| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2015 National Instruments |
| * |
| * (C) Copyright 2015 |
| * Joe Hershberger <joe.hershberger@ni.com> |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <env.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <net6.h> |
| #include <asm/eth.h> |
| #include <dm/test.h> |
| #include <dm/device-internal.h> |
| #include <dm/uclass-internal.h> |
| #include <test/test.h> |
| #include <test/ut.h> |
| |
| #define DM_TEST_ETH_NUM 4 |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| static int dm_test_string_to_ip6(struct unit_test_state *uts) |
| { |
| char *str; |
| struct test_ip6_pair { |
| char *string_addr; |
| struct in6_addr ip6_addr; |
| }; |
| |
| struct in6_addr ip6 = {0}; |
| |
| /* Correct statements */ |
| struct test_ip6_pair test_suite[] = { |
| {"2001:db8::0:1234:1", {.s6_addr32[0] = 0xb80d0120, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0x00000000, |
| .s6_addr32[3] = 0x01003412}}, |
| {"2001:0db8:0000:0000:0000:0000:1234:0001", |
| {.s6_addr32[0] = 0xb80d0120, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0x00000000, |
| .s6_addr32[3] = 0x01003412}}, |
| {"::1", {.s6_addr32[0] = 0x00000000, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0x00000000, |
| .s6_addr32[3] = 0x01000000}}, |
| {"::ffff:192.168.1.1", {.s6_addr32[0] = 0x00000000, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffff0000, |
| .s6_addr32[3] = 0x0101a8c0}}, |
| }; |
| |
| for (int i = 0; i < ARRAY_SIZE(test_suite); ++i) { |
| ut_assertok(string_to_ip6(test_suite[i].string_addr, |
| strlen(test_suite[i].string_addr), &ip6)); |
| ut_asserteq_mem(&ip6, &test_suite[i].ip6_addr, |
| sizeof(struct in6_addr)); |
| } |
| |
| /* Incorrect statements */ |
| str = "hello:world"; |
| ut_assertok(!string_to_ip6(str, strlen(str), &ip6)); |
| str = "2001:db8::0::0"; |
| ut_assertok(!string_to_ip6(str, strlen(str), &ip6)); |
| str = "2001:db8:192.168.1.1::1"; |
| ut_assertok(!string_to_ip6(str, strlen(str), &ip6)); |
| str = "192.168.1.1"; |
| ut_assertok(!string_to_ip6(str, strlen(str), &ip6)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_string_to_ip6, 0); |
| |
| static int dm_test_csum_ipv6_magic(struct unit_test_state *uts) |
| { |
| unsigned short csum = 0xbeef; |
| /* Predefined correct parameters */ |
| unsigned short correct_csum = 0xd8ac; |
| struct in6_addr saddr = {.s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffe9f242, |
| .s6_addr32[3] = 0xe8f66dfe}; |
| struct in6_addr daddr = {.s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffd5b372, |
| .s6_addr32[3] = 0x3ef692fe}; |
| u16 len = 1460; |
| unsigned short proto = 17; |
| unsigned int head_csum = 0x91f0; |
| |
| csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum); |
| ut_asserteq(csum, correct_csum); |
| |
| /* Broke a parameter */ |
| proto--; |
| csum = csum_ipv6_magic(&saddr, &daddr, len, proto, head_csum); |
| ut_assert(csum != correct_csum); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_csum_ipv6_magic, 0); |
| |
| static int dm_test_ip6_addr_in_subnet(struct unit_test_state *uts) |
| { |
| struct in6_addr our = {.s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffe9f242, |
| .s6_addr32[3] = 0xe8f66dfe}; |
| struct in6_addr neigh1 = {.s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffd5b372, |
| .s6_addr32[3] = 0x3ef692fe}; |
| struct in6_addr neigh2 = {.s6_addr32[0] = 0x60480120, |
| .s6_addr32[1] = 0x00006048, |
| .s6_addr32[2] = 0x00000000, |
| .s6_addr32[3] = 0x00008888}; |
| |
| /* in */ |
| ut_assert(ip6_addr_in_subnet(&our, &neigh1, 64)); |
