blob: 9e1376a940fc639581dbce0099ef8f977bc1f86e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2020 Rockchip Electronics Co., Ltd.
* Copyright (c) 2022 Edgeble AI Technologies Pvt. Ltd.
*/
#include <common.h>
#include <debug_uart.h>
#include <dm.h>
#include <ram.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/arch-rockchip/cru_rv1126.h>
#include <asm/arch-rockchip/grf_rv1126.h>
#include <asm/arch-rockchip/sdram_common.h>
#include <asm/arch-rockchip/sdram_rv1126.h>
#include <linux/delay.h>
/* define training flag */
#define CA_TRAINING (0x1 << 0)
#define READ_GATE_TRAINING (0x1 << 1)
#define WRITE_LEVELING (0x1 << 2)
#define WRITE_TRAINING (0x1 << 3)
#define READ_TRAINING (0x1 << 4)
#define FULL_TRAINING (0xff)
#define SKEW_RX_SIGNAL (0)
#define SKEW_TX_SIGNAL (1)
#define SKEW_CA_SIGNAL (2)
#define DESKEW_MDF_ABS_VAL (0)
#define DESKEW_MDF_DIFF_VAL (1)
struct dram_info {
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
void __iomem *pctl;
void __iomem *phy;
struct rv1126_cru *cru;
struct msch_regs *msch;
struct rv1126_ddrgrf *ddrgrf;
struct rv1126_grf *grf;
u32 sr_idle;
u32 pd_idle;
#endif
struct ram_info info;
struct rv1126_pmugrf *pmugrf;
};
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
#define GRF_BASE_ADDR 0xfe000000
#define PMU_GRF_BASE_ADDR 0xfe020000
#define DDR_GRF_BASE_ADDR 0xfe030000
#define BUS_SGRF_BASE_ADDR 0xfe0a0000
#define SERVER_MSCH_BASE_ADDR 0xfe800000
#define CRU_BASE_ADDR 0xff490000
#define DDR_PHY_BASE_ADDR 0xff4a0000
#define UPCTL2_BASE_ADDR 0xffa50000
#define SGRF_SOC_CON2 0x8
#define SGRF_SOC_CON12 0x30
#define SGRF_SOC_CON13 0x34
struct dram_info dram_info;
struct rv1126_sdram_params sdram_configs[] = {
#if defined(CONFIG_RAM_ROCKCHIP_LPDDR4)
# include "sdram-rv1126-lpddr4-detect-328.inc"
# include "sdram-rv1126-lpddr4-detect-396.inc"
# include "sdram-rv1126-lpddr4-detect-528.inc"
# include "sdram-rv1126-lpddr4-detect-664.inc"
# include "sdram-rv1126-lpddr4-detect-784.inc"
# include "sdram-rv1126-lpddr4-detect-924.inc"
# include "sdram-rv1126-lpddr4-detect-1056.inc"
#else
# include "sdram-rv1126-ddr3-detect-328.inc"
# include "sdram-rv1126-ddr3-detect-396.inc"
# include "sdram-rv1126-ddr3-detect-528.inc"
# include "sdram-rv1126-ddr3-detect-664.inc"
# include "sdram-rv1126-ddr3-detect-784.inc"
# include "sdram-rv1126-ddr3-detect-924.inc"
# include "sdram-rv1126-ddr3-detect-1056.inc"
#endif
};
u32 common_info[] = {
#include "sdram-rv1126-loader_params.inc"
};
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
static struct rw_trn_result rw_trn_result;
#endif
static struct rv1126_fsp_param fsp_param[MAX_IDX];
static u8 lp3_odt_value;
static s8 wrlvl_result[2][4];
/* DDR configuration 0-9 */
u16 ddr_cfg_2_rbc[] = {
((0 << 8) | (3 << 5) | (0 << 4) | (1 << 3) | 3), /* 0 */
((1 << 8) | (3 << 5) | (0 << 4) | (1 << 3) | 2), /* 1 */
((1 << 8) | (2 << 5) | (0 << 4) | (1 << 3) | 3), /* 2 */
((1 << 8) | (3 << 5) | (0 << 4) | (1 << 3) | 1), /* 3 */
((0 << 8) | (2 << 5) | (0 << 4) | (1 << 3) | 4), /* 4 */
((0 << 8) | (3 << 5) | (1 << 4) | (1 << 3) | 1), /* 5 */
((0 << 8) | (3 << 5) | (1 << 4) | (1 << 3) | 2), /* 6 */
((0 << 8) | (2 << 5) | (1 << 4) | (1 << 3) | 3), /* 7 */
((1 << 8) | (3 << 5) | (0 << 4) | (0 << 3) | 2), /* 8 */
((1 << 8) | (2 << 5) | (0 << 4) | (1 << 3) | 2) /* 9 */
};
/* DDR configuration 10-21 */
u8 ddr4_cfg_2_rbc[] = {
((0 << 7) | (3 << 4) | (0 << 3) | (2 << 1) | 0), /* 10 */
((1 << 7) | (2 << 4) | (0 << 3) | (2 << 1) | 0), /* 11 */
((0 << 7) | (4 << 4) | (0 << 3) | (1 << 1) | 0), /* 12 */
((1 << 7) | (3 << 4) | (0 << 3) | (1 << 1) | 0), /* 13 */
((0 << 7) | (4 << 4) | (0 << 3) | (2 << 1) | 1), /* 14 */
((1 << 7) | (3 << 4) | (0 << 3) | (2 << 1) | 1), /* 15 */
((1 << 7) | (4 << 4) | (0 << 3) | (1 << 1) | 1), /* 16 */
((0 << 7) | (2 << 4) | (1 << 3) | (2 << 1) | 0), /* 17 */
((0 << 7) | (3 << 4) | (1 << 3) | (1 << 1) | 0), /* 18 */
((0 << 7) | (3 << 4) | (1 << 3) | (2 << 1) | 1), /* 19 */
((0 << 7) | (4 << 4) | (1 << 3) | (1 << 1) | 1), /* 20 */
((1 << 7) | (4 << 4) | (0 << 3) | (0 << 1) | 0) /* 21 */
};
/* DDR configuration 22-28 */
u16 ddr_cfg_2_rbc_p2[] = {
((1 << 8) | (3 << 5) | (0 << 4) | (1 << 3) | 0), /* 22 */
((0 << 8) | (4 << 5) | (0 << 4) | (1 << 3) | 2), /* 23 */
((1 << 8) | (3 << 5) | (0 << 4) | (0 << 3) | 3), /* 24 */
((0 << 8) | (3 << 5) | (1 << 4) | (0 << 3) | 3), /* 25 */
((0 << 8) | (4 << 5) | (1 << 4) | (0 << 3) | 2), /* 26 */
((1 << 8) | (4 << 5) | (0 << 4) | (0 << 3) | 2), /* 27 */
((0 << 8) | (4 << 5) | (0 << 4) | (0 << 3) | 3) /* 28 */
};
u8 d4_rbc_2_d3_rbc[][2] = {
{10, 0},
{11, 2},
{12, 23},
{13, 1},
{14, 28},
{15, 24},
{16, 27},
{17, 7},
{18, 6},
{19, 25},
{20, 26},
{21, 3}
};
u32 addrmap[29][9] = {
{24, 0x00090909, 0x00000000, 0x00000000, 0x00001f00, 0x08080808,
0x08080808, 0x00000f0f, 0x3f3f}, /* 0 */
{23, 0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x3f3f}, /* 1 */
{23, 0x00090909, 0x00000000, 0x00000000, 0x00001f00, 0x08080808,
0x0f080808, 0x00000f0f, 0x3f3f}, /* 2 */
{22, 0x00070707, 0x00000000, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000f0f, 0x3f3f}, /* 3 */
{24, 0x000a0a0a, 0x00000000, 0x00000000, 0x00000000, 0x09090909,
0x0f090909, 0x00000f0f, 0x3f3f}, /* 4 */
{6, 0x00070707, 0x00000000, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x3f3f}, /* 5 */
{7, 0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x3f3f}, /* 6 */
{8, 0x00090909, 0x00000000, 0x00000000, 0x00001f00, 0x09090909,
0x0f090909, 0x00000f0f, 0x3f3f}, /* 7 */
{22, 0x001f0808, 0x00000000, 0x00000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000f0f, 0x3f3f}, /* 8 */
{23, 0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x0f070707, 0x00000f0f, 0x3f3f}, /* 9 */
{24, 0x003f0a0a, 0x01010100, 0x01010101, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x0801}, /* 10 */
{23, 0x003f0a0a, 0x01010100, 0x01010101, 0x00001f1f, 0x08080808,
0x0f080808, 0x00000f0f, 0x0801}, /* 11 */
{24, 0x003f0909, 0x00000007, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x0700}, /* 12 */
{23, 0x003f0909, 0x00000007, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x0700}, /* 13 */
{24, 0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f01}, /* 14 */
{23, 0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x3f01}, /* 15 */
{23, 0x003f0808, 0x00000007, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000f06, 0x3f00}, /* 16 */
{8, 0x003f0a0a, 0x01010100, 0x01010101, 0x00001f1f, 0x09090909,
0x0f090909, 0x00000f0f, 0x0801}, /* 17 */
{7, 0x003f0909, 0x00000007, 0x1f000000, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x0700}, /* 18 */
{7, 0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x3f01}, /* 19 */
{6, 0x003f0808, 0x00000007, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f00}, /* 20 */
{23, 0x003f0909, 0x00000006, 0x1f1f0000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000f06, 0x0600}, /* 21 */
{21, 0x00060606, 0x00000000, 0x1f1f0000, 0x00001f1f, 0x05050505,
0x05050505, 0x00000f0f, 0x3f3f}, /* 22 */
{24, 0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f3f}, /* 23 */
{23, 0x003f0909, 0x00000000, 0x00000000, 0x00001f00, 0x07070707,
0x07070707, 0x00000f0f, 0x3f3f}, /* 24 */
{7, 0x003f0909, 0x00000000, 0x00000000, 0x00001f00, 0x08080808,
0x08080808, 0x00000f0f, 0x3f3f}, /* 25 */
{6, 0x003f0808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f3f}, /* 26 */
{23, 0x003f0808, 0x00000000, 0x00000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000f06, 0x3f3f}, /* 27 */
{24, 0x003f0909, 0x00000000, 0x00000000, 0x00001f00, 0x07070707,
0x07070707, 0x00000f07, 0x3f3f} /* 28 */
};
static u8 dq_sel[22][3] = {
{0x0, 0x17, 0x22},
{0x1, 0x18, 0x23},
{0x2, 0x19, 0x24},
{0x3, 0x1a, 0x25},
{0x4, 0x1b, 0x26},
{0x5, 0x1c, 0x27},
{0x6, 0x1d, 0x28},
{0x7, 0x1e, 0x29},
{0x8, 0x16, 0x21},
{0x9, 0x1f, 0x2a},
{0xa, 0x20, 0x2b},
{0x10, 0x1, 0xc},
{0x11, 0x2, 0xd},
{0x12, 0x3, 0xe},
{0x13, 0x4, 0xf},
{0x14, 0x5, 0x10},
{0x15, 0x6, 0x11},
{0x16, 0x7, 0x12},
{0x17, 0x8, 0x13},
{0x18, 0x0, 0xb},
{0x19, 0x9, 0x14},
{0x1a, 0xa, 0x15}
};
static u16 grp_addr[4] = {
ADD_GROUP_CS0_A,
ADD_GROUP_CS0_B,
ADD_GROUP_CS1_A,
ADD_GROUP_CS1_B
};
static u8 wrlvl_result_offset[2][4] = {
{0xa0 + 0x26, 0xa0 + 0x27, 0xd0 + 0x26, 0xd0 + 0x27},
{0xa0 + 0x28, 0xa0 + 0x29, 0xd0 + 0x28, 0xd0 + 0x29},
};
static u16 dqs_dq_skew_adr[16] = {
0x170 + 0, /* SKEW_UPDATE_RX_CS0_DQS0 */
0x170 + 0xb, /* SKEW_UPDATE_RX_CS0_DQS1 */
0x1d0 + 0, /* SKEW_UPDATE_RX_CS0_DQS2 */
0x1d0 + 0xb, /* SKEW_UPDATE_RX_CS0_DQS3 */
0x1a0 + 0, /* SKEW_UPDATE_RX_CS1_DQS0 */
0x1a0 + 0xb, /* SKEW_UPDATE_RX_CS1_DQS1 */
0x200 + 0, /* SKEW_UPDATE_RX_CS1_DQS2 */
0x200 + 0xb, /* SKEW_UPDATE_RX_CS1_DQS3 */
0x170 + 0x16, /* SKEW_UPDATE_TX_CS0_DQS0 */
0x170 + 0x21, /* SKEW_UPDATE_TX_CS0_DQS1 */
0x1d0 + 0x16, /* SKEW_UPDATE_TX_CS0_DQS2 */
0x1d0 + 0x21, /* SKEW_UPDATE_TX_CS0_DQS3 */
0x1a0 + 0x16, /* SKEW_UPDATE_TX_CS1_DQS0 */
0x1a0 + 0x21, /* SKEW_UPDATE_TX_CS1_DQS1 */
0x200 + 0x16, /* SKEW_UPDATE_TX_CS1_DQS2 */
0x200 + 0x21, /* SKEW_UPDATE_TX_CS1_DQS3 */
};
static void rkclk_ddr_reset(struct dram_info *dram,
u32 ctl_srstn, u32 ctl_psrstn,
u32 phy_srstn, u32 phy_psrstn)
{
writel(UPCTL2_SRSTN_REQ(ctl_srstn) | UPCTL2_PSRSTN_REQ(ctl_psrstn) |
UPCTL2_ASRSTN_REQ(ctl_srstn),
BUS_SGRF_BASE_ADDR + SGRF_SOC_CON13);
writel(DDRPHY_SRSTN_REQ(phy_srstn) | DDRPHY_PSRSTN_REQ(phy_psrstn),
&dram->cru->softrst_con[12]);
}
static void rkclk_set_dpll(struct dram_info *dram, unsigned int hz)
{
unsigned int refdiv, postdiv1, postdiv2, fbdiv;
int delay = 1000;
u32 mhz = hz / MHz;
struct global_info *gbl_info;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
u32 ssmod_info;
u32 dsmpd = 1;
gbl_info = (struct global_info *)((void *)common_info +
index->global_index.offset * 4);
ssmod_info = gbl_info->info_2t;
refdiv = 1;
if (mhz <= 100) {
postdiv1 = 6;
postdiv2 = 4;
} else if (mhz <= 150) {
postdiv1 = 4;
postdiv2 = 4;
} else if (mhz <= 200) {
postdiv1 = 6;
postdiv2 = 2;
} else if (mhz <= 300) {
postdiv1 = 4;
postdiv2 = 2;
} else if (mhz <= 400) {
postdiv1 = 6;
postdiv2 = 1;
} else {
postdiv1 = 4;
postdiv2 = 1;
}
fbdiv = (mhz * refdiv * postdiv1 * postdiv2) / 24;
writel(DPLL_MODE(CLOCK_FROM_XIN_OSC), &dram->cru->mode);
writel(0x1f000000, &dram->cru->clksel_con[64]);
writel(POSTDIV1(postdiv1) | FBDIV(fbdiv), &dram->cru->pll[1].con0);
/* enable ssmod */
if (PLL_SSMOD_SPREAD(ssmod_info)) {
dsmpd = 0;
clrsetbits_le32(&dram->cru->pll[1].con2,
0xffffff << 0, 0x0 << 0);
writel(SSMOD_SPREAD(PLL_SSMOD_SPREAD(ssmod_info)) |
SSMOD_DIVVAL(PLL_SSMOD_DIV(ssmod_info)) |
SSMOD_DOWNSPREAD(PLL_SSMOD_DOWNSPREAD(ssmod_info)) |
SSMOD_RESET(0) |
SSMOD_DIS_SSCG(0) |
SSMOD_BP(0),
&dram->cru->pll[1].con3);
}
writel(DSMPD(dsmpd) | POSTDIV2(postdiv2) | REFDIV(refdiv),
&dram->cru->pll[1].con1);
while (delay > 0) {
udelay(1);
if (LOCK(readl(&dram->cru->pll[1].con1)))
break;
delay--;
}
writel(DPLL_MODE(CLOCK_FROM_PLL), &dram->cru->mode);
}
static void rkclk_configure_ddr(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
/* for inno ddr phy need freq / 2 */
rkclk_set_dpll(dram, sdram_params->base.ddr_freq * MHZ / 2);
}
static unsigned int
calculate_ddrconfig(struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 cs, bw, die_bw, col, row, bank;
u32 cs1_row;
u32 i, tmp;
u32 ddrconf = -1;
u32 row_3_4;
cs = cap_info->rank;
bw = cap_info->bw;
die_bw = cap_info->dbw;
col = cap_info->col;
row = cap_info->cs0_row;
cs1_row = cap_info->cs1_row;
bank = cap_info->bk;
row_3_4 = cap_info->row_3_4;
if (sdram_params->base.dramtype == DDR4) {
if (cs == 2 && row == cs1_row && !row_3_4) {
tmp = ((row - 13) << 4) | (1 << 3) | (bw << 1) |
die_bw;
