| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2016-2018, NVIDIA CORPORATION. |
| */ |
| |
| #include <common.h> |
| #include <env.h> |
| #include <fdt_support.h> |
| #include <fdtdec.h> |
| #include <hang.h> |
| #include <init.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <asm/global_data.h> |
| #include <linux/printk.h> |
| |
| #include <linux/ctype.h> |
| #include <linux/sizes.h> |
| |
| #include <asm/arch/tegra.h> |
| #include <asm/arch-tegra/cboot.h> |
| #include <asm/armv8/mmu.h> |
| |
| /* |
| * Size of a region that's large enough to hold the relocated U-Boot and all |
| * other allocations made around it (stack, heap, page tables, etc.) |
| * In practice, running "bdinfo" at the shell prompt, the stack reaches about |
| * 5MB from the address selected for ram_top as of the time of writing, |
| * so a 16MB region should be plenty. |
| */ |
| #define MIN_USABLE_RAM_SIZE SZ_16M |
| /* |
| * The amount of space we expect to require for stack usage. Used to validate |
| * that all reservations fit into the region selected for the relocation target |
| */ |
| #define MIN_USABLE_STACK_SIZE SZ_1M |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| extern struct mm_region tegra_mem_map[]; |
| |
| /* |
| * These variables are written to before relocation, and hence cannot be |
| * in.bss, since .bss overlaps the DTB that's appended to the U-Boot binary. |
| * The section attribute forces this into .data and avoids this issue. This |
| * also has the nice side-effect of the content being valid after relocation. |
| */ |
| |
| /* The number of valid entries in ram_banks[] */ |
| static int ram_bank_count __section(".data"); |
| |
| /* |
| * The usable top-of-RAM for U-Boot. This is both: |
| * a) Below 4GB to avoid issues with peripherals that use 32-bit addressing. |
| * b) At the end of a region that has enough space to hold the relocated U-Boot |
| * and all other allocations made around it (stack, heap, page tables, etc.) |
| */ |
| static u64 ram_top __section(".data"); |
| /* The base address of the region of RAM that ends at ram_top */ |
| static u64 region_base __section(".data"); |
| |
| /* |
| * Explicitly put this in the .data section because it is written before the |
| * .bss section is zeroed out but it needs to persist. |
| */ |
| unsigned long cboot_boot_x0 __section(".data"); |
| |
| void cboot_save_boot_params(unsigned long x0, unsigned long x1, |
| unsigned long x2, unsigned long x3) |
| { |
| cboot_boot_x0 = x0; |
| } |
| |
| int cboot_dram_init(void) |
| { |
| unsigned int na, ns; |
| const void *cboot_blob = (void *)cboot_boot_x0; |
| int node, len, i; |
| const u32 *prop; |
| |
| if (!cboot_blob) |
| return -EINVAL; |
| |
| na = fdtdec_get_uint(cboot_blob, 0, "#address-cells", 2); |
| ns = fdtdec_get_uint(cboot_blob, 0, "#size-cells", 2); |
| |
| node = fdt_path_offset(cboot_blob, "/memory"); |
| if (node < 0) { |
| pr_err("Can't find /memory node in cboot DTB"); |
| hang(); |
| } |
| prop = fdt_getprop(cboot_blob, node, "reg", &len); |
| if (!prop) { |
| pr_err("Can't find /memory/reg property in cboot DTB"); |
| hang(); |
| } |
| |
| /* Calculate the true # of base/size pairs to read */ |
| len /= 4; /* Convert bytes to number of cells */ |
| len /= (na + ns); /* Convert cells to number of banks */ |
| if (len > CONFIG_NR_DRAM_BANKS) |
| len = CONFIG_NR_DRAM_BANKS; |
| |