| /* outside */ |
| ut_assert(!ip6_addr_in_subnet(&our, &neigh2, 64)); |
| ut_assert(!ip6_addr_in_subnet(&our, &neigh1, 128)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ip6_addr_in_subnet, 0); |
| |
| static int dm_test_ip6_make_snma(struct unit_test_state *uts) |
| { |
| struct in6_addr mult = {0}; |
| struct in6_addr correct_addr = { |
| .s6_addr32[0] = 0x000002ff, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0x01000000, |
| .s6_addr32[3] = 0xe8f66dff}; |
| struct in6_addr addr = { .s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffe9f242, |
| .s6_addr32[3] = 0xe8f66dfe}; |
| |
| ip6_make_snma(&mult, &addr); |
| ut_asserteq_mem(&mult, &correct_addr, sizeof(struct in6_addr)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ip6_make_snma, 0); |
| |
| static int dm_test_ip6_make_lladdr(struct unit_test_state *uts) |
| { |
| struct in6_addr generated_lladdr = {0}; |
| struct in6_addr correct_lladdr = { |
| .s6_addr32[0] = 0x000080fe, |
| .s6_addr32[1] = 0x00000000, |
| .s6_addr32[2] = 0xffabf33a, |
| .s6_addr32[3] = 0xfbb352fe}; |
| const unsigned char mac[6] = {0x38, 0xf3, 0xab, 0x52, 0xb3, 0xfb}; |
| |
| ip6_make_lladdr(&generated_lladdr, mac); |
| ut_asserteq_mem(&generated_lladdr, &correct_lladdr, |
| sizeof(struct in6_addr)); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ip6_make_lladdr, UT_TESTF_SCAN_FDT); |
| #endif |
| |
| static int dm_test_eth(struct unit_test_state *uts) |
| { |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| env_set("ethact", "eth@10002000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| env_set("ethact", "eth@10003000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10003000", env_get("ethact")); |
| |
| env_set("ethact", "eth@10004000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10004000", env_get("ethact")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_eth, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_eth_alias(struct unit_test_state *uts) |
| { |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| env_set("ethact", "eth0"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| env_set("ethact", "eth6"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10004000", env_get("ethact")); |
| |
| /* Expected to fail since eth1 is not defined in the device tree */ |
| env_set("ethact", "eth1"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| env_set("ethact", "eth5"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10003000", env_get("ethact")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_eth_alias, UT_TESTF_SCAN_FDT); |
| |
| static int dm_test_eth_prime(struct unit_test_state *uts) |
| { |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| /* Expected to be "eth@10003000" because of ethprime variable */ |
| env_set("ethact", NULL); |
| env_set("ethprime", "eth5"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10003000", env_get("ethact")); |
| |
| /* Expected to be "eth@10002000" because it is first */ |
| env_set("ethact", NULL); |
| env_set("ethprime", NULL); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_eth_prime, UT_TESTF_SCAN_FDT); |
| |
| /** |
| * This test case is trying to test the following scenario: |
| * - All ethernet devices are not probed |
| * - "ethaddr" for all ethernet devices are not set |
| * - "ethact" is set to a valid ethernet device name |
| * |
| * With Sandbox default test configuration, all ethernet devices are |
| * probed after power-up, so we have to manually create such scenario: |
| * - Remove all ethernet devices |
| * - Remove all "ethaddr" environment variables |