for (i = 17; i < 21; i++) {
if (((tmp & 0xf) ==
(ddr4_cfg_2_rbc[i - 10] & 0xf)) &&
((tmp & 0x70) <=
(ddr4_cfg_2_rbc[i - 10] & 0x70))) {
ddrconf = i;
goto out;
}
}
}
tmp = ((cs - 1) << 7) | ((row - 13) << 4) | (bw << 1) | die_bw;
for (i = 10; i < 21; i++) {
if (((tmp & 0xf) == (ddr4_cfg_2_rbc[i - 10] & 0xf)) &&
((tmp & 0x70) <= (ddr4_cfg_2_rbc[i - 10] & 0x70)) &&
((tmp & 0x80) <= (ddr4_cfg_2_rbc[i - 10] & 0x80))) {
ddrconf = i;
goto out;
}
}
} else {
if (cs == 2 && row == cs1_row && bank == 3) {
for (i = 5; i < 8; i++) {
if (((bw + col - 10) == (ddr_cfg_2_rbc[i] &
0x7)) &&
((row - 13) << 5) <= (ddr_cfg_2_rbc[i] &
(0x7 << 5))) {
ddrconf = i;
goto out;
}
}
}
tmp = ((cs - 1) << 8) | ((row - 13) << 5) |
((bw + col - 10) << 0);
if (bank == 3)
tmp |= (1 << 3);
for (i = 0; i < 9; i++)
if (((tmp & 0x1f) == (ddr_cfg_2_rbc[i] & 0x1f)) &&
((tmp & (7 << 5)) <=
(ddr_cfg_2_rbc[i] & (7 << 5))) &&
((tmp & (1 << 8)) <=
(ddr_cfg_2_rbc[i] & (1 << 8)))) {
ddrconf = i;
goto out;
}
for (i = 0; i < 7; i++)
if (((tmp & 0x1f) == (ddr_cfg_2_rbc_p2[i] & 0x1f)) &&
((tmp & (7 << 5)) <=
(ddr_cfg_2_rbc_p2[i] & (7 << 5))) &&
((tmp & (1 << 8)) <=
(ddr_cfg_2_rbc_p2[i] & (1 << 8)))) {
ddrconf = i + 22;
goto out;
}
if (cs == 1 && bank == 3 && row <= 17 &&
(col + bw) == 12)
ddrconf = 23;
}
out:
if (ddrconf > 28)
printascii("calculate ddrconfig error\n");
if (sdram_params->base.dramtype == DDR4) {
for (i = 0; i < ARRAY_SIZE(d4_rbc_2_d3_rbc) ; i++) {
if (ddrconf == d4_rbc_2_d3_rbc[i][0]) {
if (ddrconf == 21 && row > 16)
printascii("warn:ddrconf21 row > 16\n");
else
ddrconf = d4_rbc_2_d3_rbc[i][1];
break;
}
}
}
return ddrconf;
}
static void sw_set_req(struct dram_info *dram)
{
void __iomem *pctl_base = dram->pctl;
/* clear sw_done=0 */
writel(PCTL2_SW_DONE_CLEAR, pctl_base + DDR_PCTL2_SWCTL);
}
static void sw_set_ack(struct dram_info *dram)
{
void __iomem *pctl_base = dram->pctl;
/* set sw_done=1 */
writel(PCTL2_SW_DONE, pctl_base + DDR_PCTL2_SWCTL);
while (1) {
/* wait programming done */
if (readl(pctl_base + DDR_PCTL2_SWSTAT) &
PCTL2_SW_DONE_ACK)
break;
}
}
static void set_ctl_address_map(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
u32 ddrconf = cap_info->ddrconfig;
u32 i, row;
row = cap_info->cs0_row;
if (sdram_params->base.dramtype == DDR4) {
for (i = 0; i < ARRAY_SIZE(d4_rbc_2_d3_rbc) ; i++) {
if (ddrconf == d4_rbc_2_d3_rbc[i][1]) {
ddrconf = d4_rbc_2_d3_rbc[i][0];
break;
}
}
}
if (ddrconf >= ARRAY_SIZE(addrmap)) {
printascii("set ctl address map fail\n");
return;
}
sdram_copy_to_reg((u32 *)(pctl_base + DDR_PCTL2_ADDRMAP0),
&addrmap[ddrconf][0], ARRAY_SIZE(addrmap[ddrconf]) * 4);
/* unused row set to 0xf */
for (i = 17; i >= row; i--)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6 +
((i - 12) * 8 / 32) * 4,
0xf << ((i - 12) * 8 % 32));
if (sdram_params->base.dramtype == LPDDR3 && cap_info->row_3_4)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6, 1 << 31);
if (sdram_params->base.dramtype == DDR4 && cap_info->bw == 0x1)
setbits_le32(pctl_base + DDR_PCTL2_PCCFG, 1 << 8);
if (cap_info->rank == 1)
clrsetbits_le32(pctl_base + DDR_PCTL2_ADDRMAP0, 0x1f, 0x1f);
}
static void phy_pll_set(struct dram_info *dram, u32 freq, u32 wait)
{
void __iomem *phy_base = dram->phy;
u32 fbdiv, prediv, postdiv, postdiv_en;
if (wait) {
clrbits_le32(PHY_REG(phy_base, 0x53), PHY_PD_DISB);
while (!(readl(PHY_REG(phy_base, 0x90)) & PHY_PLL_LOCK))
continue;
} else {
freq /= MHz;
prediv = 1;
if (freq <= 200) {
fbdiv = 16;
postdiv = 2;
postdiv_en = 1;
} else if (freq <= 456) {
fbdiv = 8;
postdiv = 1;
postdiv_en = 1;
} else {
fbdiv = 4;
postdiv = 0;
postdiv_en = 0;
}
writel(fbdiv & 0xff, PHY_REG(phy_base, 0x50));
clrsetbits_le32(PHY_REG(phy_base, 0x51), PHY_PBDIV_BIT9_MASK,
(fbdiv >> 8) & 1);
clrsetbits_le32(PHY_REG(phy_base, 0x51), PHY_POSTDIV_EN_MASK,
postdiv_en << PHY_POSTDIV_EN_SHIFT);
clrsetbits_le32(PHY_REG(phy_base, 0x52),
PHY_PREDIV_MASK << PHY_PREDIV_SHIFT, prediv);
clrsetbits_le32(PHY_REG(phy_base, 0x53),
PHY_POSTDIV_MASK << PHY_POSTDIV_SHIFT,
postdiv << PHY_POSTDIV_SHIFT);
}
}
static const u16 d3_phy_drv_2_ohm[][2] = {
{PHY_DDR3_RON_455ohm, 455},
{PHY_DDR3_RON_230ohm, 230},
{PHY_DDR3_RON_153ohm, 153},
{PHY_DDR3_RON_115ohm, 115},
{PHY_DDR3_RON_91ohm, 91},
{PHY_DDR3_RON_76ohm, 76},
{PHY_DDR3_RON_65ohm, 65},
{PHY_DDR3_RON_57ohm, 57},
{PHY_DDR3_RON_51ohm, 51},
{PHY_DDR3_RON_46ohm, 46},
{PHY_DDR3_RON_41ohm, 41},
{PHY_DDR3_RON_38ohm, 38},
{PHY_DDR3_RON_35ohm, 35},
{PHY_DDR3_RON_32ohm, 32},
{PHY_DDR3_RON_30ohm, 30},
{PHY_DDR3_RON_28ohm, 28},
{PHY_DDR3_RON_27ohm, 27},
{PHY_DDR3_RON_25ohm, 25},
{PHY_DDR3_RON_24ohm, 24},
{PHY_DDR3_RON_23ohm, 23},
{PHY_DDR3_RON_22ohm, 22},
{PHY_DDR3_RON_21ohm, 21},
{PHY_DDR3_RON_20ohm, 20}
};
static u16 d3_phy_odt_2_ohm[][2] = {
{PHY_DDR3_RTT_DISABLE, 0},
{PHY_DDR3_RTT_561ohm, 561},
{PHY_DDR3_RTT_282ohm, 282},
{PHY_DDR3_RTT_188ohm, 188},
{PHY_DDR3_RTT_141ohm, 141},
{PHY_DDR3_RTT_113ohm, 113},
{PHY_DDR3_RTT_94ohm, 94},
{PHY_DDR3_RTT_81ohm, 81},
{PHY_DDR3_RTT_72ohm, 72},
{PHY_DDR3_RTT_64ohm, 64},
{PHY_DDR3_RTT_58ohm, 58},
{PHY_DDR3_RTT_52ohm, 52},
{PHY_DDR3_RTT_48ohm, 48},
{PHY_DDR3_RTT_44ohm, 44},
{PHY_DDR3_RTT_41ohm, 41},
{PHY_DDR3_RTT_38ohm, 38},
{PHY_DDR3_RTT_37ohm, 37},
{PHY_DDR3_RTT_34ohm, 34},
{PHY_DDR3_RTT_32ohm, 32},
{PHY_DDR3_RTT_31ohm, 31},
{PHY_DDR3_RTT_29ohm, 29},
{PHY_DDR3_RTT_28ohm, 28},
{PHY_DDR3_RTT_27ohm, 27},
{PHY_DDR3_RTT_25ohm, 25}
};
static u16 d4lp3_phy_drv_2_ohm[][2] = {
{PHY_DDR4_LPDDR3_RON_482ohm, 482},
{PHY_DDR4_LPDDR3_RON_244ohm, 244},
{PHY_DDR4_LPDDR3_RON_162ohm, 162},
{PHY_DDR4_LPDDR3_RON_122ohm, 122},
{PHY_DDR4_LPDDR3_RON_97ohm, 97},
{PHY_DDR4_LPDDR3_RON_81ohm, 81},
{PHY_DDR4_LPDDR3_RON_69ohm, 69},
{PHY_DDR4_LPDDR3_RON_61ohm, 61},
{PHY_DDR4_LPDDR3_RON_54ohm, 54},
{PHY_DDR4_LPDDR3_RON_48ohm, 48},
{PHY_DDR4_LPDDR3_RON_44ohm, 44},
{PHY_DDR4_LPDDR3_RON_40ohm, 40},
{PHY_DDR4_LPDDR3_RON_37ohm, 37},
{PHY_DDR4_LPDDR3_RON_34ohm, 34},
{PHY_DDR4_LPDDR3_RON_32ohm, 32},
{PHY_DDR4_LPDDR3_RON_30ohm, 30},
{PHY_DDR4_LPDDR3_RON_28ohm, 28},
{PHY_DDR4_LPDDR3_RON_27ohm, 27},
{PHY_DDR4_LPDDR3_RON_25ohm, 25},
{PHY_DDR4_LPDDR3_RON_24ohm, 24},
{PHY_DDR4_LPDDR3_RON_23ohm, 23},
{PHY_DDR4_LPDDR3_RON_22ohm, 22},
{PHY_DDR4_LPDDR3_RON_21ohm, 21}
};
static u16 d4lp3_phy_odt_2_ohm[][2] = {
{PHY_DDR4_LPDDR3_RTT_DISABLE, 0},
{PHY_DDR4_LPDDR3_RTT_586ohm, 586},
{PHY_DDR4_LPDDR3_RTT_294ohm, 294},
{PHY_DDR4_LPDDR3_RTT_196ohm, 196},
{PHY_DDR4_LPDDR3_RTT_148ohm, 148},
{PHY_DDR4_LPDDR3_RTT_118ohm, 118},
{PHY_DDR4_LPDDR3_RTT_99ohm, 99},
{PHY_DDR4_LPDDR3_RTT_85ohm, 58},
{PHY_DDR4_LPDDR3_RTT_76ohm, 76},
{PHY_DDR4_LPDDR3_RTT_67ohm, 67},
{PHY_DDR4_LPDDR3_RTT_60ohm, 60},
{PHY_DDR4_LPDDR3_RTT_55ohm, 55},
{PHY_DDR4_LPDDR3_RTT_50ohm, 50},
{PHY_DDR4_LPDDR3_RTT_46ohm, 46},
{PHY_DDR4_LPDDR3_RTT_43ohm, 43},
{PHY_DDR4_LPDDR3_RTT_40ohm, 40},
{PHY_DDR4_LPDDR3_RTT_38ohm, 38},
{PHY_DDR4_LPDDR3_RTT_36ohm, 36},
{PHY_DDR4_LPDDR3_RTT_34ohm, 34},
{PHY_DDR4_LPDDR3_RTT_32ohm, 32},
{PHY_DDR4_LPDDR3_RTT_31ohm, 31},
{PHY_DDR4_LPDDR3_RTT_29ohm, 29},
{PHY_DDR4_LPDDR3_RTT_28ohm, 28},
{PHY_DDR4_LPDDR3_RTT_27ohm, 27}
};
static u16 lp4_phy_drv_2_ohm[][2] = {
{PHY_LPDDR4_RON_501ohm, 501},
{PHY_LPDDR4_RON_253ohm, 253},
{PHY_LPDDR4_RON_168ohm, 168},
{PHY_LPDDR4_RON_126ohm, 126},
{PHY_LPDDR4_RON_101ohm, 101},
{PHY_LPDDR4_RON_84ohm, 84},
{PHY_LPDDR4_RON_72ohm, 72},
{PHY_LPDDR4_RON_63ohm, 63},
{PHY_LPDDR4_RON_56ohm, 56},
{PHY_LPDDR4_RON_50ohm, 50},
{PHY_LPDDR4_RON_46ohm, 46},
{PHY_LPDDR4_RON_42ohm, 42},
{PHY_LPDDR4_RON_38ohm, 38},
{PHY_LPDDR4_RON_36ohm, 36},
{PHY_LPDDR4_RON_33ohm, 33},
{PHY_LPDDR4_RON_31ohm, 31},
{PHY_LPDDR4_RON_29ohm, 29},
{PHY_LPDDR4_RON_28ohm, 28},
{PHY_LPDDR4_RON_26ohm, 26},
{PHY_LPDDR4_RON_25ohm, 25},
{PHY_LPDDR4_RON_24ohm, 24},
{PHY_LPDDR4_RON_23ohm, 23},
{PHY_LPDDR4_RON_22ohm, 22}
};
static u16 lp4_phy_odt_2_ohm[][2] = {
{PHY_LPDDR4_RTT_DISABLE, 0},
{PHY_LPDDR4_RTT_604ohm, 604},
{PHY_LPDDR4_RTT_303ohm, 303},
{PHY_LPDDR4_RTT_202ohm, 202},
{PHY_LPDDR4_RTT_152ohm, 152},
{PHY_LPDDR4_RTT_122ohm, 122},
{PHY_LPDDR4_RTT_101ohm, 101},
{PHY_LPDDR4_RTT_87ohm, 87},
{PHY_LPDDR4_RTT_78ohm, 78},
{PHY_LPDDR4_RTT_69ohm, 69},
{PHY_LPDDR4_RTT_62ohm, 62},
{PHY_LPDDR4_RTT_56ohm, 56},
{PHY_LPDDR4_RTT_52ohm, 52},
{PHY_LPDDR4_RTT_48ohm, 48},
{PHY_LPDDR4_RTT_44ohm, 44},
{PHY_LPDDR4_RTT_41ohm, 41},
{PHY_LPDDR4_RTT_39ohm, 39},
{PHY_LPDDR4_RTT_37ohm, 37},
{PHY_LPDDR4_RTT_35ohm, 35},
{PHY_LPDDR4_RTT_33ohm, 33},
{PHY_LPDDR4_RTT_32ohm, 32},
{PHY_LPDDR4_RTT_30ohm, 30},
{PHY_LPDDR4_RTT_29ohm, 29},
{PHY_LPDDR4_RTT_27ohm, 27}
};
static u32 lp4_odt_calc(u32 odt_ohm)
{
u32 odt;
if (odt_ohm == 0)
odt = LPDDR4_DQODT_DIS;
else if (odt_ohm <= 40)
odt = LPDDR4_DQODT_40;
else if (odt_ohm <= 48)
odt = LPDDR4_DQODT_48;
else if (odt_ohm <= 60)
odt = LPDDR4_DQODT_60;
else if (odt_ohm <= 80)
odt = LPDDR4_DQODT_80;
else if (odt_ohm <= 120)
odt = LPDDR4_DQODT_120;
else
odt = LPDDR4_DQODT_240;
return odt;
}
static void *get_ddr_drv_odt_info(u32 dramtype)
{
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
void *ddr_info = 0;
if (dramtype == DDR4)
ddr_info = (void *)common_info + index->ddr4_index.offset * 4;
else if (dramtype == DDR3)
ddr_info = (void *)common_info + index->ddr3_index.offset * 4;
else if (dramtype == LPDDR3)
ddr_info = (void *)common_info + index->lp3_index.offset * 4;
else if (dramtype == LPDDR4)
ddr_info = (void *)common_info + index->lp4_index.offset * 4;
else
printascii("unsupported dram type\n");
return ddr_info;
}
static void set_lp4_vref(struct dram_info *dram, struct lp4_info *lp4_info,
u32 freq_mhz, u32 dst_fsp, u32 dramtype)
{
void __iomem *pctl_base = dram->pctl;
u32 ca_vref, dq_vref;
if (freq_mhz <= LP4_CA_ODT_EN_FREQ(lp4_info->ca_odten_freq))
ca_vref = LP4_CA_VREF(lp4_info->vref_when_odtoff);
else
ca_vref = LP4_CA_VREF(lp4_info->vref_when_odten);
if (freq_mhz <= LP4_DQ_ODT_EN_FREQ(lp4_info->dq_odten_freq))
dq_vref = LP4_DQ_VREF(lp4_info->vref_when_odtoff);
else
dq_vref = LP4_DQ_VREF(lp4_info->vref_when_odten);
if (dramtype == LPDDR4) {
if (ca_vref < 100)
ca_vref = 100;
if (ca_vref > 420)
ca_vref = 420;
if (ca_vref <= 300)
ca_vref = (0 << 6) | (ca_vref - 100) / 4;
else
ca_vref = (1 << 6) | (ca_vref - 220) / 4;
if (dq_vref < 100)
dq_vref = 100;
if (dq_vref > 420)
dq_vref = 420;
if (dq_vref <= 300)
dq_vref = (0 << 6) | (dq_vref - 100) / 4;
else
dq_vref = (1 << 6) | (dq_vref - 220) / 4;
} else {
ca_vref = ca_vref * 11 / 6;
if (ca_vref < 150)
ca_vref = 150;
if (ca_vref > 629)
ca_vref = 629;
if (ca_vref <= 449)
ca_vref = (0 << 6) | (ca_vref - 150) / 4;
else
ca_vref = (1 << 6) | (ca_vref - 329) / 4;
if (dq_vref < 150)
dq_vref = 150;
if (dq_vref > 629)
dq_vref = 629;
if (dq_vref <= 449)
dq_vref = (0 << 6) | (dq_vref - 150) / 6;
else
dq_vref = (1 << 6) | (dq_vref - 329) / 6;
}
sw_set_req(dram);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6,
PCTL2_MR_MASK << PCTL2_LPDDR4_MR12_SHIFT,
ca_vref << PCTL2_LPDDR4_MR12_SHIFT);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT7,
PCTL2_MR_MASK << PCTL2_LPDDR4_MR14_SHIFT,
dq_vref << PCTL2_LPDDR4_MR14_SHIFT);
sw_set_ack(dram);
}
static void set_ds_odt(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params, u32 dst_fsp)
{
void __iomem *phy_base = dram->phy;
void __iomem *pctl_base = dram->pctl;
u32 dramtype = sdram_params->base.dramtype;
struct ddr2_3_4_lp2_3_info *ddr_info;
struct lp4_info *lp4_info;
u32 i, j, tmp;
const u16 (*p_drv)[2];
const u16 (*p_odt)[2];
u32 drv_info, sr_info;
u32 phy_dq_drv_ohm, phy_clk_drv_ohm, phy_ca_drv_ohm, dram_drv_ohm;
u32 phy_odt_ohm, dram_odt_ohm;
u32 lp4_pu_cal, phy_lp4_drv_pd_en;
u32 phy_odt_up_en, phy_odt_dn_en;
u32 sr_dq, sr_clk;
u32 freq = sdram_params->base.ddr_freq;
