mtd: move NAND files into a raw/ subdirectory

NAND flavors, like serial and parallel, have a lot in common and would
benefit to share code. Let's move raw (parallel) NAND specific code in a
raw/ subdirectory, to ease the addition of a core file in nand/ and the
introduction of a spi/ subdirectory specific to SPI NANDs.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
new file mode 100644
index 0000000..1e4ea7b
--- /dev/null
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -0,0 +1,297 @@
+
+menuconfig NAND
+	bool "NAND Device Support"
+if NAND
+
+config SYS_NAND_SELF_INIT
+	bool
+	help
+	  This option, if enabled, provides more flexible and linux-like
+	  NAND initialization process.
+
+config NAND_ATMEL
+	bool "Support Atmel NAND controller"
+	imply SYS_NAND_USE_FLASH_BBT
+	help
+	  Enable this driver for NAND flash platforms using an Atmel NAND
+	  controller.
+
+config NAND_DAVINCI
+	bool "Support TI Davinci NAND controller"
+	help
+	  Enable this driver for NAND flash controllers available in TI Davinci
+	  and Keystone2 platforms
+
+config NAND_DENALI
+	bool
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+
+config NAND_DENALI_DT
+	bool "Support Denali NAND controller as a DT device"
+	select NAND_DENALI
+	depends on OF_CONTROL && DM
+	help
+	  Enable the driver for NAND flash on platforms using a Denali NAND
+	  controller as a DT device.
+
+config NAND_DENALI_SPARE_AREA_SKIP_BYTES
+	int "Number of bytes skipped in OOB area"
+	depends on NAND_DENALI
+	range 0 63
+	help
+	  This option specifies the number of bytes to skip from the beginning
+	  of OOB area before last ECC sector data starts.  This is potentially
+	  used to preserve the bad block marker in the OOB area.
+
+config NAND_LPC32XX_SLC
+	bool "Support LPC32XX_SLC controller"
+	help
+	  Enable the LPC32XX SLC NAND controller.
+
+config NAND_OMAP_GPMC
+	bool "Support OMAP GPMC NAND controller"
+	depends on ARCH_OMAP2PLUS
+	help
+	  Enables omap_gpmc.c driver for OMAPx and AMxxxx platforms.
+	  GPMC controller is used for parallel NAND flash devices, and can
+	  do ECC calculation (not ECC error detection) for HAM1, BCH4, BCH8
+	  and BCH16 ECC algorithms.
+
+config NAND_OMAP_GPMC_PREFETCH
+	bool "Enable GPMC Prefetch"
+	depends on NAND_OMAP_GPMC
+	default y
+	help
+	  On OMAP platforms that use the GPMC controller
+	  (CONFIG_NAND_OMAP_GPMC_PREFETCH), this options enables the code that
+	  uses the prefetch mode to speed up read operations.
+
+config NAND_OMAP_ELM
+	bool "Enable ELM driver for OMAPxx and AMxx platforms."
+	depends on NAND_OMAP_GPMC && !OMAP34XX
+	help
+	  ELM controller is used for ECC error detection (not ECC calculation)
+	  of BCH4, BCH8 and BCH16 ECC algorithms.
+	  Some legacy platforms like OMAP3xx do not have in-built ELM h/w engine,
+	  thus such SoC platforms need to depend on software library for ECC error
+	  detection. However ECC calculation on such plaforms would still be
+	  done by GPMC controller.
+
+config NAND_VF610_NFC
+	bool "Support for Freescale NFC for VF610"
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+	help
+	  Enables support for NAND Flash Controller on some Freescale
+	  processors like the VF610, MCF54418 or Kinetis K70.
+	  The driver supports a maximum 2k page size. The driver
+	  currently does not support hardware ECC.
+
+choice
+	prompt "Hardware ECC strength"
+	depends on NAND_VF610_NFC
+	default SYS_NAND_VF610_NFC_45_ECC_BYTES
+	help
+	  Select the ECC strength used in the hardware BCH ECC block.
+
+config SYS_NAND_VF610_NFC_45_ECC_BYTES
+	bool "24-error correction (45 ECC bytes)"
+
+config SYS_NAND_VF610_NFC_60_ECC_BYTES
+	bool "32-error correction (60 ECC bytes)"
+
+endchoice
+
+config NAND_PXA3XX
+	bool "Support for NAND on PXA3xx and Armada 370/XP/38x"
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+	help
+	  This enables the driver for the NAND flash device found on
+	  PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2).
+
+config NAND_SUNXI
+	bool "Support for NAND on Allwinner SoCs"
+	default ARCH_SUNXI
+	depends on MACH_SUN4I || MACH_SUN5I || MACH_SUN7I || MACH_SUN8I
+	select SYS_NAND_SELF_INIT
+	select SYS_NAND_U_BOOT_LOCATIONS
+	select SPL_NAND_SUPPORT
+	imply CMD_NAND
+	---help---
+	Enable support for NAND. This option enables the standard and
+	SPL drivers.
+	The SPL driver only supports reading from the NAND using DMA
+	transfers.
+
+if NAND_SUNXI
+
+config NAND_SUNXI_SPL_ECC_STRENGTH
+	int "Allwinner NAND SPL ECC Strength"
+	default 64
+
+config NAND_SUNXI_SPL_ECC_SIZE
+	int "Allwinner NAND SPL ECC Step Size"
+	default 1024
+
+config NAND_SUNXI_SPL_USABLE_PAGE_SIZE
+	int "Allwinner NAND SPL Usable Page Size"
+	default 1024
+
+endif
+
+config NAND_ARASAN
+	bool "Configure Arasan Nand"
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+	help
+	  This enables Nand driver support for Arasan nand flash
+	  controller. This uses the hardware ECC for read and
+	  write operations.
+
+config NAND_MXC
+	bool "MXC NAND support"
+	depends on CPU_ARM926EJS || CPU_ARM1136 || MX5
+	imply CMD_NAND
+	help
+	  This enables the NAND driver for the NAND flash controller on the
+	  i.MX27 / i.MX31 / i.MX5 rocessors.
+
+config NAND_MXS
+	bool "MXS NAND support"
+	depends on MX23 || MX28 || MX6 || MX7
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+	select APBH_DMA
+	select APBH_DMA_BURST if ARCH_MX6 || ARCH_MX7
+	select APBH_DMA_BURST8 if ARCH_MX6 || ARCH_MX7
+	help
+	  This enables NAND driver for the NAND flash controller on the
+	  MXS processors.
+
+if NAND_MXS
+
+config NAND_MXS_DT
+	bool "Support MXS NAND controller as a DT device"
+	depends on OF_CONTROL && MTD
+	help
+	  Enable the driver for MXS NAND flash on platforms using
+	  device tree.
+
+config NAND_MXS_USE_MINIMUM_ECC
+	bool "Use minimum ECC strength supported by the controller"
+	default false
+
+endif
+
+config NAND_ZYNQ
+	bool "Support for Zynq Nand controller"
+	select SYS_NAND_SELF_INIT
+	imply CMD_NAND
+	help
+	  This enables Nand driver support for Nand flash controller
+	  found on Zynq SoC.
+
+config NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
+	bool "Enable use of 1st stage bootloader timing for NAND"
+	depends on NAND_ZYNQ
+	help
+	  This flag prevent U-boot reconfigure NAND flash controller and reuse
+	  the NAND timing from 1st stage bootloader.
+
+comment "Generic NAND options"
+
+config SYS_NAND_BLOCK_SIZE
+	hex "NAND chip eraseblock size"
+	depends on ARCH_SUNXI
+	help
+	  Number of data bytes in one eraseblock for the NAND chip on the
+	  board. This is the multiple of NAND_PAGE_SIZE and the number of
+	  pages.
+
+config SYS_NAND_PAGE_SIZE
+	hex "NAND chip page size"
+	depends on ARCH_SUNXI
+	help
+	  Number of data bytes in one page for the NAND chip on the
+	  board, not including the OOB area.
+
+config SYS_NAND_OOBSIZE
+	hex "NAND chip OOB size"
+	depends on ARCH_SUNXI
+	help
+	  Number of bytes in the Out-Of-Band area for the NAND chip on
+	  the board.
+
+# Enhance depends when converting drivers to Kconfig which use this config
+# option (mxc_nand, ndfc, omap_gpmc).
+config SYS_NAND_BUSWIDTH_16BIT
+	bool "Use 16-bit NAND interface"
+	depends on NAND_VF610_NFC || NAND_OMAP_GPMC || NAND_MXC || ARCH_DAVINCI
+	help
+	  Indicates that NAND device has 16-bit wide data-bus. In absence of this
+	  config, bus-width of NAND device is assumed to be either 8-bit and later
+	  determined by reading ONFI params.
+	  Above config is useful when NAND device's bus-width information cannot
+	  be determined from on-chip ONFI params, like in following scenarios:
+	  - SPL boot does not support reading of ONFI parameters. This is done to
+	    keep SPL code foot-print small.
+	  - In current U-Boot flow using nand_init(), driver initialization
+	    happens in board_nand_init() which is called before any device probe
+	    (nand_scan_ident + nand_scan_tail), thus device's ONFI parameters are
+	    not available while configuring controller. So a static CONFIG_NAND_xx
+	    is needed to know the device's bus-width in advance.
+
+if SPL
+
+config SYS_NAND_U_BOOT_LOCATIONS
+	bool "Define U-boot binaries locations in NAND"
+	help
+	Enable CONFIG_SYS_NAND_U_BOOT_OFFS though Kconfig.
+	This option should not be enabled when compiling U-boot for boards
+	defining CONFIG_SYS_NAND_U_BOOT_OFFS in their include/configs/<board>.h
+	file.
+
+config SYS_NAND_U_BOOT_OFFS
+	hex "Location in NAND to read U-Boot from"
+	default 0x800000 if NAND_SUNXI
+	depends on SYS_NAND_U_BOOT_LOCATIONS
+	help
+	Set the offset from the start of the nand where u-boot should be
+	loaded from.
+
+config SYS_NAND_U_BOOT_OFFS_REDUND
+	hex "Location in NAND to read U-Boot from"
+	default SYS_NAND_U_BOOT_OFFS
+	depends on SYS_NAND_U_BOOT_LOCATIONS
+	help
+	Set the offset from the start of the nand where the redundant u-boot
+	should be loaded from.
+
+config SPL_NAND_AM33XX_BCH
+	bool "Enables SPL-NAND driver which supports ELM based"
+	depends on NAND_OMAP_GPMC && !OMAP34XX
+	default y
+        help
+	  Hardware ECC correction. This is useful for platforms which have ELM
+	  hardware engine and use NAND boot mode.
+	  Some legacy platforms like OMAP3xx do not have in-built ELM h/w engine,
+	  so those platforms should use CONFIG_SPL_NAND_SIMPLE for enabling
+          SPL-NAND driver with software ECC correction support.
+
+config SPL_NAND_DENALI
+	bool "Support Denali NAND controller for SPL"
+	help
+	  This is a small implementation of the Denali NAND controller
+	  for use on SPL.
+
+config SPL_NAND_SIMPLE
+	bool "Use simple SPL NAND driver"
+	depends on !SPL_NAND_AM33XX_BCH
+	help
+	  Support for NAND boot using simple NAND drivers that
+	  expose the cmd_ctrl() interface.
+endif
+
+endif   # if NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
new file mode 100644
index 0000000..c61e3f3
--- /dev/null
+++ b/drivers/mtd/nand/raw/Makefile
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: GPL-2.0+
+#
+# (C) Copyright 2006
+# Wolfgang Denk, DENX Software Engineering, wd@denx.de.
+
+ifdef CONFIG_SPL_BUILD
+
+ifdef CONFIG_SPL_NAND_DRIVERS
+NORMAL_DRIVERS=y
+endif
+
+obj-$(CONFIG_SPL_NAND_AM33XX_BCH) += am335x_spl_bch.o
+obj-$(CONFIG_SPL_NAND_DENALI) += denali_spl.o
+obj-$(CONFIG_SPL_NAND_SIMPLE) += nand_spl_simple.o
+obj-$(CONFIG_SPL_NAND_LOAD) += nand_spl_load.o
+obj-$(CONFIG_SPL_NAND_ECC) += nand_ecc.o
+obj-$(CONFIG_SPL_NAND_BASE) += nand_base.o
+obj-$(CONFIG_SPL_NAND_IDENT) += nand_ids.o nand_timings.o
+obj-$(CONFIG_SPL_NAND_INIT) += nand.o
+ifeq ($(CONFIG_SPL_ENV_SUPPORT),y)
+obj-$(CONFIG_ENV_IS_IN_NAND) += nand_util.o
+endif
+
+else # not spl
+
+NORMAL_DRIVERS=y
+
+obj-y += nand.o
+obj-y += nand_bbt.o
+obj-y += nand_ids.o
+obj-y += nand_util.o
+obj-y += nand_ecc.o
+obj-y += nand_base.o
+obj-y += nand_timings.o
+
+endif # not spl
+
+ifdef NORMAL_DRIVERS
+
+obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o
+
+obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o
+obj-$(CONFIG_NAND_ARASAN) += arasan_nfc.o
+obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o
+obj-$(CONFIG_NAND_DENALI) += denali.o
+obj-$(CONFIG_NAND_DENALI_DT) += denali_dt.o
+obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o
+obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o
+obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o
+obj-$(CONFIG_NAND_FSMC) += fsmc_nand.o
+obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
+obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
+obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
+obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o
+obj-$(CONFIG_NAND_LPC32XX_SLC) += lpc32xx_nand_slc.o
+obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
+obj-$(CONFIG_NAND_MXC) += mxc_nand.o
+obj-$(CONFIG_NAND_MXS) += mxs_nand.o
+obj-$(CONFIG_NAND_MXS_DT) += mxs_nand_dt.o
+obj-$(CONFIG_NAND_PXA3XX) += pxa3xx_nand.o
+obj-$(CONFIG_NAND_SPEAR) += spr_nand.o
+obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o
+obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o
+obj-$(CONFIG_NAND_OMAP_ELM) += omap_elm.o
+obj-$(CONFIG_NAND_PLAT) += nand_plat.o
+obj-$(CONFIG_NAND_SUNXI) += sunxi_nand.o
+obj-$(CONFIG_NAND_ZYNQ) += zynq_nand.o
+
+else  # minimal SPL drivers
+
+obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_spl.o
+obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_spl.o
+obj-$(CONFIG_NAND_MXC) += mxc_nand_spl.o
+obj-$(CONFIG_NAND_MXS) += mxs_nand_spl.o mxs_nand.o
+obj-$(CONFIG_NAND_SUNXI) += sunxi_nand_spl.o
+
+endif # drivers
diff --git a/drivers/mtd/nand/raw/am335x_spl_bch.c b/drivers/mtd/nand/raw/am335x_spl_bch.c
new file mode 100644
index 0000000..ba2f33a
--- /dev/null
+++ b/drivers/mtd/nand/raw/am335x_spl_bch.c
@@ -0,0 +1,225 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2012
+ * Konstantin Kozhevnikov, Cogent Embedded
+ *
+ * based on nand_spl_simple code
+ *
+ * (C) Copyright 2006-2008
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+#include <linux/mtd/nand_ecc.h>
+
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
+static struct mtd_info *mtd;
+static struct nand_chip nand_chip;
+
+#define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / \
+					CONFIG_SYS_NAND_ECCSIZE)
+#define ECCTOTAL	(ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
+
+
+/*
+ * NAND command for large page NAND devices (2k)
+ */
+static int nand_command(int block, int page, uint32_t offs,
+	u8 cmd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+	void (*hwctrl)(struct mtd_info *mtd, int cmd,
+			unsigned int ctrl) = this->cmd_ctrl;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	/* Emulate NAND_CMD_READOOB */
+	if (cmd == NAND_CMD_READOOB) {
+		offs += CONFIG_SYS_NAND_PAGE_SIZE;
+		cmd = NAND_CMD_READ0;
+	}
+
+	/* Begin command latch cycle */
+	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+
+	if (cmd == NAND_CMD_RESET) {
+		hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+		/*
+		 * Apply this short delay always to ensure that we do wait
+		 * tWB in any case on any machine.
+		 */
+		ndelay(150);
+
+		while (!this->dev_ready(mtd))
+			;
+		return 0;
+	}
+
+	/* Shift the offset from byte addressing to word addressing. */
+	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
+		offs >>= 1;
+
+	/* Set ALE and clear CLE to start address cycle */
+	/* Column address */
+	hwctrl(mtd, offs & 0xff,
+		       NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
+	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
+	/* Row address */
+	if (cmd != NAND_CMD_RNDOUT) {
+		hwctrl(mtd, (page_addr & 0xff),
+		       NAND_CTRL_ALE); /* A[19:12] */
+		hwctrl(mtd, ((page_addr >> 8) & 0xff),
+		       NAND_CTRL_ALE); /* A[27:20] */
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+		/* One more address cycle for devices > 128MiB */
+		hwctrl(mtd, (page_addr >> 16) & 0x0f,
+		       NAND_CTRL_ALE); /* A[31:28] */
+#endif
+	}
+
+	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+
+	/*
+	 * Program and erase have their own busy handlers status, sequential
+	 * in and status need no delay.
+	 */
+	switch (cmd) {
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_RNDIN:
+	case NAND_CMD_STATUS:
+		return 0;
+
+	case NAND_CMD_RNDOUT:
+		/* No ready / busy check necessary */
+		hwctrl(mtd, NAND_CMD_RNDOUTSTART, NAND_CTRL_CLE |
+		       NAND_CTRL_CHANGE);
+		hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+		return 0;
+
+	case NAND_CMD_READ0:
+		/* Latch in address */
+		hwctrl(mtd, NAND_CMD_READSTART,
+		       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+		hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+	}
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(150);
+
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+
+static int nand_is_bad_block(int block)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
+		NAND_CMD_READOOB);
+
+	/*
+	 * Read one byte (or two if it's a 16 bit chip).
+	 */
+	if (this->options & NAND_BUSWIDTH_16) {
+		if (readw(this->IO_ADDR_R) != 0xffff)
+			return 1;
+	} else {
+		if (readb(this->IO_ADDR_R) != 0xff)
+			return 1;
+	}
+
+	return 0;
+}
+
+static int nand_read_page(int block, int page, void *dst)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int i;
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	uint8_t *p = dst;
+	uint32_t data_pos = 0;
+	uint8_t *oob = &oob_data[0] + nand_ecc_pos[0];
+	uint32_t oob_pos = eccsize * eccsteps + nand_ecc_pos[0];
+
+	nand_command(block, page, 0, NAND_CMD_READ0);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		this->ecc.hwctl(mtd, NAND_ECC_READ);
+		nand_command(block, page, data_pos, NAND_CMD_RNDOUT);
+
+		this->read_buf(mtd, p, eccsize);
+
+		nand_command(block, page, oob_pos, NAND_CMD_RNDOUT);
+
+		this->read_buf(mtd, oob, eccbytes);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		data_pos += eccsize;
+		oob_pos += eccbytes;
+		oob += eccbytes;
+	}
+
+	/* Pick the ECC bytes out of the oob data */
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+	eccsteps = ECCSTEPS;
+	p = dst;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		/* No chance to do something with the possible error message
+		 * from correct_data(). We just hope that all possible errors
+		 * are corrected by this routine.
+		 */
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+	}
+
+	return 0;
+}
+
+/* nand_init() - initialize data to make nand usable by SPL */
+void nand_init(void)
+{
+	/*
+	 * Init board specific nand support
+	 */
+	mtd = nand_to_mtd(&nand_chip);
+	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
+		(void  __iomem *)CONFIG_SYS_NAND_BASE;
+	board_nand_init(&nand_chip);
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, 0);
+
+	/* NAND chip may require reset after power-on */
+	nand_command(0, 0, 0, NAND_CMD_RESET);
+}
+
+/* Unselect after operation */
+void nand_deselect(void)
+{
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, -1);
+}
+
+#include "nand_spl_loaders.c"
diff --git a/drivers/mtd/nand/raw/arasan_nfc.c b/drivers/mtd/nand/raw/arasan_nfc.c
new file mode 100644
index 0000000..41db9f8b
--- /dev/null
+++ b/drivers/mtd/nand/raw/arasan_nfc.c
@@ -0,0 +1,1270 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Arasan NAND Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2015 Xilinx, Inc.
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/arch/hardware.h>
+#include <asm/arch/sys_proto.h>
+#include <nand.h>
+
+struct arasan_nand_info {
+	void __iomem *nand_base;
+	u32 page;
+	bool on_die_ecc_enabled;
+};
+
+struct nand_regs {
+	u32 pkt_reg;
+	u32 memadr_reg1;
+	u32 memadr_reg2;
+	u32 cmd_reg;
+	u32 pgm_reg;
+	u32 intsts_enr;
+	u32 intsig_enr;
+	u32 intsts_reg;
+	u32 rdy_busy;
+	u32 cms_sysadr_reg;
+	u32 flash_sts_reg;
+	u32 tmg_reg;
+	u32 buf_dataport;
+	u32 ecc_reg;
+	u32 ecc_errcnt_reg;
+	u32 ecc_sprcmd_reg;
+	u32 errcnt_1bitreg;
+	u32 errcnt_2bitreg;
+	u32 errcnt_3bitreg;
+	u32 errcnt_4bitreg;
+	u32 dma_sysadr0_reg;
+	u32 dma_bufbdry_reg;
+	u32 cpu_rls_reg;
+	u32 errcnt_5bitreg;
+	u32 errcnt_6bitreg;
+	u32 errcnt_7bitreg;
+	u32 errcnt_8bitreg;
+	u32 data_if_reg;
+};
+
+#define arasan_nand_base ((struct nand_regs __iomem *)ARASAN_NAND_BASEADDR)
+
+struct arasan_nand_command_format {
+	u8 cmd1;
+	u8 cmd2;
+	u8 addr_cycles;
+	u32 pgm;
+};
+
+#define ONDIE_ECC_FEATURE_ADDR			0x90
+#define ENABLE_ONDIE_ECC			0x08
+
+#define ARASAN_PROG_RD_MASK			0x00000001
+#define ARASAN_PROG_BLK_ERS_MASK		0x00000004
+#define ARASAN_PROG_RD_ID_MASK			0x00000040
+#define ARASAN_PROG_RD_STS_MASK			0x00000008
+#define ARASAN_PROG_PG_PROG_MASK		0x00000010
+#define ARASAN_PROG_RD_PARAM_PG_MASK		0x00000080
+#define ARASAN_PROG_RST_MASK			0x00000100
+#define ARASAN_PROG_GET_FTRS_MASK		0x00000200
+#define ARASAN_PROG_SET_FTRS_MASK		0x00000400
+#define ARASAN_PROG_CHNG_ROWADR_END_MASK	0x00400000
+
+#define ARASAN_NAND_CMD_ECC_ON_MASK		0x80000000
+#define ARASAN_NAND_CMD_CMD12_MASK		0xFFFF
+#define ARASAN_NAND_CMD_PG_SIZE_MASK		0x3800000
+#define ARASAN_NAND_CMD_PG_SIZE_SHIFT		23
+#define ARASAN_NAND_CMD_CMD2_SHIFT		8
+#define ARASAN_NAND_CMD_ADDR_CYCL_MASK		0x70000000
+#define ARASAN_NAND_CMD_ADDR_CYCL_SHIFT		28
+
+#define ARASAN_NAND_MEM_ADDR1_PAGE_MASK		0xFFFF0000
+#define ARASAN_NAND_MEM_ADDR1_COL_MASK		0xFFFF
+#define ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT	16
+#define ARASAN_NAND_MEM_ADDR2_PAGE_MASK		0xFF
+#define ARASAN_NAND_MEM_ADDR2_CS_MASK		0xC0000000
+#define ARASAN_NAND_MEM_ADDR2_BCH_MASK		0xE000000
+#define ARASAN_NAND_MEM_ADDR2_BCH_SHIFT		25
+
+#define ARASAN_NAND_INT_STS_ERR_EN_MASK		0x10
+#define ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK	0x08
+#define ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK	0x02
+#define ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK	0x01
+#define ARASAN_NAND_INT_STS_XFR_CMPLT_MASK	0x04
+
+#define ARASAN_NAND_PKT_REG_PKT_CNT_MASK	0xFFF000
+#define ARASAN_NAND_PKT_REG_PKT_SIZE_MASK	0x7FF
+#define ARASAN_NAND_PKT_REG_PKT_CNT_SHFT	12
+
+#define ARASAN_NAND_ROW_ADDR_CYCL_MASK		0x0F
+#define ARASAN_NAND_COL_ADDR_CYCL_MASK		0xF0
+#define ARASAN_NAND_COL_ADDR_CYCL_SHIFT		4
+
+#define ARASAN_NAND_ECC_SIZE_SHIFT		16
+#define ARASAN_NAND_ECC_BCH_SHIFT		27
+
+#define ARASAN_NAND_PKTSIZE_1K			1024
+#define ARASAN_NAND_PKTSIZE_512			512
+
+#define ARASAN_NAND_POLL_TIMEOUT		1000000
+#define ARASAN_NAND_INVALID_ADDR_CYCL		0xFF
+
+#define ERR_ADDR_CYCLE				-1
+#define READ_BUFF_SIZE				0x4000
+
+static struct arasan_nand_command_format *curr_cmd;
+
+enum addr_cycles {
+	NAND_ADDR_CYCL_NONE,
+	NAND_ADDR_CYCL_ONE,
+	NAND_ADDR_CYCL_ROW,
+	NAND_ADDR_CYCL_COL,
+	NAND_ADDR_CYCL_BOTH,
+};
+
+static struct arasan_nand_command_format arasan_nand_commands[] = {
+	{NAND_CMD_READ0, NAND_CMD_READSTART, NAND_ADDR_CYCL_BOTH,
+	 ARASAN_PROG_RD_MASK},
+	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, NAND_ADDR_CYCL_COL,
+	 ARASAN_PROG_RD_MASK},
+	{NAND_CMD_READID, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
+	 ARASAN_PROG_RD_ID_MASK},
+	{NAND_CMD_STATUS, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE,
+	 ARASAN_PROG_RD_STS_MASK},
+	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, NAND_ADDR_CYCL_BOTH,
+	 ARASAN_PROG_PG_PROG_MASK},
+	{NAND_CMD_RNDIN, NAND_CMD_NONE, NAND_ADDR_CYCL_COL,
+	 ARASAN_PROG_CHNG_ROWADR_END_MASK},
+	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, NAND_ADDR_CYCL_ROW,
+	 ARASAN_PROG_BLK_ERS_MASK},
+	{NAND_CMD_RESET, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE,
+	 ARASAN_PROG_RST_MASK},
+	{NAND_CMD_PARAM, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
+	 ARASAN_PROG_RD_PARAM_PG_MASK},
+	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
+	 ARASAN_PROG_GET_FTRS_MASK},
+	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, NAND_ADDR_CYCL_ONE,
+	 ARASAN_PROG_SET_FTRS_MASK},
+	{NAND_CMD_NONE, NAND_CMD_NONE, NAND_ADDR_CYCL_NONE, 0},
+};
+
+struct arasan_ecc_matrix {
+	u32 pagesize;
+	u32 ecc_codeword_size;
+	u8 eccbits;
+	u8 bch;
+	u8 bchval;
+	u16 eccaddr;
+	u16 eccsize;
+};
+
+static const struct arasan_ecc_matrix ecc_matrix[] = {
+	{512, 512, 1, 0, 0, 0x20D, 0x3},
+	{512, 512, 4, 1, 3, 0x209, 0x7},
+	{512, 512, 8, 1, 2, 0x203, 0xD},
+	/*
+	 * 2K byte page
+	 */
+	{2048, 512, 1, 0, 0, 0x834, 0xC},
+	{2048, 512, 4, 1, 3, 0x826, 0x1A},
+	{2048, 512, 8, 1, 2, 0x80c, 0x34},
+	{2048, 512, 12, 1, 1, 0x822, 0x4E},
+	{2048, 512, 16, 1, 0, 0x808, 0x68},
+	{2048, 1024, 24, 1, 4, 0x81c, 0x54},
+	/*
+	 * 4K byte page
+	 */
+	{4096, 512, 1, 0, 0, 0x1068, 0x18},
+	{4096, 512, 4, 1, 3, 0x104c, 0x34},
+	{4096, 512, 8, 1, 2, 0x1018, 0x68},
+	{4096, 512, 12, 1, 1, 0x1044, 0x9C},
+	{4096, 512, 16, 1, 0, 0x1010, 0xD0},
+	{4096, 1024, 24, 1, 4, 0x1038, 0xA8},
+	/*
+	 * 8K byte page
+	 */
+	{8192, 512, 1, 0, 0, 0x20d0, 0x30},
+	{8192, 512, 4, 1, 3, 0x2098, 0x68},
+	{8192, 512, 8, 1, 2, 0x2030, 0xD0},
+	{8192, 512, 12, 1, 1, 0x2088, 0x138},
+	{8192, 512, 16, 1, 0, 0x2020, 0x1A0},
+	{8192, 1024, 24, 1, 4, 0x2070, 0x150},
+	/*
+	 * 16K byte page
+	 */
+	{16384, 512, 1, 0, 0, 0x4460, 0x60},
+	{16384, 512, 4, 1, 3, 0x43f0, 0xD0},
+	{16384, 512, 8, 1, 2, 0x4320, 0x1A0},
+	{16384, 512, 12, 1, 1, 0x4250, 0x270},
+	{16384, 512, 16, 1, 0, 0x4180, 0x340},
+	{16384, 1024, 24, 1, 4, 0x4220, 0x2A0}
+};
+
+static struct nand_ecclayout ondie_nand_oob_64 = {
+	.eccbytes = 32,
+
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		56, 57, 58, 59, 60, 61, 62, 63
+	},
+
+	.oobfree = {
+		{ .offset = 4, .length = 4 },
+		{ .offset = 20, .length = 4 },
+		{ .offset = 36, .length = 4 },
+		{ .offset = 52, .length = 4 }
+	}
+};
+
+/*
+ * bbt decriptors for chips with on-die ECC and
+ * chips with 64-byte OOB
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+static u8 buf_data[READ_BUFF_SIZE];
+static u32 buf_index;
+
+static struct nand_ecclayout nand_oob;
+
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+
+static void arasan_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+static void arasan_nand_enable_ecc(void)
+{
+	u32 reg_val;
+
+	reg_val = readl(&arasan_nand_base->cmd_reg);