| * - Set "ethact" to the first ethernet device |
| * |
| * Do a ping test to see if anything goes wrong. |
| */ |
| static int dm_test_eth_act(struct unit_test_state *uts) |
| { |
| struct udevice *dev[DM_TEST_ETH_NUM]; |
| const char *ethname[DM_TEST_ETH_NUM] = {"eth@10002000", "eth@10003000", |
| "sbe5", "eth@10004000"}; |
| const char *addrname[DM_TEST_ETH_NUM] = {"ethaddr", "eth5addr", |
| "eth3addr", "eth6addr"}; |
| char ethaddr[DM_TEST_ETH_NUM][18]; |
| int i; |
| |
| memset(ethaddr, '\0', sizeof(ethaddr)); |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| /* Prepare the test scenario */ |
| for (i = 0; i < DM_TEST_ETH_NUM; i++) { |
| ut_assertok(uclass_find_device_by_name(UCLASS_ETH, |
| ethname[i], &dev[i])); |
| ut_assertok(device_remove(dev[i], DM_REMOVE_NORMAL)); |
| |
| /* Invalidate MAC address */ |
| strncpy(ethaddr[i], env_get(addrname[i]), 17); |
| /* Must disable access protection for ethaddr before clearing */ |
| env_set(".flags", addrname[i]); |
| env_set(addrname[i], NULL); |
| } |
| |
| /* Set ethact to "eth@10002000" */ |
| env_set("ethact", ethname[0]); |
| |
| /* Segment fault might happen if something is wrong */ |
| ut_asserteq(-ENODEV, net_loop(PING)); |
| |
| for (i = 0; i < DM_TEST_ETH_NUM; i++) { |
| /* Restore the env */ |
| env_set(".flags", addrname[i]); |
| env_set(addrname[i], ethaddr[i]); |
| |
| /* Probe the device again */ |
| ut_assertok(device_probe(dev[i])); |
| } |
| env_set(".flags", NULL); |
| env_set("ethact", NULL); |
| |
| return 0; |
| } |
| DM_TEST(dm_test_eth_act, UT_TESTF_SCAN_FDT); |
| |
| /* Ensure that all addresses are loaded properly */ |
| static int dm_test_ethaddr(struct unit_test_state *uts) |
| { |
| static const char *const addr[] = { |
| "02:00:11:22:33:44", |
| "02:00:11:22:33:48", /* dsa slave */ |
| "02:00:11:22:33:45", |
| "02:00:11:22:33:48", /* dsa master */ |
| "02:00:11:22:33:46", |
| "02:00:11:22:33:47", |
| "02:00:11:22:33:48", /* dsa slave */ |
| "02:00:11:22:33:49", |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(addr); i++) { |
| char addrname[10]; |
| |
| if (i) |
| snprintf(addrname, sizeof(addrname), "eth%daddr", i + 1); |
| else |
| strcpy(addrname, "ethaddr"); |
| ut_asserteq_str(addr[i], env_get(addrname)); |
| } |
| |
| return 0; |
| } |
| DM_TEST(dm_test_ethaddr, UT_TESTF_SCAN_FDT); |
| |
| /* The asserts include a return on fail; cleanup in the caller */ |
| static int _dm_test_eth_rotate1(struct unit_test_state *uts) |
| { |
| /* Make sure that the default is to rotate to the next interface */ |
| env_set("ethact", "eth@10004000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| /* If ethrotate is no, then we should fail on a bad MAC */ |
| env_set("ethact", "eth@10004000"); |
| env_set("ethrotate", "no"); |
| ut_asserteq(-EINVAL, net_loop(PING)); |
| ut_asserteq_str("eth@10004000", env_get("ethact")); |
| |
| return 0; |
| } |
| |
| static int _dm_test_eth_rotate2(struct unit_test_state *uts) |
| { |
| /* Make sure we can skip invalid devices */ |
| env_set("ethact", "eth@10004000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10004000", env_get("ethact")); |
| |
| /* Make sure we can handle device name which is not eth# */ |
| env_set("ethact", "sbe5"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("sbe5", env_get("ethact")); |
| |
| return 0; |
| } |
| |
| static int dm_test_eth_rotate(struct unit_test_state *uts) |
| { |
| char ethaddr[18]; |
| int retval; |
| |
| /* Set target IP to mock ping */ |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| /* Invalidate eth1's MAC address */ |
