Patch by TsiChung Liew, 23 Sep 2004:
- add support for MPC8220 CPU
- Add support for Alaska and Yukon boards
diff --git a/cpu/mpc8220/dramSetup.c b/cpu/mpc8220/dramSetup.c
new file mode 100644
index 0000000..033b719
--- /dev/null
+++ b/cpu/mpc8220/dramSetup.c
@@ -0,0 +1,755 @@
+/*
+ * (C) Copyright 2004, Freescale, Inc
+ * TsiChung Liew, Tsi-Chung.Liew@freescale.com
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+/*
+DESCRIPTION
+Read Dram spd and base on its information to calculate the memory size,
+characteristics to initialize the dram on MPC8220
+*/
+
+#include <common.h>
+#include <mpc8220.h>
+#include "i2cCore.h"
+#include "dramSetup.h"
+
+#define SPD_SIZE    0x40
+#define DRAM_SPD    0xA2	/* on Board SPD eeprom */
+#define TOTAL_BANK  2
+
+int spd_status (volatile i2c8220_t * pi2c, u8 sta_bit, u8 truefalse)
+{
+	int i;
+
+	for (i = 0; i < I2C_POLL_COUNT; i++) {
+		if ((pi2c->sr & sta_bit) == (truefalse ? sta_bit : 0))
+			return (OK);
+	}
+
+	return (ERROR);
+}
+
+int spd_clear (volatile i2c8220_t * pi2c)
+{
+	pi2c->adr = 0;
+	pi2c->fdr = 0;
+	pi2c->cr = 0;
+	pi2c->sr = 0;
+
+	return (OK);
+}
+
+int spd_stop (volatile i2c8220_t * pi2c)
+{
+	pi2c->cr &= ~I2C_CTL_STA;	/* Generate stop signal         */
+	if (spd_status (pi2c, I2C_STA_BB, 0) != OK)
+		return ERROR;
+
+	return (OK);
+}
+
+int spd_readbyte (volatile i2c8220_t * pi2c, u8 * readb, int *index)
+{
+	pi2c->sr &= ~I2C_STA_IF;	/* Clear Interrupt Bit          */
+	*readb = pi2c->dr;	/* Read a byte                  */
+
+	/*
+	   Set I2C_CTRL_TXAK will cause Transfer pending and
+	   set I2C_CTRL_STA will cause Interrupt pending
+	 */
+	if (*index != 2) {
+		if (spd_status (pi2c, I2C_STA_CF, 1) != OK)	/* Transfer not complete?       */
+			return ERROR;
+	}
+
+	if (*index != 1) {
+		if (spd_status (pi2c, I2C_STA_IF, 1) != OK)
+			return ERROR;
+	}
+
+	return (OK);
+}
+
+int readSpdData (u8 * spdData)
+{
+	DECLARE_GLOBAL_DATA_PTR;
+
+	volatile i2c8220_t *pi2cReg;
+	volatile pcfg8220_t *pcfg;
+	u8 slvAdr = DRAM_SPD;
+	u8 Tmp;
+	int Length = SPD_SIZE;
+	int i = 0;
+
+	/* Enable Port Configuration for SDA and SDL signals */
+	pcfg = (volatile pcfg8220_t *) (MMAP_PCFG);
+	__asm__ ("sync");
+	pcfg->pcfg3 &= ~CFG_I2C_PORT3_CONFIG;
+	__asm__ ("sync");
+
+	/* Points the structure to I2c mbar memory offset */
+	pi2cReg = (volatile i2c8220_t *) (MMAP_I2C);
+
+
+	/* Clear FDR, ADR, SR and CR reg */
+	pi2cReg->adr = 0;
+	pi2cReg->fdr = 0;
+	pi2cReg->cr = 0;
+	pi2cReg->sr = 0;
+
+	/* Set for fix XLB Bus Frequency */
+	switch (gd->bus_clk) {
+	case 60000000:
+		pi2cReg->fdr = 0x15;
+		break;
+	case 70000000:
+		pi2cReg->fdr = 0x16;
+		break;
+	case 80000000:
+		pi2cReg->fdr = 0x3a;
+		break;
+	case 90000000:
+		pi2cReg->fdr = 0x17;
+		break;
+	case 100000000:
+		pi2cReg->fdr = 0x3b;
+		break;
+	case 110000000:
+		pi2cReg->fdr = 0x18;
+		break;
+	case 120000000:
+		pi2cReg->fdr = 0x19;
+		break;
+	case 130000000:
+		pi2cReg->fdr = 0x1a;
+		break;
+	}
+
+	pi2cReg->adr = 0x90;	/* I2C device address */
+