| /* Parse the /memory node, and save useful entries */ |
| gd->ram_size = 0; |
| ram_bank_count = 0; |
| for (i = 0; i < len; i++) { |
| u64 bank_start, bank_end, bank_size, usable_bank_size; |
| |
| /* Extract raw memory region data from DTB */ |
| bank_start = fdt_read_number(prop, na); |
| prop += na; |
| bank_size = fdt_read_number(prop, ns); |
| prop += ns; |
| gd->ram_size += bank_size; |
| bank_end = bank_start + bank_size; |
| debug("Bank %d: %llx..%llx (+%llx)\n", i, |
| bank_start, bank_end, bank_size); |
| |
| /* |
| * Align the bank to MMU section size. This is not strictly |
| * necessary, since the translation table construction code |
| * handles page granularity without issue. However, aligning |
| * the MMU entries reduces the size and number of levels in the |
| * page table, so is worth it. |
| */ |
| bank_start = ROUND(bank_start, SZ_2M); |
| bank_end = bank_end & ~(SZ_2M - 1); |
| bank_size = bank_end - bank_start; |
| debug(" aligned: %llx..%llx (+%llx)\n", |
| bank_start, bank_end, bank_size); |
| if (bank_end <= bank_start) |
| continue; |
| |
| /* Record data used to create MMU translation tables */ |
| ram_bank_count++; |
| /* Index below is deliberately 1-based to skip MMIO entry */ |
| tegra_mem_map[ram_bank_count].virt = bank_start; |
| tegra_mem_map[ram_bank_count].phys = bank_start; |
| tegra_mem_map[ram_bank_count].size = bank_size; |
| tegra_mem_map[ram_bank_count].attrs = |
| PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE; |
| |
| /* Determine best bank to relocate U-Boot into */ |
| if (bank_end > SZ_4G) |
| bank_end = SZ_4G; |
| debug(" end %llx (usable)\n", bank_end); |
| usable_bank_size = bank_end - bank_start; |
| debug(" size %llx (usable)\n", usable_bank_size); |
| if ((usable_bank_size >= MIN_USABLE_RAM_SIZE) && |
| (bank_end > ram_top)) { |
| ram_top = bank_end; |
| region_base = bank_start; |
| debug("ram top now %llx\n", ram_top); |
| } |
| } |
| |
| /* Ensure memory map contains the desired sentinel entry */ |
| tegra_mem_map[ram_bank_count + 1].virt = 0; |
| tegra_mem_map[ram_bank_count + 1].phys = 0; |
| tegra_mem_map[ram_bank_count + 1].size = 0; |
| tegra_mem_map[ram_bank_count + 1].attrs = 0; |
| |
| /* Error out if a relocation target couldn't be found */ |
| if (!ram_top) { |
| pr_err("Can't find a usable RAM top"); |
| hang(); |
| } |
| |
| return 0; |
| } |
| |
| int cboot_dram_init_banksize(void) |
| { |
| int i; |
| |
| if (ram_bank_count == 0) |
| return -EINVAL; |
| |
| if ((gd->start_addr_sp - region_base) < MIN_USABLE_STACK_SIZE) { |
| pr_err("Reservations exceed chosen region size"); |
| hang(); |
| } |
| |
| for (i = 0; i < ram_bank_count; i++) { |
| gd->bd->bi_dram[i].start = tegra_mem_map[1 + i].virt; |
| gd->bd->bi_dram[i].size = tegra_mem_map[1 + i].size; |
| } |
| |
| #ifdef CONFIG_PCI |
| gd->pci_ram_top = ram_top; |
| #endif |
| |
| return 0; |
| } |
| |
| ulong cboot_get_usable_ram_top(ulong total_size) |
| { |
| return ram_top; |
| } |
| |
| /* |
| * The following few functions run late during the boot process and dynamically |
| * calculate the load address of various binaries. To keep track of multiple |
| * allocations, some writable list of RAM banks must be used. tegra_mem_map[] |
| * is used for this purpose to avoid making yet another copy of the list of RAM |
| * banks. This is safe because tegra_mem_map[] is only used once during very |