| memset(ethaddr, '\0', sizeof(ethaddr)); |
| strncpy(ethaddr, env_get("eth6addr"), 17); |
| /* Must disable access protection for eth6addr before clearing */ |
| env_set(".flags", "eth6addr"); |
| env_set("eth6addr", NULL); |
| |
| retval = _dm_test_eth_rotate1(uts); |
| |
| /* Restore the env */ |
| env_set("eth6addr", ethaddr); |
| env_set("ethrotate", NULL); |
| |
| if (!retval) { |
| /* Invalidate eth0's MAC address */ |
| strncpy(ethaddr, env_get("ethaddr"), 17); |
| /* Must disable access protection for ethaddr before clearing */ |
| env_set(".flags", "ethaddr"); |
| env_set("ethaddr", NULL); |
| |
| retval = _dm_test_eth_rotate2(uts); |
| |
| /* Restore the env */ |
| env_set("ethaddr", ethaddr); |
| } |
| /* Restore the env */ |
| env_set(".flags", NULL); |
| |
| return retval; |
| } |
| DM_TEST(dm_test_eth_rotate, UT_TESTF_SCAN_FDT); |
| |
| /* The asserts include a return on fail; cleanup in the caller */ |
| static int _dm_test_net_retry(struct unit_test_state *uts) |
| { |
| /* |
| * eth1 is disabled and netretry is yes, so the ping should succeed and |
| * the active device should be eth0 |
| */ |
| sandbox_eth_disable_response(1, true); |
| env_set("ethact", "lan1"); |
| env_set("netretry", "yes"); |
| sandbox_eth_skip_timeout(); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| /* |
| * eth1 is disabled and netretry is no, so the ping should fail and the |
| * active device should be eth1 |
| */ |
| env_set("ethact", "lan1"); |
| env_set("netretry", "no"); |
| sandbox_eth_skip_timeout(); |
| ut_asserteq(-ENONET, net_loop(PING)); |
| ut_asserteq_str("lan1", env_get("ethact")); |
| |
| return 0; |
| } |
| |
| static int dm_test_net_retry(struct unit_test_state *uts) |
| { |
| int retval; |
| |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| retval = _dm_test_net_retry(uts); |
| |
| /* Restore the env */ |
| env_set("netretry", NULL); |
| sandbox_eth_disable_response(1, false); |
| |
| return retval; |
| } |
| DM_TEST(dm_test_net_retry, UT_TESTF_SCAN_FDT); |
| |
| static int sb_check_arp_reply(struct udevice *dev, void *packet, |
| unsigned int len) |
| { |
| struct eth_sandbox_priv *priv = dev_get_priv(dev); |
| struct ethernet_hdr *eth = packet; |
| struct arp_hdr *arp; |
| /* Used by all of the ut_assert macros */ |
| struct unit_test_state *uts = priv->priv; |
| |
| if (ntohs(eth->et_protlen) != PROT_ARP) |
| return 0; |
| |
| arp = packet + ETHER_HDR_SIZE; |
| |
| if (ntohs(arp->ar_op) != ARPOP_REPLY) |
| return 0; |
| |
| /* This test would be worthless if we are not waiting */ |
| ut_assert(arp_is_waiting()); |
| |
| /* Validate response */ |
| ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN); |
| ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN); |
| ut_assert(eth->et_protlen == htons(PROT_ARP)); |
| |
| ut_assert(arp->ar_hrd == htons(ARP_ETHER)); |
| ut_assert(arp->ar_pro == htons(PROT_IP)); |
| ut_assert(arp->ar_hln == ARP_HLEN); |
| ut_assert(arp->ar_pln == ARP_PLEN); |
| ut_asserteq_mem(&arp->ar_sha, net_ethaddr, ARP_HLEN); |
| ut_assert(net_read_ip(&arp->ar_spa).s_addr == net_ip.s_addr); |
| ut_asserteq_mem(&arp->ar_tha, priv->fake_host_hwaddr, ARP_HLEN); |
| ut_assert(net_read_ip(&arp->ar_tpa).s_addr == |
| string_to_ip("1.1.2.4").s_addr); |
| |
| return 0; |
| } |
| |
| static int sb_with_async_arp_handler(struct udevice *dev, void *packet, |
| unsigned int len) |
| { |
| struct eth_sandbox_priv *priv = dev_get_priv(dev); |
| struct ethernet_hdr *eth = packet; |
| struct arp_hdr *arp = packet + ETHER_HDR_SIZE; |
| int ret; |