+	pi2cReg->cr = I2C_CTL_EN;	/* Set Enable         */
+
+	/*
+	   The I2C bus should be in Idle state. If the bus is busy,
+	   clear the STA bit in control register
+	 */
+	if (spd_status (pi2cReg, I2C_STA_BB, 0) != OK) {
+		if ((pi2cReg->cr & I2C_CTL_STA) == I2C_CTL_STA)
+			pi2cReg->cr &= ~I2C_CTL_STA;
+
+		/* Check again if it is still busy, return error if found */
+		if (spd_status (pi2cReg, I2C_STA_BB, 1) == OK)
+			return ERROR;
+	}
+
+	pi2cReg->cr |= I2C_CTL_TX;	/* Enable the I2c for TX, Ack   */
+	pi2cReg->cr |= I2C_CTL_STA;	/* Generate start signal        */
+
+	if (spd_status (pi2cReg, I2C_STA_BB, 1) != OK)
+		return ERROR;
+
+
+	/* Write slave address */
+	pi2cReg->sr &= ~I2C_STA_IF;	/* Clear Interrupt              */
+	pi2cReg->dr = slvAdr;	/* Write a byte                 */
+
+	if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) {	/* Transfer not complete?       */
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+	if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+
+	/* Issue the offset to start */
+	pi2cReg->sr &= ~I2C_STA_IF;	/* Clear Interrupt              */
+	pi2cReg->dr = 0;	/* Write a byte                 */
+
+	if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) {	/* Transfer not complete?       */
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+	if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+
+	/* Set repeat start */
+	pi2cReg->cr |= I2C_CTL_RSTA;	/* Repeat Start                 */
+
+	pi2cReg->sr &= ~I2C_STA_IF;	/* Clear Interrupt              */
+	pi2cReg->dr = slvAdr | 1;	/* Write a byte                 */
+
+	if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) {	/* Transfer not complete?       */
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+	if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+	if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
+		return ERROR;
+
+	pi2cReg->cr &= ~I2C_CTL_TX;	/* Set receive mode             */
+
+	if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
+		return ERROR;
+
+	/* Dummy Read */
+	if (spd_readbyte (pi2cReg, &Tmp, &i) != OK) {
+		spd_stop (pi2cReg);
+		return ERROR;
+	}
+
+	i = 0;
+	while (Length) {
+		if (Length == 2)
+			pi2cReg->cr |= I2C_CTL_TXAK;
+
+		if (Length == 1)
+			pi2cReg->cr &= ~I2C_CTL_STA;
+
+		if (spd_readbyte (pi2cReg, spdData, &Length) != OK) {
+			return spd_stop (pi2cReg);
+		}
+		i++;
+		Length--;
+		spdData++;
+	}
+
+	/* Stop the service */
+	spd_stop (pi2cReg);
+
+	return OK;
+}
+
+int getBankInfo (int bank, draminfo_t * pBank)
+{
+	int status;
+	int checksum;
+	int count;
+	u8 spdData[SPD_SIZE];
+
+
+	if (bank > 2 || pBank == 0) {
+		/* illegal values */
+		return (-42);
+	}
+
+	status = readSpdData (&spdData[0]);
+	if (status < 0)
+		return (-1);
+
+	/* check the checksum */
+	for (count = 0, checksum = 0; count < LOC_CHECKSUM; count++)
+		checksum += spdData[count];
+
+	checksum = checksum - ((checksum / 256) * 256);
+
+	if (checksum != spdData[LOC_CHECKSUM])
+		return (-2);
+
+	/* Get the memory type */
+	if (!