u32 mr1_mr3, mr11, mr22, vref_out, vref_inner;
u32 phy_clk_drv = 0, phy_odt = 0, phy_ca_drv = 0, dram_caodt_ohm = 0;
u32 phy_dq_drv = 0;
u32 phy_odt_up = 0, phy_odt_dn = 0;
ddr_info = get_ddr_drv_odt_info(dramtype);
lp4_info = (void *)ddr_info;
if (!ddr_info)
return;
/* dram odt en freq control phy drv, dram odt and phy sr */
if (freq <= DRAMODT_EN_FREQ(ddr_info->odten_freq)) {
drv_info = ddr_info->drv_when_odtoff;
dram_odt_ohm = 0;
sr_info = ddr_info->sr_when_odtoff;
phy_lp4_drv_pd_en =
PHY_LP4_DRV_PULLDOWN_EN_ODTOFF(lp4_info->odt_info);
} else {
drv_info = ddr_info->drv_when_odten;
dram_odt_ohm = ODT_INFO_DRAM_ODT(ddr_info->odt_info);
sr_info = ddr_info->sr_when_odten;
phy_lp4_drv_pd_en =
PHY_LP4_DRV_PULLDOWN_EN_ODTEN(lp4_info->odt_info);
}
phy_dq_drv_ohm =
DRV_INFO_PHY_DQ_DRV(drv_info);
phy_clk_drv_ohm =
DRV_INFO_PHY_CLK_DRV(drv_info);
phy_ca_drv_ohm =
DRV_INFO_PHY_CA_DRV(drv_info);
sr_dq = DQ_SR_INFO(sr_info);
sr_clk = CLK_SR_INFO(sr_info);
/* phy odt en freq control dram drv and phy odt */
if (freq <= PHYODT_EN_FREQ(ddr_info->odten_freq)) {
dram_drv_ohm = DRV_INFO_DRAM_DQ_DRV(ddr_info->drv_when_odtoff);
lp4_pu_cal = LP4_DRV_PU_CAL_ODTOFF(lp4_info->odt_info);
phy_odt_ohm = 0;
phy_odt_up_en = 0;
phy_odt_dn_en = 0;
} else {
dram_drv_ohm =
DRV_INFO_DRAM_DQ_DRV(ddr_info->drv_when_odten);
phy_odt_ohm = ODT_INFO_PHY_ODT(ddr_info->odt_info);
phy_odt_up_en =
ODT_INFO_PULLUP_EN(ddr_info->odt_info);
phy_odt_dn_en =
ODT_INFO_PULLDOWN_EN(ddr_info->odt_info);
lp4_pu_cal = LP4_DRV_PU_CAL_ODTEN(lp4_info->odt_info);
}
if (dramtype == LPDDR4) {
if (phy_odt_ohm) {
phy_odt_up_en = 0;
phy_odt_dn_en = 1;
}
if (freq <= LP4_CA_ODT_EN_FREQ(lp4_info->ca_odten_freq))
dram_caodt_ohm = 0;
else
dram_caodt_ohm =
ODT_INFO_LP4_CA_ODT(lp4_info->odt_info);
}
if (dramtype == DDR3) {
p_drv = d3_phy_drv_2_ohm;
p_odt = d3_phy_odt_2_ohm;
} else if (dramtype == LPDDR4) {
p_drv = lp4_phy_drv_2_ohm;
p_odt = lp4_phy_odt_2_ohm;
} else {
p_drv = d4lp3_phy_drv_2_ohm;
p_odt = d4lp3_phy_odt_2_ohm;
}
for (i = ARRAY_SIZE(d3_phy_drv_2_ohm) - 1; ; i--) {
if (phy_dq_drv_ohm <= *(*(p_drv + i) + 1)) {
phy_dq_drv = **(p_drv + i);
break;
}
if (i == 0)
break;
}
for (i = ARRAY_SIZE(d3_phy_drv_2_ohm) - 1; ; i--) {
if (phy_clk_drv_ohm <= *(*(p_drv + i) + 1)) {
phy_clk_drv = **(p_drv + i);
break;
}
if (i == 0)
break;
}
for (i = ARRAY_SIZE(d3_phy_drv_2_ohm) - 1; ; i--) {
if (phy_ca_drv_ohm <= *(*(p_drv + i) + 1)) {
phy_ca_drv = **(p_drv + i);
break;
}
if (i == 0)
break;
}
if (!phy_odt_ohm)
phy_odt = 0;
else
for (i = ARRAY_SIZE(d4lp3_phy_odt_2_ohm) - 1; ; i--) {
if (phy_odt_ohm <= *(*(p_odt + i) + 1)) {
phy_odt = **(p_odt + i);
break;
}
if (i == 0)
break;
}
if (dramtype != LPDDR4) {
if (!phy_odt_ohm || (phy_odt_up_en && phy_odt_dn_en))
vref_inner = 0x80;
else if (phy_odt_up_en)
vref_inner = (2 * dram_drv_ohm + phy_odt_ohm) * 128 /
(dram_drv_ohm + phy_odt_ohm);
else
vref_inner = phy_odt_ohm * 128 /
(phy_odt_ohm + dram_drv_ohm);
if (dramtype != DDR3 && dram_odt_ohm)
vref_out = (2 * phy_dq_drv_ohm + dram_odt_ohm) * 128 /
(phy_dq_drv_ohm + dram_odt_ohm);
else
vref_out = 0x80;
} else {
/* for lp4 and lp4x*/
if (phy_odt_ohm)
vref_inner =
(PHY_LP4_DQ_VREF(lp4_info->vref_when_odten) *
256) / 1000;
else
vref_inner =
(PHY_LP4_DQ_VREF(lp4_info->vref_when_odtoff) *
256) / 1000;
vref_out = 0x80;
}
/* default ZQCALIB bypass mode */
clrsetbits_le32(PHY_REG(phy_base, 0x100), 0x1f, phy_ca_drv);
clrsetbits_le32(PHY_REG(phy_base, 0x101), 0x1f, phy_ca_drv);
clrsetbits_le32(PHY_REG(phy_base, 0x102), 0x1f, phy_clk_drv);
clrsetbits_le32(PHY_REG(phy_base, 0x103), 0x1f, phy_clk_drv);
if (dramtype == LPDDR4) {
clrsetbits_le32(PHY_REG(phy_base, 0x107), 0x1f, phy_clk_drv);
clrsetbits_le32(PHY_REG(phy_base, 0x108), 0x1f, phy_clk_drv);
} else {
clrsetbits_le32(PHY_REG(phy_base, 0x107), 0x1f, phy_ca_drv);
clrsetbits_le32(PHY_REG(phy_base, 0x108), 0x1f, phy_ca_drv);
}
/* clk / cmd slew rate */
clrsetbits_le32(PHY_REG(phy_base, 0x106), 0x1f, sr_clk);
phy_lp4_drv_pd_en = (~phy_lp4_drv_pd_en) & 1;
if (phy_odt_up_en)
phy_odt_up = phy_odt;
if (phy_odt_dn_en)
phy_odt_dn = phy_odt;
for (i = 0; i < 4; i++) {
j = 0x110 + i * 0x10;
clrsetbits_le32(PHY_REG(phy_base, j + 1), 0x1f, phy_odt_up);
clrsetbits_le32(PHY_REG(phy_base, j), 0x1f, phy_odt_dn);
clrsetbits_le32(PHY_REG(phy_base, j + 2), 0x1f, phy_dq_drv);
clrsetbits_le32(PHY_REG(phy_base, j + 3), 0x1f, phy_dq_drv);
writel(vref_inner, PHY_REG(phy_base, 0x118 + i * 0x10));
clrsetbits_le32(PHY_REG(phy_base, 0x114 + i * 0x10),
1 << 3, phy_lp4_drv_pd_en << 3);
if (dramtype == LPDDR4)
clrbits_le32(PHY_REG(phy_base, 0x114 + i * 0x10), BIT(5));
/* dq slew rate */
clrsetbits_le32(PHY_REG(phy_base, 0x117 + i * 0x10),
0x1f, sr_dq);
}
/* reg_rx_vref_value_update */
setbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
clrbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
/* RAM VREF */
writel(vref_out, PHY_REG(phy_base, 0x105));
if (dramtype == LPDDR3)
udelay(100);
if (dramtype == LPDDR4)
set_lp4_vref(dram, lp4_info, freq, dst_fsp, dramtype);
if (dramtype == DDR3 || dramtype == DDR4) {
mr1_mr3 = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3);
mr1_mr3 = mr1_mr3 >> PCTL2_DDR34_MR1_SHIFT & PCTL2_MR_MASK;
} else {
mr1_mr3 = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT4);
mr1_mr3 = mr1_mr3 >> PCTL2_LPDDR234_MR3_SHIFT & PCTL2_MR_MASK;
}
if (dramtype == DDR3) {
mr1_mr3 &= ~(DDR3_DS_MASK | DDR3_RTT_NOM_MASK);
if (dram_drv_ohm == 34)
mr1_mr3 |= DDR3_DS_34;
if (dram_odt_ohm == 0)
mr1_mr3 |= DDR3_RTT_NOM_DIS;
else if (dram_odt_ohm <= 40)
mr1_mr3 |= DDR3_RTT_NOM_40;
else if (dram_odt_ohm <= 60)
mr1_mr3 |= DDR3_RTT_NOM_60;
else
mr1_mr3 |= DDR3_RTT_NOM_120;
} else if (dramtype == DDR4) {
mr1_mr3 &= ~(DDR4_DS_MASK | DDR4_RTT_NOM_MASK);
if (dram_drv_ohm == 48)
mr1_mr3 |= DDR4_DS_48;
if (dram_odt_ohm == 0)
mr1_mr3 |= DDR4_RTT_NOM_DIS;
else if (dram_odt_ohm <= 34)
mr1_mr3 |= DDR4_RTT_NOM_34;
else if (dram_odt_ohm <= 40)
mr1_mr3 |= DDR4_RTT_NOM_40;
else if (dram_odt_ohm <= 48)
mr1_mr3 |= DDR4_RTT_NOM_48;
else if (dram_odt_ohm <= 60)
mr1_mr3 |= DDR4_RTT_NOM_60;
else
mr1_mr3 |= DDR4_RTT_NOM_120;
} else if (dramtype == LPDDR3) {
if (dram_drv_ohm <= 34)
mr1_mr3 |= LPDDR3_DS_34;
else if (dram_drv_ohm <= 40)
mr1_mr3 |= LPDDR3_DS_40;
else if (dram_drv_ohm <= 48)
mr1_mr3 |= LPDDR3_DS_48;
else if (dram_drv_ohm <= 60)
mr1_mr3 |= LPDDR3_DS_60;
else if (dram_drv_ohm <= 80)
mr1_mr3 |= LPDDR3_DS_80;
if (dram_odt_ohm == 0)
lp3_odt_value = LPDDR3_ODT_DIS;
else if (dram_odt_ohm <= 60)
lp3_odt_value = LPDDR3_ODT_60;
else if (dram_odt_ohm <= 120)
lp3_odt_value = LPDDR3_ODT_120;
else
lp3_odt_value = LPDDR3_ODT_240;
} else {/* for lpddr4 and lpddr4x */
/* MR3 for lp4 PU-CAL and PDDS */
mr1_mr3 &= ~(LPDDR4_PDDS_MASK | LPDDR4_PU_CAL_MASK);
mr1_mr3 |= lp4_pu_cal;
tmp = lp4_odt_calc(dram_drv_ohm);
if (!tmp)
tmp = LPDDR4_PDDS_240;
mr1_mr3 |= (tmp << LPDDR4_PDDS_SHIFT);
/* MR11 for lp4 ca odt, dq odt set */
mr11 = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6);
mr11 = mr11 >> PCTL2_LPDDR4_MR11_SHIFT & PCTL2_MR_MASK;
mr11 &= ~(LPDDR4_DQODT_MASK | LPDDR4_CAODT_MASK);
tmp = lp4_odt_calc(dram_odt_ohm);
mr11 |= (tmp << LPDDR4_DQODT_SHIFT);
tmp = lp4_odt_calc(dram_caodt_ohm);
mr11 |= (tmp << LPDDR4_CAODT_SHIFT);
sw_set_req(dram);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6,
PCTL2_MR_MASK << PCTL2_LPDDR4_MR11_SHIFT,
mr11 << PCTL2_LPDDR4_MR11_SHIFT);
sw_set_ack(dram);
/* MR22 for soc odt/odt-ck/odt-cs/odt-ca */
mr22 = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT7);
mr22 = mr22 >> PCTL2_LPDDR4_MR22_SHIFT & PCTL2_MR_MASK;
mr22 &= ~LPDDR4_SOC_ODT_MASK;
tmp = lp4_odt_calc(phy_odt_ohm);
mr22 |= tmp;
mr22 = mr22 |
(LP4_ODTE_CK_EN(lp4_info->cs_drv_ca_odt_info) <<
LPDDR4_ODTE_CK_SHIFT) |
(LP4_ODTE_CS_EN(lp4_info->cs_drv_ca_odt_info) <<
LPDDR4_ODTE_CS_SHIFT) |
(LP4_ODTD_CA_EN(lp4_info->cs_drv_ca_odt_info) <<
LPDDR4_ODTD_CA_SHIFT);
sw_set_req(dram);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT7,
PCTL2_MR_MASK << PCTL2_LPDDR4_MR22_SHIFT,
mr22 << PCTL2_LPDDR4_MR22_SHIFT);
sw_set_ack(dram);
}
if (dramtype == DDR4 || dramtype == DDR3) {
sw_set_req(dram);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3,
PCTL2_MR_MASK << PCTL2_DDR34_MR1_SHIFT,
mr1_mr3 << PCTL2_DDR34_MR1_SHIFT);
sw_set_ack(dram);
} else {
sw_set_req(dram);
clrsetbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT4,
PCTL2_MR_MASK << PCTL2_LPDDR234_MR3_SHIFT,
mr1_mr3 << PCTL2_LPDDR234_MR3_SHIFT);
sw_set_ack(dram);
}
}
static int sdram_cmd_dq_path_remap(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
void __iomem *phy_base = dram->phy;
u32 dramtype = sdram_params->base.dramtype;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct dq_map_info *map_info;
map_info = (struct dq_map_info *)((void *)common_info +
index->dq_map_index.offset * 4);
if (dramtype <= LPDDR4)
writel((map_info->byte_map[dramtype / 4] >>
((dramtype % 4) * 8)) & 0xff,
PHY_REG(phy_base, 0x4f));
return 0;
}
static void phy_cfg(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *phy_base = dram->phy;
u32 i, dq_map, tmp;
u32 byte1 = 0, byte0 = 0;
sdram_cmd_dq_path_remap(dram, sdram_params);
phy_pll_set(dram, sdram_params->base.ddr_freq * MHZ, 0);
for (i = 0; sdram_params->phy_regs.phy[i][0] != 0xFFFFFFFF; i++) {
writel(sdram_params->phy_regs.phy[i][1],
phy_base + sdram_params->phy_regs.phy[i][0]);
}
clrbits_le32(PHY_REG(phy_base, 0x62), BIT(5));
dq_map = readl(PHY_REG(phy_base, 0x4f));
for (i = 0; i < 4; i++) {
if (((dq_map >> (i * 2)) & 0x3) == 0)
byte0 = i;
if (((dq_map >> (i * 2)) & 0x3) == 1)
byte1 = i;
}
tmp = readl(PHY_REG(phy_base, 0xf)) & (~PHY_DQ_WIDTH_MASK);
if (cap_info->bw == 2)
tmp |= 0xf;
else if (cap_info->bw == 1)
tmp |= ((1 << byte0) | (1 << byte1));
else
tmp |= (1 << byte0);
writel(tmp, PHY_REG(phy_base, 0xf));
/* lpddr4 odt control by phy, enable cs0 odt */
if (sdram_params->base.dramtype == LPDDR4)
clrsetbits_le32(PHY_REG(phy_base, 0x20), 0x7 << 4,
(1 << 6) | (1 << 4));
/* for ca training ca vref choose range1 */
setbits_le32(PHY_REG(phy_base, 0x1e), BIT(6));
setbits_le32(PHY_REG(phy_base, 0x1f), BIT(6));
/* for wr training PHY_0x7c[5], choose range0 */
clrbits_le32(PHY_REG(phy_base, 0x7c), BIT(5));
}
static int update_refresh_reg(struct dram_info *dram)
{
void __iomem *pctl_base = dram->pctl;
u32 ret;
ret = readl(pctl_base + DDR_PCTL2_RFSHCTL3) ^ (1 << 1);
writel(ret, pctl_base + DDR_PCTL2_RFSHCTL3);
return 0;
}
/*
* rank = 1: cs0
* rank = 2: cs1
*/
int read_mr(struct dram_info *dram, u32 rank, u32 mr_num, u32 dramtype)
{
u32 ret;
u32 i, temp;
u32 dqmap;
void __iomem *pctl_base = dram->pctl;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct dq_map_info *map_info;
map_info = (struct dq_map_info *)((void *)common_info +
index->dq_map_index.offset * 4);
if (dramtype == LPDDR2)
dqmap = map_info->lp2_dq0_7_map;
else
dqmap = map_info->lp3_dq0_7_map;
pctl_read_mr(pctl_base, rank, mr_num);
ret = (readl(&dram->ddrgrf->ddr_grf_status[0]) & 0xff);
if (dramtype != LPDDR4) {
temp = 0;
for (i = 0; i < 8; i++) {
temp = temp | (((ret >> i) & 0x1) <<
((dqmap >> (i * 4)) & 0xf));
}
} else {
temp = (readl(&dram->ddrgrf->ddr_grf_status[1]) & 0xff);
}
return temp;
}
/* before call this function autorefresh should be disabled */
void send_a_refresh(struct dram_info *dram)
{
void __iomem *pctl_base = dram->pctl;
while (readl(pctl_base + DDR_PCTL2_DBGSTAT) & 0x3)
continue;
writel(0x3, pctl_base + DDR_PCTL2_DBGCMD);
}
static void enter_sr(struct dram_info *dram, u32 en)
{
void __iomem *pctl_base = dram->pctl;
if (en) {
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, PCTL2_SELFREF_SW);
while (1) {
