Setup the indirect trigger address */
writel((u32)plat->ahbbase,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB;
if (rx_width & SPI_RX_QUAD)
/* Instruction and address at DQ0, data at DQ0-3. */
rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
/* Get address */
addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
/* The remaining lenght is dummy bytes. */
dummy_bytes = cmdlen - addr_bytes - 1;
if (dummy_bytes) {
if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
#if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD)
writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT);
#else
writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT);
#endif
/* Convert to clock cycles. */
dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
/* Need to minus the mode byte (8 clocks). */
dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
if (dummy_clk)
rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
}
writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR);
/* set device size */
reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0;
}
static u32 cadence_qspi_get_rd_sram_level(struct cadence_spi_platdata *plat)
{
u32 reg = readl(plat->regbase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static int cadence_qspi_wait_for_data(struct cadence_spi_platdata *plat)
{
unsigned int timeout = 10000;
u32 reg;
while (timeout--) {
reg = cadence_qspi_get_rd_sram_level(plat);
if (reg)
return reg;
udelay(1);
}
return -ETIMEDOUT;
}
int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
unsigned int n_rx, u8 *rxbuf)
{
unsigned int remaining = n_rx;
unsigned int bytes_to_read = 0;
int ret;
writel(n_rx, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);
/* Start the indirect read transfer */
writel(CQSPI_REG_INDIRECTRD_START,
plat->regbase + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
ret = cadence_qspi_wait_for_data(plat);
if (ret < 0) {
printf("Indirect write timed out (%i)\n", ret);
goto failrd;
}
bytes_to_read = ret;
while (bytes_to_read != 0) {
bytes_to_read *= CQSPI_FIFO_WIDTH;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
/* Handle non-4-byte aligned access to avoid data abort. */
if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4))
readsb(plat->ahbbase, rxbuf, bytes_to_read);
else
readsl(plat->ahbbase, rxbuf, bytes_to_read >> 2);
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cadence_qspi_get_rd_sram_level(plat);
}
}
/* Check indirect done status */
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
if (ret) {
printf("Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE,
plat->regbase + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTRD_CANCEL,
plat->regbase + CQSPI_REG_INDIRECTRD);
return ret;
}
/* Opcode + Address (3/4 bytes) */
int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat,
unsigned int cmdlen, const u8 *cmdbuf)
{
unsigned int reg;
unsigned int addr_bytes = cmdlen > 4 ? 4 : 3;
if (cmdlen < 4 || cmdbuf == NULL) {
printf("QSPI: iInvalid input argument, len %d cmdbuf 0x%08x\n",
cmdlen, (unsigned int)cmdbuf);
return -EINVAL;
}
/* Setup the indirect trigger address */
writel((u32)plat->ahbbase,
plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
/* Configure the opcode */
reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);
/* Setup write address. */
reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
reg = readl(plat->regbase + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (addr_bytes - 1);
writel(reg, plat->regbase + CQSPI_REG_SIZE);
return 0;
}
int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
unsigned int n_tx, const u8 *txbuf)
{
unsigned int page_size = plat->page_size;
unsigned int remaining = n_tx;
unsigned int write_bytes;
int ret;
struct bounce_buffer bb;
u8 *bb_txbuf;
/*
* Handle non-4-byte aligned accesses via bounce buffer to
* avoid data abort.
*/
ret = bounce_buffer_start(&bb, (void *)txbuf, n_tx, GEN_BB_READ);
if (ret)
return ret;
bb_txbuf = bb.bounce_buffer;
/* Configure the indirect read transfer bytes */
writel(n_tx, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);
/* Start the indirect write transfer */
writel(CQSPI_REG_INDIRECTWR_START,
plat->regbase + CQSPI_REG_INDIRECTWR);
while (remaining > 0) {
write_bytes = remaining > page_size ? page_size : remaining;
writesl(plat->ahbbase, bb_txbuf, write_bytes >> 2);
if (write_bytes % 4)
writesb(plat->ahbbase,
bb_txbuf + rounddown(write_bytes, 4),
write_bytes % 4);
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_SDRAMLEVEL,
CQSPI_REG_SDRAMLEVEL_WR_MASK <<
CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
if (ret) {
printf("Indirect write timed out (%i)\n", ret);
goto failwr;
}
bb_txbuf += write_bytes;
remaining -= write_bytes;
}
/* Check indirect done status */
ret = wait_for_bit("QSPI", plat->regbase + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
if (ret) {
printf("Indirect write completion error (%i)\n", ret);
goto failwr;
}
bounce_buffer_stop(&bb);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE,
plat->regbase + CQSPI_REG_INDIRECTWR);
return 0;
failwr:
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL,
plat->regbase + CQSPI_REG_INDIRECTWR);
bounce_buffer_stop(&bb);
return ret;
}
void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
{
unsigned int reg;
/* enter XiP mode immediately and enable direct mode */
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE;
reg |= CQSPI_REG_CONFIG_DIRECT;
reg |= CQSPI_REG_CONFIG_XIP_IMM;
writel(reg, reg_base + CQSPI_REG_CONFIG);
/* keep the XiP mode */
writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);
/* Enable mode bit at devrd */
reg = readl(reg_base + CQSPI_REG_RD_INSTR);
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
}