+	reg_val |= ARASAN_NAND_CMD_ECC_ON_MASK;
+
+	writel(reg_val, &arasan_nand_base->cmd_reg);
+}
+
+static u8 arasan_nand_get_addrcycle(struct mtd_info *mtd)
+{
+	u8 addrcycles;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	switch (curr_cmd->addr_cycles) {
+	case NAND_ADDR_CYCL_NONE:
+		addrcycles = 0;
+		break;
+	case NAND_ADDR_CYCL_ONE:
+		addrcycles = 1;
+		break;
+	case NAND_ADDR_CYCL_ROW:
+		addrcycles = chip->onfi_params.addr_cycles &
+			     ARASAN_NAND_ROW_ADDR_CYCL_MASK;
+		break;
+	case NAND_ADDR_CYCL_COL:
+		addrcycles = (chip->onfi_params.addr_cycles &
+			      ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
+			      ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
+		break;
+	case NAND_ADDR_CYCL_BOTH:
+		addrcycles = chip->onfi_params.addr_cycles &
+			     ARASAN_NAND_ROW_ADDR_CYCL_MASK;
+		addrcycles += (chip->onfi_params.addr_cycles &
+			       ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
+			       ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
+		break;
+	default:
+		addrcycles = ARASAN_NAND_INVALID_ADDR_CYCL;
+		break;
+	}
+	return addrcycles;
+}
+
+static int arasan_nand_read_page(struct mtd_info *mtd, u8 *buf, u32 size)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct arasan_nand_info *nand = nand_get_controller_data(chip);
+	u32 reg_val, i, pktsize, pktnum;
+	u32 *bufptr = (u32 *)buf;
+	u32 timeout;
+	u32  rdcount = 0;
+	u8 addr_cycles;
+
+	if (chip->ecc_step_ds >= ARASAN_NAND_PKTSIZE_1K)
+		pktsize = ARASAN_NAND_PKTSIZE_1K;
+	else
+		pktsize = ARASAN_NAND_PKTSIZE_512;
+
+	if (size % pktsize)
+		pktnum = size/pktsize + 1;
+	else
+		pktnum = size/pktsize;
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	reg_val |= ARASAN_NAND_INT_STS_ERR_EN_MASK |
+		   ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK;
+	writel(reg_val, &arasan_nand_base->intsts_enr);
+
+	reg_val = readl(&arasan_nand_base->pkt_reg);
+	reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
+		     ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
+	reg_val |= (pktnum << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) |
+		    pktsize;
+	writel(reg_val, &arasan_nand_base->pkt_reg);
+
+	if (!nand->on_die_ecc_enabled) {
+		arasan_nand_enable_ecc();
+		addr_cycles = arasan_nand_get_addrcycle(mtd);
+		if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
+			return ERR_ADDR_CYCLE;
+
+		writel((NAND_CMD_RNDOUTSTART << ARASAN_NAND_CMD_CMD2_SHIFT) |
+		       NAND_CMD_RNDOUT | (addr_cycles <<
+		       ARASAN_NAND_CMD_ADDR_CYCL_SHIFT),
+		       &arasan_nand_base->ecc_sprcmd_reg);
+	}
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (rdcount < pktnum) {
+		timeout = ARASAN_NAND_POLL_TIMEOUT;
+		while (!(readl(&arasan_nand_base->intsts_reg) &
+			ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK) && timeout) {
+			udelay(1);
+			timeout--;
+		}
+		if (!timeout) {
+			puts("arasan_read_page: timedout:Buff RDY\n");
+			return -ETIMEDOUT;
+		}
+
+		rdcount++;
+
+		if (pktnum == rdcount) {
+			reg_val = readl(&arasan_nand_base->intsts_enr);
+			reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
+			writel(reg_val, &arasan_nand_base->intsts_enr);
+		} else {
+			reg_val = readl(&arasan_nand_base->intsts_enr);
+			writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+			       &arasan_nand_base->intsts_enr);
+		}
+		reg_val = readl(&arasan_nand_base->intsts_reg);
+		writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+		       &arasan_nand_base->intsts_reg);
+
+		for (i = 0; i < pktsize/4; i++)
+			bufptr[i] = readl(&arasan_nand_base->buf_dataport);
+
+
+		bufptr += pktsize/4;
+
+		if (rdcount >= pktnum)
+			break;
+
+		writel(ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+		       &arasan_nand_base->intsts_enr);
+	}
+
+	timeout = ARASAN_NAND_POLL_TIMEOUT;
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		puts("arasan rd_page timedout:Xfer CMPLT\n");
+		return -ETIMEDOUT;
+	}
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	if (!nand->on_die_ecc_enabled) {
+		if (readl(&arasan_nand_base->intsts_reg) &
+		    ARASAN_NAND_INT_STS_MUL_BIT_ERR_MASK) {
+			printf("arasan rd_page:sbiterror\n");
+			return -1;
+		}
+
+		if (readl(&arasan_nand_base->intsts_reg) &
+		    ARASAN_NAND_INT_STS_ERR_EN_MASK) {
+			mtd->ecc_stats.failed++;
+			printf("arasan rd_page:multibiterror\n");
+			return -1;
+		}
+	}
+
+	return 0;
+}
+
+static int arasan_nand_read_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+	int status;
+
+	status = arasan_nand_read_page(mtd, buf, (mtd->writesize));
+
+	if (oob_required)
+		chip->ecc.read_oob(mtd, chip, page);
+
+	return status;
+}
+
+static void arasan_nand_fill_tx(const u8 *buf, int len)
+{
+	u32 __iomem *nand = &arasan_nand_base->buf_dataport;
+
+	if (((unsigned long)buf & 0x3) != 0) {
+		if (((unsigned long)buf & 0x1) != 0) {
+			if (len) {
+				writeb(*buf, nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((unsigned long)buf & 0x3) != 0) {
+			if (len >= 2) {
+				writew(*(u16 *)buf, nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	while (len >= 4) {
+		writel(*(u32 *)buf, nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	if (len) {
+		if (len >= 2) {
+			writew(*(u16 *)buf, nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			writeb(*buf, nand);
+	}
+}
+
+static int arasan_nand_write_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, const u8 *buf, int oob_required,
+		int page)
+{
+	u32 reg_val, i, pktsize, pktnum;
+	const u32 *bufptr = (const u32 *)buf;
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+	u32 size = mtd->writesize;
+	u32 rdcount = 0;
+	u8 column_addr_cycles;
+	struct arasan_nand_info *nand = nand_get_controller_data(chip);
+
+	if (chip->ecc_step_ds >= ARASAN_NAND_PKTSIZE_1K)
+		pktsize = ARASAN_NAND_PKTSIZE_1K;
+	else
+		pktsize = ARASAN_NAND_PKTSIZE_512;
+
+	if (size % pktsize)
+		pktnum = size/pktsize + 1;
+	else
+		pktnum = size/pktsize;
+
+	reg_val = readl(&arasan_nand_base->pkt_reg);
+	reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
+		     ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
+	reg_val |= (pktnum << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | pktsize;
+	writel(reg_val, &arasan_nand_base->pkt_reg);
+
+	if (!nand->on_die_ecc_enabled) {
+		arasan_nand_enable_ecc();
+		column_addr_cycles = (chip->onfi_params.addr_cycles &
+				      ARASAN_NAND_COL_ADDR_CYCL_MASK) >>
+				      ARASAN_NAND_COL_ADDR_CYCL_SHIFT;
+		writel((NAND_CMD_RNDIN | (column_addr_cycles << 28)),
+		       &arasan_nand_base->ecc_sprcmd_reg);
+	}
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (rdcount < pktnum) {
+		timeout = ARASAN_NAND_POLL_TIMEOUT;
+		while (!(readl(&arasan_nand_base->intsts_reg) &
+			ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK) && timeout) {
+			udelay(1);
+			timeout--;
+		}
+
+		if (!timeout) {
+			puts("arasan_write_page: timedout:Buff RDY\n");
+			return -ETIMEDOUT;
+		}
+
+		rdcount++;
+
+		if (pktnum == rdcount) {
+			reg_val = readl(&arasan_nand_base->intsts_enr);
+			reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
+			writel(reg_val, &arasan_nand_base->intsts_enr);
+		} else {
+			reg_val = readl(&arasan_nand_base->intsts_enr);
+			writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+			       &arasan_nand_base->intsts_enr);
+		}
+
+		reg_val = readl(&arasan_nand_base->intsts_reg);
+		writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+		       &arasan_nand_base->intsts_reg);
+
+		for (i = 0; i < pktsize/4; i++)
+			writel(bufptr[i], &arasan_nand_base->buf_dataport);
+
+		bufptr += pktsize/4;
+
+		if (rdcount >= pktnum)
+			break;
+
+		writel(ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+		       &arasan_nand_base->intsts_enr);
+	}
+
+	timeout = ARASAN_NAND_POLL_TIMEOUT;
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		puts("arasan write_page timedout:Xfer CMPLT\n");
+		return -ETIMEDOUT;
+	}
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	if (oob_required)
+		chip->ecc.write_oob(mtd, chip, nand->page);
+
+	return 0;
+}
+
+static int arasan_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	chip->read_buf(mtd, chip->oob_poi, (mtd->oobsize));
+
+	return 0;
+}
+
+static int arasan_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				 int page)
+{
+	int status = 0;
+	const u8 *buf = chip->oob_poi;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	chip->write_buf(mtd, buf, mtd->oobsize);
+
+	return status;
+}
+
+static int arasan_nand_reset(struct arasan_nand_command_format *curr_cmd)
+{
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+	u32 cmd_reg = 0;
+
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	cmd_reg = readl(&arasan_nand_base->cmd_reg);
+	cmd_reg &= ~ARASAN_NAND_CMD_CMD12_MASK;
+
+	cmd_reg |= curr_cmd->cmd1 |
+		  (curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
+	writel(cmd_reg, &arasan_nand_base->cmd_reg);
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		printf("ERROR:%s timedout\n", __func__);
+		return -ETIMEDOUT;
+	}
+
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	return 0;
+}
+
+static u8 arasan_nand_page(struct mtd_info *mtd)
+{
+	u8 page_val = 0;
+
+	switch (mtd->writesize) {
+	case 512:
+		page_val = 0;
+		break;
+	case 2048:
+		page_val = 1;
+		break;
+	case 4096:
+		page_val = 2;
+		break;
+	case 8192:
+		page_val = 3;
+		break;
+	case 16384:
+		page_val = 4;
+		break;
+	case 1024:
+		page_val = 5;
+		break;
+	default:
+		printf("%s:Pagesize>16K\n", __func__);
+		break;
+	}
+
+	return page_val;
+}
+
+static int arasan_nand_send_wrcmd(struct arasan_nand_command_format *curr_cmd,
+			int column, int page_addr, struct mtd_info *mtd)
+{
+	u32 reg_val, page;
+	u8 page_val, addr_cycles;
+
+	writel(ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->cmd_reg);
+	reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
+	reg_val |= curr_cmd->cmd1 |
+		   (curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
+	if (curr_cmd->cmd1 == NAND_CMD_SEQIN) {
+		reg_val &= ~ARASAN_NAND_CMD_PG_SIZE_MASK;
+		page_val = arasan_nand_page(mtd);
+		reg_val |= (page_val << ARASAN_NAND_CMD_PG_SIZE_SHIFT);
+	}
+
+	reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
+	addr_cycles = arasan_nand_get_addrcycle(mtd);
+
+	if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
+		return ERR_ADDR_CYCLE;
+
+	reg_val |= (addr_cycles <<
+		   ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
+	writel(reg_val, &arasan_nand_base->cmd_reg);
+
+	if (page_addr == -1)
+		page_addr = 0;
+
+	page = (page_addr << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
+		ARASAN_NAND_MEM_ADDR1_PAGE_MASK;
+	column &= ARASAN_NAND_MEM_ADDR1_COL_MASK;
+	writel(page|column, &arasan_nand_base->memadr_reg1);
+
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
+	reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_CS_MASK;
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+
+	return 0;
+}
+
+static void arasan_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	u32 reg_val;
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+
+	reg_val = readl(&arasan_nand_base->pkt_reg);
+	reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
+		     ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
+
+	reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | len;
+	writel(reg_val, &arasan_nand_base->pkt_reg);
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+
+	if (!timeout)
+		puts("ERROR:arasan_nand_write_buf timedout:Buff RDY\n");
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
+	writel(reg_val, &arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_BUF_WR_RDY_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	arasan_nand_fill_tx(buf, len);
+
+	timeout = ARASAN_NAND_POLL_TIMEOUT;
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+	if (!timeout)
+		puts("ERROR:arasan_nand_write_buf timedout:Xfer CMPLT\n");
+
+	writel(readl(&arasan_nand_base->intsts_enr) |
+	       ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	writel(readl(&arasan_nand_base->intsts_reg) |
+	       ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+}
+
+static int arasan_nand_erase(struct arasan_nand_command_format *curr_cmd,
+			      int column, int page_addr, struct mtd_info *mtd)
+{
+	u32 reg_val, page;
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+	u8 row_addr_cycles;
+
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->cmd_reg);
+	reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
+	reg_val |= curr_cmd->cmd1 |
+		   (curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
+	row_addr_cycles = arasan_nand_get_addrcycle(mtd);
+
+	if (row_addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
+		return ERR_ADDR_CYCLE;
+
+	reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
+	reg_val |= (row_addr_cycles <<
+		    ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
+
+	writel(reg_val, &arasan_nand_base->cmd_reg);
+
+	page = (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
+		ARASAN_NAND_MEM_ADDR1_COL_MASK;
+	column = page_addr & ARASAN_NAND_MEM_ADDR1_COL_MASK;
+	writel(column | (page << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT),
+	       &arasan_nand_base->memadr_reg1);
+
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
+	reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_CS_MASK;
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+	if (!timeout) {
+		printf("ERROR:%s timedout:Xfer CMPLT\n", __func__);
+		return -ETIMEDOUT;
+	}
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	return 0;
+}
+
+static int arasan_nand_read_status(struct arasan_nand_command_format *curr_cmd,
+				int column, int page_addr, struct mtd_info *mtd)
+{
+	u32 reg_val;
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+	u8 addr_cycles;
+
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->cmd_reg);
+	reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
+	reg_val |= curr_cmd->cmd1 |
+		   (curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
+	addr_cycles = arasan_nand_get_addrcycle(mtd);
+
+	if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
+		return ERR_ADDR_CYCLE;
+
+	reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
+	reg_val |= (addr_cycles <<
+		    ARASAN_NAND_CMD_ADDR_CYCL_SHIFT);
+
+	writel(reg_val, &arasan_nand_base->cmd_reg);
+
+	reg_val = readl(&arasan_nand_base->pkt_reg);
+	reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
+		     ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
+	reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | 1;
+	writel(reg_val, &arasan_nand_base->pkt_reg);
+
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_CS_MASK;
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+
+	if (!timeout) {
+		printf("ERROR:%s: timedout:Xfer CMPLT\n", __func__);
+		return -ETIMEDOUT;
+	}
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	return 0;
+}
+
+static int arasan_nand_send_rdcmd(struct arasan_nand_command_format *curr_cmd,
+			       int column, int page_addr, struct mtd_info *mtd)
+{
+	u32 reg_val, addr_cycles, page;
+	u8 page_val;
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+	       &arasan_nand_base->intsts_enr);
+
+	reg_val = readl(&arasan_nand_base->cmd_reg);
+	reg_val &= ~ARASAN_NAND_CMD_CMD12_MASK;
+	reg_val |= curr_cmd->cmd1 |
+		   (curr_cmd->cmd2 << ARASAN_NAND_CMD_CMD2_SHIFT);
+
+	if (curr_cmd->cmd1 == NAND_CMD_RNDOUT ||
+	    curr_cmd->cmd1 == NAND_CMD_READ0) {
+		reg_val &= ~ARASAN_NAND_CMD_PG_SIZE_MASK;
+		page_val = arasan_nand_page(mtd);
+		reg_val |= (page_val << ARASAN_NAND_CMD_PG_SIZE_SHIFT);
+	}
+
+	reg_val &= ~ARASAN_NAND_CMD_ECC_ON_MASK;
+
+	reg_val &= ~ARASAN_NAND_CMD_ADDR_CYCL_MASK;
+
+	addr_cycles = arasan_nand_get_addrcycle(mtd);
+
+	if (addr_cycles == ARASAN_NAND_INVALID_ADDR_CYCL)
+		return ERR_ADDR_CYCLE;
+
+	reg_val |= (addr_cycles << 28);
+	writel(reg_val, &arasan_nand_base->cmd_reg);
+
+	if (page_addr == -1)
+		page_addr = 0;
+
+	page = (page_addr << ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT) &
+		ARASAN_NAND_MEM_ADDR1_PAGE_MASK;
+	column &= ARASAN_NAND_MEM_ADDR1_COL_MASK;
+	writel(page | column, &arasan_nand_base->memadr_reg1);
+
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_PAGE_MASK;
+	reg_val |= (page_addr >> ARASAN_NAND_MEM_ADDR1_PAGE_SHIFT);
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+
+	reg_val = readl(&arasan_nand_base->memadr_reg2);
+	reg_val &= ~ARASAN_NAND_MEM_ADDR2_CS_MASK;
+	writel(reg_val, &arasan_nand_base->memadr_reg2);
+	buf_index = 0;
+
+	return 0;
+}
+
+static void arasan_nand_read_buf(struct mtd_info *mtd, u8 *buf, int size)
+{
+	u32 reg_val, i;
+	u32 *bufptr = (u32 *)buf;
+	u32 timeout = ARASAN_NAND_POLL_TIMEOUT;
+
+	reg_val = readl(&arasan_nand_base->pkt_reg);
+	reg_val &= ~(ARASAN_NAND_PKT_REG_PKT_CNT_MASK |
+		     ARASAN_NAND_PKT_REG_PKT_SIZE_MASK);
+	reg_val |= (1 << ARASAN_NAND_PKT_REG_PKT_CNT_SHFT) | size;
+	writel(reg_val, &arasan_nand_base->pkt_reg);
+
+	writel(curr_cmd->pgm, &arasan_nand_base->pgm_reg);
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+
+	if (!timeout)
+		puts("ERROR:arasan_nand_read_buf timedout:Buff RDY\n");
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	reg_val |= ARASAN_NAND_INT_STS_XFR_CMPLT_MASK;
+	writel(reg_val, &arasan_nand_base->intsts_enr);
+
+	writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_BUF_RD_RDY_MASK,
+	       &arasan_nand_base->intsts_reg);
+
+	buf_index = 0;
+	for (i = 0; i < size / 4; i++)
+		bufptr[i] = readl(&arasan_nand_base->buf_dataport);
+
+	if (size & 0x03)
+		bufptr[i] = readl(&arasan_nand_base->buf_dataport);
+
+	timeout = ARASAN_NAND_POLL_TIMEOUT;
+
+	while (!(readl(&arasan_nand_base->intsts_reg) &
+		ARASAN_NAND_INT_STS_XFR_CMPLT_MASK) && timeout) {
+		udelay(1);
+		timeout--;
+	}
+
+	if (!timeout)
+		puts("ERROR:arasan_nand_read_buf timedout:Xfer CMPLT\n");
+
+	reg_val = readl(&arasan_nand_base->intsts_enr);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+	reg_val = readl(&arasan_nand_base->intsts_reg);
+	writel(reg_val | ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_reg);
+}
+
+static u8 arasan_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 size;
+	u8 val;
+	struct nand_onfi_params *p;
+
+	if (buf_index == 0) {
+		p = &chip->onfi_params;
+		if (curr_cmd->cmd1 == NAND_CMD_READID)
+			size = 4;
+		else if (curr_cmd->cmd1 == NAND_CMD_PARAM)
+			size = sizeof(struct nand_onfi_params);
+		else if (curr_cmd->cmd1 == NAND_CMD_RNDOUT)
+			size = le16_to_cpu(p->ext_param_page_length) * 16;
+		else if (curr_cmd->cmd1 == NAND_CMD_GET_FEATURES)
+			size = 4;
+		else if (curr_cmd->cmd1 == NAND_CMD_STATUS)
+			return readb(&arasan_nand_base->flash_sts_reg);
+		else
+			size = 8;
+		chip->read_buf(mtd, &buf_data[0], size);
+	}
+
+	val = *(&buf_data[0] + buf_index);
+	buf_index++;
+
+	return val;
+}
+
+static void arasan_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
+				     int column, int page_addr)
+{
+	u32 i, ret = 0;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct arasan_nand_info *nand = nand_get_controller_data(chip);
+
+	curr_cmd = NULL;
+	writel(ARASAN_NAND_INT_STS_XFR_CMPLT_MASK,
+	       &arasan_nand_base->intsts_enr);
+
+	if ((command == NAND_CMD_READOOB) &&
+	    (mtd->writesize > 512)) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Get the command format */
+	for (i = 0; (arasan_nand_commands[i].cmd1 != NAND_CMD_NONE ||
+		     arasan_nand_commands[i].cmd2 != NAND_CMD_NONE); i++) {
+		if (command == arasan_nand_commands[i].cmd1) {
+			curr_cmd = &arasan_nand_commands[i];
+			break;
+		}
+	}
+
+	if (curr_cmd == NULL) {
+		printf("Unsupported Command; 0x%x\n", command);
+		return;
+	}
+
+	if (curr_cmd->cmd1 == NAND_CMD_RESET)
+		ret = arasan_nand_reset(curr_cmd);
+
+	if ((curr_cmd->cmd1 == NAND_CMD_READID) ||
+	    (curr_cmd->cmd1 == NAND_CMD_PARAM) ||
+	    (curr_cmd->cmd1 == NAND_CMD_RNDOUT) ||
+	    (curr_cmd->cmd1 == NAND_CMD_GET_FEATURES) ||
+	    (curr_cmd->cmd1 == NAND_CMD_READ0))
+		ret = arasan_nand_send_rdcmd(curr_cmd, column, page_addr, mtd);
+
+	if ((curr_cmd->cmd1 == NAND_CMD_SET_FEATURES) ||
+	    (curr_cmd->cmd1 == NAND_CMD_SEQIN)) {
+		nand->page = page_addr;
+		ret = arasan_nand_send_wrcmd(curr_cmd, column, page_addr, mtd);
+	}
+
+	if (curr_cmd->cmd1 == NAND_CMD_ERASE1)
+		ret = arasan_nand_erase(curr_cmd, column, page_addr, mtd);
+
+	if (curr_cmd->cmd1 == NAND_CMD_STATUS)
+		ret = arasan_nand_read_status(curr_cmd, column, page_addr, mtd);
+
+	if (ret != 0)
+		printf("ERROR:%s:command:0x%x\n", __func__, curr_cmd->cmd1);
+}
+
+static void arasan_check_ondie(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct arasan_nand_info *nand = nand_get_controller_data(nand_chip);
+	u8 maf_id, dev_id;
+	u8 get_feature[4];
+	u8 set_feature[4] = {ENABLE_ONDIE_ECC, 0x00, 0x00, 0x00};
+	u32 i;
+
+	/* Send the command for reading device ID */
+	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0, -1);
+
+	/* Read manufacturer and device IDs */
+	maf_id = nand_chip->read_byte(mtd);
+	dev_id = nand_chip->read_byte(mtd);
+
+	if ((maf_id == NAND_MFR_MICRON) &&
+	    ((dev_id == 0xf1) || (dev_id == 0xa1) || (dev_id == 0xb1) ||
+	     (dev_id == 0xaa) || (dev_id == 0xba) || (dev_id == 0xda) ||
+	     (dev_id == 0xca) || (dev_id == 0xac) || (dev_id == 0xbc) ||
+	     (dev_id == 0xdc) || (dev_id == 0xcc) || (dev_id == 0xa3) ||
+	     (dev_id == 0xb3) || (dev_id == 0xd3) || (dev_id == 0xc3))) {
+		nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
+				   ONDIE_ECC_FEATURE_ADDR, -1);
+
+		nand_chip->write_buf(mtd, &set_feature[0], 4);
+		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
+				   ONDIE_ECC_FEATURE_ADDR, -1);
+
+		for (i = 0; i < 4; i++)
+			get_feature[i] = nand_chip->read_byte(mtd);
+
+		if (get_feature[0] & ENABLE_ONDIE_ECC)
+			nand->on_die_ecc_enabled = true;
+		else
+			printf("%s: Unable to enable OnDie ECC\n", __func__);
+
+		/* Use the BBT pattern descriptors */
+		nand_chip->bbt_td = &bbt_main_descr;
+		nand_chip->bbt_md = &bbt_mirror_descr;
+	}
+}
+
+static int arasan_nand_ecc_init(struct mtd_info *mtd)
+{
+	int found = -1;
+	u32 regval, eccpos_start, i, eccaddr;
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+	for (i = 0; i < ARRAY_SIZE(ecc_matrix); i++) {
+		if ((ecc_matrix[i].pagesize == mtd->writesize) &&
+		    (ecc_matrix[i].ecc_codeword_size >=
+		     nand_chip->ecc_step_ds)) {
+			if (ecc_matrix[i].eccbits >=
+			    nand_chip->ecc_strength_ds) {
+				found = i;
+				break;
+			}
+			found = i;
+		}
+	}
+
+	if (found < 0)
+		return 1;
+
+	eccaddr = mtd->writesize + mtd->oobsize -
+		  ecc_matrix[found].eccsize;
+
+	regval = eccaddr |
+		 (ecc_matrix[found].eccsize << ARASAN_NAND_ECC_SIZE_SHIFT) |
+		 (ecc_matrix[found].bch << ARASAN_NAND_ECC_BCH_SHIFT);
+	writel(regval, &arasan_nand_base->ecc_reg);
+
+	if (ecc_matrix[found].bch) {
+		regval = readl(&arasan_nand_base->memadr_reg2);
+		regval &= ~ARASAN_NAND_MEM_ADDR2_BCH_MASK;
+		regval |= (ecc_matrix[found].bchval <<
+			   ARASAN_NAND_MEM_ADDR2_BCH_SHIFT);
+		writel(regval, &arasan_nand_base->memadr_reg2);
+	}
+
+	nand_oob.eccbytes = ecc_matrix[found].eccsize;
+	eccpos_start = mtd->oobsize - nand_oob.eccbytes;
+
+	for (i = 0; i < nand_oob.eccbytes; i++)
+		nand_oob.eccpos[i] = eccpos_start + i;
+
+	nand_oob.oobfree[0].offset = 2;
+	nand_oob.oobfree[0].length = eccpos_start - 2;
+
+	nand_chip->ecc.size = ecc_matrix[found].ecc_codeword_size;
+	nand_chip->ecc.strength = ecc_matrix[found].eccbits;
+	nand_chip->ecc.bytes = ecc_matrix[found].eccsize;
+	nand_chip->ecc.layout = &nand_oob;
+
+	return 0;
+}
+
+static int arasan_nand_init(struct nand_chip *nand_chip, int devnum)
+{
+	struct arasan_nand_info *nand;
+	struct mtd_info *mtd;
+	int err = -1;
+
+	nand = calloc(1, sizeof(struct arasan_nand_info));
+	if (!nand) {
+		printf("%s: failed to allocate\n", __func__);
+		return err;
+	}
+
+	nand->nand_base = arasan_nand_base;
+	mtd = nand_to_mtd(nand_chip);
+	nand_set_controller_data(nand_chip, nand);
+
+	/* Set the driver entry points for MTD */
+	nand_chip->cmdfunc = arasan_nand_cmd_function;
+	nand_chip->select_chip = arasan_nand_select_chip;
+	nand_chip->read_byte = arasan_nand_read_byte;
+
+	/* Buffer read/write routines */
+	nand_chip->read_buf = arasan_nand_read_buf;
+	nand_chip->write_buf = arasan_nand_write_buf;
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	writel(0x0, &arasan_nand_base->cmd_reg);
+	writel(0x0, &arasan_nand_base->pgm_reg);
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, 1, NULL)) {
+		printf("%s: nand_scan_ident failed\n", __func__);
+		goto fail;
+	}
+
+	nand_chip->ecc.mode = NAND_ECC_HW;
+	nand_chip->ecc.hwctl = NULL;
+	nand_chip->ecc.read_page = arasan_nand_read_page_hwecc;
+	nand_chip->ecc.write_page = arasan_nand_write_page_hwecc;
+	nand_chip->ecc.read_oob = arasan_nand_read_oob;
+	nand_chip->ecc.write_oob = arasan_nand_write_oob;
+
+	arasan_check_ondie(mtd);
+
+	/*
+	 * If on die supported, then give priority to on-die ecc and use
+	 * it instead of controller ecc.