if (((readl(pctl_base + DDR_PCTL2_STAT) &
PCTL2_SELFREF_TYPE_MASK) ==
PCTL2_SELFREF_TYPE_SR_NOT_AUTO) &&
((readl(pctl_base + DDR_PCTL2_STAT) &
PCTL2_OPERATING_MODE_MASK) ==
PCTL2_OPERATING_MODE_SR))
break;
}
} else {
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, PCTL2_SELFREF_SW);
while ((readl(pctl_base + DDR_PCTL2_STAT) &
PCTL2_OPERATING_MODE_MASK) == PCTL2_OPERATING_MODE_SR)
continue;
}
}
void record_dq_prebit(struct dram_info *dram)
{
u32 group, i, tmp;
void __iomem *phy_base = dram->phy;
for (group = 0; group < 4; group++) {
for (i = 0; i < ARRAY_SIZE(dq_sel); i++) {
/* l_loop_invdelaysel */
writel(dq_sel[i][0], PHY_REG(phy_base,
grp_addr[group] + 0x2c));
tmp = readl(PHY_REG(phy_base, grp_addr[group] + 0x2e));
writel(tmp, PHY_REG(phy_base,
grp_addr[group] + dq_sel[i][1]));
/* r_loop_invdelaysel */
writel(dq_sel[i][0], PHY_REG(phy_base,
grp_addr[group] + 0x2d));
tmp = readl(PHY_REG(phy_base, grp_addr[group] + 0x2f));
writel(tmp, PHY_REG(phy_base,
grp_addr[group] + dq_sel[i][2]));
}
}
}
static void update_dq_rx_prebit(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrsetbits_le32(PHY_REG(phy_base, 0x70), BIT(1) | BIT(6) | BIT(4),
BIT(4));
udelay(1);
clrbits_le32(PHY_REG(phy_base, 0x70), BIT(4));
}
static void update_dq_tx_prebit(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrbits_le32(PHY_REG(phy_base, 0x7a), BIT(1));
setbits_le32(PHY_REG(phy_base, 0x2), BIT(3));
setbits_le32(PHY_REG(phy_base, 0xc), BIT(6));
udelay(1);
clrbits_le32(PHY_REG(phy_base, 0xc), BIT(6));
}
static void update_ca_prebit(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
clrbits_le32(PHY_REG(phy_base, 0x25), BIT(2));
setbits_le32(PHY_REG(phy_base, 0x22), BIT(6));
udelay(1);
clrbits_le32(PHY_REG(phy_base, 0x22), BIT(6));
}
/*
* dir: 0: de-skew = delta_*
* 1: de-skew = reg val - delta_*
* delta_dir: value for differential signal: clk/
* delta_sig: value for single signal: ca/cmd
*/
static void modify_ca_deskew(struct dram_info *dram, u32 dir, int delta_dif,
int delta_sig, u32 cs, u32 dramtype)
{
void __iomem *phy_base = dram->phy;
u32 i, cs_en, tmp;
u32 dfi_lp_stat = 0;
if (cs == 0)
cs_en = 1;
else if (cs == 2)
cs_en = 2;
else
cs_en = 3;
if (dramtype == LPDDR4 &&
((readl(PHY_REG(phy_base, 0x60)) & BIT(5)) == 0)) {
dfi_lp_stat = 1;
setbits_le32(PHY_REG(phy_base, 0x60), BIT(5));
}
enter_sr(dram, 1);
for (i = 0; i < 0x20; i++) {
if (dir == DESKEW_MDF_ABS_VAL)
tmp = delta_sig;
else
tmp = readl(PHY_REG(phy_base, 0x150 + i)) +
delta_sig;
writel(tmp, PHY_REG(phy_base, 0x150 + i));
}
if (dir == DESKEW_MDF_ABS_VAL)
tmp = delta_dif;
else
tmp = readl(PHY_REG(phy_base, 0x150 + 0x17)) -
delta_sig + delta_dif;
writel(tmp, PHY_REG(phy_base, 0x150 + 0x17));
writel(tmp, PHY_REG(phy_base, 0x150 + 0x18));
if (dramtype == LPDDR4) {
writel(tmp, PHY_REG(phy_base, 0x150 + 0x4));
writel(tmp, PHY_REG(phy_base, 0x150 + 0xa));
clrbits_le32(PHY_REG(phy_base, 0x10), cs_en << 6);
update_ca_prebit(dram);
}
enter_sr(dram, 0);
if (dfi_lp_stat)
clrbits_le32(PHY_REG(phy_base, 0x60), BIT(5));
}
static u32 get_min_value(struct dram_info *dram, u32 signal, u32 rank)
{
u32 i, j, offset = 0;
u32 min = 0x3f;
void __iomem *phy_base = dram->phy;
u32 byte_en;
if (signal == SKEW_TX_SIGNAL)
offset = 8;
if (signal == SKEW_CA_SIGNAL) {
for (i = 0; i < 0x20; i++)
min = MIN(min, readl(PHY_REG(phy_base, 0x150 + i)));
} else {
byte_en = readl(PHY_REG(phy_base, 0xf)) & 0xf;
for (j = offset; j < offset + rank * 4; j++) {
if (!((byte_en >> (j % 4)) & 1))
continue;
for (i = 0; i < 11; i++)
min = MIN(min,
readl(PHY_REG(phy_base,
dqs_dq_skew_adr[j] +
i)));
}
}
return min;
}
static u32 low_power_update(struct dram_info *dram, u32 en)
{
void __iomem *pctl_base = dram->pctl;
u32 lp_stat = 0;
if (en) {
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, en & 0xf);
} else {
lp_stat = readl(pctl_base + DDR_PCTL2_PWRCTL) & 0xf;
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 0xf);
}
return lp_stat;
}
/*
* signal:
* dir: 0: de-skew = delta_*
* 1: de-skew = reg val - delta_*
* delta_dir: value for differential signal: dqs
* delta_sig: value for single signal: dq/dm
*/
static void modify_dq_deskew(struct dram_info *dram, u32 signal, u32 dir,
int delta_dif, int delta_sig, u32 rank)
{
void __iomem *phy_base = dram->phy;
u32 i, j, tmp, offset;
u32 byte_en;
byte_en = readl(PHY_REG(phy_base, 0xf)) & 0xf;
if (signal == SKEW_RX_SIGNAL)
offset = 0;
else
offset = 8;
for (j = offset; j < (offset + rank * 4); j++) {
if (!((byte_en >> (j % 4)) & 1))
continue;
for (i = 0; i < 0x9; i++) {
if (dir == DESKEW_MDF_ABS_VAL)
tmp = delta_sig;
else
tmp = delta_sig + readl(PHY_REG(phy_base,
dqs_dq_skew_adr[j] +
i));
writel(tmp, PHY_REG(phy_base, dqs_dq_skew_adr[j] + i));
}
if (dir == DESKEW_MDF_ABS_VAL)
tmp = delta_dif;
else
tmp = delta_dif + readl(PHY_REG(phy_base,
dqs_dq_skew_adr[j] + 9));
writel(tmp, PHY_REG(phy_base, dqs_dq_skew_adr[j] + 9));
writel(tmp, PHY_REG(phy_base, dqs_dq_skew_adr[j] + 0xa));
}
if (signal == SKEW_RX_SIGNAL)
update_dq_rx_prebit(dram);
else
update_dq_tx_prebit(dram);
}
static int data_training_rg(struct dram_info *dram, u32 cs, u32 dramtype)
{
void __iomem *phy_base = dram->phy;
u32 ret;
u32 dis_auto_zq = 0;
u32 odt_val_up, odt_val_dn;
u32 i, j;
odt_val_dn = readl(PHY_REG(phy_base, 0x110));
odt_val_up = readl(PHY_REG(phy_base, 0x111));
if (dramtype != LPDDR4) {
for (i = 0; i < 4; i++) {
j = 0x110 + i * 0x10;
writel(PHY_DDR4_LPDDR3_RTT_294ohm,
PHY_REG(phy_base, j));
writel(PHY_DDR4_LPDDR3_RTT_DISABLE,
PHY_REG(phy_base, j + 0x1));
}
}
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
/* use normal read mode for data training */
clrbits_le32(PHY_REG(phy_base, 0xc), BIT(1));
if (dramtype == DDR4)
setbits_le32(PHY_REG(phy_base, 0xc), BIT(1));
/* choose training cs */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs));
/* enable gate training */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs) | 1);
udelay(50);
ret = readl(PHY_REG(phy_base, 0x91));
/* disable gate training */
clrsetbits_le32(PHY_REG(phy_base, 2), 0x33, (0x20 >> cs) | 0);
clrbits_le32(PHY_REG(phy_base, 2), 0x30);
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
ret = (ret & 0x2f) ^ (readl(PHY_REG(phy_base, 0xf)) & 0xf);
if (dramtype != LPDDR4) {
for (i = 0; i < 4; i++) {
j = 0x110 + i * 0x10;
writel(odt_val_dn, PHY_REG(phy_base, j));
writel(odt_val_up, PHY_REG(phy_base, j + 0x1));
}
}
return ret;
}
static int data_training_wl(struct dram_info *dram, u32 cs, u32 dramtype,
u32 rank)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 dis_auto_zq = 0;
u32 tmp;
u32 cur_fsp;
u32 timeout_us = 1000;
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
clrbits_le32(PHY_REG(phy_base, 0x7a), 0x1);
cur_fsp = readl(pctl_base + DDR_PCTL2_MSTR2) & 0x3;
tmp = readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) + DDR_PCTL2_INIT3) &
0xffff;
writel(tmp & 0xff, PHY_REG(phy_base, 0x3));
/* disable another cs's output */
if ((dramtype == DDR3 || dramtype == DDR4) && rank == 2)
pctl_write_mr(dram->pctl, (cs + 1) & 1, 1, tmp | (1 << 12),
dramtype);
if (dramtype == DDR3 || dramtype == DDR4)
writel(0x40 | ((tmp >> 8) & 0x3f), PHY_REG(phy_base, 0x4));
else
writel(0x80 | ((tmp >> 8) & 0x3f), PHY_REG(phy_base, 0x4));
/* choose cs */
clrsetbits_le32(PHY_REG(phy_base, 2), (0x3 << 6) | (0x3 << 2),
((0x2 >> cs) << 6) | (0 << 2));
/* enable write leveling */
clrsetbits_le32(PHY_REG(phy_base, 2), (0x3 << 6) | (0x3 << 2),
((0x2 >> cs) << 6) | (1 << 2));
while (1) {
if ((readl(PHY_REG(phy_base, 0x92)) & 0xf) ==
(readl(PHY_REG(phy_base, 0xf)) & 0xf))
break;
udelay(1);
if (timeout_us-- == 0) {
printascii("error: write leveling timeout\n");
while (1)
;
}
}
/* disable write leveling */
clrsetbits_le32(PHY_REG(phy_base, 2), (0x3 << 6) | (0x3 << 2),
((0x2 >> cs) << 6) | (0 << 2));
clrsetbits_le32(PHY_REG(phy_base, 2), 0x3 << 6, 0 << 6);
/* enable another cs's output */
if ((dramtype == DDR3 || dramtype == DDR4) && rank == 2)
pctl_write_mr(dram->pctl, (cs + 1) & 1, 1, tmp & ~(1 << 12),
dramtype);
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
return 0;
}
char pattern[32] = {
0xaa, 0x55, 0xaa, 0x55, 0x55, 0xaa, 0x55, 0xaa,
0x55, 0xaa, 0x55, 0xaa, 0xaa, 0x55, 0xaa, 0x55,
0x55, 0x55, 0xaa, 0xaa, 0xaa, 0xaa, 0x55, 0x55,
0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0xaa, 0xaa
};
static int data_training_rd(struct dram_info *dram, u32 cs, u32 dramtype,
u32 mhz)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 trefi_1x, trfc_1x;
u32 dis_auto_zq = 0;
u32 timeout_us = 1000;
u32 dqs_default;
u32 cur_fsp;
u32 vref_inner;
u32 i;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct dq_map_info *map_info;
vref_inner = readl(PHY_REG(phy_base, 0x128)) & 0xff;
if (dramtype == DDR3 && vref_inner == 0x80) {
for (i = 0; i < 4; i++)
writel(vref_inner - 0xa,
PHY_REG(phy_base, 0x118 + i * 0x10));
/* reg_rx_vref_value_update */
setbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
clrbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
}
map_info = (struct dq_map_info *)((void *)common_info +
index->dq_map_index.offset * 4);
/* only 1cs a time, 0:cs0 1 cs1 */
if (cs > 1)
return -1;
dqs_default = 0xf;
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
cur_fsp = readl(pctl_base + DDR_PCTL2_MSTR2) & 0x3;
/* config refresh timing */
trefi_1x = ((readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_RFSHTMG) >> 16) & 0xfff) * 32;
trfc_1x = readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_RFSHTMG) & 0x3ff;
/* reg_phy_trefi[7:0] and reg_phy_trefi[13:8] */
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0xff, trefi_1x & 0xff);
clrsetbits_le32(PHY_REG(phy_base, 0x6f), 0x3f, (trefi_1x >> 8) & 0x3f);
/* reg_phy_trfc */
clrsetbits_le32(PHY_REG(phy_base, 0x57), 0xff, trfc_1x);
/* reg_max_refi_cnt */
clrsetbits_le32(PHY_REG(phy_base, 0x61), 0xf << 4, 0x8 << 4);
/* choose training cs */
clrsetbits_le32(PHY_REG(phy_base, 0x71), 0x3 << 6, (0x2 >> cs) << 6);
/* set dq map for ddr4 */
if (dramtype == DDR4) {
setbits_le32(PHY_REG(phy_base, 0x70), BIT(7));
for (i = 0; i < 4; i++) {
writel((map_info->ddr4_dq_map[cs * 2] >>
((i % 4) * 8)) & 0xff,
PHY_REG(phy_base, 0x238 + i));
writel((map_info->ddr4_dq_map[cs * 2 + 1] >>
((i % 4) * 8)) & 0xff,
PHY_REG(phy_base, 0x2b8 + i));
}
}
/* cha_l reg_l_rd_train_dqs_default[5:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x230), 0x3f, dqs_default);
/* cha_h reg_h_rd_train_dqs_default[5:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x234), 0x3f, dqs_default);
/* chb_l reg_l_rd_train_dqs_default[5:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x2b0), 0x3f, dqs_default);
/* chb_h reg_h_rd_train_dqs_default[5:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x2b4), 0x3f, dqs_default);
/* Choose the read train auto mode */
clrsetbits_le32(PHY_REG(phy_base, 0x70), 0x3, 0x1);
/* Enable the auto train of the read train */
clrsetbits_le32(PHY_REG(phy_base, 0x70), 0x3, 0x3);
/* Wait the train done. */
while (1) {
if ((readl(PHY_REG(phy_base, 0x93)) >> 7) & 0x1)
break;
udelay(1);
if (timeout_us-- == 0) {
printascii("error: read training timeout\n");
return -1;
}
}
/* Check the read train state */
if ((readl(PHY_REG(phy_base, 0x240)) & 0x3) ||
(readl(PHY_REG(phy_base, 0x2c0)) & 0x3)) {
printascii("error: read training error\n");
return -1;
}
/* Exit the Read Training by setting */
clrbits_le32(PHY_REG(phy_base, 0x70), BIT(1));
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
if (dramtype == DDR3 && vref_inner == 0x80) {
for (i = 0; i < 4; i++)
writel(vref_inner,
PHY_REG(phy_base, 0x118 + i * 0x10));
/* reg_rx_vref_value_update */
setbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
clrbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
}
return 0;
}
static int data_training_wr(struct dram_info *dram, u32 cs, u32 dramtype,
u32 mhz, u32 dst_fsp)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 trefi_1x, trfc_1x;
u32 dis_auto_zq = 0;
u32 timeout_us = 1000;
u32 cur_fsp;
u32 mr_tmp, cl, cwl, phy_fsp, offset = 0;
if (dramtype == LPDDR3 && mhz <= 400) {
phy_fsp = (readl(PHY_REG(phy_base, 0xc)) >> 0x2) & 0x3;
offset = (phy_fsp == 0) ? 0x5 : 0x387 + (phy_fsp - 1) * 3;
cl = readl(PHY_REG(phy_base, offset));
cwl = readl(PHY_REG(phy_base, offset + 2));
clrsetbits_le32(PHY_REG(phy_base, offset), 0x1f, 0x8);
clrsetbits_le32(PHY_REG(phy_base, offset + 2), 0x1f, 0x4);
pctl_write_mr(dram->pctl, 3, 2, 0x6, dramtype);
}
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
/* PHY_0x7b[7:0] reg_train_col_addr[7:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x7b), 0xff, 0x0);
/* PHY_0x7c[4:2] reg_train_ba_addr[2:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x7c), 0x7 << 2, 0x0 << 2);
/* PHY_0x7c[1:0] reg_train_col_addr[9:8] */
clrsetbits_le32(PHY_REG(phy_base, 0x7c), 0x3, 0x0);
/* PHY_0x7d[7:0] reg_train_row_addr[7:0] */
clrsetbits_le32(PHY_REG(phy_base, 0x7d), 0xff, 0x0);
/* PHY_0x7e[7:0] reg_train_row_addr[15:8] */
clrsetbits_le32(PHY_REG(phy_base, 0x7e), 0xff, 0x0);
/* PHY_0x71[3] wrtrain_check_data_value_random_gen */
clrbits_le32(PHY_REG(phy_base, 0x71), BIT(3));
/* config refresh timing */
cur_fsp = readl(pctl_base + DDR_PCTL2_MSTR2) & 0x3;
trefi_1x = ((readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_RFSHTMG) >> 16) & 0xfff) * 32;
trfc_1x = readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_RFSHTMG) & 0x3ff;
/* reg_phy_trefi[7:0] and reg_phy_trefi[13:8] */
clrsetbits_le32(PHY_REG(phy_base, 0x6e), 0xff, trefi_1x & 0xff);
clrsetbits_le32(PHY_REG(phy_base, 0x6f), 0x3f, (trefi_1x >> 8) & 0x3f);
/* reg_phy_trfc */
clrsetbits_le32(PHY_REG(phy_base, 0x57), 0xff, trfc_1x);
/* reg_max_refi_cnt */
clrsetbits_le32(PHY_REG(phy_base, 0x61), 0xf << 4, 0x8 << 4);
/* choose training cs */
clrsetbits_le32(PHY_REG(phy_base, 0x7c), 0x3 << 6, (0x2 >> cs) << 6);
/* PHY_0x7a [4] reg_wr_train_dqs_default_bypass */
/* 0: Use the write-leveling value. */
/* 1: use reg0x233 0x237 0x2b3 0x2b7 */
setbits_le32(PHY_REG(phy_base, 0x7a), BIT(4));
/* PHY_0x7a [0] reg_dq_wr_train_auto */
setbits_le32(PHY_REG(phy_base, 0x7a), 0x1);
/* PHY_0x7a [1] reg_dq_wr_train_en */
setbits_le32(PHY_REG(phy_base, 0x7a), BIT(1));
send_a_refresh(dram);
while (1) {
if ((readl(PHY_REG(phy_base, 0x92)) >> 7) & 0x1)
break;
udelay(1);
if (timeout_us-- == 0) {
printascii("error: write training timeout\n");
while (1)
;
}
}
/* Check the write train state */
if ((readl(PHY_REG(phy_base, 0x90)) >> 5) & 0x7) {
printascii("error: write training error\n");
return -1;
}
/* PHY_0x7a [1] reg_dq_wr_train_en */
clrbits_le32(PHY_REG(phy_base, 0x7a), BIT(1));
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
/* save LPDDR4 write vref to fsp_param for dfs */
if (dramtype == LPDDR4) {
fsp_param[dst_fsp].vref_dq[cs] =
((readl(PHY_REG(phy_base, 0x384)) & 0x3f) +
(readl(PHY_REG(phy_base, 0x385)) & 0x3f)) / 2;
/* add range info */
fsp_param[dst_fsp].vref_dq[cs] |=
((readl(PHY_REG(phy_base, 0x7c)) & BIT(5)) << 1);
}
if (dramtype == LPDDR3 && mhz <= 400) {
clrsetbits_le32(PHY_REG(phy_base, offset), 0x1f, cl);
clrsetbits_le32(PHY_REG(phy_base, offset + 2), 0x1f, cwl);
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_INIT3);
pctl_write_mr(dram->pctl, 3, 2, mr_tmp & PCTL2_MR_MASK,
dramtype);
}
return 0;
}
static int data_training(struct dram_info *dram, u32 cs,
struct rv1126_sdram_params *sdram_params, u32 dst_fsp,
u32 training_flag)
{
u32 ret = 0;
if (training_flag == FULL_TRAINING)
training_flag = READ_GATE_TRAINING | WRITE_LEVELING |
WRITE_TRAINING | READ_TRAINING;
if ((training_flag & WRITE_LEVELING) == WRITE_LEVELING) {
ret = data_training_wl(dram, cs,
sdram_params->base.dramtype,
sdram_params->ch.cap_info.rank);
if (ret != 0)
goto out;
}
if ((training_flag & READ_GATE_TRAINING) == READ_GATE_TRAINING) {
ret = data_training_rg(dram, cs,
sdram_params->base.dramtype);
if (ret != 0)
goto out;
}
if ((training_flag & READ_TRAINING) == READ_TRAINING) {
ret = data_training_rd(dram, cs,
sdram_params->base.dramtype,
sdram_params->base.ddr_freq);
if (ret != 0)
goto out;
}
if ((training_flag & WRITE_TRAINING) == WRITE_TRAINING) {
ret = data_training_wr(dram, cs,
sdram_params->base.dramtype,
sdram_params->base.ddr_freq, dst_fsp);
if (ret != 0)
goto out;
}
out:
return ret;
}
static int get_wrlvl_val(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
int i, j, clk_skew;
void __iomem *phy_base = dram->phy;
u32 lp_stat;
int ret;
lp_stat = low_power_update(dram, 0);
clk_skew = 0x1f;
modify_ca_deskew(dram, DESKEW_MDF_ABS_VAL, clk_skew, clk_skew, 3,
sdram_params->base.dramtype);
ret = data_training(dram, 0, sdram_params, 0, WRITE_LEVELING);
if (sdram_params->ch.cap_info.rank == 2)
ret |= data_training(dram, 1, sdram_params, 0, WRITE_LEVELING);
for (j = 0; j < 2; j++)
for (i = 0; i < 4; i++)
wrlvl_result[j][i] =
(readl(PHY_REG(phy_base, wrlvl_result_offset[j][i])) & 0x3f) -
clk_skew;
low_power_update(dram, lp_stat);
return ret;
}
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
static void init_rw_trn_result_struct(struct rw_trn_result *result,
void __iomem *phy_base, u8 cs_num)
{
int i;
result->cs_num = cs_num;
result->byte_en = readb(PHY_REG(dram_info.phy, 0xf)) &
PHY_DQ_WIDTH_MASK;
for (i = 0; i < FSP_NUM; i++)
result->fsp_mhz[i] = 0;
}
static void save_rw_trn_min_max(void __iomem *phy_base,
struct cs_rw_trn_result *rd_result,
struct cs_rw_trn_result *wr_result,
u8 byte_en)
{
u16 phy_ofs;
u8 dqs;
u8 dq;
for (dqs = 0; dqs < BYTE_NUM; dqs++) {
if ((byte_en & BIT(dqs)) == 0)
continue;
/* Channel A or B (low or high 16 bit) */
phy_ofs = dqs < 2 ? 0x230 : 0x2b0;
/* low or high 8 bit */
phy_ofs += (dqs & 0x1) == 0 ? 0 : 0x9;
for (dq = 0; dq < 8; dq++) {
rd_result->dqs[dqs].dq_min[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x15 + dq));
rd_result->dqs[dqs].dq_max[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x27 + dq));
wr_result->dqs[dqs].dq_min[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x3d + dq));
wr_result->dqs[dqs].dq_max[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x4f + dq));
}
}
}
static void save_rw_trn_deskew(void __iomem *phy_base,
struct fsp_rw_trn_result *result, u8 cs_num,
int min_val, bool rw)
{
u16 phy_ofs;
u8 cs;
u8 dq;
result->min_val = min_val;
for (cs = 0; cs < cs_num; cs++) {
phy_ofs = cs == 0 ? 0x170 : 0x1a0;
phy_ofs += rw == SKEW_RX_SIGNAL ? 0x1 : 0x17;
for (dq = 0; dq < 8; dq++) {
result->cs[cs].dqs[0].dq_deskew[dq] =
readb(PHY_REG(phy_base, phy_ofs + dq));
result->cs[cs].dqs[1].dq_deskew[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0xb + dq));
result->cs[cs].dqs[2].dq_deskew[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x60 + dq));
result->cs[cs].dqs[3].dq_deskew[dq] =
readb(PHY_REG(phy_base, phy_ofs + 0x60 + 0xb + dq));
}
result->cs[cs].dqs[0].dqs_deskew =
readb(PHY_REG(phy_base, phy_ofs + 0x8));
result->cs[cs].dqs[1].dqs_deskew =
readb(PHY_REG(phy_base, phy_ofs + 0xb + 0x8));
result->cs[cs].dqs[2].dqs_deskew =
readb(PHY_REG(phy_base, phy_ofs + 0x60 + 0x8));
result->cs[cs].dqs[3].dqs_deskew =
readb(PHY_REG(phy_base, phy_ofs + 0x60 + 0xb + 0x8));
}
}
static void save_rw_trn_result_to_ddr(struct rw_trn_result *result)
{
result->flag = DDR_DQ_EYE_FLAG;
memcpy((void *)(RW_TRN_RESULT_ADDR), result, sizeof(*result));
}
#endif
static int high_freq_training(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params,
u32 fsp)
{
u32 i, j;
void __iomem *phy_base = dram->phy;
u32 dramtype = sdram_params->base.dramtype;
int min_val;
int dqs_skew, clk_skew, ca_skew;
u8 byte_en;
int ret;
byte_en = readl(PHY_REG(phy_base, 0xf)) & PHY_DQ_WIDTH_MASK;
dqs_skew = 0;
for (j = 0; j < sdram_params->ch.cap_info.rank; j++) {
for (i = 0; i < ARRAY_SIZE(wrlvl_result[0]); i++) {
if ((byte_en & BIT(i)) != 0)
dqs_skew += wrlvl_result[j][i];
}
}
dqs_skew = dqs_skew /
(int)(sdram_params->ch.cap_info.rank * (1 << sdram_params->ch.cap_info.bw));
clk_skew = 0x20 - dqs_skew;
dqs_skew = 0x20;
if (dramtype == LPDDR4) {
min_val = 0xff;
for (j = 0; j < sdram_params->ch.cap_info.rank; j++)
for (i = 0; i < sdram_params->ch.cap_info.bw; i++)
min_val = MIN(wrlvl_result[j][i], min_val);
if (min_val < 0) {
clk_skew = -min_val;
ca_skew = -min_val;
} else {
clk_skew = 0;
ca_skew = 0;
}
} else if (dramtype == LPDDR3) {
ca_skew = clk_skew - 4;
} else {
ca_skew = clk_skew;
}
modify_ca_deskew(dram, DESKEW_MDF_ABS_VAL, clk_skew, ca_skew, 3,
dramtype);
writel(wrlvl_result[0][0] + clk_skew, PHY_REG(phy_base, 0x233));
writel(wrlvl_result[0][1] + clk_skew, PHY_REG(phy_base, 0x237));
writel(wrlvl_result[0][2] + clk_skew, PHY_REG(phy_base, 0x2b3));
writel(wrlvl_result[0][3] + clk_skew, PHY_REG(phy_base, 0x2b7));
ret = data_training(dram, 0, sdram_params, fsp, READ_GATE_TRAINING |
READ_TRAINING | WRITE_TRAINING);
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
rw_trn_result.fsp_mhz[fsp] = (u16)sdram_params->base.ddr_freq;
save_rw_trn_min_max(phy_base, &rw_trn_result.rd_fsp[fsp].cs[0],
&rw_trn_result.wr_fsp[fsp].cs[0],
rw_trn_result.byte_en);
#endif
if (sdram_params->ch.cap_info.rank == 2) {
writel(wrlvl_result[1][0] + clk_skew, PHY_REG(phy_base, 0x233));
writel(wrlvl_result[1][1] + clk_skew, PHY_REG(phy_base, 0x237));
writel(wrlvl_result[1][2] + clk_skew, PHY_REG(phy_base, 0x2b3));
writel(wrlvl_result[1][3] + clk_skew, PHY_REG(phy_base, 0x2b7));
ret |= data_training(dram, 1, sdram_params, fsp,
READ_GATE_TRAINING | READ_TRAINING |
WRITE_TRAINING);
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
save_rw_trn_min_max(phy_base, &rw_trn_result.rd_fsp[fsp].cs[1],
&rw_trn_result.wr_fsp[fsp].cs[1],
rw_trn_result.byte_en);
#endif
}
if (ret)
goto out;
record_dq_prebit(dram);
min_val = get_min_value(dram, SKEW_RX_SIGNAL,
sdram_params->ch.cap_info.rank) * -1;
modify_dq_deskew(dram, SKEW_RX_SIGNAL, DESKEW_MDF_DIFF_VAL,
min_val, min_val, sdram_params->ch.cap_info.rank);
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
save_rw_trn_deskew(phy_base, &rw_trn_result.rd_fsp[fsp],
rw_trn_result.cs_num, (u8)(min_val * (-1)),
SKEW_RX_SIGNAL);
#endif
min_val = MIN(get_min_value(dram, SKEW_TX_SIGNAL,
sdram_params->ch.cap_info.rank),
get_min_value(dram, SKEW_CA_SIGNAL,
sdram_params->ch.cap_info.rank)) * -1;
/* clk = 0, rx all skew -7, tx - min_value */
modify_ca_deskew(dram, DESKEW_MDF_DIFF_VAL, min_val, min_val, 3,
dramtype);
modify_dq_deskew(dram, SKEW_TX_SIGNAL, DESKEW_MDF_DIFF_VAL,
min_val, min_val, sdram_params->ch.cap_info.rank);
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
save_rw_trn_deskew(phy_base, &rw_trn_result.wr_fsp[fsp],
rw_trn_result.cs_num, (u8)(min_val * (-1)),
SKEW_TX_SIGNAL);
#endif
ret = data_training(dram, 0, sdram_params, 0, READ_GATE_TRAINING);
if (sdram_params->ch.cap_info.rank == 2)
ret |= data_training(dram, 1, sdram_params, 0,
READ_GATE_TRAINING);
out:
return ret;
}
static void set_ddrconfig(struct dram_info *dram, u32 ddrconfig)
{
writel(ddrconfig, &dram->msch->deviceconf);
clrsetbits_le32(&dram->grf->noc_con0, 0x3 << 0, 0 << 0);
}
static void update_noc_timing(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
u32 bw, bl;
bw = 8 << sdram_params->ch.cap_info.bw;
bl = ((readl(pctl_base + DDR_PCTL2_MSTR) >> 16) & 0xf) * 2;
/* update the noc timing related to data bus width */
if ((bw / 8 * bl) <= 16)
sdram_params->ch.noc_timings.ddrmode.b.burstsize = 0;