| * early boot to create U-Boot's page tables, long before this code runs. If |
| * this assumption becomes invalid later, we can just fix the code to copy the |
| * list of RAM banks into some private data structure before running. |
| */ |
| |
| static char *gen_varname(const char *var, const char *ext) |
| { |
| size_t len_var = strlen(var); |
| size_t len_ext = strlen(ext); |
| size_t len = len_var + len_ext + 1; |
| char *varext = malloc(len); |
| |
| if (!varext) |
| return 0; |
| strcpy(varext, var); |
| strcpy(varext + len_var, ext); |
| return varext; |
| } |
| |
| static void mark_ram_allocated(int bank, u64 allocated_start, u64 allocated_end) |
| { |
| u64 bank_start = tegra_mem_map[bank].virt; |
| u64 bank_size = tegra_mem_map[bank].size; |
| u64 bank_end = bank_start + bank_size; |
| bool keep_front = allocated_start != bank_start; |
| bool keep_tail = allocated_end != bank_end; |
| |
| if (keep_front && keep_tail) { |
| /* |
| * There are CONFIG_NR_DRAM_BANKS DRAM entries in the array, |
| * starting at index 1 (index 0 is MMIO). So, we are at DRAM |
| * entry "bank" not "bank - 1" as for a typical 0-base array. |
| * The number of remaining DRAM entries is therefore |
| * "CONFIG_NR_DRAM_BANKS - bank". We want to duplicate the |
| * current entry and shift up the remaining entries, dropping |
| * the last one. Thus, we must copy one fewer entry than the |
| * number remaining. |
| */ |
| memmove(&tegra_mem_map[bank + 1], &tegra_mem_map[bank], |
| CONFIG_NR_DRAM_BANKS - bank - 1); |
| tegra_mem_map[bank].size = allocated_start - bank_start; |
| bank++; |
| tegra_mem_map[bank].virt = allocated_end; |
| tegra_mem_map[bank].phys = allocated_end; |
| tegra_mem_map[bank].size = bank_end - allocated_end; |
| } else if (keep_front) { |
| tegra_mem_map[bank].size = allocated_start - bank_start; |
| } else if (keep_tail) { |
| tegra_mem_map[bank].virt = allocated_end; |
| tegra_mem_map[bank].phys = allocated_end; |
| tegra_mem_map[bank].size = bank_end - allocated_end; |
| } else { |
| /* |
| * We could move all subsequent banks down in the array but |
| * that's not necessary for subsequent allocations to work, so |
| * we skip doing so. |
| */ |
| tegra_mem_map[bank].size = 0; |
| } |
| } |
| |
| static void reserve_ram(u64 start, u64 size) |
| { |
| int bank; |
| u64 end = start + size; |
| |
| for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) { |
| u64 bank_start = tegra_mem_map[bank].virt; |
| u64 bank_size = tegra_mem_map[bank].size; |
| u64 bank_end = bank_start + bank_size; |
| |
| if (end <= bank_start || start > bank_end) |
| continue; |
| mark_ram_allocated(bank, start, end); |
| break; |
| } |
| } |
| |
| static u64 alloc_ram(u64 size, u64 align, u64 offset) |
| { |
| int bank; |
| |
| for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) { |
| u64 bank_start = tegra_mem_map[bank].virt; |
| u64 bank_size = tegra_mem_map[bank].size; |
| u64 bank_end = bank_start + bank_size; |
| u64 allocated = ROUND(bank_start, align) + offset; |
| u64 allocated_end = allocated + size; |
| |
| if (allocated_end > bank_end) |
| continue; |
| mark_ram_allocated(bank, allocated, allocated_end); |
| return allocated; |
| } |
| return 0; |
| } |
| |
| static void set_calculated_aliases(char *aliases, u64 address) |
| { |
| char *tmp, *alias; |
| int err; |
| |
| aliases = strdup(aliases); |
| if (!aliases) { |
| pr_err("strdup(aliases) failed"); |
| return; |
| } |