+	 */
+	if (nand->on_die_ecc_enabled) {
+		nand_chip->ecc.strength = 1;
+		nand_chip->ecc.size = mtd->writesize;
+		nand_chip->ecc.bytes = 0;
+		nand_chip->ecc.layout = &ondie_nand_oob_64;
+	} else {
+		if (arasan_nand_ecc_init(mtd)) {
+			printf("%s: nand_ecc_init failed\n", __func__);
+			goto fail;
+		}
+	}
+
+	if (nand_scan_tail(mtd)) {
+		printf("%s: nand_scan_tail failed\n", __func__);
+		goto fail;
+	}
+
+	if (nand_register(devnum, mtd)) {
+		printf("Nand Register Fail\n");
+		goto fail;
+	}
+
+	return 0;
+fail:
+	free(nand);
+	return err;
+}
+
+void board_nand_init(void)
+{
+	struct nand_chip *nand = &nand_chip[0];
+
+	if (arasan_nand_init(nand, 0))
+		puts("NAND init failed\n");
+}
diff --git a/drivers/mtd/nand/raw/atmel_nand.c b/drivers/mtd/nand/raw/atmel_nand.c
new file mode 100644
index 0000000..a5b76e1
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel_nand.c
@@ -0,0 +1,1511 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2007-2008
+ * Stelian Pop <stelian@popies.net>
+ * Lead Tech Design <www.leadtechdesign.com>
+ *
+ * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ *     (C) Copyright 2012 ATMEL, Hong Xu
+ */
+
+#include <common.h>
+#include <asm/gpio.h>
+#include <asm/arch/gpio.h>
+
+#include <malloc.h>
+#include <nand.h>
+#include <watchdog.h>
+#include <linux/mtd/nand_ecc.h>
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+
+/* Register access macros */
+#define ecc_readl(add, reg)				\
+	readl(add + ATMEL_ECC_##reg)
+#define ecc_writel(add, reg, value)			\
+	writel((value), add + ATMEL_ECC_##reg)
+
+#include "atmel_nand_ecc.h"	/* Hardware ECC registers */
+
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+
+#ifdef CONFIG_SPL_BUILD
+#undef CONFIG_SYS_NAND_ONFI_DETECTION
+#endif
+
+struct atmel_nand_host {
+	struct pmecc_regs __iomem *pmecc;
+	struct pmecc_errloc_regs __iomem *pmerrloc;
+	void __iomem		*pmecc_rom_base;
+
+	u8		pmecc_corr_cap;
+	u16		pmecc_sector_size;
+	u32		pmecc_index_table_offset;
+	u32		pmecc_version;
+
+	int		pmecc_bytes_per_sector;
+	int		pmecc_sector_number;
+	int		pmecc_degree;	/* Degree of remainders */
+	int		pmecc_cw_len;	/* Length of codeword */
+
+	/* lookup table for alpha_to and index_of */
+	void __iomem	*pmecc_alpha_to;
+	void __iomem	*pmecc_index_of;
+
+	/* data for pmecc computation */
+	int16_t	*pmecc_smu;
+	int16_t	*pmecc_partial_syn;
+	int16_t	*pmecc_si;
+	int16_t	*pmecc_lmu; /* polynomal order */
+	int	*pmecc_mu;
+	int	*pmecc_dmu;
+	int	*pmecc_delta;
+};
+
+static struct atmel_nand_host pmecc_host;
+static struct nand_ecclayout atmel_pmecc_oobinfo;
+
+/*
+ * Return number of ecc bytes per sector according to sector size and
+ * correction capability
+ *
+ * Following table shows what at91 PMECC supported:
+ * Correction Capability	Sector_512_bytes	Sector_1024_bytes
+ * =====================	================	=================
+ *                2-bits                 4-bytes                  4-bytes
+ *                4-bits                 7-bytes                  7-bytes
+ *                8-bits                13-bytes                 14-bytes
+ *               12-bits                20-bytes                 21-bytes
+ *               24-bits                39-bytes                 42-bytes
+ *               32-bits                52-bytes                 56-bytes
+ */
+static int pmecc_get_ecc_bytes(int cap, int sector_size)
+{
+	int m = 12 + sector_size / 512;
+	return (m * cap + 7) / 8;
+}
+
+static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
+	int oobsize, int ecc_len)
+{
+	int i;
+
+	layout->eccbytes = ecc_len;
+
+	/* ECC will occupy the last ecc_len bytes continuously */
+	for (i = 0; i < ecc_len; i++)
+		layout->eccpos[i] = oobsize - ecc_len + i;
+
+	layout->oobfree[0].offset = 2;
+	layout->oobfree[0].length =
+		oobsize - ecc_len - layout->oobfree[0].offset;
+}
+
+static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
+{
+	int table_size;
+
+	table_size = host->pmecc_sector_size == 512 ?
+		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
+
+	/* the ALPHA lookup table is right behind the INDEX lookup table. */
+	return host->pmecc_rom_base + host->pmecc_index_table_offset +
+			table_size * sizeof(int16_t);
+}
+
+static void pmecc_data_free(struct atmel_nand_host *host)
+{
+	free(host->pmecc_partial_syn);
+	free(host->pmecc_si);
+	free(host->pmecc_lmu);
+	free(host->pmecc_smu);
+	free(host->pmecc_mu);
+	free(host->pmecc_dmu);
+	free(host->pmecc_delta);
+}
+
+static int pmecc_data_alloc(struct atmel_nand_host *host)
+{
+	const int cap = host->pmecc_corr_cap;
+	int size;
+
+	size = (2 * cap + 1) * sizeof(int16_t);
+	host->pmecc_partial_syn = malloc(size);
+	host->pmecc_si = malloc(size);
+	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
+	host->pmecc_smu = malloc((cap + 2) * size);
+
+	size = (cap + 1) * sizeof(int);
+	host->pmecc_mu = malloc(size);
+	host->pmecc_dmu = malloc(size);
+	host->pmecc_delta = malloc(size);
+
+	if (host->pmecc_partial_syn &&
+			host->pmecc_si &&
+			host->pmecc_lmu &&
+			host->pmecc_smu &&
+			host->pmecc_mu &&
+			host->pmecc_dmu &&
+			host->pmecc_delta)
+		return 0;
+
+	/* error happened */
+	pmecc_data_free(host);
+	return -ENOMEM;
+
+}
+
+static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	int i;
+	uint32_t value;
+
+	/* Fill odd syndromes */
+	for (i = 0; i < host->pmecc_corr_cap; i++) {
+		value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
+		if (i & 1)
+			value >>= 16;
+		value &= 0xffff;
+		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
+	}
+}
+
+static void pmecc_substitute(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+	int16_t __iomem *index_of = host->pmecc_index_of;
+	int16_t *partial_syn = host->pmecc_partial_syn;
+	const int cap = host->pmecc_corr_cap;
+	int16_t *si;
+	int i, j;
+
+	/* si[] is a table that holds the current syndrome value,
+	 * an element of that table belongs to the field
+	 */
+	si = host->pmecc_si;
+
+	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
+
+	/* Computation 2t syndromes based on S(x) */
+	/* Odd syndromes */
+	for (i = 1; i < 2 * cap; i += 2) {
+		for (j = 0; j < host->pmecc_degree; j++) {
+			if (partial_syn[i] & (0x1 << j))
+				si[i] = readw(alpha_to + i * j) ^ si[i];
+		}
+	}
+	/* Even syndrome = (Odd syndrome) ** 2 */
+	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
+		if (si[j] == 0) {
+			si[i] = 0;
+		} else {
+			int16_t tmp;
+
+			tmp = readw(index_of + si[j]);
+			tmp = (tmp * 2) % host->pmecc_cw_len;
+			si[i] = readw(alpha_to + tmp);
+		}
+	}
+}
+
+/*
+ * This function defines a Berlekamp iterative procedure for
+ * finding the value of the error location polynomial.
+ * The input is si[], initialize by pmecc_substitute().
+ * The output is smu[][].
+ *
+ * This function is written according to chip datasheet Chapter:
+ * Find the Error Location Polynomial Sigma(x) of Section:
+ * Programmable Multibit ECC Control (PMECC).
+ */
+static void pmecc_get_sigma(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+
+	int16_t *lmu = host->pmecc_lmu;
+	int16_t *si = host->pmecc_si;
+	int *mu = host->pmecc_mu;
+	int *dmu = host->pmecc_dmu;	/* Discrepancy */
+	int *delta = host->pmecc_delta; /* Delta order */
+	int cw_len = host->pmecc_cw_len;
+	const int16_t cap = host->pmecc_corr_cap;
+	const int num = 2 * cap + 1;
+	int16_t __iomem	*index_of = host->pmecc_index_of;
+	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
+	int i, j, k;
+	uint32_t dmu_0_count, tmp;
+	int16_t *smu = host->pmecc_smu;
+
+	/* index of largest delta */
+	int ro;
+	int largest;
+	int diff;
+
+	/* Init the Sigma(x) */
+	memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
+
+	dmu_0_count = 0;
+
+	/* First Row */
+
+	/* Mu */
+	mu[0] = -1;
+
+	smu[0] = 1;
+
+	/* discrepancy set to 1 */
+	dmu[0] = 1;
+	/* polynom order set to 0 */
+	lmu[0] = 0;
+	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
+	delta[0] = -1;
+
+	/* Second Row */
+
+	/* Mu */
+	mu[1] = 0;
+	/* Sigma(x) set to 1 */
+	smu[num] = 1;
+
+	/* discrepancy set to S1 */
+	dmu[1] = si[1];
+
+	/* polynom order set to 0 */
+	lmu[1] = 0;
+
+	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
+	delta[1] = 0;
+
+	for (i = 1; i <= cap; i++) {
+		mu[i + 1] = i << 1;
+		/* Begin Computing Sigma (Mu+1) and L(mu) */
+		/* check if discrepancy is set to 0 */
+		if (dmu[i] == 0) {
+			dmu_0_count++;
+
+			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
+			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
+				tmp += 2;
+			else
+				tmp += 1;
+
+			if (dmu_0_count == tmp) {
+				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+					smu[(cap + 1) * num + j] =
+							smu[i * num + j];
+
+				lmu[cap + 1] = lmu[i];
+				return;
+			}
+
+			/* copy polynom */
+			for (j = 0; j <= lmu[i] >> 1; j++)
+				smu[(i + 1) * num + j] = smu[i * num + j];
+
+			/* copy previous polynom order to the next */
+			lmu[i + 1] = lmu[i];
+		} else {
+			ro = 0;
+			largest = -1;
+			/* find largest delta with dmu != 0 */
+			for (j = 0; j < i; j++) {
+				if ((dmu[j]) && (delta[j] > largest)) {
+					largest = delta[j];
+					ro = j;
+				}
+			}
+
+			/* compute difference */
+			diff = (mu[i] - mu[ro]);
+
+			/* Compute degree of the new smu polynomial */
+			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+				lmu[i + 1] = lmu[i];
+			else
+				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+			/* Init smu[i+1] with 0 */
+			for (k = 0; k < num; k++)
+				smu[(i + 1) * num + k] = 0;
+
+			/* Compute smu[i+1] */
+			for (k = 0; k <= lmu[ro] >> 1; k++) {
+				int16_t a, b, c;
+
+				if (!(smu[ro * num + k] && dmu[i]))
+					continue;
+				a = readw(index_of + dmu[i]);
+				b = readw(index_of + dmu[ro]);
+				c = readw(index_of + smu[ro * num + k]);
+				tmp = a + (cw_len - b) + c;
+				a = readw(alpha_to + tmp % cw_len);
+				smu[(i + 1) * num + (k + diff)] = a;
+			}
+
+			for (k = 0; k <= lmu[i] >> 1; k++)
+				smu[(i + 1) * num + k] ^= smu[i * num + k];
+		}
+
+		/* End Computing Sigma (Mu+1) and L(mu) */
+		/* In either case compute delta */
+		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+		/* Do not compute discrepancy for the last iteration */
+		if (i >= cap)
+			continue;
+
+		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+			tmp = 2 * (i - 1);
+			if (k == 0) {
+				dmu[i + 1] = si[tmp + 3];
+			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+				int16_t a, b, c;
+				a = readw(index_of +
+						smu[(i + 1) * num + k]);
+				b = si[2 * (i - 1) + 3 - k];
+				c = readw(index_of + b);
+				tmp = a + c;
+				tmp %= cw_len;
+				dmu[i + 1] = readw(alpha_to + tmp) ^
+					dmu[i + 1];
+			}
+		}
+	}
+}
+
+static int pmecc_err_location(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	const int cap = host->pmecc_corr_cap;
+	const int num = 2 * cap + 1;
+	int sector_size = host->pmecc_sector_size;
+	int err_nbr = 0;	/* number of error */
+	int roots_nbr;		/* number of roots */
+	int i;
+	uint32_t val;
+	int16_t *smu = host->pmecc_smu;
+	int timeout = PMECC_MAX_TIMEOUT_US;
+
+	pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
+
+	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
+		pmecc_writel(host->pmerrloc, sigma[i],
+			     smu[(cap + 1) * num + i]);
+		err_nbr++;
+	}
+
+	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
+	if (sector_size == 1024)
+		val |= PMERRLOC_ELCFG_SECTOR_1024;
+
+	pmecc_writel(host->pmerrloc, elcfg, val);
+	pmecc_writel(host->pmerrloc, elen,
+		     sector_size * 8 + host->pmecc_degree * cap);
+
+	while (--timeout) {
+		if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
+			break;
+		WATCHDOG_RESET();
+		udelay(1);
+	}
+
+	if (!timeout) {
+		dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
+		return -1;
+	}
+
+	roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
+			>> 8;
+	/* Number of roots == degree of smu hence <= cap */
+	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
+		return err_nbr - 1;
+
+	/* Number of roots does not match the degree of smu
+	 * unable to correct error */
+	return -1;
+}
+
+static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
+		int sector_num, int extra_bytes, int err_nbr)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	int i = 0;
+	int byte_pos, bit_pos, sector_size, pos;
+	uint32_t tmp;
+	uint8_t err_byte;
+
+	sector_size = host->pmecc_sector_size;
+
+	while (err_nbr) {
+		tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
+		byte_pos = tmp / 8;
+		bit_pos  = tmp % 8;
+
+		if (byte_pos >= (sector_size + extra_bytes))
+			BUG();	/* should never happen */
+
+		if (byte_pos < sector_size) {
+			err_byte = *(buf + byte_pos);
+			*(buf + byte_pos) ^= (1 << bit_pos);
+
+			pos = sector_num * host->pmecc_sector_size + byte_pos;
+			dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+				pos, bit_pos, err_byte, *(buf + byte_pos));
+		} else {
+			/* Bit flip in OOB area */
+			tmp = sector_num * host->pmecc_bytes_per_sector
+					+ (byte_pos - sector_size);
+			err_byte = ecc[tmp];
+			ecc[tmp] ^= (1 << bit_pos);
+
+			pos = tmp + nand_chip->ecc.layout->eccpos[0];
+			dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+				pos, bit_pos, err_byte, ecc[tmp]);
+		}
+
+		i++;
+		err_nbr--;
+	}
+
+	return;
+}
+
+static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
+	u8 *ecc)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	int i, err_nbr, eccbytes;
+	uint8_t *buf_pos;
+
+	/* SAMA5D4 PMECC IP can correct errors for all 0xff page */
+	if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
+		goto normal_check;
+
+	eccbytes = nand_chip->ecc.bytes;
+	for (i = 0; i < eccbytes; i++)
+		if (ecc[i] != 0xff)
+			goto normal_check;
+	/* Erased page, return OK */
+	return 0;
+
+normal_check:
+	for (i = 0; i < host->pmecc_sector_number; i++) {
+		err_nbr = 0;
+		if (pmecc_stat & 0x1) {
+			buf_pos = buf + i * host->pmecc_sector_size;
+
+			pmecc_gen_syndrome(mtd, i);
+			pmecc_substitute(mtd);
+			pmecc_get_sigma(mtd);
+
+			err_nbr = pmecc_err_location(mtd);
+			if (err_nbr == -1) {
+				dev_err(host->dev, "PMECC: Too many errors\n");
+				mtd->ecc_stats.failed++;
+				return -EBADMSG;
+			} else {
+				pmecc_correct_data(mtd, buf_pos, ecc, i,
+					host->pmecc_bytes_per_sector, err_nbr);
+				mtd->ecc_stats.corrected += err_nbr;
+			}
+		}
+		pmecc_stat >>= 1;
+	}
+
+	return 0;
+}
+
+static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	struct atmel_nand_host *host = nand_get_controller_data(chip);
+	int eccsize = chip->ecc.size;
+	uint8_t *oob = chip->oob_poi;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	uint32_t stat;
+	int timeout = PMECC_MAX_TIMEOUT_US;
+
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
+		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
+
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+	chip->read_buf(mtd, buf, eccsize);
+	chip->read_buf(mtd, oob, mtd->oobsize);
+
+	while (--timeout) {
+		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+			break;
+		WATCHDOG_RESET();
+		udelay(1);
+	}
+
+	if (!timeout) {
+		dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
+		return -1;
+	}
+
+	stat = pmecc_readl(host->pmecc, isr);
+	if (stat != 0)
+		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
+			return -EBADMSG;
+
+	return 0;
+}
+
+static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
+		struct nand_chip *chip, const uint8_t *buf,
+		int oob_required, int page)
+{
+	struct atmel_nand_host *host = nand_get_controller_data(chip);
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	int i, j;
+	int timeout = PMECC_MAX_TIMEOUT_US;
+
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
+		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
+
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
+
+	while (--timeout) {
+		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+			break;
+		WATCHDOG_RESET();
+		udelay(1);
+	}
+
+	if (!timeout) {
+		dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
+		goto out;
+	}
+
+	for (i = 0; i < host->pmecc_sector_number; i++) {
+		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
+			int pos;
+
+			pos = i * host->pmecc_bytes_per_sector + j;
+			chip->oob_poi[eccpos[pos]] =
+				pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
+		}
+	}
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+out:
+	return 0;
+}
+
+static void atmel_pmecc_core_init(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+	uint32_t val = 0;
+	struct nand_ecclayout *ecc_layout;
+
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+	switch (host->pmecc_corr_cap) {
+	case 2:
+		val = PMECC_CFG_BCH_ERR2;
+		break;
+	case 4:
+		val = PMECC_CFG_BCH_ERR4;
+		break;
+	case 8:
+		val = PMECC_CFG_BCH_ERR8;
+		break;
+	case 12:
+		val = PMECC_CFG_BCH_ERR12;
+		break;
+	case 24:
+		val = PMECC_CFG_BCH_ERR24;
+		break;
+	case 32:
+		val = PMECC_CFG_BCH_ERR32;
+		break;
+	}
+
+	if (host->pmecc_sector_size == 512)
+		val |= PMECC_CFG_SECTOR512;
+	else if (host->pmecc_sector_size == 1024)
+		val |= PMECC_CFG_SECTOR1024;
+
+	switch (host->pmecc_sector_number) {
+	case 1:
+		val |= PMECC_CFG_PAGE_1SECTOR;
+		break;
+	case 2:
+		val |= PMECC_CFG_PAGE_2SECTORS;
+		break;
+	case 4:
+		val |= PMECC_CFG_PAGE_4SECTORS;
+		break;
+	case 8:
+		val |= PMECC_CFG_PAGE_8SECTORS;
+		break;
+	}
+
+	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
+		| PMECC_CFG_AUTO_DISABLE);
+	pmecc_writel(host->pmecc, cfg, val);
+
+	ecc_layout = nand_chip->ecc.layout;
+	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
+	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
+	pmecc_writel(host->pmecc, eaddr,
+			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
+	/* See datasheet about PMECC Clock Control Register */
+	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
+	pmecc_writel(host->pmecc, idr, 0xff);
+	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+}
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+/*
+ * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
+ *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
+ *                    ONFI ECC parameters.
+ * @host: point to an atmel_nand_host structure.
+ *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
+ *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
+ * @chip: point to an nand_chip structure.
+ * @cap: store the ONFI ECC correct bits capbility
+ * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
+ *
+ * Return 0 if success. otherwise return the error code.
+ */
+static int pmecc_choose_ecc(struct atmel_nand_host *host,
+		struct nand_chip *chip,
+		int *cap, int *sector_size)
+{
+	/* Get ECC requirement from ONFI parameters */
+	*cap = *sector_size = 0;
+	if (chip->onfi_version) {
+		*cap = chip->ecc_strength_ds;
+		*sector_size = chip->ecc_step_ds;
+		pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
+			 *cap, *sector_size);
+	}
+
+	if (*cap == 0 && *sector_size == 0) {
+		/* Non-ONFI compliant */
+		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
+		*cap = 2;
+		*sector_size = 512;
+	}
+
+	/* If head file doesn't specify then use the one in ONFI parameters */
+	if (host->pmecc_corr_cap == 0) {
+		/* use the most fitable ecc bits (the near bigger one ) */
+		if (*cap <= 2)
+			host->pmecc_corr_cap = 2;
+		else if (*cap <= 4)
+			host->pmecc_corr_cap = 4;
+		else if (*cap <= 8)
+			host->pmecc_corr_cap = 8;
+		else if (*cap <= 12)
+			host->pmecc_corr_cap = 12;
+		else if (*cap <= 24)
+			host->pmecc_corr_cap = 24;
+		else
+#ifdef CONFIG_SAMA5D2
+			host->pmecc_corr_cap = 32;
+#else
+			host->pmecc_corr_cap = 24;
+#endif
+	}
+	if (host->pmecc_sector_size == 0) {
+		/* use the most fitable sector size (the near smaller one ) */
+		if (*sector_size >= 1024)
+			host->pmecc_sector_size = 1024;
+		else if (*sector_size >= 512)
+			host->pmecc_sector_size = 512;
+		else
+			return -EINVAL;
+	}
+	return 0;
+}
+#endif
+
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+static uint16_t *pmecc_galois_table;
+static inline int deg(unsigned int poly)
+{
+	/* polynomial degree is the most-significant bit index */
+	return fls(poly) - 1;
+}
+
+static int build_gf_tables(int mm, unsigned int poly,
+			   int16_t *index_of, int16_t *alpha_to)
+{
+	unsigned int i, x = 1;
+	const unsigned int k = 1 << deg(poly);
+	unsigned int nn = (1 << mm) - 1;
+
+	/* primitive polynomial must be of degree m */
+	if (k != (1u << mm))
+		return -EINVAL;
+
+	for (i = 0; i < nn; i++) {
+		alpha_to[i] = x;
+		index_of[x] = i;
+		if (i && (x == 1))
+			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
+			return -EINVAL;
+		x <<= 1;
+		if (x & k)
+			x ^= poly;
+	}
+
+	alpha_to[nn] = 1;
+	index_of[0] = 0;
+
+	return 0;
+}
+
+static uint16_t *create_lookup_table(int sector_size)
+{
+	int degree = (sector_size == 512) ?
+			PMECC_GF_DIMENSION_13 :
+			PMECC_GF_DIMENSION_14;
+	unsigned int poly = (sector_size == 512) ?
+			PMECC_GF_13_PRIMITIVE_POLY :
+			PMECC_GF_14_PRIMITIVE_POLY;
+	int table_size = (sector_size == 512) ?
+			PMECC_INDEX_TABLE_SIZE_512 :
+			PMECC_INDEX_TABLE_SIZE_1024;
+
+	int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
+	if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
+		return NULL;
+
+	return (uint16_t *)addr;
+}
+#endif
+
+static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
+		struct mtd_info *mtd)
+{
+	struct atmel_nand_host *host;
+	int cap, sector_size;
+
+	host = &pmecc_host;
+	nand_set_controller_data(nand, host);
+
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.calculate = NULL;
+	nand->ecc.correct = NULL;
+	nand->ecc.hwctl = NULL;
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+	host->pmecc_corr_cap = host->pmecc_sector_size = 0;
+
+#ifdef CONFIG_PMECC_CAP
+	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
+#endif
+#ifdef CONFIG_PMECC_SECTOR_SIZE
+	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
+#endif
+	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
+	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
+	 * from ONFI.
+	 */
+	if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
+		dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
+			cap, sector_size);
+		return -EINVAL;
+	}
+
+	if (cap > host->pmecc_corr_cap)
+		dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
+				host->pmecc_corr_cap, cap);
+	if (sector_size < host->pmecc_sector_size)
+		dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
+				host->pmecc_sector_size, sector_size);
+#else	/* CONFIG_SYS_NAND_ONFI_DETECTION */
+	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
+	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
+#endif
+
+	cap = host->pmecc_corr_cap;
+	sector_size = host->pmecc_sector_size;
+
+	/* TODO: need check whether cap & sector_size is validate */
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+	/*
+	 * As pmecc_rom_base is the begin of the gallois field table, So the
+	 * index offset just set as 0.
+	 */
+	host->pmecc_index_table_offset = 0;
+#else
+	if (host->pmecc_sector_size == 512)
+		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
+	else
+		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
+#endif
+
+	pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
+		 cap, sector_size);
+
+	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
+	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
+			ATMEL_BASE_PMERRLOC;
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+	pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
+	if (!pmecc_galois_table) {
+		dev_err(host->dev, "out of memory\n");
+		return -ENOMEM;
+	}
+
+	host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
+#else
+	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
+#endif
+
+	/* ECC is calculated for the whole page (1 step) */
+	nand->ecc.size = mtd->writesize;
+
+	/* set ECC page size and oob layout */
+	switch (mtd->writesize) {
+	case 2048:
+	case 4096:
+	case 8192:
+		host->pmecc_degree = (sector_size == 512) ?
+			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
+		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
+		host->pmecc_sector_number = mtd->writesize / sector_size;
+		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
+			cap, sector_size);
+		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
+		host->pmecc_index_of = host->pmecc_rom_base +
+			host->pmecc_index_table_offset;
+
+		nand->ecc.steps = 1;
+		nand->ecc.bytes = host->pmecc_bytes_per_sector *
+				       host->pmecc_sector_number;
+
+		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
+			dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
+					MTD_MAX_ECCPOS_ENTRIES_LARGE);
+			return -EINVAL;
+		}
+
+		if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
+			dev_err(host->dev, "No room for ECC bytes\n");
+			return -EINVAL;
+		}
+		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
+					mtd->oobsize,
+					nand->ecc.bytes);
+		nand->ecc.layout = &atmel_pmecc_oobinfo;
+		break;
+	case 512:
+	case 1024:
+		/* TODO */
+		dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
+	default:
+		/* page size not handled by HW ECC */
+		/* switching back to soft ECC */
+		nand->ecc.mode = NAND_ECC_SOFT;
+		nand->ecc.read_page = NULL;
+		nand->ecc.postpad = 0;
+		nand->ecc.prepad = 0;
+		nand->ecc.bytes = 0;
+		return 0;
+	}
+
+	/* Allocate data for PMECC computation */
+	if (pmecc_data_alloc(host)) {
+		dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
+		return -ENOMEM;
+	}
+
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+	nand->ecc.read_page = atmel_nand_pmecc_read_page;
+	nand->ecc.write_page = atmel_nand_pmecc_write_page;
+	nand->ecc.strength = cap;
+
+	/* Check the PMECC ip version */
+	host->pmecc_version = pmecc_readl(host->pmerrloc, version);
+	dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
+
+	atmel_pmecc_core_init(mtd);
+
+	return 0;
+}
+
+#else
+
+/* oob layout for large page size
+ * bad block info is on bytes 0 and 1
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_large = {
+	.eccbytes = 4,
+	.eccpos = {60, 61, 62, 63},
+	.oobfree = {
+		{2, 58}
+	},
+};
+
+/* oob layout for small page size
+ * bad block info is on bytes 4 and 5
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_small = {
+	.eccbytes = 4,
+	.eccpos = {0, 1, 2, 3},
+	.oobfree = {
+		{6, 10}
+	},
+};
+
+/*
+ * Calculate HW ECC
+ *
+ * function called after a write
+ *
+ * mtd:        MTD block structure
+ * dat:        raw data (unused)
+ * ecc_code:   buffer for ECC
+ */
+static int atmel_nand_calculate(struct mtd_info *mtd,
+		const u_char *dat, unsigned char *ecc_code)
+{
+	unsigned int ecc_value;
+
+	/* get the first 2 ECC bytes */
+	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
+
+	ecc_code[0] = ecc_value & 0xFF;
+	ecc_code[1] = (ecc_value >> 8) & 0xFF;
+
+	/* get the last 2 ECC bytes */
+	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
+
+	ecc_code[2] = ecc_value & 0xFF;
+	ecc_code[3] = (ecc_value >> 8) & 0xFF;
+
+	return 0;
+}
+
+/*
+ * HW ECC read page function
+ *
+ * mtd:        mtd info structure
+ * chip:       nand chip info structure
+ * buf:        buffer to store read data
+ * oob_required:    caller expects OOB data read to chip->oob_poi
+ */
+static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+	uint8_t *ecc_pos;
+	int stat;
+
+	/* read the page */
+	chip->read_buf(mtd, p, eccsize);
+
+	/* move to ECC position if needed */
+	if (eccpos[0] != 0) {
+		/* This only works on large pages
+		 * because the ECC controller waits for
+		 * NAND_CMD_RNDOUTSTART after the
+		 * NAND_CMD_RNDOUT.
+		 * anyway, for small pages, the eccpos[0] == 0
+		 */
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+				mtd->writesize + eccpos[0], -1);
+	}
+
+	/* the ECC controller needs to read the ECC just after the data */
+	ecc_pos = oob + eccpos[0];
+	chip->read_buf(mtd, ecc_pos, eccbytes);
+
+	/* check if there's an error */
+	stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+	if (stat < 0)
+		mtd->ecc_stats.failed++;
+	else
+		mtd->ecc_stats.corrected += stat;
+
+	/* get back to oob start (end of page) */
+	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+
+	/* read the oob */
+	chip->read_buf(mtd, oob, mtd->oobsize);
+
+	return 0;
+}
+
+/*
+ * HW ECC Correction
+ *
+ * function called after a read
+ *
+ * mtd:        MTD block structure
+ * dat:        raw data read from the chip
+ * read_ecc:   ECC from the chip (unused)
+ * isnull:     unused
+ *
+ * Detect and correct a 1 bit error for a page
+ */
+static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
+		u_char *read_ecc, u_char *isnull)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	unsigned int ecc_status;
+	unsigned int ecc_word, ecc_bit;
+
+	/* get the status from the Status Register */
+	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
+
+	/* if there's no error */
+	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
+		return 0;
+
+	/* get error bit offset (4 bits) */
+	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
+	/* get word address (12 bits) */
+	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
+	ecc_word >>= 4;
+
+	/* if there are multiple errors */
+	if (ecc_status & ATMEL_ECC_MULERR) {
+		/* check if it is a freshly erased block
+		 * (filled with 0xff) */
+		if ((ecc_bit == ATMEL_ECC_BITADDR)
+				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
+			/* the block has just been erased, return OK */
+			return 0;
+		}
+		/* it doesn't seems to be a freshly
+		 * erased block.