else if ((bw / 8 * bl) == 32)
sdram_params->ch.noc_timings.ddrmode.b.burstsize = 1;
else if ((bw / 8 * bl) == 64)
sdram_params->ch.noc_timings.ddrmode.b.burstsize = 2;
else
sdram_params->ch.noc_timings.ddrmode.b.burstsize = 3;
sdram_params->ch.noc_timings.ddrtimingc0.b.burstpenalty =
(bl * bw / 8) > 16 ? (bl / 4) : (16 / (bl * bw / 8)) * bl / 4;
if (sdram_params->base.dramtype == LPDDR4) {
sdram_params->ch.noc_timings.ddrmode.b.mwrsize =
(bw == 16) ? 0x1 : 0x2;
sdram_params->ch.noc_timings.ddrtimingc0.b.wrtomwr =
3 * sdram_params->ch.noc_timings.ddrtimingc0.b.burstpenalty;
}
writel(sdram_params->ch.noc_timings.ddrtiminga0.d32,
&dram->msch->ddrtiminga0);
writel(sdram_params->ch.noc_timings.ddrtimingb0.d32,
&dram->msch->ddrtimingb0);
writel(sdram_params->ch.noc_timings.ddrtimingc0.d32,
&dram->msch->ddrtimingc0);
writel(sdram_params->ch.noc_timings.devtodev0.d32,
&dram->msch->devtodev0);
writel(sdram_params->ch.noc_timings.ddrmode.d32, &dram->msch->ddrmode);
writel(sdram_params->ch.noc_timings.ddr4timing.d32,
&dram->msch->ddr4timing);
}
static int split_setup(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 dramtype = sdram_params->base.dramtype;
u32 split_size, split_mode;
u64 cs_cap[2], cap;
cs_cap[0] = sdram_get_cs_cap(cap_info, 0, dramtype);
cs_cap[1] = sdram_get_cs_cap(cap_info, 1, dramtype);
/* only support the larger cap is in low 16bit */
if (cap_info->cs0_high16bit_row < cap_info->cs0_row) {
cap = cs_cap[0] / (1 << (cap_info->cs0_row -
cap_info->cs0_high16bit_row));
} else if ((cap_info->cs1_high16bit_row < cap_info->cs1_row) &&
(cap_info->rank == 2)) {
if (!cap_info->cs1_high16bit_row)
cap = cs_cap[0];
else
cap = cs_cap[0] + cs_cap[1] / (1 << (cap_info->cs1_row -
cap_info->cs1_high16bit_row));
} else {
goto out;
}
split_size = (u32)(cap >> 24) & SPLIT_SIZE_MASK;
if (cap_info->bw == 2)
split_mode = SPLIT_MODE_32_L16_VALID;
else
split_mode = SPLIT_MODE_16_L8_VALID;
rk_clrsetreg(&dram->ddrgrf->grf_ddrsplit_con,
(SPLIT_MODE_MASK << SPLIT_MODE_OFFSET) |
(SPLIT_BYPASS_MASK << SPLIT_BYPASS_OFFSET) |
(SPLIT_SIZE_MASK << SPLIT_SIZE_OFFSET),
(split_mode << SPLIT_MODE_OFFSET) |
(0x0 << SPLIT_BYPASS_OFFSET) |
(split_size << SPLIT_SIZE_OFFSET));
rk_clrsetreg(BUS_SGRF_BASE_ADDR + SGRF_SOC_CON2,
MSCH_AXI_BYPASS_ALL_MASK << MSCH_AXI_BYPASS_ALL_SHIFT,
0x0 << MSCH_AXI_BYPASS_ALL_SHIFT);
out:
return 0;
}
static void split_bypass(struct dram_info *dram)
{
if ((readl(&dram->ddrgrf->grf_ddrsplit_con) &
(1 << SPLIT_BYPASS_OFFSET)) != 0)
return;
/* bypass split */
rk_clrsetreg(&dram->ddrgrf->grf_ddrsplit_con,
(SPLIT_BYPASS_MASK << SPLIT_BYPASS_OFFSET) |
(SPLIT_SIZE_MASK << SPLIT_SIZE_OFFSET),
(0x1 << SPLIT_BYPASS_OFFSET) |
(0x0 << SPLIT_SIZE_OFFSET));
}
static void dram_all_config(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 dram_type = sdram_params->base.dramtype;
void __iomem *pctl_base = dram->pctl;
u32 sys_reg2 = 0;
u32 sys_reg3 = 0;
u64 cs_cap[2];
u32 cs_pst;
set_ddrconfig(dram, cap_info->ddrconfig);
sdram_org_config(cap_info, &sdram_params->base, &sys_reg2,
&sys_reg3, 0);
writel(sys_reg2, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
cs_cap[0] = sdram_get_cs_cap(cap_info, 0, dram_type);
cs_cap[1] = sdram_get_cs_cap(cap_info, 1, dram_type);
if (cap_info->rank == 2) {
cs_pst = (readl(pctl_base + DDR_PCTL2_ADDRMAP0) & 0x1f) +
6 + 2;
if (cs_pst > 28)
cs_cap[0] = 1llu << cs_pst;
}
writel(((((cs_cap[1] >> 20) / 64) & 0xff) << 8) |
(((cs_cap[0] >> 20) / 64) & 0xff),
&dram->msch->devicesize);
update_noc_timing(dram, sdram_params);
}
static void enable_low_power(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
u32 grf_lp_con;
writel(0x1f1f0617, &dram->ddrgrf->ddr_grf_con[1]);
if (sdram_params->base.dramtype == DDR4)
grf_lp_con = (0x7 << 16) | (1 << 1);
else if (sdram_params->base.dramtype == DDR3)
grf_lp_con = (0x7 << 16) | (1 << 0);
else
grf_lp_con = (0x7 << 16) | (1 << 2);
/* en lpckdis_en */
grf_lp_con = grf_lp_con | (0x1 << (9 + 16)) | (0x1 << 9);
writel(grf_lp_con, &dram->ddrgrf->ddr_grf_lp_con);
/* enable sr, pd */
if (dram->pd_idle == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
if (dram->sr_idle == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 3));
}
static void print_ddr_info(struct rv1126_sdram_params *sdram_params)
{
u32 split;
if ((readl(DDR_GRF_BASE_ADDR + DDR_GRF_SPLIT_CON) &
(1 << SPLIT_BYPASS_OFFSET)) != 0)
split = 0;
else
split = readl(DDR_GRF_BASE_ADDR + DDR_GRF_SPLIT_CON) &
SPLIT_SIZE_MASK;
sdram_print_ddr_info(&sdram_params->ch.cap_info,
&sdram_params->base, split);
}
static int sdram_init_(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params, u32 post_init)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 ddr4_vref;
u32 mr_tmp;
rkclk_configure_ddr(dram, sdram_params);
rkclk_ddr_reset(dram, 1, 1, 1, 1);
udelay(10);
rkclk_ddr_reset(dram, 1, 1, 1, 0);
phy_cfg(dram, sdram_params);
rkclk_ddr_reset(dram, 1, 1, 0, 0);
phy_pll_set(dram, sdram_params->base.ddr_freq * MHZ, 1);
rkclk_ddr_reset(dram, 1, 0, 0, 0);
pctl_cfg(dram->pctl, &sdram_params->pctl_regs,
dram->sr_idle, dram->pd_idle);
if (sdram_params->ch.cap_info.bw == 2) {
/* 32bit interface use pageclose */
setbits_le32(pctl_base + DDR_PCTL2_SCHED, 1 << 2);
/* pageclose = 1, pageclose_timer = 0 will err in lp4 328MHz */
clrsetbits_le32(pctl_base + DDR_PCTL2_SCHED1, 0xff, 0x1 << 0);
} else {
clrbits_le32(pctl_base + DDR_PCTL2_SCHED, 1 << 2);
}
#ifdef CONFIG_ROCKCHIP_DRAM_EXTENDED_TEMP_SUPPORT
u32 tmp, trefi;
tmp = readl(pctl_base + DDR_PCTL2_RFSHTMG);
trefi = (tmp >> 16) & 0xfff;
writel((tmp & 0xf000ffff) | (trefi / 2) << 16,
pctl_base + DDR_PCTL2_RFSHTMG);
#endif
/* set frequency_mode */
setbits_le32(pctl_base + DDR_PCTL2_MSTR, 0x1 << 29);
/* set target_frequency to Frequency 0 */
clrsetbits_le32(pctl_base + DDR_PCTL2_MSTR2, 0x3, 0);
set_ds_odt(dram, sdram_params, 0);
sdram_params->ch.cap_info.ddrconfig = calculate_ddrconfig(sdram_params);
set_ctl_address_map(dram, sdram_params);
setbits_le32(pctl_base + DDR_PCTL2_DFIMISC, (1 << 5) | (1 << 4));
rkclk_ddr_reset(dram, 0, 0, 0, 0);
while ((readl(pctl_base + DDR_PCTL2_STAT) & 0x7) == 0)
continue;
if (sdram_params->base.dramtype == LPDDR3) {
pctl_write_mr(dram->pctl, 3, 11, lp3_odt_value, LPDDR3);
} else if (sdram_params->base.dramtype == LPDDR4) {
mr_tmp = readl(pctl_base + DDR_PCTL2_INIT6);
/* MR11 */
pctl_write_mr(dram->pctl, 3, 11,
mr_tmp >> PCTL2_LPDDR4_MR11_SHIFT & PCTL2_MR_MASK,
LPDDR4);
/* MR12 */
pctl_write_mr(dram->pctl, 3, 12,
mr_tmp >> PCTL2_LPDDR4_MR12_SHIFT & PCTL2_MR_MASK,
LPDDR4);
mr_tmp = readl(pctl_base + DDR_PCTL2_INIT7);
/* MR22 */
pctl_write_mr(dram->pctl, 3, 22,
mr_tmp >> PCTL2_LPDDR4_MR22_SHIFT & PCTL2_MR_MASK,
LPDDR4);
}
if (data_training(dram, 0, sdram_params, 0, READ_GATE_TRAINING) != 0) {
if (post_init != 0)
printascii("DTT cs0 error\n");
return -1;
}
if (sdram_params->base.dramtype == LPDDR4) {
mr_tmp = read_mr(dram, 1, 14, LPDDR4);
if (mr_tmp != 0x4d)
return -1;
}
if (sdram_params->base.dramtype == LPDDR4) {
mr_tmp = readl(pctl_base + DDR_PCTL2_INIT7);
/* MR14 */
pctl_write_mr(dram->pctl, 3, 14,
mr_tmp >> PCTL2_LPDDR4_MR14_SHIFT & PCTL2_MR_MASK,
LPDDR4);
}
if (post_init != 0 && sdram_params->ch.cap_info.rank == 2) {
if (data_training(dram, 1, sdram_params, 0,
READ_GATE_TRAINING) != 0) {
printascii("DTT cs1 error\n");
return -1;
}
}
if (sdram_params->base.dramtype == DDR4) {
ddr4_vref = readl(PHY_REG(phy_base, 0x105)) * 39;
pctl_write_vrefdq(dram->pctl, 0x3, ddr4_vref,
sdram_params->base.dramtype);
}
dram_all_config(dram, sdram_params);
enable_low_power(dram, sdram_params);
return 0;
}
static u64 dram_detect_cap(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params,
unsigned char channel)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 mr8;
u32 bktmp;
u32 coltmp;
u32 rowtmp;
u32 cs;
u32 dram_type = sdram_params->base.dramtype;
u32 pwrctl;
u32 i, dq_map;
u32 byte1 = 0, byte0 = 0;
u32 tmp, byte;
struct sdram_head_info_index_v2 *index = (struct sdram_head_info_index_v2 *)common_info;
struct dq_map_info *map_info = (struct dq_map_info *)
((void *)common_info + index->dq_map_index.offset * 4);
cap_info->bw = dram_type == DDR3 ? 0 : 1;
if (dram_type != LPDDR4) {
if (dram_type != DDR4) {
coltmp = 12;
bktmp = 3;
if (dram_type == LPDDR2)
rowtmp = 15;
else
rowtmp = 16;
if (sdram_detect_col(cap_info, coltmp) != 0)
goto cap_err;
sdram_detect_bank(cap_info, coltmp, bktmp);
if (dram_type != LPDDR3)
sdram_detect_dbw(cap_info, dram_type);
} else {
coltmp = 10;
bktmp = 4;
rowtmp = 17;
cap_info->col = 10;
cap_info->bk = 2;
sdram_detect_bg(cap_info, coltmp);
}
if (sdram_detect_row(cap_info, coltmp, bktmp, rowtmp) != 0)
goto cap_err;
sdram_detect_row_3_4(cap_info, coltmp, bktmp);
} else {
cap_info->col = 10;
cap_info->bk = 3;
mr8 = read_mr(dram, 1, 8, dram_type);
cap_info->dbw = ((mr8 >> 6) & 0x3) == 0 ? 1 : 0;
mr8 = (mr8 >> 2) & 0xf;
if (mr8 >= 0 && mr8 <= 6) {
cap_info->cs0_row = 14 + (mr8 + 1) / 2;
} else if (mr8 == 0xc) {
cap_info->cs0_row = 13;
} else {
printascii("Cap ERR: Fail to get cap of LPDDR4/X from MR8\n");
goto cap_err;
}
if (cap_info->dbw == 0)
cap_info->cs0_row++;
cap_info->row_3_4 = mr8 % 2 == 1 ? 1 : 0;
if (cap_info->cs0_row >= 17) {
printascii("Cap ERR: ");
printascii("RV1126 LPDDR4/X cannot support row >= 17\n");
goto cap_err;
// cap_info->cs0_row = 16;
// cap_info->row_3_4 = 0;
}
}
pwrctl = readl(pctl_base + DDR_PCTL2_PWRCTL);
writel(0, pctl_base + DDR_PCTL2_PWRCTL);
if (data_training(dram, 1, sdram_params, 0, READ_GATE_TRAINING) == 0)
cs = 1;
else
cs = 0;
cap_info->rank = cs + 1;
setbits_le32(PHY_REG(phy_base, 0xf), 0xf);
tmp = data_training_rg(dram, 0, dram_type) & 0xf;
if (tmp == 0) {
cap_info->bw = 2;
} else {
if (dram_type == DDR3 || dram_type == DDR4) {
dq_map = 0;
byte = 0;
for (i = 0; i < 4; i++) {
if ((tmp & BIT(i)) == 0) {
dq_map |= byte << (i * 2);
byte++;
}
}
cap_info->bw = byte / 2;
for (i = 0; i < 4; i++) {
if ((tmp & BIT(i)) != 0) {
dq_map |= byte << (i * 2);
byte++;
}
}
clrsetbits_le32(&map_info->byte_map[0], 0xff << 24, dq_map << 24);
} else {
dq_map = readl(PHY_REG(phy_base, 0x4f));
for (i = 0; i < 4; i++) {
if (((dq_map >> (i * 2)) & 0x3) == 0)
byte0 = i;
if (((dq_map >> (i * 2)) & 0x3) == 1)
byte1 = i;
}
clrsetbits_le32(PHY_REG(phy_base, 0xf), PHY_DQ_WIDTH_MASK,
BIT(byte0) | BIT(byte1));
if (data_training(dram, 0, sdram_params, 0, READ_GATE_TRAINING) == 0)
cap_info->bw = 1;
else
cap_info->bw = 0;
}
}
if (cap_info->bw > 0)
cap_info->dbw = 1;
writel(pwrctl, pctl_base + DDR_PCTL2_PWRCTL);
cap_info->cs0_high16bit_row = cap_info->cs0_row;
if (cs) {
cap_info->cs1_row = cap_info->cs0_row;
cap_info->cs1_high16bit_row = cap_info->cs0_row;
} else {
cap_info->cs1_row = 0;
cap_info->cs1_high16bit_row = 0;
}
if (dram_type == LPDDR3)
sdram_detect_dbw(cap_info, dram_type);
return 0;
cap_err:
return -1;
}
static int dram_detect_cs1_row(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params,
unsigned char channel)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
u32 ret = 0;
void __iomem *test_addr;
u32 row, bktmp, coltmp, bw;
u64 cs0_cap;
u32 byte_mask;
u32 cs_pst;
u32 cs_add = 0;
u32 max_row;
if (cap_info->rank == 2) {
cs_pst = (readl(pctl_base + DDR_PCTL2_ADDRMAP0) & 0x1f) +
6 + 2;
if (cs_pst < 28)
cs_add = 1;
cs0_cap = 1 << cs_pst;
if (sdram_params->base.dramtype == DDR4) {
if (cap_info->dbw == 0)
bktmp = cap_info->bk + 2;
else
bktmp = cap_info->bk + 1;
} else {
bktmp = cap_info->bk;
}
bw = cap_info->bw;
coltmp = cap_info->col;
if (bw == 2)
byte_mask = 0xFFFF;
else
byte_mask = 0xFF;
max_row = (cs_pst == 31) ? 30 : 31;
max_row = max_row - bktmp - coltmp - bw - cs_add + 1;
row = (cap_info->cs0_row > max_row) ? max_row :