+	    ((spdData[LOC_TYPE] == TYPE_DDR)
+	     || (spdData[LOC_TYPE] == TYPE_SDR)))
+		/* not one of the types we support */
+		return (-3);
+
+	pBank->type = spdData[LOC_TYPE];
+
+	/* Set logical banks */
+	pBank->banks = spdData[LOC_LOGICAL_BANKS];
+
+	/* Check that we have enough physical banks to cover the bank we are
+	 * figuring out.  Odd-numbered banks correspond to the second bank
+	 * on the device.
+	 */
+	if (bank & 1) {
+		/* Second bank of a "device" */
+		if (spdData[LOC_PHYS_BANKS] < 2)
+			/* this bank doesn't exist on the "device" */
+			return (-4);
+
+		if (spdData[LOC_ROWS] & 0xf0)
+			/* Two asymmetric banks */
+			pBank->rows = spdData[LOC_ROWS] >> 4;
+		else
+			pBank->rows = spdData[LOC_ROWS];
+
+		if (spdData[LOC_COLS] & 0xf0)
+			/* Two asymmetric banks */
+			pBank->cols = spdData[LOC_COLS] >> 4;
+		else
+			pBank->cols = spdData[LOC_COLS];
+	} else {
+		/* First bank of a "device" */
+		pBank->rows = spdData[LOC_ROWS];
+		pBank->cols = spdData[LOC_COLS];
+	}
+
+	pBank->width = spdData[LOC_WIDTH_HIGH] << 8 | spdData[LOC_WIDTH_LOW];
+	pBank->bursts = spdData[LOC_BURSTS];
+	pBank->CAS = spdData[LOC_CAS];
+	pBank->CS = spdData[LOC_CS];
+	pBank->WE = spdData[LOC_WE];
+	pBank->Trp = spdData[LOC_Trp];
+	pBank->Trcd = spdData[LOC_Trcd];
+	pBank->buffered = spdData[LOC_Buffered] & 1;
+	pBank->refresh = spdData[LOC_REFRESH];
+
+	return (0);
+}
+
+
+/* checkMuxSetting -- given a row/column device geometry, return a mask
+ *                    of the valid DRAM controller addr_mux settings for
+ *                    that geometry.
+ *
+ *  Arguments:        u8 rows:     number of row addresses in this device
+ *                    u8 columns:  number of column addresses in this device
+ *
+ *  Returns:          a mask of the allowed addr_mux settings for this
+ *                    geometry.  Each bit in the mask represents a
+ *                    possible addr_mux settings (for example, the
+ *                    (1<<2) bit in the mask represents the 0b10 setting)/
+ *
+ */
+u8 checkMuxSetting (u8 rows, u8 columns)
+{
+	muxdesc_t *pIdx, *pMux;
+	u8 mask;
+	int lrows, lcolumns;
+	u32 mux[4] = { 0x00080c04, 0x01080d03, 0x02080e02, 0xffffffff };
+
+	/* Setup MuxDescriptor in SRAM space */
+	/* MUXDESC AddressRuns [] = {
+	   { 0, 8, 12, 4 },         / setting, columns, rows, extra columns /
+	   { 1, 8, 13, 3 },         / setting, columns, rows, extra columns /
+	   { 2, 8, 14, 2 },         / setting, columns, rows, extra columns /
+	   { 0xff }                 / list terminator /
+	   }; */
+
+	pIdx = (muxdesc_t *) & mux[0];
+
+	/* Check rows x columns against each possible address mux setting */
+	for (pMux = pIdx, mask = 0;; pMux++) {
+		lrows = rows;
+		lcolumns = columns;
+
+		if (pMux->MuxValue == 0xff)
+			break;	/* end of list */
+
+		/* For a given mux setting, since we want all the memory in a
+		 * device to be contiguous, we want the device "use up" the
+		 * address lines such that there are no extra column or row
+		 * address lines on the device.