+		 * We can't correct so many errors */
+		dev_warn(host->dev, "atmel_nand : multiple errors detected."
+				" Unable to correct.\n");
+		return -EBADMSG;
+	}
+
+	/* if there's a single bit error : we can correct it */
+	if (ecc_status & ATMEL_ECC_ECCERR) {
+		/* there's nothing much to do here.
+		 * the bit error is on the ECC itself.
+		 */
+		dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
+				" Nothing to correct\n");
+		return 0;
+	}
+
+	dev_warn(host->dev, "atmel_nand : one bit error on data."
+			" (word offset in the page :"
+			" 0x%x bit offset : 0x%x)\n",
+			ecc_word, ecc_bit);
+	/* correct the error */
+	if (nand_chip->options & NAND_BUSWIDTH_16) {
+		/* 16 bits words */
+		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
+	} else {
+		/* 8 bits words */
+		dat[ecc_word] ^= (1 << ecc_bit);
+	}
+	dev_warn(host->dev, "atmel_nand : error corrected\n");
+	return 1;
+}
+
+/*
+ * Enable HW ECC : unused on most chips
+ */
+static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
+{
+}
+
+int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
+{
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.calculate = atmel_nand_calculate;
+	nand->ecc.correct = atmel_nand_correct;
+	nand->ecc.hwctl = atmel_nand_hwctl;
+	nand->ecc.read_page = atmel_nand_read_page;
+	nand->ecc.bytes = 4;
+	nand->ecc.strength = 4;
+
+	if (nand->ecc.mode == NAND_ECC_HW) {
+		/* ECC is calculated for the whole page (1 step) */
+		nand->ecc.size = mtd->writesize;
+
+		/* set ECC page size and oob layout */
+		switch (mtd->writesize) {
+		case 512:
+			nand->ecc.layout = &atmel_oobinfo_small;
+			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+					ATMEL_ECC_PAGESIZE_528);
+			break;
+		case 1024:
+			nand->ecc.layout = &atmel_oobinfo_large;
+			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+					ATMEL_ECC_PAGESIZE_1056);
+			break;
+		case 2048:
+			nand->ecc.layout = &atmel_oobinfo_large;
+			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+					ATMEL_ECC_PAGESIZE_2112);
+			break;
+		case 4096:
+			nand->ecc.layout = &atmel_oobinfo_large;
+			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+					ATMEL_ECC_PAGESIZE_4224);
+			break;
+		default:
+			/* page size not handled by HW ECC */
+			/* switching back to soft ECC */
+			nand->ecc.mode = NAND_ECC_SOFT;
+			nand->ecc.calculate = NULL;
+			nand->ecc.correct = NULL;
+			nand->ecc.hwctl = NULL;
+			nand->ecc.read_page = NULL;
+			nand->ecc.postpad = 0;
+			nand->ecc.prepad = 0;
+			nand->ecc.bytes = 0;
+			break;
+		}
+	}
+
+	return 0;
+}
+
+#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
+
+#endif /* CONFIG_ATMEL_NAND_HWECC */
+
+static void at91_nand_hwcontrol(struct mtd_info *mtd,
+					 int cmd, unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
+		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
+			     | CONFIG_SYS_NAND_MASK_CLE);
+
+		if (ctrl & NAND_CLE)
+			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
+		if (ctrl & NAND_ALE)
+			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
+
+#ifdef CONFIG_SYS_NAND_ENABLE_PIN
+		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
+				    !(ctrl & NAND_NCE));
+#endif
+		this->IO_ADDR_W = (void *) IO_ADDR_W;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, this->IO_ADDR_W);
+}
+
+#ifdef CONFIG_SYS_NAND_READY_PIN
+static int at91_nand_ready(struct mtd_info *mtd)
+{
+	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
+}
+#endif
+
+#ifdef CONFIG_SPL_BUILD
+/* The following code is for SPL */
+static struct mtd_info *mtd;
+static struct nand_chip nand_chip;
+
+static int nand_command(int block, int page, uint32_t offs, u8 cmd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+	void (*hwctrl)(struct mtd_info *mtd, int cmd,
+			unsigned int ctrl) = this->cmd_ctrl;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	if (cmd == NAND_CMD_READOOB) {
+		offs += CONFIG_SYS_NAND_PAGE_SIZE;
+		cmd = NAND_CMD_READ0;
+	}
+
+	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+
+	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
+		offs >>= 1;
+
+	hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
+	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
+	hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+	hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
+#endif
+	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+
+static int nand_is_bad_block(int block)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
+
+	if (this->options & NAND_BUSWIDTH_16) {
+		if (readw(this->IO_ADDR_R) != 0xffff)
+			return 1;
+	} else {
+		if (readb(this->IO_ADDR_R) != 0xff)
+			return 1;
+	}
+
+	return 0;
+}
+
+#ifdef CONFIG_SPL_NAND_ECC
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
+#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
+		  CONFIG_SYS_NAND_ECCSIZE)
+#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
+
+static int nand_read_page(int block, int page, void *dst)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	int i;
+	uint8_t *p = dst;
+	nand_command(block, page, 0, NAND_CMD_READ0);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		if (this->ecc.mode != NAND_ECC_SOFT)
+			this->ecc.hwctl(mtd, NAND_ECC_READ);
+		this->read_buf(mtd, p, eccsize);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+	eccsteps = ECCSTEPS;
+	p = dst;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+
+	return 0;
+}
+
+int spl_nand_erase_one(int block, int page)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void (*hwctrl)(struct mtd_info *mtd, int cmd,
+			unsigned int ctrl) = this->cmd_ctrl;
+	int page_addr;
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, 0);
+
+	page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+	hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	/* Row address */
+	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	hwctrl(mtd, ((page_addr >> 8) & 0xff),
+	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+	/* One more address cycle for devices > 128MiB */
+	hwctrl(mtd, (page_addr >> 16) & 0x0f,
+	       NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+#endif
+	hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+
+	while (!this->dev_ready(mtd))
+		;
+
+	nand_deselect();
+
+	return 0;
+}
+#else
+static int nand_read_page(int block, int page, void *dst)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	nand_command(block, page, 0, NAND_CMD_READ0);
+	atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
+
+	return 0;
+}
+#endif /* CONFIG_SPL_NAND_ECC */
+
+int at91_nand_wait_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	udelay(this->chip_delay);
+
+	return 1;
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+	int ret = 0;
+
+	nand->ecc.mode = NAND_ECC_SOFT;
+#ifdef CONFIG_SYS_NAND_DBW_16
+	nand->options = NAND_BUSWIDTH_16;
+	nand->read_buf = nand_read_buf16;
+#else
+	nand->read_buf = nand_read_buf;
+#endif
+	nand->cmd_ctrl = at91_nand_hwcontrol;
+#ifdef CONFIG_SYS_NAND_READY_PIN
+	nand->dev_ready = at91_nand_ready;
+#else
+	nand->dev_ready = at91_nand_wait_ready;
+#endif
+	nand->chip_delay = 20;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	nand->bbt_options |= NAND_BBT_USE_FLASH;
+#endif
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+	ret = atmel_pmecc_nand_init_params(nand, mtd);
+#endif
+#endif
+
+	return ret;
+}
+
+void nand_init(void)
+{
+	mtd = nand_to_mtd(&nand_chip);
+	mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
+	mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
+	nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
+	nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
+	board_nand_init(&nand_chip);
+
+#ifdef CONFIG_SPL_NAND_ECC
+	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
+		nand_chip.ecc.calculate = nand_calculate_ecc;
+		nand_chip.ecc.correct = nand_correct_data;
+	}
+#endif
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, 0);
+}
+
+void nand_deselect(void)
+{
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, -1);
+}
+
+#include "nand_spl_loaders.c"
+
+#else
+
+#ifndef CONFIG_SYS_NAND_BASE_LIST
+#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
+#endif
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
+
+int atmel_nand_chip_init(int devnum, ulong base_addr)
+{
+	int ret;
+	struct nand_chip *nand = &nand_chip[devnum];
+	struct mtd_info *mtd = nand_to_mtd(nand);
+
+	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
+
+#ifdef CONFIG_NAND_ECC_BCH
+	nand->ecc.mode = NAND_ECC_SOFT_BCH;
+#else
+	nand->ecc.mode = NAND_ECC_SOFT;
+#endif
+#ifdef CONFIG_SYS_NAND_DBW_16
+	nand->options = NAND_BUSWIDTH_16;
+#endif
+	nand->cmd_ctrl = at91_nand_hwcontrol;
+#ifdef CONFIG_SYS_NAND_READY_PIN
+	nand->dev_ready = at91_nand_ready;
+#endif
+	nand->chip_delay = 75;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	nand->bbt_options |= NAND_BBT_USE_FLASH;
+#endif
+
+	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
+	if (ret)
+		return ret;
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+	ret = atmel_pmecc_nand_init_params(nand, mtd);
+#else
+	ret = atmel_hwecc_nand_init_param(nand, mtd);
+#endif
+	if (ret)
+		return ret;
+#endif
+
+	ret = nand_scan_tail(mtd);
+	if (!ret)
+		nand_register(devnum, mtd);
+
+	return ret;
+}
+
+void board_nand_init(void)
+{
+	int i;
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+		if (atmel_nand_chip_init(i, base_addr[i]))
+			dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
+				i);
+}
+#endif /* CONFIG_SPL_BUILD */
diff --git a/drivers/mtd/nand/raw/atmel_nand_ecc.h b/drivers/mtd/nand/raw/atmel_nand_ecc.h
new file mode 100644
index 0000000..05eeedb
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel_nand_ecc.h
@@ -0,0 +1,203 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Error Corrected Code Controller (ECC) - System peripherals regsters.
+ * Based on AT91SAM9260 datasheet revision B.
+ */
+
+#ifndef ATMEL_NAND_ECC_H
+#define ATMEL_NAND_ECC_H
+
+#define ATMEL_ECC_CR		0x00			/* Control register */
+#define		ATMEL_ECC_RST		(1 << 0)		/* Reset parity */
+
+#define ATMEL_ECC_MR		0x04			/* Mode register */
+#define		ATMEL_ECC_PAGESIZE	(3 << 0)		/* Page Size */
+#define			ATMEL_ECC_PAGESIZE_528		(0)
+#define			ATMEL_ECC_PAGESIZE_1056		(1)
+#define			ATMEL_ECC_PAGESIZE_2112		(2)
+#define			ATMEL_ECC_PAGESIZE_4224		(3)
+
+#define ATMEL_ECC_SR		0x08			/* Status register */
+#define		ATMEL_ECC_RECERR		(1 << 0)		/* Recoverable Error */
+#define		ATMEL_ECC_ECCERR		(1 << 1)		/* ECC Single Bit Error */
+#define		ATMEL_ECC_MULERR		(1 << 2)		/* Multiple Errors */
+
+#define ATMEL_ECC_PR		0x0c			/* Parity register */
+#define		ATMEL_ECC_BITADDR	(0xf << 0)		/* Bit Error Address */
+#define		ATMEL_ECC_WORDADDR	(0xfff << 4)		/* Word Error Address */
+
+#define ATMEL_ECC_NPR		0x10			/* NParity register */
+#define		ATMEL_ECC_NPARITY	(0xffff << 0)		/* NParity */
+
+/* Register access macros for PMECC */
+#define pmecc_readl(addr, reg) \
+	readl(&addr->reg)
+
+#define pmecc_readb(addr, reg) \
+	readb(&addr->reg)
+
+#define pmecc_writel(addr, reg, value) \
+	writel((value), &addr->reg)
+
+/* PMECC Register Definitions */
+#define PMECC_MAX_SECTOR_NUM			8
+struct pmecc_regs {
+	u32 cfg;		/* 0x00 PMECC Configuration Register */
+	u32 sarea;		/* 0x04 PMECC Spare Area Size Register */
+	u32 saddr;		/* 0x08 PMECC Start Address Register */
+	u32 eaddr;		/* 0x0C PMECC End Address Register */
+	u32 clk;		/* 0x10 PMECC Clock Control Register */
+	u32 ctrl;		/* 0x14 PMECC Control Register */
+	u32 sr;			/* 0x18 PMECC Status Register */
+	u32 ier;		/* 0x1C PMECC Interrupt Enable Register */
+	u32 idr;		/* 0x20 PMECC Interrupt Disable Register */
+	u32 imr;		/* 0x24 PMECC Interrupt Mask Register */
+	u32 isr;		/* 0x28 PMECC Interrupt Status Register */
+	u32 reserved0[5];	/* 0x2C-0x3C Reserved */
+
+	/* 0x40 + sector_num * (0x40), Redundancy Registers */
+	struct {
+#ifdef CONFIG_SAMA5D2
+		u8 ecc[56];	/* PMECC Generated Redundancy Byte Per Sector */
+		u32 reserved1[2];
+#else
+		u8 ecc[44];	/* PMECC Generated Redundancy Byte Per Sector */
+		u32 reserved1[5];
+#endif
+	} ecc_port[PMECC_MAX_SECTOR_NUM];
+
+	/* 0x240 + sector_num * (0x40) Remainder Registers */
+	struct {
+#ifdef CONFIG_SAMA5D2
+		u32 rem[16];
+#else
+		u32 rem[12];
+		u32 reserved2[4];
+#endif
+	} rem_port[PMECC_MAX_SECTOR_NUM];
+	u32 reserved3[16];	/* 0x440-0x47C Reserved */
+};
+
+/* For PMECC Configuration Register */
+#define		PMECC_CFG_BCH_ERR2		(0 << 0)
+#define		PMECC_CFG_BCH_ERR4		(1 << 0)
+#define		PMECC_CFG_BCH_ERR8		(2 << 0)
+#define		PMECC_CFG_BCH_ERR12		(3 << 0)
+#define		PMECC_CFG_BCH_ERR24		(4 << 0)
+#define		PMECC_CFG_BCH_ERR32		(5 << 0)
+
+#define		PMECC_CFG_SECTOR512		(0 << 4)
+#define		PMECC_CFG_SECTOR1024		(1 << 4)
+
+#define		PMECC_CFG_PAGE_1SECTOR		(0 << 8)
+#define		PMECC_CFG_PAGE_2SECTORS		(1 << 8)
+#define		PMECC_CFG_PAGE_4SECTORS		(2 << 8)
+#define		PMECC_CFG_PAGE_8SECTORS		(3 << 8)
+
+#define		PMECC_CFG_READ_OP		(0 << 12)
+#define		PMECC_CFG_WRITE_OP		(1 << 12)
+
+#define		PMECC_CFG_SPARE_ENABLE		(1 << 16)
+#define		PMECC_CFG_SPARE_DISABLE		(0 << 16)
+
+#define		PMECC_CFG_AUTO_ENABLE		(1 << 20)
+#define		PMECC_CFG_AUTO_DISABLE		(0 << 20)
+
+/* For PMECC Clock Control Register */
+#define		PMECC_CLK_133MHZ		(2 << 0)
+
+/* For PMECC Control Register */
+#define		PMECC_CTRL_RST			(1 << 0)
+#define		PMECC_CTRL_DATA			(1 << 1)
+#define		PMECC_CTRL_USER			(1 << 2)
+#define		PMECC_CTRL_ENABLE		(1 << 4)
+#define		PMECC_CTRL_DISABLE		(1 << 5)
+
+/* For PMECC Status Register */
+#define		PMECC_SR_BUSY			(1 << 0)
+#define		PMECC_SR_ENABLE			(1 << 4)
+
+/* PMERRLOC Register Definitions */
+struct pmecc_errloc_regs {
+	u32 elcfg;	/* 0x00 Error Location Configuration Register */
+	u32 elprim;	/* 0x04 Error Location Primitive Register */
+	u32 elen;	/* 0x08 Error Location Enable Register */
+	u32 eldis;	/* 0x0C Error Location Disable Register */
+	u32 elsr;	/* 0x10 Error Location Status Register */
+	u32 elier;	/* 0x14 Error Location Interrupt Enable Register */
+	u32 elidr;	/* 0x08 Error Location Interrupt Disable Register */
+	u32 elimr;	/* 0x0C Error Location Interrupt Mask Register */
+	u32 elisr;	/* 0x20 Error Location Interrupt Status Register */
+	u32 reserved0;	/* 0x24 Reserved */
+#ifdef CONFIG_SAMA5D2
+	u32 sigma[33];	/* 0x28-0xA8 Error Location Sigma Registers */
+	u32 el[32];	/* 0xAC-0x128 Error Location Registers */
+
+	/*
+	 * 0x12C-0x1FC:
+	 *   Reserved for SAMA5D2.
+	 */
+	u32 reserved1[53];
+#else
+	u32 sigma[25];	/* 0x28-0x88 Error Location Sigma Registers */
+	u32 el[24];	/* 0x8C-0xE8 Error Location Registers */
+	u32 reserved1[5];	/* 0xEC-0xFC Reserved */
+#endif
+
+	/*
+	 * SAMA5 chip HSMC registers start here. But for 9X5 chip it is just
+	 * reserved.
+	 *
+	 * Offset 0x00-0xF8:
+	 */
+	u32 reserved2[63];
+
+	/*
+	 * Offset 0xFC:
+	 *   PMECC version for AT91SAM9X5, AT91SAM9N12.
+	 *   HSMC version for SAMA5D3, SAMA5D4. Can refer as PMECC version.
+	 */
+	u32 version;
+};
+
+/* For Error Location Configuration Register */
+#define		PMERRLOC_ELCFG_SECTOR_512	(0 << 0)
+#define		PMERRLOC_ELCFG_SECTOR_1024	(1 << 0)
+#define		PMERRLOC_ELCFG_NUM_ERRORS(n)	((n) << 16)
+
+/* For Error Location Disable Register */
+#define		PMERRLOC_DISABLE		(1 << 0)
+
+/* For Error Location Interrupt Status Register */
+#ifdef CONFIG_SAMA5D2
+#define		PMERRLOC_ERR_NUM_MASK		(0x3f << 8)
+#else
+#define		PMERRLOC_ERR_NUM_MASK		(0x1f << 8)
+#endif
+
+#define		PMERRLOC_CALC_DONE		(1 << 0)
+
+/* PMECC IP version */
+#define PMECC_VERSION_SAMA5D2			0x210
+#define PMECC_VERSION_SAMA5D4			0x113
+#define PMECC_VERSION_SAMA5D3			0x112
+#define PMECC_VERSION_AT91SAM9N12		0x102
+#define PMECC_VERSION_AT91SAM9X5		0x101
+
+/* Galois field dimension */
+#define PMECC_GF_DIMENSION_13			13
+#define PMECC_GF_DIMENSION_14			14
+
+/* Primitive Polynomial used by PMECC */
+#define PMECC_GF_13_PRIMITIVE_POLY		0x201b
+#define PMECC_GF_14_PRIMITIVE_POLY		0x4443
+
+#define PMECC_INDEX_TABLE_SIZE_512		0x2000
+#define PMECC_INDEX_TABLE_SIZE_1024		0x4000
+
+#define PMECC_MAX_TIMEOUT_US		(100 * 1000)
+
+/* Reserved bytes in oob area */
+#define PMECC_OOB_RESERVED_BYTES		2
+
+#endif
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
new file mode 100644
index 0000000..e6a84a5
--- /dev/null
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -0,0 +1,833 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * NAND driver for TI DaVinci based boards.
+ *
+ * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
+ *
+ * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
+ */
+
+/*
+ *
+ * linux/drivers/mtd/nand/raw/nand_davinci.c
+ *
+ * NAND Flash Driver
+ *
+ * Copyright (C) 2006 Texas Instruments.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   DaVinci board which utilizes the Samsung k9k2g08 part.
+ *
+ Modifications:
+ ver. 1.0: Feb 2005, Vinod/Sudhakar
+ -
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <nand.h>
+#include <asm/ti-common/davinci_nand.h>
+
+/* Definitions for 4-bit hardware ECC */
+#define NAND_TIMEOUT			10240
+#define NAND_ECC_BUSY			0xC
+#define NAND_4BITECC_MASK		0x03FF03FF
+#define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
+#define ECC_STATE_NO_ERR		0x0
+#define ECC_STATE_TOO_MANY_ERRS		0x1
+#define ECC_STATE_ERR_CORR_COMP_P	0x2
+#define ECC_STATE_ERR_CORR_COMP_N	0x3
+
+/*
+ * Exploit the little endianness of the ARM to do multi-byte transfers
+ * per device read. This can perform over twice as quickly as individual
+ * byte transfers when buffer alignment is conducive.
+ *
+ * NOTE: This only works if the NAND is not connected to the 2 LSBs of
+ * the address bus. On Davinci EVM platforms this has always been true.
+ */
+static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	const u32 *nand = chip->IO_ADDR_R;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((int)buf & 0x3) != 0) {
+		if (((int)buf & 0x1) != 0) {
+			if (len) {
+				*buf = readb(nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((int)buf & 0x3) != 0) {
+			if (len >= 2) {
+				*(u16 *)buf = readw(nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		*(u32 *)buf = __raw_readl(nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			*(u16 *)buf = readw(nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			*buf = readb(nand);
+	}
+}
+
+static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				   int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	const u32 *nand = chip->IO_ADDR_W;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((int)buf & 0x3) != 0) {
+		if (((int)buf & 0x1) != 0) {
+			if (len) {
+				writeb(*buf, nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((int)buf & 0x3) != 0) {
+			if (len >= 2) {
+				writew(*(u16 *)buf, nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		__raw_writel(*(u32 *)buf, nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			writew(*(u16 *)buf, nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			writeb(*buf, nand);
+	}
+}
+
+static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
+		unsigned int ctrl)
+{
+	struct		nand_chip *this = mtd_to_nand(mtd);
+	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
+
+		if (ctrl & NAND_CLE)
+			IO_ADDR_W |= MASK_CLE;
+		if (ctrl & NAND_ALE)
+			IO_ADDR_W |= MASK_ALE;
+		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, IO_ADDR_W);
+}
+
+#ifdef CONFIG_SYS_NAND_HW_ECC
+
+static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
+{
+	u_int32_t	ecc = 0;
+
+	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
+				CONFIG_SYS_NAND_CS - 2]));
+
+	return ecc;
+}
+
+static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	u_int32_t	val;
+
+	/* reading the ECC result register resets the ECC calculation */
+	nand_davinci_readecc(mtd);
+
+	val = __raw_readl(&davinci_emif_regs->nandfcr);
+	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
+	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
+	__raw_writel(val, &davinci_emif_regs->nandfcr);
+}
+
+static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+		u_char *ecc_code)
+{
+	u_int32_t		tmp;
+
+	tmp = nand_davinci_readecc(mtd);
+
+	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
+	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
+	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
+
+	/* Invert so that erased block ECC is correct */
+	tmp = ~tmp;
+
+	*ecc_code++ = tmp;
+	*ecc_code++ = tmp >>  8;
+	*ecc_code++ = tmp >> 16;
+
+	/* NOTE:  the above code matches mainline Linux:
+	 *	.PQR.stu ==> ~PQRstu
+	 *
+	 * MontaVista/TI kernels encode those bytes differently, use
+	 * complicated (and allegedly sometimes-wrong) correction code,
+	 * and usually shipped with U-Boot that uses software ECC:
+	 *	.PQR.stu ==> PsQRtu
+	 *
+	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
+	 * be possible to (a) change the mangling above, (b) reverse
+	 * that mangling in nand_davinci_correct_data() below.
+	 */
+
+	return 0;
+}
+
+static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
+		u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
+					  (read_ecc[2] << 16);
+	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
+					  (calc_ecc[2] << 16);
+	u_int32_t diff = ecc_calc ^ ecc_nand;
+
+	if (diff) {
+		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
+			/* Correctable error */
+			if ((diff >> (12 + 3)) < this->ecc.size) {
+				uint8_t find_bit = 1 << ((diff >> 12) & 7);
+				uint32_t find_byte = diff >> (12 + 3);
+
+				dat[find_byte] ^= find_bit;
+				pr_debug("Correcting single "
+					 "bit ECC error at offset: %d, bit: "
+					 "%d\n", find_byte, find_bit);
+				return 1;
+			} else {
+				return -EBADMSG;
+			}
+		} else if (!(diff & (diff - 1))) {
+			/* Single bit ECC error in the ECC itself,
+			   nothing to fix */
+			pr_debug("Single bit ECC error in " "ECC.\n");
+			return 1;
+		} else {
+			/* Uncorrectable error */
+			pr_debug("ECC UNCORRECTED_ERROR 1\n");
+			return -EBADMSG;
+		}
+	}
+	return 0;
+}
+#endif /* CONFIG_SYS_NAND_HW_ECC */
+
+#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
+static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
+#if defined(CONFIG_SYS_NAND_PAGE_2K)
+	.eccbytes = 40,
+#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
+	.eccpos = {
+		6,   7,  8,  9, 10,	11, 12, 13, 14, 15,
+		22, 23, 24, 25, 26,	27, 28, 29, 30, 31,
+		38, 39, 40, 41, 42,	43, 44, 45, 46, 47,
+		54, 55, 56, 57, 58,	59, 60, 61, 62, 63,
+	},
+	.oobfree = {
+		{2, 4}, {16, 6}, {32, 6}, {48, 6},
+	},
+#else
+	.eccpos = {
+		24, 25, 26, 27, 28,
+		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
+		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
+		59, 60, 61, 62, 63,
+		},
+	.oobfree = {
+		{.offset = 2, .length = 22, },
+	},
+#endif	/* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
+#elif defined(CONFIG_SYS_NAND_PAGE_4K)
+	.eccbytes = 80,
+	.eccpos = {
+		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
+		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
+		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
+		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
+		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
+		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+		},
+	.oobfree = {
+		{.offset = 2, .length = 46, },
+	},
+#endif
+};
+
+#if defined CONFIG_KEYSTONE_RBL_NAND
+static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
+#if defined(CONFIG_SYS_NAND_PAGE_2K)
+	.eccbytes = 40,
+	.eccpos = {
+		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+	},
+	.oobfree = {
+		{.offset = 2, .length = 4, },
+		{.offset = 16, .length = 6, },
+		{.offset = 32, .length = 6, },
+		{.offset = 48, .length = 6, },
+	},
+#elif defined(CONFIG_SYS_NAND_PAGE_4K)
+	.eccbytes = 80,
+	.eccpos = {
+		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
+		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
+		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
+		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
+		102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
+		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
+	},
+	.oobfree = {
+		{.offset = 2, .length = 4, },
+		{.offset = 16, .length = 6, },
+		{.offset = 32, .length = 6, },
+		{.offset = 48, .length = 6, },
+		{.offset = 64, .length = 6, },
+		{.offset = 80, .length = 6, },
+		{.offset = 96, .length = 6, },
+		{.offset = 112, .length = 6, },
+	},
+#endif
+};
+
+#ifdef CONFIG_SYS_NAND_PAGE_2K
+#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
+#elif defined(CONFIG_SYS_NAND_PAGE_4K)
+#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
+#endif
+
+/**
+ * nand_davinci_write_page - write one page
+ * @mtd: MTD device structure
+ * @chip: NAND chip descriptor
+ * @buf: the data to write
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ * @raw: use _raw version of write_page
+ */
+static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				   uint32_t offset, int data_len,
+				   const uint8_t *buf, int oob_required,
+				   int page, int raw)
+{
+	int status;
+	int ret = 0;
+	struct nand_ecclayout *saved_ecc_layout;
+
+	/* save current ECC layout and assign Keystone RBL ECC layout */
+	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
+		saved_ecc_layout = chip->ecc.layout;
+		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
+		mtd->oobavail = chip->ecc.layout->oobavail;
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+
+	if (unlikely(raw)) {
+		status = chip->ecc.write_page_raw(mtd, chip, buf,
+						  oob_required, page);
+	} else {
+		status = chip->ecc.write_page(mtd, chip, buf,
+					      oob_required, page);
+	}
+
+	if (status < 0) {
+		ret = status;
+		goto err;
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	if (status & NAND_STATUS_FAIL) {
+		ret = -EIO;
+		goto err;
+	}
+
+err:
+	/* restore ECC layout */
+	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
+		chip->ecc.layout = saved_ecc_layout;
+		mtd->oobavail = saved_ecc_layout->oobavail;
+	}
+
+	return ret;
+}
+
+/**
+ * nand_davinci_read_page_hwecc - hardware ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers which need a special oob layout.
+ */
+static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint32_t *eccpos;
+	uint8_t *p = buf;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
+
+	/* save current ECC layout and assign Keystone RBL ECC layout */
+	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
+		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
+		mtd->oobavail = chip->ecc.layout->oobavail;
+	}
+
+	eccpos = chip->ecc.layout->eccpos;
+
+	/* Read the OOB area first */
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->read_buf(mtd, p, eccsize);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+
+	/* restore ECC layout */
+	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
+		chip->ecc.layout = saved_ecc_layout;
+		mtd->oobavail = saved_ecc_layout->oobavail;
+	}
+
+	return 0;
+}
+#endif /* CONFIG_KEYSTONE_RBL_NAND */
+
+static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	u32 val;
+
+	switch (mode) {
+	case NAND_ECC_WRITE:
+	case NAND_ECC_READ:
+		/*
+		 * Start a new ECC calculation for reading or writing 512 bytes
+		 * of data.