cap_info->cs0_row;
for (; row > 12; row--) {
test_addr = (void __iomem *)(CFG_SYS_SDRAM_BASE +
(u32)cs0_cap +
(1ul << (row + bktmp + coltmp +
cs_add + bw - 1ul)));
writel(0, CFG_SYS_SDRAM_BASE + (u32)cs0_cap);
writel(PATTERN, test_addr);
if (((readl(test_addr) & byte_mask) ==
(PATTERN & byte_mask)) &&
((readl(CFG_SYS_SDRAM_BASE + (u32)cs0_cap) &
byte_mask) == 0)) {
ret = row;
break;
}
}
}
return ret;
}
/* return: 0 = success, other = fail */
static int sdram_init_detect(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 ret;
u32 sys_reg = 0;
u32 sys_reg3 = 0;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct dq_map_info *map_info;
map_info = (struct dq_map_info *)((void *)common_info +
index->dq_map_index.offset * 4);
if (sdram_init_(dram, sdram_params, 0)) {
if (sdram_params->base.dramtype == DDR3) {
clrsetbits_le32(&map_info->byte_map[0], 0xff << 24,
((0x1 << 6) | (0x3 << 4) | (0x2 << 2) |
(0x0 << 0)) << 24);
if (sdram_init_(dram, sdram_params, 0))
return -1;
} else {
return -1;
}
}
if (sdram_params->base.dramtype == DDR3) {
writel(PATTERN, CFG_SYS_SDRAM_BASE);
if (readl(CFG_SYS_SDRAM_BASE) != PATTERN)
return -1;
}
split_bypass(dram);
if (dram_detect_cap(dram, sdram_params, 0) != 0)
return -1;
pctl_remodify_sdram_params(&sdram_params->pctl_regs, cap_info,
sdram_params->base.dramtype);
ret = sdram_init_(dram, sdram_params, 1);
if (ret != 0)
goto out;
cap_info->cs1_row =
dram_detect_cs1_row(dram, sdram_params, 0);
if (cap_info->cs1_row) {
sys_reg = readl(&dram->pmugrf->os_reg[2]);
sys_reg3 = readl(&dram->pmugrf->os_reg[3]);
SYS_REG_ENC_CS1_ROW(cap_info->cs1_row,
sys_reg, sys_reg3, 0);
writel(sys_reg, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
}
sdram_detect_high_row(cap_info);
split_setup(dram, sdram_params);
out:
return ret;
}
struct rv1126_sdram_params *get_default_sdram_config(u32 freq_mhz)
{
u32 i;
u32 offset = 0;
struct ddr2_3_4_lp2_3_info *ddr_info;
if (!freq_mhz) {
ddr_info = get_ddr_drv_odt_info(sdram_configs[0].base.dramtype);
if (ddr_info)
freq_mhz =
(ddr_info->ddr_freq0_1 >> DDR_FREQ_F0_SHIFT) &
DDR_FREQ_MASK;
else
freq_mhz = 0;
}
for (i = 0; i < ARRAY_SIZE(sdram_configs); i++) {
if (sdram_configs[i].base.ddr_freq == 0 ||
freq_mhz < sdram_configs[i].base.ddr_freq)
break;
}
offset = i == 0 ? 0 : i - 1;
return &sdram_configs[offset];
}
static const u16 pctl_need_update_reg[] = {
DDR_PCTL2_RFSHTMG,
DDR_PCTL2_INIT3,
DDR_PCTL2_INIT4,
DDR_PCTL2_INIT6,
DDR_PCTL2_INIT7,
DDR_PCTL2_DRAMTMG0,
DDR_PCTL2_DRAMTMG1,
DDR_PCTL2_DRAMTMG2,
DDR_PCTL2_DRAMTMG3,
DDR_PCTL2_DRAMTMG4,
DDR_PCTL2_DRAMTMG5,
DDR_PCTL2_DRAMTMG6,
DDR_PCTL2_DRAMTMG7,
DDR_PCTL2_DRAMTMG8,
DDR_PCTL2_DRAMTMG9,
DDR_PCTL2_DRAMTMG12,
DDR_PCTL2_DRAMTMG13,
DDR_PCTL2_DRAMTMG14,
DDR_PCTL2_ZQCTL0,
DDR_PCTL2_DFITMG0,
DDR_PCTL2_ODTCFG
};
static const u16 phy_need_update_reg[] = {
0x14,
0x18,
0x1c
};
static void pre_set_rate(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params,
u32 dst_fsp, u32 dst_fsp_lp4)
{
u32 i, j, find;
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
u32 phy_offset;
u32 mr_tmp;
u32 dramtype = sdram_params->base.dramtype;
sw_set_req(dram);
/* pctl timing update */
for (i = 0, find = 0; i < ARRAY_SIZE(pctl_need_update_reg); i++) {
for (j = find; sdram_params->pctl_regs.pctl[j][0] != 0xFFFFFFFF;
j++) {
if (sdram_params->pctl_regs.pctl[j][0] ==
pctl_need_update_reg[i]) {
writel(sdram_params->pctl_regs.pctl[j][1],
pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
pctl_need_update_reg[i]);
find = j;
break;
}
}
}
#ifdef CONFIG_ROCKCHIP_DRAM_EXTENDED_TEMP_SUPPORT
u32 tmp, trefi;
tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) + DDR_PCTL2_RFSHTMG);
trefi = (tmp >> 16) & 0xfff;
writel((tmp & 0xf000ffff) | (trefi / 2) << 16,
pctl_base + UMCTL2_REGS_FREQ(dst_fsp) + DDR_PCTL2_RFSHTMG);
#endif
sw_set_ack(dram);
/* phy timing update */
if (dst_fsp == 0)
phy_offset = 0;
else
phy_offset = PHY_REG(0, 0x387 - 5 + (dst_fsp - 1) * 3);
/* cl cwl al update */
for (i = 0, find = 0; i < ARRAY_SIZE(phy_need_update_reg); i++) {
for (j = find; sdram_params->phy_regs.phy[j][0] != 0xFFFFFFFF;
j++) {
if (sdram_params->phy_regs.phy[j][0] ==
phy_need_update_reg[i]) {
writel(sdram_params->phy_regs.phy[j][1],
phy_base + phy_offset +
phy_need_update_reg[i]);
find = j;
break;
}
}
}
set_ds_odt(dram, sdram_params, dst_fsp);
if (dramtype == LPDDR4) {
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT4);
/* MR13 */
pctl_write_mr(dram->pctl, 3, 13,
((mr_tmp >> PCTL2_LPDDR4_MR13_SHIFT &
PCTL2_MR_MASK) & (~(BIT(7) | BIT(6)))) |
((0x2 << 6) >> dst_fsp_lp4), dramtype);
writel(((mr_tmp >> PCTL2_LPDDR4_MR13_SHIFT &
PCTL2_MR_MASK) & (~(BIT(7) | BIT(6)))) |
((0x2 << 6) >> dst_fsp_lp4),
PHY_REG(phy_base, 0x1b));
/* MR3 */
pctl_write_mr(dram->pctl, 3, 3,
mr_tmp >> PCTL2_LPDDR234_MR3_SHIFT &
PCTL2_MR_MASK,
dramtype);
writel(mr_tmp >> PCTL2_LPDDR234_MR3_SHIFT & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x19));
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3);
/* MR1 */
pctl_write_mr(dram->pctl, 3, 1,
mr_tmp >> PCTL2_LPDDR234_MR1_SHIFT &
PCTL2_MR_MASK,
dramtype);
writel(mr_tmp >> PCTL2_LPDDR234_MR1_SHIFT & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x17));
/* MR2 */
pctl_write_mr(dram->pctl, 3, 2, mr_tmp & PCTL2_MR_MASK,
dramtype);
writel(mr_tmp & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x18));
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6);
/* MR11 */
pctl_write_mr(dram->pctl, 3, 11,
mr_tmp >> PCTL2_LPDDR4_MR11_SHIFT & PCTL2_MR_MASK,
dramtype);
writel(mr_tmp >> PCTL2_LPDDR4_MR11_SHIFT & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x1a));
/* MR12 */
pctl_write_mr(dram->pctl, 3, 12,
mr_tmp >> PCTL2_LPDDR4_MR12_SHIFT & PCTL2_MR_MASK,
dramtype);
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT7);
/* MR22 */
pctl_write_mr(dram->pctl, 3, 22,
mr_tmp >> PCTL2_LPDDR4_MR22_SHIFT & PCTL2_MR_MASK,
dramtype);
writel(mr_tmp >> PCTL2_LPDDR4_MR22_SHIFT & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x1d));
/* MR14 */
pctl_write_mr(dram->pctl, 3, 14,
mr_tmp >> PCTL2_LPDDR4_MR14_SHIFT & PCTL2_MR_MASK,
dramtype);
writel(mr_tmp >> PCTL2_LPDDR4_MR14_SHIFT & PCTL2_MR_MASK,
PHY_REG(phy_base, 0x1c));
}
update_noc_timing(dram, sdram_params);
}
static void save_fsp_param(struct dram_info *dram, u32 dst_fsp,
struct rv1126_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
struct rv1126_fsp_param *p_fsp_param = &fsp_param[dst_fsp];
u32 temp, temp1;
struct ddr2_3_4_lp2_3_info *ddr_info;
ddr_info = get_ddr_drv_odt_info(sdram_params->base.dramtype);
p_fsp_param->freq_mhz = sdram_params->base.ddr_freq;
if (sdram_params->base.dramtype == LPDDR4) {
p_fsp_param->rd_odt_up_en = 0;
p_fsp_param->rd_odt_down_en = 1;
} else {
p_fsp_param->rd_odt_up_en =
ODT_INFO_PULLUP_EN(ddr_info->odt_info);
p_fsp_param->rd_odt_down_en =
ODT_INFO_PULLDOWN_EN(ddr_info->odt_info);
}
if (p_fsp_param->rd_odt_up_en)
p_fsp_param->rd_odt = readl(PHY_REG(phy_base, 0x111));
else if (p_fsp_param->rd_odt_down_en)
p_fsp_param->rd_odt = readl(PHY_REG(phy_base, 0x110));
else
p_fsp_param->rd_odt = 0;
p_fsp_param->wr_dq_drv = readl(PHY_REG(phy_base, 0x112));
p_fsp_param->wr_ca_drv = readl(PHY_REG(phy_base, 0x100));
p_fsp_param->wr_ckcs_drv = readl(PHY_REG(phy_base, 0x102));
p_fsp_param->vref_inner = readl(PHY_REG(phy_base, 0x128));
p_fsp_param->vref_out = readl(PHY_REG(phy_base, 0x105));
if (sdram_params->base.dramtype == DDR3) {
temp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3);
temp = (temp >> PCTL2_DDR34_MR1_SHIFT) & PCTL2_MR_MASK;
p_fsp_param->ds_pdds = temp & DDR3_DS_MASK;
p_fsp_param->dq_odt = temp & DDR3_RTT_NOM_MASK;
p_fsp_param->ca_odt = p_fsp_param->dq_odt;
} else if (sdram_params->base.dramtype == DDR4) {
temp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3);
temp = (temp >> PCTL2_DDR34_MR1_SHIFT) & PCTL2_MR_MASK;
p_fsp_param->ds_pdds = temp & DDR4_DS_MASK;
p_fsp_param->dq_odt = temp & DDR4_RTT_NOM_MASK;
p_fsp_param->ca_odt = p_fsp_param->dq_odt;
} else if (sdram_params->base.dramtype == LPDDR3) {
temp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT4);
temp = (temp >> PCTL2_LPDDR234_MR3_SHIFT) & PCTL2_MR_MASK;
p_fsp_param->ds_pdds = temp & 0xf;
p_fsp_param->dq_odt = lp3_odt_value;
p_fsp_param->ca_odt = p_fsp_param->dq_odt;
} else if (sdram_params->base.dramtype == LPDDR4) {
temp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT4);
temp = (temp >> PCTL2_LPDDR234_MR3_SHIFT) & PCTL2_MR_MASK;
p_fsp_param->ds_pdds = temp & LPDDR4_PDDS_MASK;
temp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6);
temp = (temp >> PCTL2_LPDDR4_MR11_SHIFT) & PCTL2_MR_MASK;
p_fsp_param->dq_odt = temp & LPDDR4_DQODT_MASK;
p_fsp_param->ca_odt = temp & LPDDR4_CAODT_MASK;
temp = MAX(readl(PHY_REG(phy_base, 0x3ae)),
readl(PHY_REG(phy_base, 0x3ce)));
temp1 = MIN(readl(PHY_REG(phy_base, 0x3be)),
readl(PHY_REG(phy_base, 0x3de)));
p_fsp_param->vref_ca[0] = (temp + temp1) / 2;
temp = MAX(readl(PHY_REG(phy_base, 0x3af)),
readl(PHY_REG(phy_base, 0x3cf)));
temp1 = MIN(readl(PHY_REG(phy_base, 0x3bf)),
readl(PHY_REG(phy_base, 0x3df)));
p_fsp_param->vref_ca[1] = (temp + temp1) / 2;
p_fsp_param->vref_ca[0] |=
(readl(PHY_REG(phy_base, 0x1e)) & BIT(6));
p_fsp_param->vref_ca[1] |=
(readl(PHY_REG(phy_base, 0x1e)) & BIT(6));
p_fsp_param->lp4_drv_pd_en = (readl(PHY_REG(phy_base, 0x114)) >>
3) & 0x1;
}
p_fsp_param->noc_timings.ddrtiminga0 =
sdram_params->ch.noc_timings.ddrtiminga0;
p_fsp_param->noc_timings.ddrtimingb0 =
sdram_params->ch.noc_timings.ddrtimingb0;
p_fsp_param->noc_timings.ddrtimingc0 =
sdram_params->ch.noc_timings.ddrtimingc0;
p_fsp_param->noc_timings.devtodev0 =
sdram_params->ch.noc_timings.devtodev0;
p_fsp_param->noc_timings.ddrmode =
sdram_params->ch.noc_timings.ddrmode;
p_fsp_param->noc_timings.ddr4timing =
sdram_params->ch.noc_timings.ddr4timing;
p_fsp_param->noc_timings.agingx0 =
sdram_params->ch.noc_timings.agingx0;
p_fsp_param->noc_timings.aging0 =
sdram_params->ch.noc_timings.aging0;
p_fsp_param->noc_timings.aging1 =
sdram_params->ch.noc_timings.aging1;
p_fsp_param->noc_timings.aging2 =
sdram_params->ch.noc_timings.aging2;
p_fsp_param->noc_timings.aging3 =
sdram_params->ch.noc_timings.aging3;
p_fsp_param->flag = FSP_FLAG;
}
static void copy_fsp_param_to_ddr(void)
{
memcpy((void *)FSP_PARAM_STORE_ADDR, (void *)&fsp_param,
sizeof(fsp_param));
}
static void pctl_modify_trfc(struct ddr_pctl_regs *pctl_regs,
struct sdram_cap_info *cap_info, u32 dram_type,
u32 freq)
{
u64 cs0_cap;
u32 die_cap;
u32 trfc_ns, trfc4_ns;
u32 trfc, txsnr;
u32 txs_abort_fast = 0;
u32 tmp;
cs0_cap = sdram_get_cs_cap(cap_info, 0, dram_type);
die_cap = (u32)(cs0_cap >> (20 + (cap_info->bw - cap_info->dbw)));
switch (dram_type) {
case DDR3:
if (die_cap <= DIE_CAP_512MBIT)
trfc_ns = 90;
else if (die_cap <= DIE_CAP_1GBIT)
trfc_ns = 110;
else if (die_cap <= DIE_CAP_2GBIT)
trfc_ns = 160;
else if (die_cap <= DIE_CAP_4GBIT)
trfc_ns = 260;
else
trfc_ns = 350;
txsnr = MAX(5, ((trfc_ns + 10) * freq + 999) / 1000);
break;
case DDR4:
if (die_cap <= DIE_CAP_2GBIT) {
trfc_ns = 160;
trfc4_ns = 90;
} else if (die_cap <= DIE_CAP_4GBIT) {
trfc_ns = 260;
trfc4_ns = 110;
} else if (die_cap <= DIE_CAP_8GBIT) {
trfc_ns = 350;
trfc4_ns = 160;
} else {
trfc_ns = 550;
trfc4_ns = 260;
}
txsnr = ((trfc_ns + 10) * freq + 999) / 1000;
txs_abort_fast = ((trfc4_ns + 10) * freq + 999) / 1000;
break;
case LPDDR3:
if (die_cap <= DIE_CAP_4GBIT)
trfc_ns = 130;
else
trfc_ns = 210;
txsnr = MAX(2, ((trfc_ns + 10) * freq + 999) / 1000);
break;
case LPDDR4:
if (die_cap <= DIE_CAP_2GBIT)
trfc_ns = 130;
else if (die_cap <= DIE_CAP_4GBIT)
trfc_ns = 180;
else if (die_cap <= DIE_CAP_8GBIT)