| |
| tmp = aliases; |
| while (true) { |
| alias = strsep(&tmp, " "); |
| if (!alias) |
| break; |
| debug("%s: alias: %s\n", __func__, alias); |
| err = env_set_hex(alias, address); |
| if (err) |
| pr_err("Could not set %s\n", alias); |
| } |
| |
| free(aliases); |
| } |
| |
| static void set_calculated_env_var(const char *var) |
| { |
| char *var_size; |
| char *var_align; |
| char *var_offset; |
| char *var_aliases; |
| u64 size; |
| u64 align; |
| u64 offset; |
| char *aliases; |
| u64 address; |
| int err; |
| |
| var_size = gen_varname(var, "_size"); |
| if (!var_size) |
| return; |
| var_align = gen_varname(var, "_align"); |
| if (!var_align) |
| goto out_free_var_size; |
| var_offset = gen_varname(var, "_offset"); |
| if (!var_offset) |
| goto out_free_var_align; |
| var_aliases = gen_varname(var, "_aliases"); |
| if (!var_aliases) |
| goto out_free_var_offset; |
| |
| size = env_get_hex(var_size, 0); |
| if (!size) { |
| pr_err("%s not set or zero\n", var_size); |
| goto out_free_var_aliases; |
| } |
| align = env_get_hex(var_align, 1); |
| /* Handle extant variables, but with a value of 0 */ |
| if (!align) |
| align = 1; |
| offset = env_get_hex(var_offset, 0); |
| aliases = env_get(var_aliases); |
| |
| debug("%s: Calc var %s; size=%llx, align=%llx, offset=%llx\n", |
| __func__, var, size, align, offset); |
| if (aliases) |
| debug("%s: Aliases: %s\n", __func__, aliases); |
| |
| address = alloc_ram(size, align, offset); |
| if (!address) { |
| pr_err("Could not allocate %s\n", var); |
| goto out_free_var_aliases; |
| } |
| debug("%s: Address %llx\n", __func__, address); |
| |
| err = env_set_hex(var, address); |
| if (err) |
| pr_err("Could not set %s\n", var); |
| if (aliases) |
| set_calculated_aliases(aliases, address); |
| |
| out_free_var_aliases: |
| free(var_aliases); |
| out_free_var_offset: |
| free(var_offset); |
| out_free_var_align: |
| free(var_align); |
| out_free_var_size: |
| free(var_size); |
| } |
| |
| #ifdef DEBUG |
| static void dump_ram_banks(void) |
| { |
| int bank; |
| |
| for (bank = 1; bank <= CONFIG_NR_DRAM_BANKS; bank++) { |
| u64 bank_start = tegra_mem_map[bank].virt; |
| u64 bank_size = tegra_mem_map[bank].size; |
| u64 bank_end = bank_start + bank_size; |
| |
| if (!bank_size) |
| continue; |
| printf("%d: %010llx..%010llx (+%010llx)\n", bank - 1, |
| bank_start, bank_end, bank_size); |
| } |
| } |
| #endif |
| |
| static void set_calculated_env_vars(void) |
| { |
| char *vars, *tmp, *var; |
| |
| #ifdef DEBUG |
| printf("RAM banks before any calculated env. var.s:\n"); |
| dump_ram_banks(); |
| #endif |
| |
| reserve_ram(cboot_boot_x0, fdt_totalsize(cboot_boot_x0)); |
| |
| #ifdef DEBUG |
| printf("RAM after reserving cboot DTB:\n"); |
| dump_ram_banks(); |
| #endif |
| |
| vars = env_get("calculated_vars"); |
| if (!vars) { |
| debug("%s: No env var calculated_vars\n", __func__); |
| return; |
| } |
| |
| vars = strdup(vars); |
| if (!vars) { |
| pr_err("strdup(calculated_vars) failed"); |
| return; |
| } |
| |
| tmp = vars; |
| while (true) { |
| var = strsep(&tmp, " "); |
| if (!var) |
| break; |
| debug("%s: var: %s\n", __func__, var); |
| set_calculated_env_var(var); |
| #ifdef DEBUG |
| printf("RAM banks after allocating %s:\n", var); |
| dump_ram_banks(); |
| #endif |
| } |
| |
| free(vars); |
| } |
| |
| static int set_fdt_addr(void) |
| { |
| int ret; |
| |