+		 */
+		val = __raw_readl(&davinci_emif_regs->nandfcr);
+		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
+		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
+		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
+		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
+		__raw_writel(val, &davinci_emif_regs->nandfcr);
+		break;
+	case NAND_ECC_READSYN:
+		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
+		break;
+	default:
+		break;
+	}
+}
+
+static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
+{
+	int i;
+
+	for (i = 0; i < 4; i++) {
+		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
+			NAND_4BITECC_MASK;
+	}
+
+	return 0;
+}
+
+static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
+					   const uint8_t *dat,
+					   uint8_t *ecc_code)
+{
+	unsigned int hw_4ecc[4];
+	unsigned int i;
+
+	nand_davinci_4bit_readecc(mtd, hw_4ecc);
+
+	/*Convert 10 bit ecc value to 8 bit */
+	for (i = 0; i < 2; i++) {
+		unsigned int hw_ecc_low = hw_4ecc[i * 2];
+		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
+
+		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
+		*ecc_code++ = hw_ecc_low & 0xFF;
+
+		/*
+		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
+		 * (count1=1) and 6 bits from val2 (count1=0) or
+		 * val5 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
+
+		/*
+		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
+		 * 4 bits from val3 (count1=0) or val6 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
+
+		/*
+		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
+		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
+		 */
+		*ecc_code++ =
+		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
+
+		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
+		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
+	}
+
+	return 0;
+}
+
+static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
+					  uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	int i;
+	unsigned int hw_4ecc[4];
+	unsigned int iserror;
+	unsigned short *ecc16;
+	unsigned int numerrors, erroraddress, errorvalue;
+	u32 val;
+
+	/*
+	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
+	 * will assume we are looking at an erased page and we should ignore
+	 * the ECC.
+	 */
+	for (i = 0; i < 10; i++) {
+		if (read_ecc[i] != 0xFF)
+			break;
+	}
+	if (i == 10)
+		return 0;
+
+	/* Convert 8 bit in to 10 bit */
+	ecc16 = (unsigned short *)&read_ecc[0];
+
+	/*
+	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
+	 * Write each parity value one at a time starting from 4bit_ecc_val8
+	 * to 4bit_ecc_val1.
+	 */
+
+	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
+	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
+	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
+	__raw_writel((ecc16[3] >> 2) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
+	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
+			&davinci_emif_regs->nand4biteccload);
+
+	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
+	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
+	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
+	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
+			&davinci_emif_regs->nand4biteccload);
+
+	/* Take 10 bits from 0th and 1st bytes */
+	__raw_writel((ecc16[0]) & 0x3FF,
+			&davinci_emif_regs->nand4biteccload);
+
+	/*
+	 * Perform a dummy read to the EMIF Revision Code and Status register.
+	 * This is required to ensure time for syndrome calculation after
+	 * writing the ECC values in previous step.
+	 */
+
+	val = __raw_readl(&davinci_emif_regs->nandfsr);
+
+	/*
+	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
+	 * A syndrome value of 0 means no bit errors. If the syndrome is
+	 * non-zero then go further otherwise return.
+	 */
+	nand_davinci_4bit_readecc(mtd, hw_4ecc);
+
+	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
+		return 0;
+
+	/*
+	 * Clear any previous address calculation by doing a dummy read of an
+	 * error address register.
+	 */
+	val = __raw_readl(&davinci_emif_regs->nanderradd1);
+
+	/*
+	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
+	 * register to 1.
+	 */
+	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
+			&davinci_emif_regs->nandfcr);
+
+	/*
+	 * Wait for the corr_state field (bits 8 to 11) in the
+	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
+	 * Otherwise ECC calculation has not even begun and the next loop might
+	 * fail because of a false positive!
+	 */
+	i = NAND_TIMEOUT;
+	do {
+		val = __raw_readl(&davinci_emif_regs->nandfsr);
+		val &= 0xc00;
+		i--;
+	} while ((i > 0) && !val);
+
+	/*
+	 * Wait for the corr_state field (bits 8 to 11) in the
+	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
+	 */
+	i = NAND_TIMEOUT;
+	do {
+		val = __raw_readl(&davinci_emif_regs->nandfsr);
+		val &= 0xc00;
+		i--;
+	} while ((i > 0) && val);
+
+	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
+	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
+	iserror = iserror >> 8;
+
+	/*
+	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
+	 * corrected (five or more errors).  The number of errors
+	 * calculated (err_num field) differs from the number of errors
+	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
+	 * correction complete (errors on bit 8 or 9).
+	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
+	 * complete (error exists).
+	 */
+
+	if (iserror == ECC_STATE_NO_ERR) {
+		val = __raw_readl(&davinci_emif_regs->nanderrval1);
+		return 0;
+	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
+		val = __raw_readl(&davinci_emif_regs->nanderrval1);
+		return -EBADMSG;
+	}
+
+	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
+			& 0x3) + 1;
+
+	/* Read the error address, error value and correct */
+	for (i = 0; i < numerrors; i++) {
+		if (i > 1) {
+			erroraddress =
+			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
+			      (16 * (i & 1))) & 0x3FF);
+			erroraddress = ((512 + 7) - erroraddress);
+			errorvalue =
+			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
+			      (16 * (i & 1))) & 0xFF);
+		} else {
+			erroraddress =
+			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
+			      (16 * (i & 1))) & 0x3FF);
+			erroraddress = ((512 + 7) - erroraddress);
+			errorvalue =
+			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
+			      (16 * (i & 1))) & 0xFF);
+		}
+		/* xor the corrupt data with error value */
+		if (erroraddress < 512)
+			dat[erroraddress] ^= errorvalue;
+	}
+
+	return numerrors;
+}
+#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
+
+static int nand_davinci_dev_ready(struct mtd_info *mtd)
+{
+	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
+}
+
+static void nand_flash_init(void)
+{
+	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
+	 * Instead, have your board_init() set EMIF timings, based on its
+	 * knowledge of the clocks and what devices are hooked up ... and
+	 * don't even do that unless no UBL handled it.
+	 */
+#ifdef CONFIG_SOC_DM644X
+	u_int32_t	acfg1 = 0x3ffffffc;
+
+	/*------------------------------------------------------------------*
+	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
+	 *                                                                  *
+	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
+	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
+	 *                                                                  *
+	 *------------------------------------------------------------------*/
+	 acfg1 = 0
+		| (0 << 31)	/* selectStrobe */
+		| (0 << 30)	/* extWait */
+		| (1 << 26)	/* writeSetup	10 ns */
+		| (3 << 20)	/* writeStrobe	40 ns */
+		| (1 << 17)	/* writeHold	10 ns */
+		| (1 << 13)	/* readSetup	10 ns */
+		| (5 << 7)	/* readStrobe	60 ns */
+		| (1 << 4)	/* readHold	10 ns */
+		| (3 << 2)	/* turnAround	?? ns */
+		| (0 << 0)	/* asyncSize	8-bit bus */
+		;
+
+	__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
+
+	/* NAND flash on CS2 */
+	__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
+#endif
+}
+
+void davinci_nand_init(struct nand_chip *nand)
+{
+#if defined CONFIG_KEYSTONE_RBL_NAND
+	int i;
+	struct nand_ecclayout *layout;
+
+	layout = &nand_keystone_rbl_4bit_layout_oobfirst;
+	layout->oobavail = 0;
+	for (i = 0; layout->oobfree[i].length &&
+	     i < ARRAY_SIZE(layout->oobfree); i++)
+		layout->oobavail += layout->oobfree[i].length;
+
+	nand->write_page = nand_davinci_write_page;
+	nand->ecc.read_page = nand_davinci_read_page_hwecc;
+#endif
+	nand->chip_delay  = 0;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	nand->bbt_options	  |= NAND_BBT_USE_FLASH;
+#endif
+#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
+	nand->options	  |= NAND_NO_SUBPAGE_WRITE;
+#endif
+#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
+	nand->options	  |= NAND_BUSWIDTH_16;
+#endif
+#ifdef CONFIG_SYS_NAND_HW_ECC
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.size = 512;
+	nand->ecc.bytes = 3;
+	nand->ecc.strength = 1;
+	nand->ecc.calculate = nand_davinci_calculate_ecc;
+	nand->ecc.correct  = nand_davinci_correct_data;
+	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
+#else
+	nand->ecc.mode = NAND_ECC_SOFT;
+#endif /* CONFIG_SYS_NAND_HW_ECC */
+#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
+	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
+	nand->ecc.size = 512;
+	nand->ecc.bytes = 10;
+	nand->ecc.strength = 4;
+	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
+	nand->ecc.correct = nand_davinci_4bit_correct_data;
+	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
+	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
+#endif
+	/* Set address of hardware control function */
+	nand->cmd_ctrl = nand_davinci_hwcontrol;
+
+	nand->read_buf = nand_davinci_read_buf;
+	nand->write_buf = nand_davinci_write_buf;
+
+	nand->dev_ready = nand_davinci_dev_ready;
+
+	nand_flash_init();
+}
+
+int board_nand_init(struct nand_chip *chip) __attribute__((weak));
+
+int board_nand_init(struct nand_chip *chip)
+{
+	davinci_nand_init(chip);
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c
new file mode 100644
index 0000000..d1cac06
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali.c
@@ -0,0 +1,1371 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2014       Panasonic Corporation
+ * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ */
+
+#include <dm.h>
+#include <nand.h>
+#include <linux/bitfield.h>
+#include <linux/dma-direction.h>
+#include <linux/errno.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+
+#include "denali.h"
+
+static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
+				 enum dma_data_direction dir)
+{
+	unsigned long addr = (unsigned long)ptr;
+
+	size = ALIGN(size, ARCH_DMA_MINALIGN);
+
+	if (dir == DMA_FROM_DEVICE)
+		invalidate_dcache_range(addr, addr + size);
+	else
+		flush_dcache_range(addr, addr + size);
+
+	return addr;
+}
+
+static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
+			     enum dma_data_direction dir)
+{
+	size = ALIGN(size, ARCH_DMA_MINALIGN);
+
+	if (dir != DMA_TO_DEVICE)
+		invalidate_dcache_range(addr, addr + size);
+}
+
+static int dma_mapping_error(void *dev, dma_addr_t addr)
+{
+	return 0;
+}
+
+#define DENALI_NAND_NAME    "denali-nand"
+
+/* for Indexed Addressing */
+#define DENALI_INDEXED_CTRL	0x00
+#define DENALI_INDEXED_DATA	0x10
+
+#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+#define DENALI_MAP11		(3 << 26)	/* direct controller access */
+
+/* MAP11 access cycle type */
+#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
+#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
+#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
+
+/* MAP10 commands */
+#define DENALI_ERASE		0x01
+
+#define DENALI_BANK(denali)	((denali)->active_bank << 24)
+
+#define DENALI_INVALID_BANK	-1
+#define DENALI_NR_BANKS		4
+
+/*
+ * The bus interface clock, clk_x, is phase aligned with the core clock.  The
+ * clk_x is an integral multiple N of the core clk.  The value N is configured
+ * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
+ * to the largest value to make it work with any possible configuration.
+ */
+#define DENALI_CLK_X_MULT	6
+
+static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
+}
+
+/*
+ * Direct Addressing - the slave address forms the control information (command
+ * type, bank, block, and page address).  The slave data is the actual data to
+ * be transferred.  This mode requires 28 bits of address region allocated.
+ */
+static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
+{
+	return ioread32(denali->host + addr);
+}
+
+static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
+				u32 data)
+{
+	iowrite32(data, denali->host + addr);
+}
+
+/*
+ * Indexed Addressing - address translation module intervenes in passing the
+ * control information.  This mode reduces the required address range.  The
+ * control information and transferred data are latched by the registers in
+ * the translation module.
+ */
+static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
+{
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	return ioread32(denali->host + DENALI_INDEXED_DATA);
+}
+
+static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
+				 u32 data)
+{
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void denali_detect_max_banks(struct denali_nand_info *denali)
+{
+	uint32_t features = ioread32(denali->reg + FEATURES);
+
+	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
+
+	/* the encoding changed from rev 5.0 to 5.1 */
+	if (denali->revision < 0x0501)
+		denali->max_banks <<= 1;
+}
+
+static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
+	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
+}
+
+static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(0, denali->reg + INTR_EN(i));
+	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
+}
+
+static void denali_clear_irq(struct denali_nand_info *denali,
+			     int bank, uint32_t irq_status)
+{
+	/* write one to clear bits */
+	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
+}
+
+static void denali_clear_irq_all(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		denali_clear_irq(denali, i, U32_MAX);
+}
+
+static void __denali_check_irq(struct denali_nand_info *denali)
+{
+	uint32_t irq_status;
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++) {
+		irq_status = ioread32(denali->reg + INTR_STATUS(i));
+		denali_clear_irq(denali, i, irq_status);
+
+		if (i != denali->active_bank)
+			continue;
+
+		denali->irq_status |= irq_status;
+	}
+}
+
+static void denali_reset_irq(struct denali_nand_info *denali)
+{
+	denali->irq_status = 0;
+	denali->irq_mask = 0;
+}
+
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+				    uint32_t irq_mask)
+{
+	unsigned long time_left = 1000000;
+
+	while (time_left) {
+		__denali_check_irq(denali);
+
+		if (irq_mask & denali->irq_status)
+			return denali->irq_status;
+		udelay(1);
+		time_left--;
+	}
+
+	if (!time_left) {
+		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+			irq_mask);
+		return 0;
+	}
+
+	return denali->irq_status;
+}
+
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
+{
+	__denali_check_irq(denali);
+
+	return denali->irq_status;
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = denali->host_read(denali, addr);
+}
+
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
+
+	for (i = 0; i < len; i++)
+		denali->host_write(denali, addr, buf[i]);
+}
+
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	uint16_t *buf16 = (uint16_t *)buf;
+	int i;
+
+	for (i = 0; i < len / 2; i++)
+		buf16[i] = denali->host_read(denali, addr);
+}
+
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+			       int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	const uint16_t *buf16 = (const uint16_t *)buf;
+	int i;
+
+	for (i = 0; i < len / 2; i++)
+		denali->host_write(denali, addr, buf16[i]);
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	uint8_t byte;
+
+	denali_read_buf(mtd, &byte, 1);
+
+	return byte;
+}
+
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	denali_write_buf(mtd, &byte, 1);
+}
+
+static uint16_t denali_read_word(struct mtd_info *mtd)
+{
+	uint16_t word;
+
+	denali_read_buf16(mtd, (uint8_t *)&word, 2);
+
+	return word;
+}
+
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t type;
+
+	if (ctrl & NAND_CLE)
+		type = DENALI_MAP11_CMD;
+	else if (ctrl & NAND_ALE)
+		type = DENALI_MAP11_ADDR;
+	else
+		return;
+
+	/*
+	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
+	 * irq_status must be cleared here to catch the R/B# interrupt later.
+	 */
+	if (ctrl & NAND_CTRL_CHANGE)
+		denali_reset_irq(denali);
+
+	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
+}
+
+static int denali_dev_ready(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	return !!(denali_check_irq(denali) & INTR__INT_ACT);
+}
+
+static int denali_check_erased_page(struct mtd_info *mtd,
+				    struct nand_chip *chip, uint8_t *buf,
+				    unsigned long uncor_ecc_flags,
+				    unsigned int max_bitflips)
+{
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int i, ret, stat;
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	for (i = 0; i < ecc_steps; i++) {
+		if (!(uncor_ecc_flags & BIT(i)))
+			continue;
+
+		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
+						  ecc_code, ecc_bytes,
+						  NULL, 0,
+						  chip->ecc.strength);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+
+		buf += ecc_size;
+		ecc_code += ecc_bytes;
+	}
+
+	return max_bitflips;
+}
+
+static int denali_hw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int bank = denali->active_bank;
+	uint32_t ecc_cor;
+	unsigned int max_bitflips;
+
+	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
+	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
+
+	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
+		/*
+		 * This flag is set when uncorrectable error occurs at least in
+		 * one ECC sector.  We can not know "how many sectors", or
+		 * "which sector(s)".  We need erase-page check for all sectors.
+		 */
+		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
+		return 0;
+	}
+
+	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
+
+	/*
+	 * The register holds the maximum of per-sector corrected bitflips.
+	 * This is suitable for the return value of the ->read_page() callback.
+	 * Unfortunately, we can not know the total number of corrected bits in
+	 * the page.  Increase the stats by max_bitflips. (compromised solution)
+	 */
+	mtd->ecc_stats.corrected += max_bitflips;
+
+	return max_bitflips;
+}
+
+static int denali_sw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags, uint8_t *buf)
+{
+	unsigned int ecc_size = denali->nand.ecc.size;
+	unsigned int bitflips = 0;
+	unsigned int max_bitflips = 0;
+	uint32_t err_addr, err_cor_info;
+	unsigned int err_byte, err_sector, err_device;
+	uint8_t err_cor_value;
+	unsigned int prev_sector = 0;
+	uint32_t irq_status;
+
+	denali_reset_irq(denali);
+
+	do {
+		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
+		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
+		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
+
+		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
+		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
+					  err_cor_info);
+		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
+				       err_cor_info);
+
+		/* reset the bitflip counter when crossing ECC sector */
+		if (err_sector != prev_sector)
+			bitflips = 0;
+
+		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
+			/*
+			 * Check later if this is a real ECC error, or
+			 * an erased sector.
+			 */
+			*uncor_ecc_flags |= BIT(err_sector);
+		} else if (err_byte < ecc_size) {
+			/*
+			 * If err_byte is larger than ecc_size, means error
+			 * happened in OOB, so we ignore it. It's no need for
+			 * us to correct it err_device is represented the NAND
+			 * error bits are happened in if there are more than
+			 * one NAND connected.
+			 */
+			int offset;
+			unsigned int flips_in_byte;
+
+			offset = (err_sector * ecc_size + err_byte) *
+					denali->devs_per_cs + err_device;
+
+			/* correct the ECC error */
+			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
+			buf[offset] ^= err_cor_value;
+			mtd->ecc_stats.corrected += flips_in_byte;
+			bitflips += flips_in_byte;
+
+			max_bitflips = max(max_bitflips, bitflips);
+		}
+
+		prev_sector = err_sector;
+	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
+
+	/*
+	 * Once handle all ECC errors, controller will trigger an
+	 * ECC_TRANSACTION_DONE interrupt.
+	 */
+	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+		return -EIO;
+
+	return max_bitflips;
+}
+
+static void denali_setup_dma64(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
+{
+	uint32_t mode;
+	const int page_count = 1;
+
+	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
+
+	/* DMA is a three step process */
+
+	/*
+	 * 1. setup transfer type, interrupt when complete,
+	 *    burst len = 64 bytes, the number of pages
+	 */
+	denali->host_write(denali, mode,
+			   0x01002000 | (64 << 16) | (write << 8) | page_count);
+
+	/* 2. set memory low address */
+	denali->host_write(denali, mode, lower_32_bits(dma_addr));
+
+	/* 3. set memory high address */
+	denali->host_write(denali, mode, upper_32_bits(dma_addr));
+}
+
+static void denali_setup_dma32(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
+{
+	uint32_t mode;
+	const int page_count = 1;
+
+	mode = DENALI_MAP10 | DENALI_BANK(denali);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	denali->host_write(denali, mode | page,
+			   0x2000 | (write << 8) | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
+
+	/* 4. interrupt when complete, burst len = 64 bytes */
+	denali->host_write(denali, mode | 0x14000, 0x2400);
+}
+
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw)
+{
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status, ecc_err_mask;
+	int i;
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	else
+		ecc_err_mask = INTR__ECC_ERR;
+
+	denali_reset_irq(denali);
+
+	for (i = 0; i < size / 4; i++)
+		*buf32++ = denali->host_read(denali, addr);
+
+	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+	if (!(irq_status & INTR__PAGE_XFER_INC))
+		return -EIO;
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return irq_status & ecc_err_mask ? -EBADMSG : 0;
+}
+
+static int denali_pio_write(struct denali_nand_info *denali,
+			    const void *buf, size_t size, int page, int raw)
+{
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	const uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status;
+	int i;
+
+	denali_reset_irq(denali);
+
+	for (i = 0; i < size / 4; i++)
+		denali->host_write(denali, addr, *buf32++);
+
+	irq_status = denali_wait_for_irq(denali,
+				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+	if (!(irq_status & INTR__PROGRAM_COMP))
+		return -EIO;
+
+	return 0;
+}
+
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	if (write)
+		return denali_pio_write(denali, buf, size, page, raw);
+	else
+		return denali_pio_read(denali, buf, size, page, raw);
+}
+
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	dma_addr_t dma_addr;
+	uint32_t irq_mask, irq_status, ecc_err_mask;
+	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	int ret = 0;
+
+	dma_addr = dma_map_single(denali->dev, buf, size, dir);
+	if (dma_mapping_error(denali->dev, dma_addr)) {
+		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+	}
+
+	if (write) {
+		/*
+		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
+		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
+		 * when the page program is completed.
+		 */
+		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+		ecc_err_mask = 0;
+	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	} else {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_ERR;
+	}
+
+	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
+
+	denali_reset_irq(denali);
+	denali->setup_dma(denali, dma_addr, page, write);
+
+	irq_status = denali_wait_for_irq(denali, irq_mask);
+	if (!(irq_status & INTR__DMA_CMD_COMP))
+		ret = -EIO;
+	else if (irq_status & ecc_err_mask)
+		ret = -EBADMSG;
+
+	iowrite32(0, denali->reg + DMA_ENABLE);
+
+	dma_unmap_single(denali->dev, dma_addr, size, dir);
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return ret;
+}
+
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+			    size_t size, int page, int raw, int write)
+{
+	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
+	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
+		  denali->reg + TRANSFER_SPARE_REG);
+
+	if (denali->dma_avail)
+		return denali_dma_xfer(denali, buf, size, page, raw, write);
+	else
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+}
+
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page, int write)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
+	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	uint8_t *bufpoi = chip->oob_poi;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/* BBM at the beginning of the OOB area */
+	chip->cmdfunc(mtd, start_cmd, writesize, page);
+	if (write)
+		chip->write_buf(mtd, bufpoi, oob_skip);
+	else
+		chip->read_buf(mtd, bufpoi, oob_skip);
+	bufpoi += oob_skip;
+
+	/* OOB ECC */
+	for (i = 0; i < ecc_steps; i++) {
+		pos = ecc_size + i * (ecc_size + ecc_bytes);
+		len = ecc_bytes;
+
+		if (pos >= writesize)
+			pos += oob_skip;
+		else if (pos + len > writesize)
+			len = writesize - pos;
+
+		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
+		if (write)
+			chip->write_buf(mtd, bufpoi, len);
+		else
+			chip->read_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		if (len < ecc_bytes) {
+			len = ecc_bytes - len;
+			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
+			if (write)
+				chip->write_buf(mtd, bufpoi, len);
+			else
+				chip->read_buf(mtd, bufpoi, len);
+			bufpoi += len;
+		}
+	}
+
+	/* OOB free */
+	len = oobsize - (bufpoi - chip->oob_poi);
+	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
+	if (write)
+		chip->write_buf(mtd, bufpoi, len);
+	else
+		chip->read_buf(mtd, bufpoi, len);
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int ret, i, pos, len;
+
+	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
+	if (ret)
+		return ret;
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(buf, tmp_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, tmp_buf + writesize + oob_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(oob, tmp_buf + writesize, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, tmp_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, tmp_buf + writesize + oob_skip,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(oob, tmp_buf + size - len, len);
+	}
+
+	return 0;
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
+{
+	denali_oob_xfer(mtd, chip, page, 0);
+
+	return 0;
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int status;
+
+	denali_reset_irq(denali);
+
+	denali_oob_xfer(mtd, chip, page, 1);
+
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned long uncor_ecc_flags = 0;
+	int stat = 0;
+	int ret;
+
+	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	if (ret && ret != -EBADMSG)
+		return ret;
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+	else if (ret == -EBADMSG)
+		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
+
+	if (stat < 0)
+		return stat;
+
+	if (uncor_ecc_flags) {
+		ret = denali_read_oob(mtd, chip, page);
+		if (ret)
+			return ret;
+
+		stat = denali_check_erased_page(mtd, chip, buf,
+						uncor_ecc_flags, stat);
+	}
+
+	return stat;
+}
+
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(tmp_buf, 0xff, size);
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(tmp_buf + writesize + oob_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		const uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(tmp_buf + writesize, oob, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(tmp_buf + writesize + oob_skip, oob,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(tmp_buf + size - len, oob, len);
+	}
+
+	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
+}
+
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     const uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+				page, 0, 1);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	denali->active_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
+
+	/* R/B# pin transitioned from low to high? */
+	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
+
+	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
+}
+
+static int denali_erase(struct mtd_info *mtd, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
+
+	denali_reset_irq(denali);
+
+	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
+			   DENALI_ERASE);
+
+	/* wait for erase to complete or failure to occur */
+	irq_status = denali_wait_for_irq(denali,
+					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
+
+	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
+}
+
+static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+				       const struct nand_data_interface *conf)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	const struct nand_sdr_timings *timings;
+	unsigned long t_clk;
+	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+	int addr_2_data_mask;
+	uint32_t tmp;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	/* clk_x period in picoseconds */
+	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+	if (!t_clk)
+		return -EINVAL;
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	/* tREA -> ACC_CLKS */
+	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
+	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+	tmp = ioread32(denali->reg + ACC_CLKS);
+	tmp &= ~ACC_CLKS__VALUE;
+	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
+	iowrite32(tmp, denali->reg + ACC_CLKS);
+
+	/* tRWH -> RE_2_WE */
+	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
+	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_WE);
+	tmp &= ~RE_2_WE__VALUE;
+	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
+	iowrite32(tmp, denali->reg + RE_2_WE);
+
+	/* tRHZ -> RE_2_RE */
+	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
+	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_RE);
+	tmp &= ~RE_2_RE__VALUE;
+	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
+	iowrite32(tmp, denali->reg + RE_2_RE);
+
+	/*
+	 * tCCS, tWHR -> WE_2_RE
+	 *
+	 * With WE_2_RE properly set, the Denali controller automatically takes
+	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
+	 */
+	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
+			       t_clk);
+	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
+	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
+	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+
+	/* tADL -> ADDR_2_DATA */
+
+	/* for older versions, ADDR_2_DATA is only 6 bit wide */
+	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	if (denali->revision < 0x0501)
+		addr_2_data_mask >>= 1;
+
+	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
+	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
+	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
+	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+
+	/* tREH, tWH -> RDWR_EN_HI_CNT */
+	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+				  t_clk);
+	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
+	tmp &= ~RDWR_EN_HI_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
+	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+
+	/* tRP, tWP -> RDWR_EN_LO_CNT */
+	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
+				  t_clk);
+	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+				     t_clk);
+	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
+	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
+	tmp &= ~RDWR_EN_LO_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
+	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+
+	/* tCS, tCEA -> CS_SETUP_CNT */
+	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
+			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
+			0);
+	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + CS_SETUP_CNT);
+	tmp &= ~CS_SETUP_CNT__VALUE;
+	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
+	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
+
+	return 0;
+}
+
+static void denali_reset_banks(struct denali_nand_info *denali)
+{
+	u32 irq_status;
+	int i;
+
+	for (i = 0; i < denali->max_banks; i++) {
+		denali->active_bank = i;
+
+		denali_reset_irq(denali);
+
+		iowrite32(DEVICE_RESET__BANK(i),
+			  denali->reg + DEVICE_RESET);
+
+		irq_status = denali_wait_for_irq(denali,
+			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+		if (!(irq_status & INTR__INT_ACT))
+			break;
+	}
+
+	dev_dbg(denali->dev, "%d chips connected\n", i);
+	denali->max_banks = i;
+}
+
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+	/*
+	 * The REVISION register may not be reliable.  Platforms are allowed to
+	 * override it.
+	 */
+	if (!denali->revision)
+		denali->revision = swab16(ioread32(denali->reg + REVISION));
+
+	/*
+	 * tell driver how many bit controller will skip before writing
+	 * ECC code in OOB. This is normally used for bad block marker
+	 */
+	denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
+	iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
+	denali_detect_max_banks(denali);
+	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
+
+	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
+}
+
+int denali_calc_ecc_bytes(int step_size, int strength)
+{
+	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
+	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
+}
+EXPORT_SYMBOL(denali_calc_ecc_bytes);
+
+static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
+			    struct denali_nand_info *denali)
+{
+	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
+	int ret;
+
+	/*
+	 * If .size and .strength are already set (usually by DT),
+	 * check if they are supported by this controller.
+	 */
+	if (chip->ecc.size && chip->ecc.strength)
+		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
+
+	/*
+	 * We want .size and .strength closest to the chip's requirement
+	 * unless NAND_ECC_MAXIMIZE is requested.
+	 */
+	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
+		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
+		if (!ret)
+			return 0;
+	}
+
+	/* Max ECC strength is the last thing we can do */
+	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
+}
+
+static struct nand_ecclayout nand_oob;
+
+static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = denali->oob_skip_bytes;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int denali_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
+	oobregion->length = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
+	.ecc = denali_ooblayout_ecc,
+	.free = denali_ooblayout_free,
+};
+
+static int denali_multidev_fixup(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/*
+	 * Support for multi device:
+	 * When the IP configuration is x16 capable and two x8 chips are
+	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
+	 * In this case, the core framework knows nothing about this fact,
+	 * so we should tell it the _logical_ pagesize and anything necessary.