+		 */
+
+		lcolumns -= pMux->Columns;
+		if (lcolumns < 0)
+			/* Not enough columns to get to the rows */
+			continue;
+
+		lrows -= pMux->Rows;
+		if (lrows > 0)
+			/* we have extra rows left -- can't do that! */
+			continue;
+
+		/* At this point, we either have to have used up all the
+		 * rows or we have to have no columns left.
+		 */
+
+		if (lcolumns != 0 && lrows != 0)
+			/* rows AND columns are left.  Bad! */
+			continue;
+
+		lcolumns -= pMux->MoreColumns;
+
+		if (lcolumns <= 0)
+			mask |= (1 << pMux->MuxValue);
+	}
+
+	return (mask);
+}
+
+
+u32 dramSetup (void)
+{
+	DECLARE_GLOBAL_DATA_PTR;
+
+	draminfo_t DramInfo[TOTAL_BANK];
+	draminfo_t *pDramInfo;
+	u32 size, temp, cfg_value, mode_value, refresh;
+	u8 *ptr;
+	u8 bursts, Trp, Trcd, type, buffered;
+	u8 muxmask, rows, columns;
+	int count, banknum;
+	u32 *prefresh, *pIdx;
+	u32 refrate[8] = { 15625, 3900, 7800, 31300,
+		62500, 125000, 0xffffffff, 0xffffffff
+	};
+	volatile sysconf8220_t *sysconf;
+	volatile memctl8220_t *memctl;
+
+	sysconf = (volatile sysconf8220_t *) MMAP_MBAR;
+	memctl = (volatile memctl8220_t *) MMAP_MEMCTL;
+
+	/* Set everything in the descriptions to zero */
+	ptr = (u8 *) & DramInfo[0];
+	for (count = 0; count < sizeof (DramInfo); count++)
+		*ptr++ = 0;
+
+	for (banknum = 0; banknum < TOTAL_BANK; banknum++)
+		sysconf->cscfg[banknum];
+
+	/* Descriptions of row/column address muxing for various
+	 * addr_mux settings.
+	 */
+
+	pIdx = prefresh = (u32 *) & refrate[0];
+
+	/* Get all the info for all three logical banks */
+	bursts = 0xff;
+	Trp = 0;
+	Trcd = 0;
+	type = 0;
+	buffered = 0xff;
+	refresh = 0xffffffff;
+	muxmask = 0xff;
+
+	/* Two bank, CS0 and CS1 */
+	for (banknum = 0, pDramInfo = &DramInfo[0];
+	     banknum < TOTAL_BANK; banknum++, pDramInfo++) {
+		pDramInfo->ordinal = banknum;	/* initial sorting */
+		if (getBankInfo (banknum, pDramInfo) < 0)
+			continue;
+
+		/* get cumulative parameters of all three banks */
+		if (type && pDramInfo->type != type)
+			return 0;
+
+		type = pDramInfo->type;
+		rows = pDramInfo->rows;
+		columns = pDramInfo->cols;
+
+		/* This chip only supports 13 DRAM memory lines, but some devices
+		 * have 14 rows.  To deal with this, ignore the 14th address line
+		 * by limiting the number of rows (and columns) to 13.  This will
+		 * mean that for 14-row devices we will only be able to use
+		 * half of the memory, but it's better than nothing.