| |
| /* |
| * If we are about to generate a reply to ARP, first inject a request |
| * from another host |
| */ |
| if (ntohs(eth->et_protlen) == PROT_ARP && |
| ntohs(arp->ar_op) == ARPOP_REQUEST) { |
| /* Make sure sandbox_eth_recv_arp_req() knows who is asking */ |
| priv->fake_host_ipaddr = string_to_ip("1.1.2.4"); |
| |
| ret = sandbox_eth_recv_arp_req(dev); |
| if (ret) |
| return ret; |
| } |
| |
| sandbox_eth_arp_req_to_reply(dev, packet, len); |
| sandbox_eth_ping_req_to_reply(dev, packet, len); |
| |
| return sb_check_arp_reply(dev, packet, len); |
| } |
| |
| static int dm_test_eth_async_arp_reply(struct unit_test_state *uts) |
| { |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| sandbox_eth_set_tx_handler(0, sb_with_async_arp_handler); |
| /* Used by all of the ut_assert macros in the tx_handler */ |
| sandbox_eth_set_priv(0, uts); |
| |
| env_set("ethact", "eth@10002000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| sandbox_eth_set_tx_handler(0, NULL); |
| |
| return 0; |
| } |
| |
| DM_TEST(dm_test_eth_async_arp_reply, UT_TESTF_SCAN_FDT); |
| |
| static int sb_check_ping_reply(struct udevice *dev, void *packet, |
| unsigned int len) |
| { |
| struct eth_sandbox_priv *priv = dev_get_priv(dev); |
| struct ethernet_hdr *eth = packet; |
| struct ip_udp_hdr *ip; |
| struct icmp_hdr *icmp; |
| /* Used by all of the ut_assert macros */ |
| struct unit_test_state *uts = priv->priv; |
| |
| if (ntohs(eth->et_protlen) != PROT_IP) |
| return 0; |
| |
| ip = packet + ETHER_HDR_SIZE; |
| |
| if (ip->ip_p != IPPROTO_ICMP) |
| return 0; |
| |
| icmp = (struct icmp_hdr *)&ip->udp_src; |
| |
| if (icmp->type != ICMP_ECHO_REPLY) |
| return 0; |
| |
| /* This test would be worthless if we are not waiting */ |
| ut_assert(arp_is_waiting()); |
| |
| /* Validate response */ |
| ut_asserteq_mem(eth->et_src, net_ethaddr, ARP_HLEN); |
| ut_asserteq_mem(eth->et_dest, priv->fake_host_hwaddr, ARP_HLEN); |
| ut_assert(eth->et_protlen == htons(PROT_IP)); |
| |
| ut_assert(net_read_ip(&ip->ip_src).s_addr == net_ip.s_addr); |
| ut_assert(net_read_ip(&ip->ip_dst).s_addr == |
| string_to_ip("1.1.2.4").s_addr); |
| |
| return 0; |
| } |
| |
| static int sb_with_async_ping_handler(struct udevice *dev, void *packet, |
| unsigned int len) |
| { |
| struct eth_sandbox_priv *priv = dev_get_priv(dev); |
| struct ethernet_hdr *eth = packet; |
| struct arp_hdr *arp = packet + ETHER_HDR_SIZE; |
| int ret; |
| |
| /* |
| * If we are about to generate a reply to ARP, first inject a request |
| * from another host |
| */ |
| if (ntohs(eth->et_protlen) == PROT_ARP && |
| ntohs(arp->ar_op) == ARPOP_REQUEST) { |
| /* Make sure sandbox_eth_recv_arp_req() knows who is asking */ |
| priv->fake_host_ipaddr = string_to_ip("1.1.2.4"); |
| |
| ret = sandbox_eth_recv_ping_req(dev); |
| if (ret) |
| return ret; |
| } |
| |
| sandbox_eth_arp_req_to_reply(dev, packet, len); |
| sandbox_eth_ping_req_to_reply(dev, packet, len); |
| |
| return sb_check_ping_reply(dev, packet, len); |
| } |
| |
| static int dm_test_eth_async_ping_reply(struct unit_test_state *uts) |
| { |
| net_ping_ip = string_to_ip("1.1.2.2"); |
| |
| sandbox_eth_set_tx_handler(0, sb_with_async_ping_handler); |
| /* Used by all of the ut_assert macros in the tx_handler */ |
| sandbox_eth_set_priv(0, uts); |
| |
| env_set("ethact", "eth@10002000"); |
| ut_assertok(net_loop(PING)); |
| ut_asserteq_str("eth@10002000", env_get("ethact")); |
| |
| sandbox_eth_set_tx_handler(0, NULL); |
| |
| return 0; |
| } |
| |
| DM_TEST(dm_test_eth_async_ping_reply, UT_TESTF_SCAN_FDT); |