+	 */
+	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
+
+	/*
+	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
+	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
+	 */
+	if (denali->devs_per_cs == 0) {
+		denali->devs_per_cs = 1;
+		iowrite32(1, denali->reg + DEVICES_CONNECTED);
+	}
+
+	if (denali->devs_per_cs == 1)
+		return 0;
+
+	if (denali->devs_per_cs != 2) {
+		dev_err(denali->dev, "unsupported number of devices %d\n",
+			denali->devs_per_cs);
+		return -EINVAL;
+	}
+
+	/* 2 chips in parallel */
+	mtd->size <<= 1;
+	mtd->erasesize <<= 1;
+	mtd->writesize <<= 1;
+	mtd->oobsize <<= 1;
+	chip->chipsize <<= 1;
+	chip->page_shift += 1;
+	chip->phys_erase_shift += 1;
+	chip->bbt_erase_shift += 1;
+	chip->chip_shift += 1;
+	chip->pagemask <<= 1;
+	chip->ecc.size <<= 1;
+	chip->ecc.bytes <<= 1;
+	chip->ecc.strength <<= 1;
+	denali->oob_skip_bytes <<= 1;
+
+	return 0;
+}
+
+int denali_init(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 features = ioread32(denali->reg + FEATURES);
+	int ret;
+
+	denali_hw_init(denali);
+
+	denali_clear_irq_all(denali);
+
+	denali_reset_banks(denali);
+
+	denali->active_bank = DENALI_INVALID_BANK;
+
+	chip->flash_node = dev_of_offset(denali->dev);
+	/* Fallback to the default name if DT did not give "label" property */
+	if (!mtd->name)
+		mtd->name = "denali-nand";
+
+	chip->select_chip = denali_select_chip;
+	chip->read_byte = denali_read_byte;
+	chip->write_byte = denali_write_byte;
+	chip->read_word = denali_read_word;
+	chip->cmd_ctrl = denali_cmd_ctrl;
+	chip->dev_ready = denali_dev_ready;
+	chip->waitfunc = denali_waitfunc;
+
+	if (features & FEATURES__INDEX_ADDR) {
+		denali->host_read = denali_indexed_read;
+		denali->host_write = denali_indexed_write;
+	} else {
+		denali->host_read = denali_direct_read;
+		denali->host_write = denali_direct_write;
+	}
+
+	/* clk rate info is needed for setup_data_interface */
+	if (denali->clk_x_rate)
+		chip->setup_data_interface = denali_setup_data_interface;
+
+	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
+	if (ret)
+		return ret;
+
+	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
+		denali->dma_avail = 1;
+
+	if (denali->dma_avail) {
+		chip->buf_align = ARCH_DMA_MINALIGN;
+		if (denali->caps & DENALI_CAP_DMA_64BIT)
+			denali->setup_dma = denali_setup_dma64;
+		else
+			denali->setup_dma = denali_setup_dma32;
+	} else {
+		chip->buf_align = 4;
+	}
+
+	chip->options |= NAND_USE_BOUNCE_BUFFER;
+	chip->bbt_options |= NAND_BBT_USE_FLASH;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+
+	/* no subpage writes on denali */
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	ret = denali_ecc_setup(mtd, chip, denali);
+	if (ret) {
+		dev_err(denali->dev, "Failed to setup ECC settings.\n");
+		return ret;
+	}
+
+	dev_dbg(denali->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
+		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
+		  denali->reg + ECC_CORRECTION);
+	iowrite32(mtd->erasesize / mtd->writesize,
+		  denali->reg + PAGES_PER_BLOCK);
+	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->reg + DEVICE_WIDTH);
+	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
+		  denali->reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+
+	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
+	iowrite32(mtd->writesize / chip->ecc.size,
+		  denali->reg + CFG_NUM_DATA_BLOCKS);
+
+	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
+
+	nand_oob.eccbytes = denali->nand.ecc.bytes;
+	denali->nand.ecc.layout = &nand_oob;
+
+	if (chip->options & NAND_BUSWIDTH_16) {
+		chip->read_buf = denali_read_buf16;
+		chip->write_buf = denali_write_buf16;
+	} else {
+		chip->read_buf = denali_read_buf;
+		chip->write_buf = denali_write_buf;
+	}
+	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
+	chip->ecc.read_page = denali_read_page;
+	chip->ecc.read_page_raw = denali_read_page_raw;
+	chip->ecc.write_page = denali_write_page;
+	chip->ecc.write_page_raw = denali_write_page_raw;
+	chip->ecc.read_oob = denali_read_oob;
+	chip->ecc.write_oob = denali_write_oob;
+	chip->erase = denali_erase;
+
+	ret = denali_multidev_fixup(denali);
+	if (ret)
+		return ret;
+
+	/*
+	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
+	 * use devm_kmalloc() because the memory allocated by devm_ does not
+	 * guarantee DMA-safe alignment.
+	 */
+	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!denali->buf)
+		return -ENOMEM;
+
+	ret = nand_scan_tail(mtd);
+	if (ret)
+		goto free_buf;
+
+	ret = nand_register(0, mtd);
+	if (ret) {
+		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
+		goto free_buf;
+	}
+	return 0;
+
+free_buf:
+	kfree(denali->buf);
+
+	return ret;
+}
diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h
new file mode 100644
index 0000000..9b797be
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali.h
@@ -0,0 +1,325 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Copyright (C) 2013-2014 Altera Corporation <www.altera.com>
+ * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
+ */
+
+#ifndef __DENALI_H__
+#define __DENALI_H__
+
+#include <linux/bitops.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/types.h>
+
+#define DEVICE_RESET				0x0
+#define     DEVICE_RESET__BANK(bank)			BIT(bank)
+
+#define TRANSFER_SPARE_REG			0x10
+#define     TRANSFER_SPARE_REG__FLAG			BIT(0)
+
+#define LOAD_WAIT_CNT				0x20
+#define     LOAD_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define PROGRAM_WAIT_CNT			0x30
+#define     PROGRAM_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define ERASE_WAIT_CNT				0x40
+#define     ERASE_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define INT_MON_CYCCNT				0x50
+#define     INT_MON_CYCCNT__VALUE			GENMASK(15, 0)
+
+#define RB_PIN_ENABLED				0x60
+#define     RB_PIN_ENABLED__BANK(bank)			BIT(bank)
+
+#define MULTIPLANE_OPERATION			0x70
+#define     MULTIPLANE_OPERATION__FLAG			BIT(0)
+
+#define MULTIPLANE_READ_ENABLE			0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG		BIT(0)
+
+#define COPYBACK_DISABLE			0x90
+#define     COPYBACK_DISABLE__FLAG			BIT(0)
+
+#define CACHE_WRITE_ENABLE			0xa0
+#define     CACHE_WRITE_ENABLE__FLAG			BIT(0)
+
+#define CACHE_READ_ENABLE			0xb0
+#define     CACHE_READ_ENABLE__FLAG			BIT(0)
+
+#define PREFETCH_MODE				0xc0
+#define     PREFETCH_MODE__PREFETCH_EN			BIT(0)
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	GENMASK(15, 4)
+
+#define CHIP_ENABLE_DONT_CARE			0xd0
+#define     CHIP_EN_DONT_CARE__FLAG			BIT(0)
+
+#define ECC_ENABLE				0xe0
+#define     ECC_ENABLE__FLAG				BIT(0)
+
+#define GLOBAL_INT_ENABLE			0xf0
+#define     GLOBAL_INT_EN_FLAG				BIT(0)
+
+#define TWHR2_AND_WE_2_RE			0x100
+#define     TWHR2_AND_WE_2_RE__WE_2_RE			GENMASK(5, 0)
+#define     TWHR2_AND_WE_2_RE__TWHR2			GENMASK(13, 8)
+
+#define TCWAW_AND_ADDR_2_DATA			0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define     TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA		GENMASK(6, 0)
+#define     TCWAW_AND_ADDR_2_DATA__TCWAW		GENMASK(13, 8)
+
+#define RE_2_WE					0x120
+#define     RE_2_WE__VALUE				GENMASK(5, 0)
+
+#define ACC_CLKS				0x130
+#define     ACC_CLKS__VALUE				GENMASK(3, 0)
+
+#define NUMBER_OF_PLANES			0x140
+#define     NUMBER_OF_PLANES__VALUE			GENMASK(2, 0)
+
+#define PAGES_PER_BLOCK				0x150
+#define     PAGES_PER_BLOCK__VALUE			GENMASK(15, 0)
+
+#define DEVICE_WIDTH				0x160
+#define     DEVICE_WIDTH__VALUE				GENMASK(1, 0)
+
+#define DEVICE_MAIN_AREA_SIZE			0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		GENMASK(15, 0)
+
+#define DEVICE_SPARE_AREA_SIZE			0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		GENMASK(15, 0)
+
+#define TWO_ROW_ADDR_CYCLES			0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG			BIT(0)
+
+#define MULTIPLANE_ADDR_RESTRICT		0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		BIT(0)
+
+#define ECC_CORRECTION				0x1b0
+#define     ECC_CORRECTION__VALUE			GENMASK(4, 0)
+#define     ECC_CORRECTION__ERASE_THRESHOLD		GENMASK(31, 16)
+
+#define READ_MODE				0x1c0
+#define     READ_MODE__VALUE				GENMASK(3, 0)
+
+#define WRITE_MODE				0x1d0
+#define     WRITE_MODE__VALUE				GENMASK(3, 0)
+
+#define COPYBACK_MODE				0x1e0
+#define     COPYBACK_MODE__VALUE			GENMASK(3, 0)
+
+#define RDWR_EN_LO_CNT				0x1f0
+#define     RDWR_EN_LO_CNT__VALUE			GENMASK(4, 0)
+
+#define RDWR_EN_HI_CNT				0x200
+#define     RDWR_EN_HI_CNT__VALUE			GENMASK(4, 0)
+
+#define MAX_RD_DELAY				0x210
+#define     MAX_RD_DELAY__VALUE				GENMASK(3, 0)
+
+#define CS_SETUP_CNT				0x220
+#define     CS_SETUP_CNT__VALUE				GENMASK(4, 0)
+#define     CS_SETUP_CNT__TWB				GENMASK(17, 12)
+
+#define SPARE_AREA_SKIP_BYTES			0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE		GENMASK(5, 0)
+
+#define SPARE_AREA_MARKER			0x240
+#define     SPARE_AREA_MARKER__VALUE			GENMASK(15, 0)
+
+#define DEVICES_CONNECTED			0x250
+#define     DEVICES_CONNECTED__VALUE			GENMASK(2, 0)
+
+#define DIE_MASK				0x260
+#define     DIE_MASK__VALUE				GENMASK(7, 0)
+
+#define FIRST_BLOCK_OF_NEXT_PLANE		0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		GENMASK(15, 0)
+
+#define WRITE_PROTECT				0x280
+#define     WRITE_PROTECT__FLAG				BIT(0)
+
+#define RE_2_RE					0x290
+#define     RE_2_RE__VALUE				GENMASK(5, 0)
+
+#define MANUFACTURER_ID				0x300
+#define     MANUFACTURER_ID__VALUE			GENMASK(7, 0)
+
+#define DEVICE_ID				0x310
+#define     DEVICE_ID__VALUE				GENMASK(7, 0)
+
+#define DEVICE_PARAM_0				0x320
+#define     DEVICE_PARAM_0__VALUE			GENMASK(7, 0)
+
+#define DEVICE_PARAM_1				0x330
+#define     DEVICE_PARAM_1__VALUE			GENMASK(7, 0)
+
+#define DEVICE_PARAM_2				0x340
+#define     DEVICE_PARAM_2__VALUE			GENMASK(7, 0)
+
+#define LOGICAL_PAGE_DATA_SIZE			0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		GENMASK(15, 0)
+
+#define LOGICAL_PAGE_SPARE_SIZE			0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		GENMASK(15, 0)
+
+#define REVISION				0x370
+#define     REVISION__VALUE				GENMASK(15, 0)
+
+#define ONFI_DEVICE_FEATURES			0x380
+#define     ONFI_DEVICE_FEATURES__VALUE			GENMASK(5, 0)
+
+#define ONFI_OPTIONAL_COMMANDS			0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		GENMASK(5, 0)
+
+#define ONFI_TIMING_MODE			0x3a0
+#define     ONFI_TIMING_MODE__VALUE			GENMASK(5, 0)
+
+#define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		GENMASK(5, 0)
+
+#define ONFI_DEVICE_NO_OF_LUNS			0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		GENMASK(7, 0)
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		BIT(8)
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	GENMASK(15, 0)
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	GENMASK(15, 0)
+
+#define FEATURES				0x3f0
+#define     FEATURES__N_BANKS				GENMASK(1, 0)
+#define     FEATURES__ECC_MAX_ERR			GENMASK(5, 2)
+#define     FEATURES__DMA				BIT(6)
+#define     FEATURES__CMD_DMA				BIT(7)
+#define     FEATURES__PARTITION				BIT(8)
+#define     FEATURES__XDMA_SIDEBAND			BIT(9)
+#define     FEATURES__GPREG				BIT(10)
+#define     FEATURES__INDEX_ADDR			BIT(11)
+
+#define TRANSFER_MODE				0x400
+#define     TRANSFER_MODE__VALUE			GENMASK(1, 0)
+
+#define INTR_STATUS(bank)			(0x410 + (bank) * 0x50)
+#define INTR_EN(bank)				(0x420 + (bank) * 0x50)
+/* bit[1:0] is used differently depending on IP version */
+#define     INTR__ECC_UNCOR_ERR				BIT(0)	/* new IP */
+#define     INTR__ECC_TRANSACTION_DONE			BIT(0)	/* old IP */
+#define     INTR__ECC_ERR				BIT(1)	/* old IP */
+#define     INTR__DMA_CMD_COMP				BIT(2)
+#define     INTR__TIME_OUT				BIT(3)
+#define     INTR__PROGRAM_FAIL				BIT(4)
+#define     INTR__ERASE_FAIL				BIT(5)
+#define     INTR__LOAD_COMP				BIT(6)
+#define     INTR__PROGRAM_COMP				BIT(7)
+#define     INTR__ERASE_COMP				BIT(8)
+#define     INTR__PIPE_CPYBCK_CMD_COMP			BIT(9)
+#define     INTR__LOCKED_BLK				BIT(10)
+#define     INTR__UNSUP_CMD				BIT(11)
+#define     INTR__INT_ACT				BIT(12)
+#define     INTR__RST_COMP				BIT(13)
+#define     INTR__PIPE_CMD_ERR				BIT(14)
+#define     INTR__PAGE_XFER_INC				BIT(15)
+#define     INTR__ERASED_PAGE				BIT(16)
+
+#define PAGE_CNT(bank)				(0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank)			(0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank)			(0x450 + (bank) * 0x50)
+
+#define ECC_THRESHOLD				0x600
+#define     ECC_THRESHOLD__VALUE			GENMASK(9, 0)
+
+#define ECC_ERROR_BLOCK_ADDRESS			0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		GENMASK(15, 0)
+
+#define ECC_ERROR_PAGE_ADDRESS			0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		GENMASK(11, 0)
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		GENMASK(15, 12)
+
+#define ECC_ERROR_ADDRESS			0x630
+#define     ECC_ERROR_ADDRESS__OFFSET			GENMASK(11, 0)
+#define     ECC_ERROR_ADDRESS__SECTOR			GENMASK(15, 12)
+
+#define ERR_CORRECTION_INFO			0x640
+#define     ERR_CORRECTION_INFO__BYTE			GENMASK(7, 0)
+#define     ERR_CORRECTION_INFO__DEVICE			GENMASK(11, 8)
+#define     ERR_CORRECTION_INFO__UNCOR			BIT(14)
+#define     ERR_CORRECTION_INFO__LAST_ERR		BIT(15)
+
+#define ECC_COR_INFO(bank)			(0x650 + (bank) / 2 * 0x10)
+#define     ECC_COR_INFO__SHIFT(bank)			((bank) % 2 * 8)
+#define     ECC_COR_INFO__MAX_ERRORS			GENMASK(6, 0)
+#define     ECC_COR_INFO__UNCOR_ERR			BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE			0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE		0x6c0
+
+#define CFG_NUM_DATA_BLOCKS			0x6d0
+
+#define CFG_META_DATA_SIZE			0x6e0
+
+#define DMA_ENABLE				0x700
+#define     DMA_ENABLE__FLAG				BIT(0)
+
+#define IGNORE_ECC_DONE				0x710
+#define     IGNORE_ECC_DONE__FLAG			BIT(0)
+
+#define DMA_INTR				0x720
+#define DMA_INTR_EN				0x730
+#define     DMA_INTR__TARGET_ERROR			BIT(0)
+#define     DMA_INTR__DESC_COMP_CHANNEL0		BIT(1)
+#define     DMA_INTR__DESC_COMP_CHANNEL1		BIT(2)
+#define     DMA_INTR__DESC_COMP_CHANNEL2		BIT(3)
+#define     DMA_INTR__DESC_COMP_CHANNEL3		BIT(4)
+#define     DMA_INTR__MEMCOPY_DESC_COMP			BIT(5)
+
+#define TARGET_ERR_ADDR_LO			0x740
+#define     TARGET_ERR_ADDR_LO__VALUE			GENMASK(15, 0)
+
+#define TARGET_ERR_ADDR_HI			0x750
+#define     TARGET_ERR_ADDR_HI__VALUE			GENMASK(15, 0)
+
+#define CHNL_ACTIVE				0x760
+#define     CHNL_ACTIVE__CHANNEL0			BIT(0)
+#define     CHNL_ACTIVE__CHANNEL1			BIT(1)
+#define     CHNL_ACTIVE__CHANNEL2			BIT(2)
+#define     CHNL_ACTIVE__CHANNEL3			BIT(3)
+
+struct udevice;
+
+struct denali_nand_info {
+	struct nand_chip nand;
+	unsigned long clk_x_rate;	/* bus interface clock rate */
+	int active_bank;		/* currently selected bank */
+	struct udevice *dev;
+	uint32_t page;
+	void __iomem *reg;		/* Register Interface */
+	void __iomem *host;		/* Host Data/Command Interface */
+	u32 irq_mask;			/* interrupts we are waiting for */
+	u32 irq_status;			/* interrupts that have happened */
+	int irq;
+	void *buf;			/* for syndrome layout conversion */
+	dma_addr_t dma_addr;
+	int dma_avail;			/* can support DMA? */
+	int devs_per_cs;		/* devices connected in parallel */
+	int oob_skip_bytes;		/* number of bytes reserved for BBM */
+	int max_banks;
+	unsigned int revision;		/* IP revision */
+	unsigned int caps;		/* IP capability (or quirk) */
+	const struct nand_ecc_caps *ecc_caps;
+	u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
+	void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
+	void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
+			  int page, int write);
+};
+
+#define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
+#define DENALI_CAP_DMA_64BIT			BIT(1)
+
+int denali_calc_ecc_bytes(int step_size, int strength);
+int denali_init(struct denali_nand_info *denali);
+
+#endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
new file mode 100644
index 0000000..65a7797
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -0,0 +1,122 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2017 Socionext Inc.
+ *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
+ */
+
+#include <clk.h>
+#include <dm.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/printk.h>
+
+#include "denali.h"
+
+struct denali_dt_data {
+	unsigned int revision;
+	unsigned int caps;
+	const struct nand_ecc_caps *ecc_caps;
+};
+
+NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes,
+		     512, 8, 15);
+static const struct denali_dt_data denali_socfpga_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP,
+	.ecc_caps = &denali_socfpga_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16, 24);
+static const struct denali_dt_data denali_uniphier_v5a_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5a_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16);
+static const struct denali_dt_data denali_uniphier_v5b_data = {
+	.revision = 0x0501,
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5b_ecc_caps,
+};
+
+static const struct udevice_id denali_nand_dt_ids[] = {
+	{
+		.compatible = "altr,socfpga-denali-nand",
+		.data = (unsigned long)&denali_socfpga_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5a",
+		.data = (unsigned long)&denali_uniphier_v5a_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5b",
+		.data = (unsigned long)&denali_uniphier_v5b_data,
+	},
+	{ /* sentinel */ }
+};
+
+static int denali_dt_probe(struct udevice *dev)
+{
+	struct denali_nand_info *denali = dev_get_priv(dev);
+	const struct denali_dt_data *data;
+	struct clk clk;
+	struct resource res;
+	int ret;
+
+	data = (void *)dev_get_driver_data(dev);
+	if (data) {
+		denali->revision = data->revision;
+		denali->caps = data->caps;
+		denali->ecc_caps = data->ecc_caps;
+	}
+
+	denali->dev = dev;
+
+	ret = dev_read_resource_byname(dev, "denali_reg", &res);
+	if (ret)
+		return ret;
+
+	denali->reg = devm_ioremap(dev, res.start, resource_size(&res));
+
+	ret = dev_read_resource_byname(dev, "nand_data", &res);
+	if (ret)
+		return ret;
+
+	denali->host = devm_ioremap(dev, res.start, resource_size(&res));
+
+	ret = clk_get_by_index(dev, 0, &clk);
+	if (ret)
+		return ret;
+
+	ret = clk_enable(&clk);
+	if (ret)
+		return ret;
+
+	denali->clk_x_rate = clk_get_rate(&clk);
+
+	return denali_init(denali);
+}
+
+U_BOOT_DRIVER(denali_nand_dt) = {
+	.name = "denali-nand-dt",
+	.id = UCLASS_MISC,
+	.of_match = denali_nand_dt_ids,
+	.probe = denali_dt_probe,
+	.priv_auto_alloc_size = sizeof(struct denali_nand_info),
+};
+
+void board_nand_init(void)
+{
+	struct udevice *dev;
+	int ret;
+
+	ret = uclass_get_device_by_driver(UCLASS_MISC,
+					  DM_GET_DRIVER(denali_nand_dt),
+					  &dev);
+	if (ret && ret != -ENODEV)
+		pr_err("Failed to initialize Denali NAND controller. (error %d)\n",
+		       ret);
+}
diff --git a/drivers/mtd/nand/raw/denali_spl.c b/drivers/mtd/nand/raw/denali_spl.c
new file mode 100644
index 0000000..dbaba3c
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali_spl.c
@@ -0,0 +1,228 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2014       Panasonic Corporation
+ * Copyright (C) 2014-2015  Masahiro Yamada <yamada.masahiro@socionext.com>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/unaligned.h>
+#include <linux/mtd/rawnand.h>
+#include "denali.h"
+
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+
+#define INDEX_CTRL_REG		0x0
+#define INDEX_DATA_REG		0x10
+
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define PIPELINE_ACCESS		0x2000
+
+#define BANK(x) ((x) << 24)
+
+static void __iomem *denali_flash_mem =
+			(void __iomem *)CONFIG_SYS_NAND_DATA_BASE;
+static void __iomem *denali_flash_reg =
+			(void __iomem *)CONFIG_SYS_NAND_REGS_BASE;
+
+static const int flash_bank;
+static int page_size, oob_size, pages_per_block;
+
+static void index_addr(uint32_t address, uint32_t data)
+{
+	writel(address, denali_flash_mem + INDEX_CTRL_REG);
+	writel(data, denali_flash_mem + INDEX_DATA_REG);
+}
+
+static int wait_for_irq(uint32_t irq_mask)
+{
+	unsigned long timeout = 1000000;
+	uint32_t intr_status;
+
+	do {
+		intr_status = readl(denali_flash_reg + INTR_STATUS(flash_bank));
+
+		if (intr_status & INTR__ECC_UNCOR_ERR) {
+			debug("Uncorrected ECC detected\n");
+			return -EBADMSG;
+		}
+
+		if (intr_status & irq_mask)
+			break;
+
+		udelay(1);
+		timeout--;
+	} while (timeout);
+
+	if (!timeout) {
+		debug("Timeout with interrupt status %08x\n", intr_status);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static void read_data_from_flash_mem(uint8_t *buf, int len)
+{
+	int i;
+	uint32_t *buf32;
+
+	/* transfer the data from the flash */
+	buf32 = (uint32_t *)buf;
+
+	/*
+	 * Let's take care of unaligned access although it rarely happens.
+	 * Avoid put_unaligned() for the normal use cases since it leads to
+	 * a bit performance regression.
+	 */
+	if ((unsigned long)buf32 % 4) {
+		for (i = 0; i < len / 4; i++)
+			put_unaligned(readl(denali_flash_mem + INDEX_DATA_REG),
+				      buf32++);
+	} else {
+		for (i = 0; i < len / 4; i++)
+			*buf32++ = readl(denali_flash_mem + INDEX_DATA_REG);
+	}
+
+	if (len % 4) {
+		u32 tmp;
+
+		tmp = cpu_to_le32(readl(denali_flash_mem + INDEX_DATA_REG));
+		buf = (uint8_t *)buf32;
+		for (i = 0; i < len % 4; i++) {
+			*buf++ = tmp;
+			tmp >>= 8;
+		}
+	}
+}
+
+int denali_send_pipeline_cmd(int page, int ecc_en, int access_type)
+{
+	uint32_t addr, cmd;
+	static uint32_t page_count = 1;
+
+	writel(ecc_en, denali_flash_reg + ECC_ENABLE);
+
+	/* clear all bits of intr_status. */
+	writel(0xffff, denali_flash_reg + INTR_STATUS(flash_bank));
+
+	addr = BANK(flash_bank) | page;
+
+	/* setup the acccess type */
+	cmd = DENALI_MAP10 | addr;
+	index_addr(cmd, access_type);
+
+	/* setup the pipeline command */
+	index_addr(cmd, PIPELINE_ACCESS | page_count);
+
+	cmd = DENALI_MAP01 | addr;
+	writel(cmd, denali_flash_mem + INDEX_CTRL_REG);
+
+	return wait_for_irq(INTR__LOAD_COMP);
+}
+
+static int nand_read_oob(void *buf, int page)
+{
+	int ret;
+
+	ret = denali_send_pipeline_cmd(page, 0, SPARE_ACCESS);
+	if (ret < 0)
+		return ret;
+
+	read_data_from_flash_mem(buf, oob_size);
+
+	return 0;
+}
+
+static int nand_read_page(void *buf, int page)
+{
+	int ret;
+
+	ret = denali_send_pipeline_cmd(page, 1, MAIN_ACCESS);
+	if (ret < 0)
+		return ret;
+
+	read_data_from_flash_mem(buf, page_size);
+
+	return 0;
+}
+
+static int nand_block_isbad(void *buf, int block)
+{
+	int ret;
+
+	ret = nand_read_oob(buf, block * pages_per_block);
+	if (ret < 0)
+		return ret;
+
+	return *((uint8_t *)buf + CONFIG_SYS_NAND_BAD_BLOCK_POS) != 0xff;
+}
+
+/* nand_init() - initialize data to make nand usable by SPL */
+void nand_init(void)
+{
+	/* access to main area */
+	writel(0, denali_flash_reg + TRANSFER_SPARE_REG);
+
+	/*
+	 * These registers are expected to be already set by the hardware
+	 * or earlier boot code.  So we read these values out.
+	 */
+	page_size = readl(denali_flash_reg + DEVICE_MAIN_AREA_SIZE);
+	oob_size = readl(denali_flash_reg + DEVICE_SPARE_AREA_SIZE);
+	pages_per_block = readl(denali_flash_reg + PAGES_PER_BLOCK);
+}
+
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
+{
+	int block, page, column, readlen;
+	int ret;
+	int force_bad_block_check = 1;
+
+	page = offs / page_size;
+	column = offs % page_size;
+
+	block = page / pages_per_block;
+	page = page % pages_per_block;
+
+	while (size) {
+		if (force_bad_block_check || page == 0) {
+			ret = nand_block_isbad(dst, block);
+			if (ret < 0)
+				return ret;
+
+			if (ret) {
+				block++;
+				continue;
+			}
+		}
+
+		force_bad_block_check = 0;
+
+		ret = nand_read_page(dst, block * pages_per_block + page);
+		if (ret < 0)
+			return ret;
+
+		readlen = min(page_size - column, (int)size);
+
+		if (unlikely(column)) {
+			/* Partial page read */
+			memmove(dst, dst + column, readlen);
+			column = 0;
+		}
+
+		size -= readlen;
+		dst += readlen;
+		page++;
+		if (page == pages_per_block) {
+			block++;
+			page = 0;
+		}
+	}
+
+	return 0;
+}
+
+void nand_deselect(void) {}
diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
new file mode 100644
index 0000000..263d46e
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -0,0 +1,810 @@
+// SPDX-License-Identifier: GPL-2.0+
+/* Freescale Enhanced Local Bus Controller FCM NAND driver
+ *
+ * Copyright (c) 2006-2008 Freescale Semiconductor
+ *
+ * Authors: Nick Spence <nick.spence@freescale.com>,
+ *          Scott Wood <scottwood@freescale.com>
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <nand.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <linux/errno.h>
+
+#ifdef VERBOSE_DEBUG
+#define DEBUG_ELBC
+#define vdbg(format, arg...) printf("DEBUG: " format, ##arg)
+#else
+#define vdbg(format, arg...) do {} while (0)
+#endif
+
+/* Can't use plain old DEBUG because the linux mtd
+ * headers define it as a macro.
+ */
+#ifdef DEBUG_ELBC
+#define dbg(format, arg...) printf("DEBUG: " format, ##arg)
+#else
+#define dbg(format, arg...) do {} while (0)
+#endif
+
+#define MAX_BANKS 8
+#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
+
+#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
+
+struct fsl_elbc_ctrl;
+
+/* mtd information per set */
+
+struct fsl_elbc_mtd {
+	struct nand_chip chip;
+	struct fsl_elbc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;               /* Chip select bank number           */
+	u8 __iomem *vbase;      /* Chip select base virtual address  */
+	int page_size;          /* NAND page size (0=512, 1=2048)    */
+	unsigned int fmr;       /* FCM Flash Mode Register value     */
+};
+
+/* overview of the fsl elbc controller */
+
+struct fsl_elbc_ctrl {
+	struct nand_hw_control controller;
+	struct fsl_elbc_mtd *chips[MAX_BANKS];
+
+	/* device info */
+	fsl_lbc_t *regs;
+	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
+	unsigned int page;       /* Last page written to / read from      */
+	unsigned int read_bytes; /* Number of bytes read during command   */
+	unsigned int column;     /* Saved column from SEQIN               */
+	unsigned int index;      /* Pointer to next byte to 'read'        */
+	unsigned int status;     /* status read from LTESR after last op  */
+	unsigned int mdr;        /* UPM/FCM Data Register value           */
+	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
+	unsigned int oob;        /* Non zero if operating on OOB data     */
+};
+
+/* These map to the positions used by the FCM hardware ECC generator */
+
+/* Small Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
+	.eccbytes = 3,
+	.eccpos = {6, 7, 8},
+	.oobfree = { {0, 5}, {9, 7} },
+};
+
+/* Small Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
+	.eccbytes = 3,
+	.eccpos = {8, 9, 10},
+	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
+};
+
+/* Large Page FLASH with FMR[ECCM] = 0 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
+	.eccbytes = 12,
+	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
+	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
+};
+
+/* Large Page FLASH with FMR[ECCM] = 1 */
+static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
+	.eccbytes = 12,
+	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
+	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
+};
+
+/*
+ * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
+ * 1, so we have to adjust bad block pattern. This pattern should be used for
+ * x8 chips only. So far hardware does not support x16 chips anyway.