+		 */
+		if (rows > 13)
+			rows = 13;
+		if (columns > 13)
+			columns = 13;
+
+		pDramInfo->size =
+			((1 << (rows + columns)) * pDramInfo->width);
+		pDramInfo->size *= pDramInfo->banks;
+		pDramInfo->size >>= 3;
+
+		/* figure out which addr_mux configurations will support this device */
+		muxmask &= checkMuxSetting (rows, columns);
+		if (muxmask == 0)
+			return 0;
+
+		buffered = pDramInfo->buffered;
+		bursts &= pDramInfo->bursts;	/* union of all bursts */
+		if (pDramInfo->Trp > Trp)	/* worst case (longest) Trp */
+			Trp = pDramInfo->Trp;
+
+		if (pDramInfo->Trcd > Trcd)	/* worst case (longest) Trcd */
+			Trcd = pDramInfo->Trcd;
+
+		prefresh = pIdx;
+		/* worst case (shortest) Refresh period */
+		if (refresh > prefresh[pDramInfo->refresh & 7])
+			refresh = prefresh[pDramInfo->refresh & 7];
+
+	}			/* for loop */
+
+
+	/* We only allow a burst length of 8! */
+	if (!(bursts & 8))
+		bursts = 8;
+
+	/* Sort the devices.  In order to get each chip select region
+	 * aligned properly, put the biggest device at the lowest address.
+	 * A simple bubble sort will do the trick.
+	 */
+	for (banknum = 0, pDramInfo = &DramInfo[0];
+	     banknum < TOTAL_BANK; banknum++, pDramInfo++) {
+		int i;
+
+		for (i = 0; i < TOTAL_BANK; i++) {
+			if (pDramInfo->size < DramInfo[i].size &&
+			    pDramInfo->ordinal < DramInfo[i].ordinal) {
+				/* If the current bank is smaller, but if the ordinal is also
+				 * smaller, swap the ordinals
+				 */
+				u8 temp8;
+
+				temp8 = DramInfo[i].ordinal;
+				DramInfo[i].ordinal = pDramInfo->ordinal;
+				pDramInfo->ordinal = temp8;
+			}
+		}
+	}
+
+
+	/* Now figure out the base address for each bank.  While
+	 * we're at it, figure out how much memory there is.
+	 *
+	 */
+	size = 0;
+	for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
+		int i;
+
+		for (i = 0; i < TOTAL_BANK; i++) {
+			if (DramInfo[i].ordinal == banknum
+			    && DramInfo[i].size != 0) {
+				DramInfo[i].base = size;
+				size += DramInfo[i].size;
+			}
+		}
+	}
+
+	/* Set up the Drive Strength register */
+	temp = ((DRIVE_STRENGTH_LOW << SDRAMDS_SBE_SHIFT)
+		| (DRIVE_STRENGTH_HIGH << SDRAMDS_SBC_SHIFT)
+		| (DRIVE_STRENGTH_LOW << SDRAMDS_SBA_SHIFT)
+		| (DRIVE_STRENGTH_OFF << SDRAMDS_SBS_SHIFT)
+		| (DRIVE_STRENGTH_LOW << SDRAMDS_SBD_SHIFT));
+	sysconf->sdramds = temp;
+
+	/* ********************** Cfg 1 ************************* */
+
+	/* Set the single read to read/write/precharge delay */
+	cfg_value = CFG1_SRD2RWP ((type == TYPE_DDR) ? 7 : 0xb);
+
+	/* Set the single write to read/write/precharge delay.
+	 * This may or may not be correct.  The controller spec
+	 * says "tWR", but "tWR" does not appear in the SPD.  It
+	 * always seems to be 15nsec for the class of device we're
+	 * using, which turns out to be 2 clock cycles at 133MHz,
+	 * so that's what we're going to use.
+	 *
+	 * HOWEVER, because of a bug in the controller, for DDR
+	 * we need to set this to be the same as the value
+	 * calculated for bwt2rwp.