trfc_ns = 280;
else
trfc_ns = 380;
txsnr = MAX(2, ((trfc_ns + 10) * freq + 999) / 1000);
break;
default:
return;
}
trfc = (trfc_ns * freq + 999) / 1000;
for (int i = 0; pctl_regs->pctl[i][0] != 0xffffffff; i++) {
switch (pctl_regs->pctl[i][0]) {
case DDR_PCTL2_RFSHTMG:
tmp = pctl_regs->pctl[i][1];
/* t_rfc_min */
tmp &= ~((u32)0x3ff);
tmp |= ((trfc + 1) / 2) & 0x3ff;
pctl_regs->pctl[i][1] = tmp;
break;
case DDR_PCTL2_DRAMTMG8:
if (dram_type == DDR3 || dram_type == DDR4) {
tmp = pctl_regs->pctl[i][1];
/* t_xs_x32 */
tmp &= ~((u32)0x7f);
tmp |= ((txsnr + 63) / 64) & 0x7f;
if (dram_type == DDR4) {
/* t_xs_abort_x32 */
tmp &= ~((u32)(0x7f << 16));
tmp |= (((txs_abort_fast + 63) / 64) & 0x7f) << 16;
/* t_xs_fast_x32 */
tmp &= ~((u32)(0x7f << 24));
tmp |= (((txs_abort_fast + 63) / 64) & 0x7f) << 24;
}
pctl_regs->pctl[i][1] = tmp;
}
break;
case DDR_PCTL2_DRAMTMG14:
if (dram_type == LPDDR3 ||
dram_type == LPDDR4) {
tmp = pctl_regs->pctl[i][1];
/* t_xsr */
tmp &= ~((u32)0xfff);
tmp |= ((txsnr + 1) / 2) & 0xfff;
pctl_regs->pctl[i][1] = tmp;
}
break;
default:
break;
}
}
}
void ddr_set_rate(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params,
u32 freq, u32 cur_freq, u32 dst_fsp,
u32 dst_fsp_lp4, u32 training_en)
{
u32 dest_dll_off, cur_init3, dst_init3, cur_fsp, cur_dll_off;
u32 mr_tmp;
u32 lp_stat;
u32 dramtype = sdram_params->base.dramtype;
struct rv1126_sdram_params *sdram_params_new;
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
lp_stat = low_power_update(dram, 0);
sdram_params_new = get_default_sdram_config(freq);
sdram_params_new->ch.cap_info.rank = sdram_params->ch.cap_info.rank;
sdram_params_new->ch.cap_info.bw = sdram_params->ch.cap_info.bw;
pctl_modify_trfc(&sdram_params_new->pctl_regs,
&sdram_params->ch.cap_info, dramtype, freq);
pre_set_rate(dram, sdram_params_new, dst_fsp, dst_fsp_lp4);
while ((readl(pctl_base + DDR_PCTL2_STAT) &
PCTL2_OPERATING_MODE_MASK) ==
PCTL2_OPERATING_MODE_SR)
continue;
dest_dll_off = 0;
dst_init3 = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT3);
if ((dramtype == DDR3 && (dst_init3 & 1)) ||
(dramtype == DDR4 && !(dst_init3 & 1)))
dest_dll_off = 1;
cur_fsp = readl(pctl_base + DDR_PCTL2_MSTR2) & 0x3;
cur_init3 = readl(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) +
DDR_PCTL2_INIT3);
cur_init3 &= PCTL2_MR_MASK;
cur_dll_off = 1;
if ((dramtype == DDR3 && !(cur_init3 & 1)) ||
(dramtype == DDR4 && (cur_init3 & 1)))
cur_dll_off = 0;
if (!cur_dll_off) {
if (dramtype == DDR3)
cur_init3 |= 1;
else
cur_init3 &= ~1;
pctl_write_mr(dram->pctl, 2, 1, cur_init3, dramtype);
}
setbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3,
PCTL2_DIS_AUTO_REFRESH);
update_refresh_reg(dram);
enter_sr(dram, 1);
writel(PMUGRF_CON_DDRPHY_BUFFEREN_MASK |
PMUGRF_CON_DDRPHY_BUFFEREN_EN,
&dram->pmugrf->soc_con[0]);
sw_set_req(dram);
clrbits_le32(pctl_base + DDR_PCTL2_DFIMISC,
PCTL2_DFI_INIT_COMPLETE_EN);
sw_set_ack(dram);
sw_set_req(dram);
if ((dramtype == DDR3 || dramtype == DDR4) && dest_dll_off)
setbits_le32(pctl_base + DDR_PCTL2_MSTR, PCTL2_DLL_OFF_MODE);
else
clrbits_le32(pctl_base + DDR_PCTL2_MSTR, PCTL2_DLL_OFF_MODE);
setbits_le32(pctl_base + UMCTL2_REGS_FREQ(cur_fsp) + DDR_PCTL2_ZQCTL0,
PCTL2_DIS_SRX_ZQCL);
setbits_le32(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) + DDR_PCTL2_ZQCTL0,
PCTL2_DIS_SRX_ZQCL);
sw_set_ack(dram);
writel(DDR_MSCH_EN_MASK | (0x1 << DDR_MSCH_EN_SHIFT),
&dram->cru->clkgate_con[21]);
writel(CLK_DDR_UPCTL_EN_MASK | ACLK_DDR_UPCTL_EN_MASK |
(0x1 << CLK_DDR_UPCTL_EN_SHIFT) |
(0x1 << ACLK_DDR_UPCTL_EN_SHIFT),
BUS_SGRF_BASE_ADDR + SGRF_SOC_CON12);
clrbits_le32(PHY_REG(phy_base, 0), ANALOG_DERESET | DIGITAL_DERESET);
rkclk_set_dpll(dram, freq * MHz / 2);
phy_pll_set(dram, freq * MHz, 0);
phy_pll_set(dram, freq * MHz, 1);
setbits_le32(PHY_REG(phy_base, 0), ANALOG_DERESET | DIGITAL_DERESET);
writel(PMUGRF_CON_DDRPHY_BUFFEREN_MASK |
PMUGRF_CON_DDRPHY_BUFFEREN_DIS,
&dram->pmugrf->soc_con[0]);
writel(DDR_MSCH_EN_MASK | (0x0 << DDR_MSCH_EN_SHIFT),
&dram->cru->clkgate_con[21]);
writel(CLK_DDR_UPCTL_EN_MASK | ACLK_DDR_UPCTL_EN_MASK |
(0x0 << CLK_DDR_UPCTL_EN_SHIFT) |
(0x0 << ACLK_DDR_UPCTL_EN_SHIFT),
BUS_SGRF_BASE_ADDR + SGRF_SOC_CON12);
while ((readl(pctl_base + DDR_PCTL2_DFISTAT) &
PCTL2_DFI_INIT_COMPLETE) != PCTL2_DFI_INIT_COMPLETE)
continue;
sw_set_req(dram);
setbits_le32(pctl_base + DDR_PCTL2_MSTR, 0x1 << 29);
clrsetbits_le32(pctl_base + DDR_PCTL2_MSTR2, 0x3, dst_fsp);
sw_set_ack(dram);
update_refresh_reg(dram);
clrsetbits_le32(PHY_REG(phy_base, 0xc), 0x3 << 2, dst_fsp << 2);
enter_sr(dram, 0);
setbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
clrbits_le32(PHY_REG(phy_base, 0x71), 1 << 5);
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) + DDR_PCTL2_INIT4);
if (dramtype == LPDDR3) {
pctl_write_mr(dram->pctl, 3, 1,
(dst_init3 >> PCTL2_LPDDR234_MR1_SHIFT) &
PCTL2_MR_MASK,
dramtype);
pctl_write_mr(dram->pctl, 3, 2, dst_init3 & PCTL2_MR_MASK,
dramtype);
pctl_write_mr(dram->pctl, 3, 3,
(mr_tmp >> PCTL2_LPDDR234_MR3_SHIFT) &
PCTL2_MR_MASK,
dramtype);
pctl_write_mr(dram->pctl, 3, 11, lp3_odt_value, dramtype);
} else if ((dramtype == DDR3) || (dramtype == DDR4)) {
pctl_write_mr(dram->pctl, 3, 1, dst_init3 & PCTL2_MR_MASK,
dramtype);
if (!dest_dll_off) {
pctl_write_mr(dram->pctl, 3, 0,
((dst_init3 >> PCTL2_DDR34_MR0_SHIFT) &
PCTL2_MR_MASK) | DDR3_DLL_RESET,
dramtype);
udelay(2);
}
pctl_write_mr(dram->pctl, 3, 0,
(dst_init3 >> PCTL2_DDR34_MR0_SHIFT &
PCTL2_MR_MASK) & (~DDR3_DLL_RESET),
dramtype);
pctl_write_mr(dram->pctl, 3, 2,
((mr_tmp >> PCTL2_DDR34_MR2_SHIFT) &
PCTL2_MR_MASK), dramtype);
if (dramtype == DDR4) {
pctl_write_mr(dram->pctl, 3, 3, mr_tmp & PCTL2_MR_MASK,
dramtype);
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT6);
pctl_write_mr(dram->pctl, 3, 4,
(mr_tmp >> PCTL2_DDR4_MR4_SHIFT) &
PCTL2_MR_MASK,
dramtype);
pctl_write_mr(dram->pctl, 3, 5,
mr_tmp >> PCTL2_DDR4_MR5_SHIFT &
PCTL2_MR_MASK,
dramtype);
mr_tmp = readl(pctl_base + UMCTL2_REGS_FREQ(dst_fsp) +
DDR_PCTL2_INIT7);
pctl_write_mr(dram->pctl, 3, 6,
mr_tmp >> PCTL2_DDR4_MR6_SHIFT &
PCTL2_MR_MASK,
dramtype);
}
} else if (dramtype == LPDDR4) {
pctl_write_mr(dram->pctl, 3, 13,
((mr_tmp >> PCTL2_LPDDR4_MR13_SHIFT &
PCTL2_MR_MASK) & (~(BIT(7)))) |
dst_fsp_lp4 << 7, dramtype);
}
clrbits_le32(pctl_base + DDR_PCTL2_RFSHCTL3,
PCTL2_DIS_AUTO_REFRESH);
update_refresh_reg(dram);
/* training */
high_freq_training(dram, sdram_params_new, dst_fsp);
low_power_update(dram, lp_stat);
save_fsp_param(dram, dst_fsp, sdram_params_new);
}
static void ddr_set_rate_for_fsp(struct dram_info *dram,
struct rv1126_sdram_params *sdram_params)
{
struct ddr2_3_4_lp2_3_info *ddr_info;
u32 f0;
u32 dramtype = sdram_params->base.dramtype;
u32 f1, f2, f3;
ddr_info = get_ddr_drv_odt_info(dramtype);
if (!ddr_info)
return;
f0 = (ddr_info->ddr_freq0_1 >> DDR_FREQ_F0_SHIFT) &
DDR_FREQ_MASK;
memset((void *)FSP_PARAM_STORE_ADDR, 0, sizeof(fsp_param));
memset((void *)&fsp_param, 0, sizeof(fsp_param));
f1 = (ddr_info->ddr_freq0_1 >> DDR_FREQ_F1_SHIFT) &
DDR_FREQ_MASK;
f2 = (ddr_info->ddr_freq2_3 >> DDR_FREQ_F2_SHIFT) &
DDR_FREQ_MASK;
f3 = (ddr_info->ddr_freq2_3 >> DDR_FREQ_F3_SHIFT) &
DDR_FREQ_MASK;
if (get_wrlvl_val(dram, sdram_params))
printascii("get wrlvl value fail\n");
if (IS_ENABLED(CONFIG_RAM_ROCKCHIP_DEBUG)) {
printascii("change to: ");
printdec(f1);
printascii("MHz\n");
}
ddr_set_rate(&dram_info, sdram_params, f1,
sdram_params->base.ddr_freq, 1, 1, 1);
if (IS_ENABLED(CONFIG_RAM_ROCKCHIP_DEBUG)) {
printascii("change to: ");
printdec(f2);
printascii("MHz\n");
}
ddr_set_rate(&dram_info, sdram_params, f2, f1, 2, 0, 1);
if (IS_ENABLED(CONFIG_RAM_ROCKCHIP_DEBUG)) {
printascii("change to: ");
printdec(f3);
printascii("MHz\n");
}
ddr_set_rate(&dram_info, sdram_params, f3, f2, 3, 1, 1);
if (IS_ENABLED(CONFIG_RAM_ROCKCHIP_DEBUG)) {
printascii("change to: ");
printdec(f0);
printascii("MHz(final freq)\n");
}
ddr_set_rate(&dram_info, sdram_params, f0, f3, 0, 0, 1);
}
int get_uart_config(void)
{
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct global_info *gbl_info;
gbl_info = (struct global_info *)((void *)common_info +
index->global_index.offset * 4);
return gbl_info->uart_info;
}
/* return: 0 = success, other = fail */
static int rv1126_dmc_init(struct udevice *dev)
{
struct rv1126_sdram_params *sdram_params;
int ret = 0;
struct sdram_head_info_index_v2 *index =
(struct sdram_head_info_index_v2 *)common_info;
struct global_info *gbl_info;
dram_info.phy = (void *)DDR_PHY_BASE_ADDR;
dram_info.pctl = (void *)UPCTL2_BASE_ADDR;
dram_info.grf = (void *)GRF_BASE_ADDR;
dram_info.cru = (void *)CRU_BASE_ADDR;
dram_info.msch = (void *)SERVER_MSCH_BASE_ADDR;
dram_info.ddrgrf = (void *)DDR_GRF_BASE_ADDR;
dram_info.pmugrf = (void *)PMU_GRF_BASE_ADDR;
#ifdef CONFIG_ROCKCHIP_DRAM_EXTENDED_TEMP_SUPPORT
printascii("extended temp support\n");
#endif
if (index->version_info != 2 ||
(index->global_index.size != sizeof(struct global_info) / 4) ||
(index->ddr3_index.size !=
sizeof(struct ddr2_3_4_lp2_3_info) / 4) ||
(index->ddr4_index.size !=
sizeof(struct ddr2_3_4_lp2_3_info) / 4) ||
(index->lp3_index.size !=
sizeof(struct ddr2_3_4_lp2_3_info) / 4) ||
(index->lp4_index.size != (sizeof(struct lp4_info) / 4)) ||
(index->lp4x_index.size != (sizeof(struct lp4_info) / 4)) ||
index->global_index.offset == 0 ||
index->ddr3_index.offset == 0 ||
index->ddr4_index.offset == 0 ||
index->lp3_index.offset == 0 ||
index->lp4_index.offset == 0 ||
index->lp4x_index.offset == 0) {
printascii("common info error\n");
goto error;
}
gbl_info = (struct global_info *)((void *)common_info +
index->global_index.offset * 4);
dram_info.sr_idle = SR_INFO(gbl_info->sr_pd_info);
dram_info.pd_idle = PD_INFO(gbl_info->sr_pd_info);
sdram_params = &sdram_configs[0];
if (sdram_params->base.dramtype == DDR3 ||
sdram_params->base.dramtype == DDR4) {
if (DDR_2T_INFO(gbl_info->info_2t))
sdram_params->pctl_regs.pctl[0][1] |= 0x1 << 10;
else
sdram_params->pctl_regs.pctl[0][1] &=
~(0x1 << 10);
}
ret = sdram_init_detect(&dram_info, sdram_params);
if (ret) {
sdram_print_dram_type(sdram_params->base.dramtype);
printascii(", ");
printdec(sdram_params->base.ddr_freq);
printascii("MHz\n");
goto error;
}
print_ddr_info(sdram_params);
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
init_rw_trn_result_struct(&rw_trn_result, dram_info.phy,
(u8)sdram_params->ch.cap_info.rank);
#endif
ddr_set_rate_for_fsp(&dram_info, sdram_params);
copy_fsp_param_to_ddr();
#if defined(CONFIG_CMD_DDR_TEST_TOOL)
save_rw_trn_result_to_ddr(&rw_trn_result);
#endif
if (IS_ENABLED(CONFIG_RAM_ROCKCHIP_DEBUG))
printascii("out\n");
return ret;
error:
printascii("error\n");
return (-1);
}
#endif
static int rv1126_dmc_probe(struct udevice *dev)
{
#if defined(CONFIG_TPL_BUILD) || \
(!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD))
if (rv1126_dmc_init(dev))
return 0;
#else
struct dram_info *priv = dev_get_priv(dev);
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
debug("%s: grf=%p\n", __func__, priv->pmugrf);
priv->info.base = CFG_SYS_SDRAM_BASE;
priv->info.size =
rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
#endif
return 0;
}
static int rv1126_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rv1126_dmc_ops = {
.get_info = rv1126_dmc_get_info,
};
static const struct udevice_id rv1126_dmc_ids[] = {
{ .compatible = "rockchip,rv1126-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_rv1126) = {
.name = "rockchip_rv1126_dmc",
.id = UCLASS_RAM,
.of_match = rv1126_dmc_ids,
.ops = &rv1126_dmc_ops,
.probe = rv1126_dmc_probe,
.priv_auto = sizeof(struct dram_info),
};