+ */
+static u8 scan_ff_pattern[] = { 0xff, };
+
+static struct nand_bbt_descr largepage_memorybased = {
+	.options = 0,
+	.offs = 0,
+	.len = 1,
+	.pattern = scan_ff_pattern,
+};
+
+/*
+ * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
+ * interfere with ECC positions, that's why we implement our own descriptors.
+ * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/*=================================*/
+
+/*
+ * Set up the FCM hardware block and page address fields, and the fcm
+ * structure addr field to point to the correct FCM buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	fsl_lbc_t *lbc = ctrl->regs;
+	int buf_num;
+
+	ctrl->page = page_addr;
+
+	if (priv->page_size) {
+		out_be32(&lbc->fbar, page_addr >> 6);
+		out_be32(&lbc->fpar,
+			 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
+			 (oob ? FPAR_LP_MS : 0) | column);
+		buf_num = (page_addr & 1) << 2;
+	} else {
+		out_be32(&lbc->fbar, page_addr >> 5);
+		out_be32(&lbc->fpar,
+			 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
+			 (oob ? FPAR_SP_MS : 0) | column);
+		buf_num = page_addr & 7;
+	}
+
+	ctrl->addr = priv->vbase + buf_num * 1024;
+	ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ctrl->index += priv->page_size ? 2048 : 512;
+
+	vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
+	     "index %x, pes %d ps %d\n",
+	     buf_num, ctrl->addr, priv->vbase, ctrl->index,
+	     chip->phys_erase_shift, chip->page_shift);
+}
+
+/*
+ * execute FCM command and wait for it to complete
+ */
+static int fsl_elbc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	fsl_lbc_t *lbc = ctrl->regs;
+	u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
+	u32 time_start;
+	u32 ltesr;
+
+	/* Setup the FMR[OP] to execute without write protection */
+	out_be32(&lbc->fmr, priv->fmr | 3);
+	if (ctrl->use_mdr)
+		out_be32(&lbc->mdr, ctrl->mdr);
+
+	vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
+	     in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
+	vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x "
+	     "fbcr=%08x bank=%d\n",
+	     in_be32(&lbc->fbar), in_be32(&lbc->fpar),
+	     in_be32(&lbc->fbcr), priv->bank);
+
+	/* execute special operation */
+	out_be32(&lbc->lsor, priv->bank);
+
+	/* wait for FCM complete flag or timeout */
+	time_start = get_timer(0);
+
+	ltesr = 0;
+	while (get_timer(time_start) < timeo) {
+		ltesr = in_be32(&lbc->ltesr);
+		if (ltesr & LTESR_CC)
+			break;
+	}
+
+	ctrl->status = ltesr & LTESR_NAND_MASK;
+	out_be32(&lbc->ltesr, ctrl->status);
+	out_be32(&lbc->lteatr, 0);
+
+	/* store mdr value in case it was needed */
+	if (ctrl->use_mdr)
+		ctrl->mdr = in_be32(&lbc->mdr);
+
+	ctrl->use_mdr = 0;
+
+	vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
+	     ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
+
+	/* returns 0 on success otherwise non-zero) */
+	return ctrl->status == LTESR_CC ? 0 : -EIO;
+}
+
+static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
+{
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	fsl_lbc_t *lbc = ctrl->regs;
+
+	if (priv->page_size) {
+		out_be32(&lbc->fir,
+			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
+			 (FIR_OP_RBW << FIR_OP4_SHIFT));
+
+		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
+				    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
+	} else {
+		out_be32(&lbc->fir,
+			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			 (FIR_OP_RBW << FIR_OP3_SHIFT));
+
+		if (oob)
+			out_be32(&lbc->fcr,
+				 NAND_CMD_READOOB << FCR_CMD0_SHIFT);
+		else
+			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the FCM */
+static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	fsl_lbc_t *lbc = ctrl->regs;
+
+	ctrl->use_mdr = 0;
+
+	/* clear the read buffer */
+	ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ1:
+		column += 256;
+
+	/* fall-through */
+	case NAND_CMD_READ0:
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
+		     " 0x%x, column: 0x%x.\n", page_addr, column);
+
+		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
+		set_addr(mtd, 0, page_addr, 0);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ctrl->index += column;
+
+		fsl_elbc_do_read(chip, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
+		     " 0x%x, column: 0x%x.\n", page_addr, column);
+
+		out_be32(&lbc->fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_elbc_do_read(chip, 1);
+		fsl_elbc_run_command(mtd);
+
+		return;
+
+	/* READID must read all 5 possible bytes while CEB is active */
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM:
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD 0x%x.\n", command);
+
+		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+				    (FIR_OP_UA  << FIR_OP1_SHIFT) |
+				    (FIR_OP_RBW << FIR_OP2_SHIFT));
+		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
+		/*
+		 * although currently it's 8 bytes for READID, we always read
+		 * the maximum 256 bytes(for PARAM)
+		 */
+		out_be32(&lbc->fbcr, 256);
+		ctrl->read_bytes = 256;
+		ctrl->use_mdr = 1;
+		ctrl->mdr = column;
+		set_addr(mtd, 0, 0, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
+		     "page_addr: 0x%x.\n", page_addr);
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
+
+		out_be32(&lbc->fir,
+			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_PA  << FIR_OP1_SHIFT) |
+			 (FIR_OP_CM1 << FIR_OP2_SHIFT));
+
+		out_be32(&lbc->fcr,
+			 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
+			 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
+
+		out_be32(&lbc->fbcr, 0);
+		ctrl->read_bytes = 0;
+
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		u32 fcr;
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
+		     "page_addr: 0x%x, column: 0x%x.\n",
+		     page_addr, column);
+
+		ctrl->column = column;
+		ctrl->oob = 0;
+
+		if (priv->page_size) {
+			fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
+			      (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
+
+			out_be32(&lbc->fir,
+				 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+				 (FIR_OP_CA  << FIR_OP1_SHIFT) |
+				 (FIR_OP_PA  << FIR_OP2_SHIFT) |
+				 (FIR_OP_WB  << FIR_OP3_SHIFT) |
+				 (FIR_OP_CW1 << FIR_OP4_SHIFT));
+		} else {
+			fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
+			      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
+
+			out_be32(&lbc->fir,
+				 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+				 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
+				 (FIR_OP_CA  << FIR_OP2_SHIFT) |
+				 (FIR_OP_PA  << FIR_OP3_SHIFT) |
+				 (FIR_OP_WB  << FIR_OP4_SHIFT) |
+				 (FIR_OP_CW1 << FIR_OP5_SHIFT));
+
+			if (column >= mtd->writesize) {
+				/* OOB area --> READOOB */
+				column -= mtd->writesize;
+				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
+				ctrl->oob = 1;
+			} else if (column < 256) {
+				/* First 256 bytes --> READ0 */
+				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+			} else {
+				/* Second 256 bytes --> READ1 */
+				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
+			}
+		}
+
+		out_be32(&lbc->fcr, fcr);
+		set_addr(mtd, column, page_addr, ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
+		     "writing %d bytes.\n", ctrl->index);
+
+		/* if the write did not start at 0 or is not a full page
+		 * then set the exact length, otherwise use a full page
+		 * write so the HW generates the ECC.
+		 */
+		if (ctrl->oob || ctrl->column != 0 ||
+		    ctrl->index != mtd->writesize + mtd->oobsize)
+			out_be32(&lbc->fbcr, ctrl->index);
+		else
+			out_be32(&lbc->fbcr, 0);
+
+		fsl_elbc_run_command(mtd);
+
+		return;
+	}
+
+	/* CMD_STATUS must read the status byte while CEB is active */
+	/* Note - it does not wait for the ready line */
+	case NAND_CMD_STATUS:
+		out_be32(&lbc->fir,
+			 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_RBW << FIR_OP1_SHIFT));
+		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+		out_be32(&lbc->fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		ctrl->read_bytes = 1;
+
+		fsl_elbc_run_command(mtd);
+
+		/* The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+		return;
+
+	/* RESET without waiting for the ready line */
+	case NAND_CMD_RESET:
+		dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
+		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
+		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	default:
+		printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
+			command);
+	}
+}
+
+static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* The hardware does not seem to support multiple
+	 * chips per bank.
+	 */
+}
+
+/*
+ * Write buf to the FCM Controller Data Buffer
+ */
+static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		printf("write_buf of %d bytes", len);
+		ctrl->status = 0;
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ctrl->index) {
+		printf("write_buf beyond end of buffer "
+		       "(%d requested, %u available)\n",
+		       len, bufsize - ctrl->index);
+		len = bufsize - ctrl->index;
+	}
+
+	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
+	/*
+	 * This is workaround for the weird elbc hangs during nand write,
+	 * Scott Wood says: "...perhaps difference in how long it takes a
+	 * write to make it through the localbus compared to a write to IMMR
+	 * is causing problems, and sync isn't helping for some reason."
+	 * Reading back the last byte helps though.
+	 */
+	in_8(&ctrl->addr[ctrl->index] + len - 1);
+
+	ctrl->index += len;
+}
+
+/*
+ * read a byte from either the FCM hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+
+	/* If there are still bytes in the FCM, then use the next byte. */
+	if (ctrl->index < ctrl->read_bytes)
+		return in_8(&ctrl->addr[ctrl->index++]);
+
+	printf("read_byte beyond end of buffer\n");
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the FCM Controller Data Buffer
+ */
+static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	int avail;
+
+	if (len < 0)
+		return;
+
+	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
+	ctrl->index += avail;
+
+	if (len > avail)
+		printf("read_buf beyond end of buffer "
+		       "(%d requested, %d available)\n",
+		       len, avail);
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
+	fsl_lbc_t *lbc = ctrl->regs;
+
+	if (ctrl->status != LTESR_CC)
+		return NAND_STATUS_FAIL;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	ctrl->use_mdr = 0;
+	out_be32(&lbc->fir,
+		 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+		 (FIR_OP_RBW << FIR_OP1_SHIFT));
+	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+	out_be32(&lbc->fbcr, 1);
+	set_addr(mtd, 0, 0, 0);
+	ctrl->read_bytes = 1;
+
+	fsl_elbc_run_command(mtd);
+
+	if (ctrl->status != LTESR_CC)
+		return NAND_STATUS_FAIL;
+
+	/* The chip always seems to report that it is
+	 * write-protected, even when it is not.
+	 */
+	out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+	return fsl_elbc_read_byte(mtd);
+}
+
+static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
+		mtd->ecc_stats.failed++;
+
+	return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required,
+				int page)
+{
+	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static struct fsl_elbc_ctrl *elbc_ctrl;
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+				uint32_t offset, uint32_t data_len,
+				const uint8_t *buf, int oob_required, int page)
+{
+	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static void fsl_elbc_ctrl_init(void)
+{
+	elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL);
+	if (!elbc_ctrl)
+		return;
+
+	elbc_ctrl->regs = LBC_BASE_ADDR;
+
+	/* clear event registers */
+	out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK);
+	out_be32(&elbc_ctrl->regs->lteatr, 0);
+
+	/* Enable interrupts for any detected events */
+	out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK);
+
+	elbc_ctrl->read_bytes = 0;
+	elbc_ctrl->index = 0;
+	elbc_ctrl->addr = NULL;
+}
+
+static int fsl_elbc_chip_init(int devnum, u8 *addr)
+{
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	struct fsl_elbc_mtd *priv;
+	uint32_t br = 0, or = 0;
+	int ret;
+
+	if (!elbc_ctrl) {
+		fsl_elbc_ctrl_init();
+		if (!elbc_ctrl)
+			return -1;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	priv->ctrl = elbc_ctrl;
+	priv->vbase = addr;
+
+	/* Find which chip select it is connected to.  It'd be nice
+	 * if we could pass more than one datum to the NAND driver...
+	 */
+	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+		phys_addr_t phys_addr = virt_to_phys(addr);
+
+		br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br);
+		or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
+
+		if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM &&
+		    (br & or & BR_BA) == BR_PHYS_ADDR(phys_addr))
+			break;
+	}
+
+	if (priv->bank >= MAX_BANKS) {
+		printf("fsl_elbc_nand: address did not match any "
+		       "chip selects\n");
+		kfree(priv);
+		return -ENODEV;
+	}
+
+	nand = &priv->chip;
+	mtd = nand_to_mtd(nand);
+
+	elbc_ctrl->chips[priv->bank] = priv;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	nand->read_byte = fsl_elbc_read_byte;
+	nand->write_buf = fsl_elbc_write_buf;
+	nand->read_buf = fsl_elbc_read_buf;
+	nand->select_chip = fsl_elbc_select_chip;
+	nand->cmdfunc = fsl_elbc_cmdfunc;
+	nand->waitfunc = fsl_elbc_wait;
+
+	/* set up nand options */
+	nand->bbt_td = &bbt_main_descr;
+	nand->bbt_md = &bbt_mirror_descr;
+
+  	/* set up nand options */
+	nand->options = NAND_NO_SUBPAGE_WRITE;
+	nand->bbt_options = NAND_BBT_USE_FLASH;
+
+	nand->controller = &elbc_ctrl->controller;
+	nand_set_controller_data(nand, priv);
+
+	nand->ecc.read_page = fsl_elbc_read_page;
+	nand->ecc.write_page = fsl_elbc_write_page;
+	nand->ecc.write_subpage = fsl_elbc_write_subpage;
+
+	priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT);
+
+	/* If CS Base Register selects full hardware ECC then use it */
+	if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
+		nand->ecc.mode = NAND_ECC_HW;
+
+		nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
+				   &fsl_elbc_oob_sp_eccm1 :
+				   &fsl_elbc_oob_sp_eccm0;
+
+		nand->ecc.size = 512;
+		nand->ecc.bytes = 3;
+		nand->ecc.steps = 1;
+		nand->ecc.strength = 1;
+	} else {
+		/* otherwise fall back to software ECC */
+#if defined(CONFIG_NAND_ECC_BCH)
+		nand->ecc.mode = NAND_ECC_SOFT_BCH;
+#else
+		nand->ecc.mode = NAND_ECC_SOFT;
+#endif
+	}
+
+	ret = nand_scan_ident(mtd, 1, NULL);
+	if (ret)
+		return ret;
+
+	/* Large-page-specific setup */
+	if (mtd->writesize == 2048) {
+		setbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
+			     OR_FCM_PGS);
+		in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
+
+		priv->page_size = 1;
+		nand->badblock_pattern = &largepage_memorybased;
+
+		/*
+		 * Hardware expects small page has ECCM0, large page has
+		 * ECCM1 when booting from NAND, and we follow that even
+		 * when not booting from NAND.
+		 */
+		priv->fmr |= FMR_ECCM;
+
+		/* adjust ecc setup if needed */
+		if ((br & BR_DECC) == BR_DECC_CHK_GEN) {
+			nand->ecc.steps = 4;
+			nand->ecc.layout = (priv->fmr & FMR_ECCM) ?
+					   &fsl_elbc_oob_lp_eccm1 :
+					   &fsl_elbc_oob_lp_eccm0;
+		}
+	} else if (mtd->writesize == 512) {
+		clrbits_be32(&elbc_ctrl->regs->bank[priv->bank].or,
+			     OR_FCM_PGS);
+		in_be32(&elbc_ctrl->regs->bank[priv->bank].or);
+	} else {
+		return -ENODEV;
+	}
+
+	ret = nand_scan_tail(mtd);
+	if (ret)
+		return ret;
+
+	ret = nand_register(devnum, mtd);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+#ifndef CONFIG_SYS_NAND_BASE_LIST
+#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
+#endif
+
+static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
+	CONFIG_SYS_NAND_BASE_LIST;
+
+void board_nand_init(void)
+{
+	int i;
+
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+		fsl_elbc_chip_init(i, (u8 *)base_address[i]);
+}
diff --git a/drivers/mtd/nand/raw/fsl_elbc_spl.c b/drivers/mtd/nand/raw/fsl_elbc_spl.c
new file mode 100644
index 0000000..30c3308
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_elbc_spl.c
@@ -0,0 +1,167 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * NAND boot for Freescale Enhanced Local Bus Controller, Flash Control Machine
+ *
+ * (C) Copyright 2006-2008
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ *
+ * Copyright (c) 2008 Freescale Semiconductor, Inc.
+ * Author: Scott Wood <scottwood@freescale.com>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/fsl_lbc.h>
+#include <nand.h>
+
+#define WINDOW_SIZE 8192
+
+static void nand_wait(void)
+{
+	fsl_lbc_t *regs = LBC_BASE_ADDR;
+
+	for (;;) {
+		uint32_t status = in_be32(&regs->ltesr);
+
+		if (status == 1)
+			return;
+
+		if (status & 1) {
+			puts("read failed (ltesr)\n");
+			for (;;);
+		}
+	}
+}
+
+#ifdef CONFIG_TPL_BUILD
+int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
+#else
+static int nand_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
+#endif
+{
+	fsl_lbc_t *regs = LBC_BASE_ADDR;
+	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+	const int large = CONFIG_SYS_NAND_OR_PRELIM & OR_FCM_PGS;
+	const int block_shift = large ? 17 : 14;
+	const int block_size = 1 << block_shift;
+	const int page_size = large ? 2048 : 512;
+	const int bad_marker = large ? page_size + 0 : page_size + 5;
+	int fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT) | 2;
+	int pos = 0;
+	char *dst = vdst;
+
+	if (offs & (block_size - 1)) {
+		puts("bad offset\n");
+		for (;;);
+	}
+
+	if (large) {
+		fmr |= FMR_ECCM;
+		out_be32(&regs->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
+				     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
+		out_be32(&regs->fir,
+			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
+			 (FIR_OP_RBW << FIR_OP4_SHIFT));
+	} else {
+		out_be32(&regs->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
+		out_be32(&regs->fir,
+			 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
+			 (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			 (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			 (FIR_OP_RBW << FIR_OP3_SHIFT));
+	}
+
+	out_be32(&regs->fbcr, 0);
+	clrsetbits_be32(&regs->bank[0].br, BR_DECC, BR_DECC_CHK_GEN);
+
+	while (pos < uboot_size) {
+		int i = 0;
+		out_be32(&regs->fbar, offs >> block_shift);
+
+		do {
+			int j;
+			unsigned int page_offs = (offs & (block_size - 1)) << 1;
+
+			out_be32(&regs->ltesr, ~0);
+			out_be32(&regs->lteatr, 0);
+			out_be32(&regs->fpar, page_offs);
+			out_be32(&regs->fmr, fmr);
+			out_be32(&regs->lsor, 0);
+			nand_wait();
+
+			page_offs %= WINDOW_SIZE;
+
+			/*
+			 * If either of the first two pages are marked bad,
+			 * continue to the next block.
+			 */
+			if (i++ < 2 && buf[page_offs + bad_marker] != 0xff) {
+				puts("skipping\n");
+				offs = (offs + block_size) & ~(block_size - 1);
+				pos &= ~(block_size - 1);
+				break;
+			}
+
+			for (j = 0; j < page_size; j++)
+				dst[pos + j] = buf[page_offs + j];
+
+			pos += page_size;
+			offs += page_size;
+		} while ((offs & (block_size - 1)) && (pos < uboot_size));
+	}
+
+	return 0;
+}
+
+/*
+ * Defines a static function nand_load_image() here, because non-static makes
+ * the code too large for certain SPLs(minimal SPL, maximum size <= 4Kbytes)
+ */
+#ifndef CONFIG_TPL_BUILD
+#define nand_spl_load_image(offs, uboot_size, vdst) \
+	nand_load_image(offs, uboot_size, vdst)
+#endif
+
+/*
+ * The main entry for NAND booting. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts it from there.
+ */
+void nand_boot(void)
+{
+	__attribute__((noreturn)) void (*uboot)(void);
+	/*
+	 * Load U-Boot image from NAND into RAM
+	 */
+	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
+			    CONFIG_SYS_NAND_U_BOOT_SIZE,
+			    (void *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+			    (void *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+			    (void *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+
+#ifdef CONFIG_SPL_FLUSH_IMAGE
+	/*
+	 * Clean d-cache and invalidate i-cache, to
+	 * make sure that no stale data is executed.
+	 */
+	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+#endif
+
+	puts("transfering control\n");
+	/*
+	 * Jump to U-Boot image
+	 */
+	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+	(*uboot)();
+}
diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
new file mode 100644
index 0000000..29f30d8
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -0,0 +1,1064 @@
+// SPDX-License-Identifier: GPL-2.0+
+/* Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2012 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com>
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <nand.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <fsl_ifc.h>
+
+#ifndef CONFIG_SYS_FSL_IFC_BANK_COUNT
+#define CONFIG_SYS_FSL_IFC_BANK_COUNT	4
+#endif
+
+#define MAX_BANKS	CONFIG_SYS_FSL_IFC_BANK_COUNT
+#define ERR_BYTE	0xFF /* Value returned for read bytes
+				when read failed */
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+	struct nand_chip chip;
+	struct fsl_ifc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;               /* Chip select bank number                */
+	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+	u8 __iomem *vbase;      /* Chip select base virtual address       */
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_ctrl {
+	struct nand_hw_control controller;
+	struct fsl_ifc_mtd *chips[MAX_BANKS];
+
+	/* device info */
+	struct fsl_ifc regs;
+	void __iomem *addr;      /* Address of assigned IFC buffer        */
+	unsigned int page;       /* Last page written to / read from      */
+	unsigned int read_bytes; /* Number of bytes read during command   */
+	unsigned int column;     /* Saved column from SEQIN               */
+	unsigned int index;      /* Pointer to next byte to 'read'        */
+	unsigned int status;     /* status read from NEESR after last op  */
+	unsigned int oob;        /* Non zero if operating on OOB data     */
+	unsigned int eccread;    /* Non zero for a full-page ECC read     */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/* 512-byte page with 4-bit ECC, 8-bit */
+static struct nand_ecclayout oob_512_8bit_ecc4 = {
+	.eccbytes = 8,
+	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+	.oobfree = { {0, 5}, {6, 2} },
+};
+
+/* 512-byte page with 4-bit ECC, 16-bit */
+static struct nand_ecclayout oob_512_16bit_ecc4 = {
+	.eccbytes = 8,
+	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
+	.oobfree = { {2, 6}, },
+};
+
+/* 2048-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_2048_ecc4 = {
+	.eccbytes = 32,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+	},
+	.oobfree = { {2, 6}, {40, 24} },
+};
+
+/* 4096-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_4096_ecc4 = {
+	.eccbytes = 64,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+	},
+	.oobfree = { {2, 6}, {72, 56} },
+};
+
+/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_4096_ecc8 = {
+	.eccbytes = 128,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+		72, 73, 74, 75, 76, 77, 78, 79,
+		80, 81, 82, 83, 84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93, 94, 95,
+		96, 97, 98, 99, 100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+		128, 129, 130, 131, 132, 133, 134, 135,
+	},
+	.oobfree = { {2, 6}, {136, 82} },
+};
+
+/* 8192-byte page size with 4-bit ECC */
+static struct nand_ecclayout oob_8192_ecc4 = {
+	.eccbytes = 128,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+		72, 73, 74, 75, 76, 77, 78, 79,
+		80, 81, 82, 83, 84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93, 94, 95,
+		96, 97, 98, 99, 100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+		128, 129, 130, 131, 132, 133, 134, 135,
+	},
+	.oobfree = { {2, 6}, {136, 208} },
+};
+
+/* 8192-byte page size with 8-bit ECC -- requires 218-byte OOB */
+static struct nand_ecclayout oob_8192_ecc8 = {
+	.eccbytes = 256,
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		16, 17, 18, 19, 20, 21, 22, 23,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63,
+		64, 65, 66, 67, 68, 69, 70, 71,
+		72, 73, 74, 75, 76, 77, 78, 79,
+		80, 81, 82, 83, 84, 85, 86, 87,
+		88, 89, 90, 91, 92, 93, 94, 95,
+		96, 97, 98, 99, 100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+		128, 129, 130, 131, 132, 133, 134, 135,
+		136, 137, 138, 139, 140, 141, 142, 143,
+		144, 145, 146, 147, 148, 149, 150, 151,
+		152, 153, 154, 155, 156, 157, 158, 159,
+		160, 161, 162, 163, 164, 165, 166, 167,
+		168, 169, 170, 171, 172, 173, 174, 175,
+		176, 177, 178, 179, 180, 181, 182, 183,
+		184, 185, 186, 187, 188, 189, 190, 191,
+		192, 193, 194, 195, 196, 197, 198, 199,
+		200, 201, 202, 203, 204, 205, 206, 207,
+		208, 209, 210, 211, 212, 213, 214, 215,
+		216, 217, 218, 219, 220, 221, 222, 223,
+		224, 225, 226, 227, 228, 229, 230, 231,
+		232, 233, 234, 235, 236, 237, 238, 239,
+		240, 241, 242, 243, 244, 245, 246, 247,
+		248, 249, 250, 251, 252, 253, 254, 255,
+		256, 257, 258, 259, 260, 261, 262, 263,
+	},
+	.oobfree = { {2, 6}, {264, 80} },
+};
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
+	int buf_num;
+
+	ctrl->page = page_addr;
+
+	/* Program ROW0/COL0 */
+	ifc_out32(&ifc->ifc_nand.row0, page_addr);
+	ifc_out32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);
+
+	buf_num = page_addr & priv->bufnum_mask;
+
+	ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+	ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ctrl->index += mtd->writesize;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+			  u32 eccstat, unsigned int bufnum)
+{
+	return (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static int fsl_ifc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
+	u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
+	u32 time_start;
+	u32 eccstat;
+	int i;
+
+	/* set the chip select for NAND Transaction */
+	ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
+
+	/* start read/write seq */
+	ifc_out32(&ifc->ifc_nand.nandseq_strt,
+		  IFC_NAND_SEQ_STRT_FIR_STRT);
+
+	/* wait for NAND Machine complete flag or timeout */
+	time_start = get_timer(0);
+
+	while (get_timer(time_start) < timeo) {
+		ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
+
+		if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
+			break;
+	}
+
+	ifc_out32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);
+
+	if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
+		printf("%s: Flash Time Out Error\n", __func__);
+	if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
+		printf("%s: Write Protect Error\n", __func__);
+
+	if (ctrl->eccread) {
+		int errors;
+		int bufnum = ctrl->page & priv->bufnum_mask;
+		int sector_start = bufnum * chip->ecc.steps;
+		int sector_end = sector_start + chip->ecc.steps - 1;
+		u32 *eccstat_regs;
+
+		eccstat_regs = ifc->ifc_nand.nand_eccstat;
+		eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
+
+		for (i = sector_start; i <= sector_end; i++) {
+			if ((i != sector_start) && !(i % 4))
+				eccstat = ifc_in32(&eccstat_regs[i / 4]);
+
+			errors = check_read_ecc(mtd, ctrl, eccstat, i);
+
+			if (errors == 15) {
+				/*
+				 * Uncorrectable error.
+				 * We'll check for blank pages later.
+				 *
+				 * We disable ECCER reporting due to erratum
+				 * IFC-A002770 -- so report it now if we
+				 * see an uncorrectable error in ECCSTAT.