+	 */
+	cfg_value |= CFG1_SWT2RWP ((type == TYPE_DDR) ? 7 : 2);
+
+	/* Set the Read CAS latency.  We're going to use a CL of
+	 * 2 for DDR and SDR.
+	 */
+	cfg_value |= CFG1_RLATENCY ((type == TYPE_DDR) ? 7 : 2);
+
+
+	/* Set the Active to Read/Write delay.  This depends
+	 * on Trcd which is reported as nanoseconds times 4.
+	 * We want to calculate Trcd (in nanoseconds) times XLB clock (in Hz)
+	 * which gives us a dimensionless quantity.  Play games with
+	 * the divisions so we don't run out of dynamic ranges.
+	 */
+	/* account for megaherz and the times 4 */
+	temp = (Trcd * (gd->bus_clk / 1000000)) / 4;
+
+	/* account for nanoseconds and round up, with a minimum value of 2 */
+	temp = ((temp + 999) / 1000) - 1;
+	if (temp < 2)
+		temp = 2;
+
+	cfg_value |= CFG1_ACT2WR (temp);
+
+	/* Set the precharge to active delay.  This depends
+	 * on Trp which is reported as nanoseconds times 4.
+	 * We want to calculate Trp (in nanoseconds) times XLB clock (in Hz)
+	 * which gives us a dimensionless quantity.  Play games with
+	 * the divisions so we don't run out of dynamic ranges.
+	 */
+	/* account for megaherz and the times 4 */
+	temp = (Trp * (gd->bus_clk / 1000000)) / 4;
+
+	/* account for nanoseconds and round up, then subtract 1, with a
+	 * minumum value of 1 and a maximum value of 7.
+	 */
+	temp = (((temp + 999) / 1000) - 1) & 7;
+	if (temp < 1)
+		temp = 1;
+
+	cfg_value |= CFG1_PRE2ACT (temp);
+
+	/* Set refresh to active delay.  This depends
+	 * on Trfc which is not reported in the SPD.
+	 * We'll use a nominal value of 75nsec which is
+	 * what the controller spec uses.
+	 */
+	temp = (75 * (gd->bus_clk / 1000000));
+	/* account for nanoseconds and round up, then subtract 1 */
+	cfg_value |= CFG1_REF2ACT (((temp + 999) / 1000) - 1);
+
+	/* Set the write latency, using the values given in the controller spec */
+	cfg_value |= CFG1_WLATENCY ((type == TYPE_DDR) ? 3 : 0);
+	memctl->cfg1 = cfg_value;	/* cfg 1 */
+	asm volatile ("sync");
+
+
+	/* ********************** Cfg 2 ************************* */
+
+	/* Set the burst read to read/precharge delay */
+	cfg_value = CFG2_BRD2RP ((type == TYPE_DDR) ? 5 : 8);
+
+	/* Set the burst write to read/precharge delay.  Semi-magic numbers
+	 * based on the controller spec recommendations, assuming tWR is
+	 * two clock cycles.
+	 */
+	cfg_value |= CFG2_BWT2RWP ((type == TYPE_DDR) ? 7 : 10);
+
+	/* Set the Burst read to write delay.  Semi-magic numbers
+	 * based on the DRAM controller documentation.
+	 */
+	cfg_value |= CFG2_BRD2WT ((type == TYPE_DDR) ? 7 : 0xb);
+
+	/* Set the burst length -- must be 8!! Well, 7, actually, becuase
+	 * it's burst lenght minus 1.
+	 */
+	cfg_value |= CFG2_BURSTLEN (7);
+	memctl->cfg2 = cfg_value;	/* cfg 2 */
+	asm volatile ("sync");
+
+
+	/* ********************** mode ************************* */
+
+	/* Set enable bit, CKE high/low bits, and the DDR/SDR mode bit,
+	 * disable automatic refresh.