| ret = env_set_hex("fdt_addr", cboot_boot_x0); |
| if (ret) { |
| printf("Failed to set fdt_addr to point at DTB: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Attempt to use /chosen/nvidia,ether-mac in the cboot DTB to U-Boot's |
| * ethaddr environment variable if possible. |
| */ |
| static int cboot_get_ethaddr_legacy(const void *fdt, uint8_t mac[ETH_ALEN]) |
| { |
| const char *const properties[] = { |
| "nvidia,ethernet-mac", |
| "nvidia,ether-mac", |
| }; |
| const char *prop; |
| unsigned int i; |
| int node, len; |
| |
| node = fdt_path_offset(fdt, "/chosen"); |
| if (node < 0) { |
| printf("Can't find /chosen node in cboot DTB\n"); |
| return node; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(properties); i++) { |
| prop = fdt_getprop(fdt, node, properties[i], &len); |
| if (prop) |
| break; |
| } |
| |
| if (!prop) { |
| printf("Can't find Ethernet MAC address in cboot DTB\n"); |
| return -ENOENT; |
| } |
| |
| string_to_enetaddr(prop, mac); |
| |
| if (!is_valid_ethaddr(mac)) { |
| printf("Invalid MAC address: %s\n", prop); |
| return -EINVAL; |
| } |
| |
| debug("Legacy MAC address: %pM\n", mac); |
| |
| return 0; |
| } |
| |
| int cboot_get_ethaddr(const void *fdt, uint8_t mac[ETH_ALEN]) |
| { |
| int node, len, err = 0; |
| const uchar *prop; |
| const char *path; |
| |
| path = fdt_get_alias(fdt, "ethernet"); |
| if (!path) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| debug("ethernet alias found: %s\n", path); |
| |
| node = fdt_path_offset(fdt, path); |
| if (node < 0) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| prop = fdt_getprop(fdt, node, "local-mac-address", &len); |
| if (!prop) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| if (len != ETH_ALEN) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| debug("MAC address: %pM\n", prop); |
| memcpy(mac, prop, ETH_ALEN); |
| |
| out: |
| if (err < 0) |
| err = cboot_get_ethaddr_legacy(fdt, mac); |
| |
| return err; |
| } |
| |
| static char *strip(const char *ptr) |
| { |
| const char *end; |
| |
| while (*ptr && isblank(*ptr)) |
| ptr++; |
| |
| /* empty string */ |
| if (*ptr == '\0') |
| return strdup(ptr); |
| |
| end = ptr; |
| |
| while (end[1]) |
| end++; |
| |
| while (isblank(*end)) |
| end--; |
| |
| return strndup(ptr, end - ptr + 1); |
| } |
| |
| static char *cboot_get_bootargs(const void *fdt) |
| { |
| const char *args; |
| int offset, len; |
| |
| offset = fdt_path_offset(fdt, "/chosen"); |
| if (offset < 0) |
| return NULL; |
| |
| args = fdt_getprop(fdt, offset, "bootargs", &len); |
| if (!args) |
| return NULL; |
| |
| return strip(args); |
| } |
| |
| int cboot_late_init(void) |
| { |
| const void *fdt = (const void *)cboot_boot_x0; |
| uint8_t mac[ETH_ALEN]; |
| char *bootargs; |
| int err; |
| |
| set_calculated_env_vars(); |
| /* |
| * Ignore errors here; the value may not be used depending on |
| * extlinux.conf or boot script content. |
| */ |
| set_fdt_addr(); |
| |
| /* Ignore errors here; not all cases care about Ethernet addresses */ |
| err = cboot_get_ethaddr(fdt, mac); |
| if (!err) { |
| void *blob = (void *)gd->fdt_blob; |
| |
| err = fdtdec_set_ethernet_mac_address(blob, mac, sizeof(mac)); |
| if (err < 0) |
| printf("failed to set MAC address %pM: %d\n", mac, err); |
| } |
| |
| bootargs = cboot_get_bootargs(fdt); |
| if (bootargs) { |
| env_set("cbootargs", bootargs); |
| free(bootargs); |
| } |
| |
| return 0; |
| } |