+	 */
+	cfg_value = CTL_MODE_ENABLE | CTL_CKE_HIGH |
+		((type == TYPE_DDR) ? CTL_DDR_MODE : 0);
+
+	/* Set the address mux based on whichever setting(s) is/are common
+	 * to all the devices we have.  If there is more than one, choose
+	 * one arbitrarily.
+	 */
+	if (muxmask & 0x4)
+		cfg_value |= CTL_ADDRMUX (2);
+	else if (muxmask & 0x2)
+		cfg_value |= CTL_ADDRMUX (1);
+	else
+		cfg_value |= CTL_ADDRMUX (0);
+
+	/* Set the refresh interval. */
+	temp = ((refresh * (gd->bus_clk / 1000000)) / (1000 * 64)) - 1;
+	cfg_value |= CTL_REFRESH_INTERVAL (temp);
+
+	/* Set buffered/non-buffered memory */
+	if (buffered)
+		cfg_value |= CTL_BUFFERED;
+
+	memctl->ctrl = cfg_value;	/* ctrl */
+	asm volatile ("sync");
+
+	if (type == TYPE_DDR) {
+		/* issue precharge all */
+		temp = cfg_value | CTL_PRECHARGE_CMD;
+		memctl->ctrl = temp;	/* ctrl */
+		asm volatile ("sync");
+	}
+
+
+	/* Set up mode value for CAS latency == 2 */
+	mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
+		      MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2) | MODE_CMD);
+
+	asm volatile ("sync");
+
+	/* Write Extended Mode  - enable DLL */
+	if (type == TYPE_DDR) {
+		temp = MODE_EXTENDED | MODE_X_DLL_ENABLE |
+			MODE_X_DS_NORMAL | MODE_CMD;
+		memctl->mode = (temp >> 16);	/* mode */
+		asm volatile ("sync");
+
+		/* Write Mode - reset DLL, set CAS latency == 2 */
+		temp = mode_value | MODE_OPMODE (MODE_OPMODE_RESETDLL);
+		memctl->mode = (temp >> 16);	/* mode */
+		asm volatile ("sync");
+	}
+
+	/* Program the chip selects. */
+	for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
+		if (DramInfo[banknum].size != 0) {
+			u32 mask;
+			int i;
+
+			for (i = 0, mask = 1; i < 32; mask <<= 1, i++) {
+				if (DramInfo[banknum].size & mask)
+					break;
+			}
+			temp = (DramInfo[banknum].base & 0xfff00000) | (i -
+									1);
+
+			sysconf->cscfg[banknum] = temp;
+			asm volatile ("sync");
+		}
+	}
+
+	/* Wait for DLL lock */
+	udelay (200);
+
+	temp = cfg_value | CTL_PRECHARGE_CMD;	/* issue precharge all */
+	memctl->ctrl = temp;	/* ctrl */
+	asm volatile ("sync");
+
+	temp = cfg_value | CTL_REFRESH_CMD;	/* issue precharge all */
+	memctl->ctrl = temp;	/* ctrl */
+	asm volatile ("sync");
+
+	memctl->ctrl = temp;	/* ctrl */
+	asm volatile ("sync");
+
+	/* Write Mode - DLL normal */
+	temp = mode_value | MODE_OPMODE (MODE_OPMODE_NORMAL);
+	memctl->mode = (temp >> 16);	/* mode */
+	asm volatile ("sync");
+
+	/* Enable refresh, enable DQS's (if DDR), and lock the control register */
+	cfg_value &= ~CTL_MODE_ENABLE;	/* lock register */
+	cfg_value |= CTL_REFRESH_ENABLE;	/* enable refresh */
+
+	if (type == TYPE_DDR)
+		cfg_value |= CTL_DQSOEN (0xf);	/* enable DQS's for DDR */
+
+	memctl->ctrl = cfg_value;	/* ctrl */
+	asm volatile ("sync");
+
+	return size;
+}