+				 */
+				ctrl->status |= IFC_NAND_EVTER_STAT_ECCER;
+				continue;
+			}
+
+			mtd->ecc_stats.corrected += errors;
+		}
+
+		ctrl->eccread = 0;
+	}
+
+	/* returns 0 on success otherwise non-zero) */
+	return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+			    int oob,
+			    struct mtd_info *mtd)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
+
+	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+	if (mtd->writesize > 512) {
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+	} else {
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+
+		if (oob)
+			ifc_out32(&ifc->ifc_nand.nand_fcr0,
+				  NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+		else
+			ifc_out32(&ifc->ifc_nand.nand_fcr0,
+				  NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
+
+	/* clear the read buffer */
+	ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ0: {
+		ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
+		set_addr(mtd, 0, page_addr, 0);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ctrl->index += column;
+
+		if (chip->ecc.mode == NAND_ECC_HW)
+			ctrl->eccread = 1;
+
+		fsl_ifc_do_read(chip, 0, mtd);
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		ifc_out32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_ifc_do_read(chip, 1, mtd);
+		fsl_ifc_run_command(mtd);
+
+		return;
+
+	/* READID must read all possible bytes while CEB is active */
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM: {
+		int timing = IFC_FIR_OP_RB;
+		if (command == NAND_CMD_PARAM)
+			timing = IFC_FIR_OP_RBCD;
+
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (timing << IFC_NAND_FIR0_OP2_SHIFT));
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  command << IFC_NAND_FCR0_CMD0_SHIFT);
+		ifc_out32(&ifc->ifc_nand.row3, column);
+
+		/*
+		 * although currently it's 8 bytes for READID, we always read
+		 * the maximum 256 bytes(for PARAM)
+		 */
+		ifc_out32(&ifc->ifc_nand.nand_fbcr, 256);
+		ctrl->read_bytes = 256;
+
+		set_addr(mtd, 0, 0, 0);
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			  (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+		ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
+		ctrl->read_bytes = 0;
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		u32 nand_fcr0;
+		ctrl->column = column;
+		ctrl->oob = 0;
+
+		if (mtd->writesize > 512) {
+			nand_fcr0 =
+				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+				(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
+				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
+
+			ifc_out32(&ifc->ifc_nand.nand_fir0,
+				  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+				  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				  (IFC_FIR_OP_WBCD  <<
+						IFC_NAND_FIR0_OP3_SHIFT) |
+				  (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT));
+			ifc_out32(&ifc->ifc_nand.nand_fir1,
+				  (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
+				  (IFC_FIR_OP_RDSTAT <<
+					IFC_NAND_FIR1_OP6_SHIFT) |
+				  (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT));
+		} else {
+			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+					IFC_NAND_FCR0_CMD1_SHIFT) |
+				    (NAND_CMD_SEQIN <<
+					IFC_NAND_FCR0_CMD2_SHIFT) |
+				    (NAND_CMD_STATUS <<
+					IFC_NAND_FCR0_CMD3_SHIFT));
+
+			ifc_out32(&ifc->ifc_nand.nand_fir0,
+				  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				  (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+				  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+				  (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+			ifc_out32(&ifc->ifc_nand.nand_fir1,
+				  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
+				  (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
+				  (IFC_FIR_OP_RDSTAT <<
+					IFC_NAND_FIR1_OP7_SHIFT) |
+				  (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT));
+
+			if (column >= mtd->writesize)
+				nand_fcr0 |=
+				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
+			else
+				nand_fcr0 |=
+				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
+		}
+
+		if (column >= mtd->writesize) {
+			/* OOB area --> READOOB */
+			column -= mtd->writesize;
+			ctrl->oob = 1;
+		}
+		ifc_out32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
+		set_addr(mtd, column, page_addr, ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG:
+		if (ctrl->oob)
+			ifc_out32(&ifc->ifc_nand.nand_fbcr,
+				  ctrl->index - ctrl->column);
+		else
+			ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
+
+		fsl_ifc_run_command(mtd);
+		return;
+
+	case NAND_CMD_STATUS:
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+		ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		ctrl->read_bytes = 1;
+
+		fsl_ifc_run_command(mtd);
+
+		/*
+		 * The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		if (chip->options & NAND_BUSWIDTH_16)
+			ifc_out16(ctrl->addr,
+				  ifc_in16(ctrl->addr) | NAND_STATUS_WP);
+		else
+			out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+		return;
+
+	case NAND_CMD_RESET:
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	default:
+		printf("%s: error, unsupported command 0x%x.\n",
+			__func__, command);
+	}
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		printf("%s of %d bytes", __func__, len);
+		ctrl->status = 0;
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ctrl->index) {
+		printf("%s beyond end of buffer "
+		       "(%d requested, %u available)\n",
+			__func__, len, bufsize - ctrl->index);
+		len = bufsize - ctrl->index;
+	}
+
+	memcpy_toio(ctrl->addr + ctrl->index, buf, len);
+	ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	unsigned int offset;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ctrl->index < ctrl->read_bytes) {
+		offset = ctrl->index++;
+		return in_8(ctrl->addr + offset);
+	}
+
+	printf("%s beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	uint16_t data;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ctrl->index < ctrl->read_bytes) {
+		data = ifc_in16(ctrl->addr + ctrl->index);
+		ctrl->index += 2;
+		return (uint8_t)data;
+	}
+
+	printf("%s beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	int avail;
+
+	if (len < 0)
+		return;
+
+	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
+	memcpy_fromio(buf, ctrl->addr + ctrl->index, avail);
+	ctrl->index += avail;
+
+	if (len > avail)
+		printf("%s beyond end of buffer "
+		       "(%d requested, %d available)\n",
+		       __func__, len, avail);
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime *ifc = ctrl->regs.rregs;
+	u32 nand_fsr;
+	int status;
+
+	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+		return NAND_STATUS_FAIL;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	ifc_out32(&ifc->ifc_nand.nand_fir0,
+		  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+	ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
+		  IFC_NAND_FCR0_CMD0_SHIFT);
+	ifc_out32(&ifc->ifc_nand.nand_fbcr, 1);
+	set_addr(mtd, 0, 0, 0);
+	ctrl->read_bytes = 1;
+
+	fsl_ifc_run_command(mtd);
+
+	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+		return NAND_STATUS_FAIL;
+
+	nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
+	status = nand_fsr >> 24;
+
+	/* Chip sometimes reporting write protect even when it's not */
+	return status | NAND_STATUS_WP;
+}
+
+/*
+ * The controller does not check for bitflips in erased pages,
+ * therefore software must check instead.
+ */
+static int
+check_erased_page(struct nand_chip *chip, u8 *buf, struct mtd_info *mtd)
+{
+	u8 *ecc = chip->oob_poi;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int i, res, bitflips;
+
+	/* IFC starts ecc bytes at offset 8 in the spare area. */
+	ecc += 8;
+	bitflips = 0;
+	for (i = 0; i < chip->ecc.steps; i++) {
+		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
+						  NULL, 0, chip->ecc.strength);
+
+		if (res < 0) {
+			printf("fsl-ifc: NAND Flash ECC Uncorrectable Error\n");
+			mtd->ecc_stats.failed++;
+		} else if (res > 0) {
+			mtd->ecc_stats.corrected += res;
+		}
+		bitflips = max(res, bitflips);
+		buf += pkt_size;
+		ecc += ecc_size;
+	}
+
+	return bitflips;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     uint8_t *buf, int oob_required, int page)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+	fsl_ifc_read_buf(mtd, buf, mtd->writesize);
+	fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (ctrl->status & IFC_NAND_EVTER_STAT_ECCER)
+		return check_erased_page(chip, buf, mtd);
+
+	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
+		mtd->ecc_stats.failed++;
+
+	return 0;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	fsl_ifc_write_buf(mtd, buf, mtd->writesize);
+	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static void fsl_ifc_ctrl_init(void)
+{
+	uint32_t ver = 0;
+	ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+	if (!ifc_ctrl)
+		return;
+
+	ifc_ctrl->regs.gregs = IFC_FCM_BASE_ADDR;
+
+	ver = ifc_in32(&ifc_ctrl->regs.gregs->ifc_rev);
+	if (ver >= FSL_IFC_V2_0_0)
+		ifc_ctrl->regs.rregs =
+			(void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
+	else
+		ifc_ctrl->regs.rregs =
+			(void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
+
+	/* clear event registers */
+	ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_stat, ~0U);
+	ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.pgrdcmpl_evt_stat, ~0U);
+
+	/* Enable error and event for any detected errors */
+	ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.nand_evter_en,
+		  IFC_NAND_EVTER_EN_OPC_EN |
+		  IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+		  IFC_NAND_EVTER_EN_FTOER_EN |
+		  IFC_NAND_EVTER_EN_WPER_EN);
+
+	ifc_out32(&ifc_ctrl->regs.rregs->ifc_nand.ncfgr, 0x0);
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv, uint32_t ver)
+{
+	struct fsl_ifc_runtime *ifc = ifc_ctrl->regs.rregs;
+	uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0;
+	uint32_t ncfgr = 0;
+	u32 timeo = (CONFIG_SYS_HZ * 10) / 1000;
+	u32 time_start;
+
+	if (ver > FSL_IFC_V1_1_0) {
+		ncfgr = ifc_in32(&ifc->ifc_nand.ncfgr);
+		ifc_out32(&ifc->ifc_nand.ncfgr, ncfgr | IFC_NAND_SRAM_INIT_EN);
+
+		/* wait for  SRAM_INIT bit to be clear or timeout */
+		time_start = get_timer(0);
+		while (get_timer(time_start) < timeo) {
+			ifc_ctrl->status =
+				ifc_in32(&ifc->ifc_nand.nand_evter_stat);
+
+			if (!(ifc_ctrl->status & IFC_NAND_SRAM_INIT_EN))
+				return 0;
+		}
+		printf("fsl-ifc: Failed to Initialise SRAM\n");
+		return 1;
+	}
+
+	cs = priv->bank;
+
+	/* Save CSOR and CSOR_ext */
+	csor = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor);
+	csor_ext = ifc_in32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext);
+
+	/* chage PageSize 8K and SpareSize 1K*/
+	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
+	ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor_8k);
+	ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, 0x0000400);
+
+	/* READID */
+	ifc_out32(&ifc->ifc_nand.nand_fir0,
+		  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+		  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+	ifc_out32(&ifc->ifc_nand.nand_fcr0,
+		  NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+	ifc_out32(&ifc->ifc_nand.row3, 0x0);
+
+	ifc_out32(&ifc->ifc_nand.nand_fbcr, 0x0);
+
+	/* Program ROW0/COL0 */
+	ifc_out32(&ifc->ifc_nand.row0, 0x0);
+	ifc_out32(&ifc->ifc_nand.col0, 0x0);
+
+	/* set the chip select for NAND Transaction */
+	ifc_out32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT);
+
+	/* start read seq */
+	ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);
+
+	time_start = get_timer(0);
+
+	while (get_timer(time_start) < timeo) {
+		ifc_ctrl->status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
+
+		if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC)
+			break;
+	}
+
+	if (ifc_ctrl->status != IFC_NAND_EVTER_STAT_OPC) {
+		printf("fsl-ifc: Failed to Initialise SRAM\n");
+		return 1;
+	}
+
+	ifc_out32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status);
+
+	/* Restore CSOR and CSOR_ext */
+	ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor, csor);
+	ifc_out32(&ifc_ctrl->regs.gregs->csor_cs[cs].csor_ext, csor_ext);
+
+	return 0;
+}
+
+static int fsl_ifc_chip_init(int devnum, u8 *addr)
+{
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	struct fsl_ifc_mtd *priv;
+	struct nand_ecclayout *layout;
+	struct fsl_ifc_fcm *gregs = NULL;
+	uint32_t cspr = 0, csor = 0, ver = 0;
+	int ret = 0;
+
+	if (!ifc_ctrl) {
+		fsl_ifc_ctrl_init();
+		if (!ifc_ctrl)
+			return -1;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	priv->ctrl = ifc_ctrl;
+	priv->vbase = addr;
+	gregs = ifc_ctrl->regs.gregs;
+
+	/* Find which chip select it is connected to.
+	 */
+	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
+		phys_addr_t phys_addr = virt_to_phys(addr);
+
+		cspr = ifc_in32(&gregs->cspr_cs[priv->bank].cspr);
+		csor = ifc_in32(&gregs->csor_cs[priv->bank].csor);
+
+		if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
+		    (cspr & CSPR_BA) == CSPR_PHYS_ADDR(phys_addr))
+			break;
+	}
+
+	if (priv->bank >= MAX_BANKS) {
+		printf("%s: address did not match any "
+		       "chip selects\n", __func__);
+		kfree(priv);
+		return -ENODEV;
+	}
+
+	nand = &priv->chip;
+	mtd = nand_to_mtd(nand);
+
+	ifc_ctrl->chips[priv->bank] = priv;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+
+	nand->write_buf = fsl_ifc_write_buf;
+	nand->read_buf = fsl_ifc_read_buf;
+	nand->select_chip = fsl_ifc_select_chip;
+	nand->cmdfunc = fsl_ifc_cmdfunc;
+	nand->waitfunc = fsl_ifc_wait;
+
+	/* set up nand options */
+	nand->bbt_td = &bbt_main_descr;
+	nand->bbt_md = &bbt_mirror_descr;
+
+	/* set up nand options */
+	nand->options = NAND_NO_SUBPAGE_WRITE;
+	nand->bbt_options = NAND_BBT_USE_FLASH;
+
+	if (cspr & CSPR_PORT_SIZE_16) {
+		nand->read_byte = fsl_ifc_read_byte16;
+		nand->options |= NAND_BUSWIDTH_16;
+	} else {
+		nand->read_byte = fsl_ifc_read_byte;
+	}
+
+	nand->controller = &ifc_ctrl->controller;
+	nand_set_controller_data(nand, priv);
+
+	nand->ecc.read_page = fsl_ifc_read_page;
+	nand->ecc.write_page = fsl_ifc_write_page;
+
+	/* Hardware generates ECC per 512 Bytes */
+	nand->ecc.size = 512;
+	nand->ecc.bytes = 8;
+
+	switch (csor & CSOR_NAND_PGS_MASK) {
+	case CSOR_NAND_PGS_512:
+		if (nand->options & NAND_BUSWIDTH_16) {
+			layout = &oob_512_16bit_ecc4;
+		} else {
+			layout = &oob_512_8bit_ecc4;
+
+			/* Avoid conflict with bad block marker */
+			bbt_main_descr.offs = 0;
+			bbt_mirror_descr.offs = 0;
+		}
+
+		nand->ecc.strength = 4;
+		priv->bufnum_mask = 15;
+		break;
+
+	case CSOR_NAND_PGS_2K:
+		layout = &oob_2048_ecc4;
+		nand->ecc.strength = 4;
+		priv->bufnum_mask = 3;
+		break;
+
+	case CSOR_NAND_PGS_4K:
+		if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+		    CSOR_NAND_ECC_MODE_4) {
+			layout = &oob_4096_ecc4;
+			nand->ecc.strength = 4;
+		} else {
+			layout = &oob_4096_ecc8;
+			nand->ecc.strength = 8;
+			nand->ecc.bytes = 16;
+		}
+
+		priv->bufnum_mask = 1;
+		break;
+
+	case CSOR_NAND_PGS_8K:
+		if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+		    CSOR_NAND_ECC_MODE_4) {
+			layout = &oob_8192_ecc4;
+			nand->ecc.strength = 4;
+		} else {
+			layout = &oob_8192_ecc8;
+			nand->ecc.strength = 8;
+			nand->ecc.bytes = 16;
+		}
+
+		priv->bufnum_mask = 0;
+		break;
+
+
+	default:
+		printf("ifc nand: bad csor %#x: bad page size\n", csor);
+		return -ENODEV;
+	}
+
+	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+	if (csor & CSOR_NAND_ECC_DEC_EN) {
+		nand->ecc.mode = NAND_ECC_HW;
+		nand->ecc.layout = layout;
+	} else {
+		nand->ecc.mode = NAND_ECC_SOFT;
+	}
+
+	ver = ifc_in32(&gregs->ifc_rev);
+	if (ver >= FSL_IFC_V1_1_0)
+		ret = fsl_ifc_sram_init(priv, ver);
+	if (ret)
+		return ret;
+
+	if (ver >= FSL_IFC_V2_0_0)
+		priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
+
+	ret = nand_scan_ident(mtd, 1, NULL);
+	if (ret)
+		return ret;
+
+	ret = nand_scan_tail(mtd);
+	if (ret)
+		return ret;
+
+	ret = nand_register(devnum, mtd);
+	if (ret)
+		return ret;
+	return 0;
+}
+
+#ifndef CONFIG_SYS_NAND_BASE_LIST
+#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
+#endif
+
+static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] =
+	CONFIG_SYS_NAND_BASE_LIST;
+
+void board_nand_init(void)
+{
+	int i;
+
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+		fsl_ifc_chip_init(i, (u8 *)base_address[i]);
+}
diff --git a/drivers/mtd/nand/raw/fsl_ifc_spl.c b/drivers/mtd/nand/raw/fsl_ifc_spl.c
new file mode 100644
index 0000000..7137eb4
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_ifc_spl.c
@@ -0,0 +1,306 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * NAND boot for Freescale Integrated Flash Controller, NAND FCM
+ *
+ * Copyright 2011 Freescale Semiconductor, Inc.
+ * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <fsl_ifc.h>
+#include <linux/mtd/rawnand.h>
+#ifdef CONFIG_CHAIN_OF_TRUST
+#include <fsl_validate.h>
+#endif
+
+static inline int is_blank(uchar *addr, int page_size)
+{
+	int i;
+
+	for (i = 0; i < page_size; i++) {
+		if (__raw_readb(&addr[i]) != 0xff)
+			return 0;
+	}
+
+	/*
+	 * For the SPL, don't worry about uncorrectable errors
+	 * where the main area is all FFs but shouldn't be.
+	 */
+	return 1;
+}
+
+/* returns nonzero if entire page is blank */
+static inline int check_read_ecc(uchar *buf, u32 *eccstat,
+				 unsigned int bufnum, int page_size)
+{
+	u32 reg = eccstat[bufnum / 4];
+	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
+
+	if (errors == 0xf) { /* uncorrectable */
+		/* Blank pages fail hw ECC checks */
+		if (is_blank(buf, page_size))
+			return 1;
+
+		puts("ecc error\n");
+		for (;;)
+			;
+	}
+
+	return 0;
+}
+
+static inline struct fsl_ifc_runtime *runtime_regs_address(void)
+{
+	struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
+	int ver = 0;
+
+	ver = ifc_in32(&regs.gregs->ifc_rev);
+	if (ver >= FSL_IFC_V2_0_0)
+		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
+	else
+		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
+
+	return regs.rregs;
+}
+
+static inline void nand_wait(uchar *buf, int bufnum, int page_size)
+{
+	struct fsl_ifc_runtime *ifc = runtime_regs_address();
+	u32 status;
+	u32 eccstat[8];
+	int bufperpage = page_size / 512;
+	int bufnum_end, i;
+
+	bufnum *= bufperpage;
+	bufnum_end = bufnum + bufperpage - 1;
+
+	do {
+		status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
+	} while (!(status & IFC_NAND_EVTER_STAT_OPC));
+
+	if (status & IFC_NAND_EVTER_STAT_FTOER) {
+		puts("flash time out error\n");
+		for (;;)
+			;
+	}
+
+	for (i = bufnum / 4; i <= bufnum_end / 4; i++)
+		eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
+
+	for (i = bufnum; i <= bufnum_end; i++) {
+		if (check_read_ecc(buf, eccstat, i, page_size))
+			break;
+	}
+
+	ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
+}
+
+static inline int bad_block(uchar *marker, int port_size)
+{
+	if (port_size == 8)
+		return __raw_readb(marker) != 0xff;
+	else
+		return __raw_readw((u16 *)marker) != 0xffff;
+}
+
+int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
+{
+	struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
+	struct fsl_ifc_runtime *ifc = NULL;
+	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
+	int page_size;
+	int port_size;
+	int pages_per_blk;
+	int blk_size;
+	int bad_marker = 0;
+	int bufnum_mask, bufnum, ver = 0;
+
+	int csor, cspr;
+	int pos = 0;
+	int j = 0;
+
+	int sram_addr;
+	int pg_no;
+	uchar *dst = vdst;
+
+	ifc = runtime_regs_address();
+
+	/* Get NAND Flash configuration */
+	csor = CONFIG_SYS_NAND_CSOR;
+	cspr = CONFIG_SYS_NAND_CSPR;
+
+	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
+
+	if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
+		page_size = 8192;
+		bufnum_mask = 0x0;
+	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
+		page_size = 4096;
+		bufnum_mask = 0x1;
+	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
+		page_size = 2048;
+		bufnum_mask = 0x3;
+	} else {
+		page_size = 512;
+		bufnum_mask = 0xf;
+
+		if (port_size == 8)
+			bad_marker = 5;
+	}
+
+	ver = ifc_in32(&gregs->ifc_rev);
+	if (ver >= FSL_IFC_V2_0_0)
+		bufnum_mask = (bufnum_mask * 2) + 1;
+
+	pages_per_blk =
+		32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
+
+	blk_size = pages_per_blk * page_size;
+
+	/* Open Full SRAM mapping for spare are access */
+	ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
+
+	/* Clear Boot events */
+	ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
+
+	/* Program FIR/FCR for Large/Small page */
+	if (page_size > 512) {
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
+		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+	} else {
+		ifc_out32(&ifc->ifc_nand.nand_fir0,
+			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
+		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
+
+		ifc_out32(&ifc->ifc_nand.nand_fcr0,
+			  NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+	}
+
+	/* Program FBCR = 0 for full page read */
+	ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
+
+	/* Read and copy u-boot on SDRAM from NAND device, In parallel
+	 * check for Bad block if found skip it and read continue to
+	 * next Block
+	 */
+	while (pos < uboot_size) {
+		int i = 0;
+		do {
+			pg_no = offs / page_size;
+			bufnum = pg_no & bufnum_mask;
+			sram_addr = bufnum * page_size * 2;
+
+			ifc_out32(&ifc->ifc_nand.row0, pg_no);
+			ifc_out32(&ifc->ifc_nand.col0, 0);
+			/* start read */
+			ifc_out32(&ifc->ifc_nand.nandseq_strt,
+				  IFC_NAND_SEQ_STRT_FIR_STRT);
+
+			/* wait for read to complete */
+			nand_wait(&buf[sram_addr], bufnum, page_size);
+
+			/*
+			 * If either of the first two pages are marked bad,
+			 * continue to the next block.
+			 */
+			if (i++ < 2 &&
+			    bad_block(&buf[sram_addr + page_size + bad_marker],
+				      port_size)) {
+				puts("skipping\n");
+				offs = (offs + blk_size) & ~(blk_size - 1);
+				pos &= ~(blk_size - 1);
+				break;
+			}
+
+			for (j = 0; j < page_size; j++)
+				dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
+
+			pos += page_size;
+			offs += page_size;
+		} while ((offs & (blk_size - 1)) && (pos < uboot_size));
+	}
+
+	return 0;
+}
+
+/*
+ * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts from there.
+ */
+void nand_boot(void)
+{
+	__attribute__((noreturn)) void (*uboot)(void);
+	/*
+	 * Load U-Boot image from NAND into RAM
+	 */
+	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
+			    CONFIG_SYS_NAND_U_BOOT_SIZE,
+			    (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+			    (uchar *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+			    (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+	/*
+	 * Jump to U-Boot image
+	 */
+#ifdef CONFIG_SPL_FLUSH_IMAGE
+	/*
+	 * Clean d-cache and invalidate i-cache, to
+	 * make sure that no stale data is executed.
+	 */
+	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
+#endif
+
+#ifdef CONFIG_CHAIN_OF_TRUST
+	/*
+	 * U-Boot header is appended at end of U-boot image, so
+	 * calculate U-boot header address using U-boot header size.
+	 */
+#define CONFIG_U_BOOT_HDR_ADDR \
+		((CONFIG_SYS_NAND_U_BOOT_START + \
+		  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
+		 CONFIG_U_BOOT_HDR_SIZE)
+	spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
+			   CONFIG_SYS_NAND_U_BOOT_START);
+	/*
+	 * In case of failure in validation, spl_validate_uboot would
+	 * not return back in case of Production environment with ITS=1.
+	 * Thus U-Boot will not start.
+	 * In Development environment (ITS=0 and SB_EN=1), the function
+	 * may return back in case of non-fatal failures.
+	 */
+#endif
+
+	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+	uboot();
+}
+
+#ifndef CONFIG_SPL_NAND_INIT
+void nand_init(void)
+{
+}
+
+void nand_deselect(void)
+{
+}
+#endif
diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
new file mode 100644
index 0000000..dfbdbca
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_upm.c
@@ -0,0 +1,184 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * FSL UPM NAND driver
+ *
+ * Copyright (C) 2007 MontaVista Software, Inc.
+ *                    Anton Vorontsov <avorontsov@ru.mvista.com>
+ */
+
+#include <config.h>
+#include <common.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/fsl_upm.h>
+#include <nand.h>
+
+static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset)
+{
+	clrsetbits_be32(upm->mxmr, MxMR_MAD_MSK, MxMR_OP_RUNP | pat_offset);
+	(void)in_be32(upm->mxmr);
+}
+
+static void fsl_upm_end_pattern(struct fsl_upm *upm)
+{
+	clrbits_be32(upm->mxmr, MxMR_OP_RUNP);
+
+	while (in_be32(upm->mxmr) & MxMR_OP_RUNP)
+		eieio();
+}
+
+static void fsl_upm_run_pattern(struct fsl_upm *upm, int width,
+				void __iomem *io_addr, u32 mar)
+{
+	out_be32(upm->mar, mar);
+	(void)in_be32(upm->mar);
+	switch (width) {
+	case 8:
+		out_8(io_addr, 0x0);
+		break;
+	case 16:
+		out_be16(io_addr, 0x0);
+		break;
+	case 32:
+		out_be32(io_addr, 0x0);
+		break;
+	}
+}
+
+static void fun_wait(struct fsl_upm_nand *fun)
+{
+	if (fun->dev_ready) {
+		while (!fun->dev_ready(fun->chip_nr))
+			debug("unexpected busy state\n");
+	} else {
+		/*
+		 * If the R/B pin is not connected,
+		 * a short delay is necessary.
+		 */
+		udelay(1);
+	}
+}
+
+#if CONFIG_SYS_NAND_MAX_CHIPS > 1
+static void fun_select_chip(struct mtd_info *mtd, int chip_nr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = nand_get_controller_data(chip);
+
+	if (chip_nr >= 0) {
+		fun->chip_nr = chip_nr;
+		chip->IO_ADDR_R = chip->IO_ADDR_W =
+			fun->upm.io_addr + fun->chip_offset * chip_nr;
+	} else if (chip_nr == -1) {
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+	}
+}
+#endif
+
+static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = nand_get_controller_data(chip);
+	void __iomem *io_addr;
+	u32 mar;
+
+	if (!(ctrl & fun->last_ctrl)) {
+		fsl_upm_end_pattern(&fun->upm);
+
+		if (cmd == NAND_CMD_NONE)
+			return;
+
+		fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
+	}
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		if (ctrl & NAND_ALE)
+			fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
+		else if (ctrl & NAND_CLE)
+			fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
+	}
+
+	mar = cmd << (32 - fun->width);
+	io_addr = fun->upm.io_addr;
+#if CONFIG_SYS_NAND_MAX_CHIPS > 1
+	if (fun->chip_nr > 0) {
+		io_addr += fun->chip_offset * fun->chip_nr;
+		if (fun->upm_mar_chip_offset)
+			mar |= fun->upm_mar_chip_offset * fun->chip_nr;
+	}
+#endif
+	fsl_upm_run_pattern(&fun->upm, fun->width, io_addr, mar);
+
+	/*
+	 * Some boards/chips needs this.  At least the MPC8360E-RDK
+	 * needs it.  Probably weird chip, because I don't see any
+	 * need for this on MPC8555E + Samsung K9F1G08U0A.  Usually
+	 * here are 0-2 unexpected busy states per block read.
+	 */
+	if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
+		fun_wait(fun);
+}
+
+static u8 upm_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	return in_8(chip->IO_ADDR_R);
+}
+
+static void upm_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = nand_get_controller_data(chip);
+
+	for (i = 0; i < len; i++) {
+		out_8(chip->IO_ADDR_W, buf[i]);
+		if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
+			fun_wait(fun);
+	}
+
+	if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
+		fun_wait(fun);
+}
+
+static void upm_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	for (i = 0; i < len; i++)
+		buf[i] = in_8(chip->IO_ADDR_R);
+}
+
+static int nand_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = nand_get_controller_data(chip);
+
+	return fun->dev_ready(fun->chip_nr);
+}
+
+int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun)
+{
+	if (fun->width != 8 && fun->width != 16 && fun->width != 32)
+		return -ENOSYS;
+
+	fun->last_ctrl = NAND_CLE;
+
+	nand_set_controller_data(chip, fun);
+	chip->chip_delay = fun->chip_delay;
+	chip->ecc.mode = NAND_ECC_SOFT;
+	chip->cmd_ctrl = fun_cmd_ctrl;
+#if CONFIG_SYS_NAND_MAX_CHIPS > 1
+	chip->select_chip = fun_select_chip;
+#endif
+	chip->read_byte = upm_nand_read_byte;
+	chip->read_buf = upm_nand_read_buf;
+	chip->write_buf = upm_nand_write_buf;
+	if (fun->dev_ready)
+		chip->dev_ready = nand_dev_ready;
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
new file mode 100644
index 0000000..1f4c74f
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -0,0 +1,518 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2010
+ * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
+ *
+ * (C) Copyright 2012
+ * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+#include <linux/bitops.h>
+#include <linux/err.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/fsmc_nand.h>
+#include <asm/arch/hardware.h>
+
+static u32 fsmc_version;
+static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
+	CONFIG_SYS_FSMC_BASE;
+
+/*
+ * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
+ * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
+ * correct 1 bit in 512 bytes
+ */
+
+static struct nand_ecclayout fsmc_ecc4_lp_layout = {
+	.eccbytes = 104,
+	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
+		9,  10,  11,  12,  13,  14,
+		18,  19,  20,  21,  22,  23,  24,
+		25,  26,  27,  28,  29,  30,
+		34,  35,  36,  37,  38,  39,  40,
+		41,  42,  43,  44,  45,  46,
+		50,  51,  52,  53,  54,  55,  56,
+		57,  58,  59,  60,  61,  62,
+		66,  67,  68,  69,  70,  71,  72,
+		73,  74,  75,  76,  77,  78,
+		82,  83,  84,  85,  86,  87,  88,
+		89,  90,  91,  92,  93,  94,
+		98,  99, 100, 101, 102, 103, 104,
+		105, 106, 107, 108, 109, 110,
+		114, 115, 116, 117, 118, 119, 120,
+		121, 122, 123, 124, 125, 126
+	},
+	.oobfree = {
+		{.offset = 15, .length = 3},
+		{.offset = 31, .length = 3},
+		{.offset = 47, .length = 3},
+		{.offset = 63, .length = 3},
+		{.offset = 79, .length = 3},
+		{.offset = 95, .length = 3},
+		{.offset = 111, .length = 3},
+		{.offset = 127, .length = 1}
+	}
+};
+
+/*
+ * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
+ * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
+ * bytes are free for use.
+ */
+static struct nand_ecclayout fsmc_ecc4_224_layout = {
+	.eccbytes = 104,
+	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
+		9,  10,  11,  12,  13,  14,
+		18,  19,  20,  21,  22,  23,  24,
+		25,  26,  27,  28,  29,  30,
+		34,  35,  36,  37,  38,  39,  40,
+		41,  42,  43,  44,  45,  46,
+		50,  51,  52,  53,  54,  55,  56,
+		57,  58,  59,  60,  61,  62,
+		66,  67,  68,  69,  70,  71,  72,
+		73,  74,  75,  76,  77,  78,
+		82,  83,  84,  85,  86,  87,  88,
+		89,  90,  91,  92,  93,  94,
+		98,  99, 100, 101, 102, 103, 104,
+		105, 106, 107, 108, 109, 110,
+		114, 115, 116, 117, 118, 119, 120,
+		121, 122, 123, 124, 125, 126
+	},
+	.oobfree = {
+		{.offset = 15, .length = 3},
+		{.offset = 31, .length = 3},
+		{.offset = 47, .length = 3},
+		{.offset = 63, .length = 3},
+		{.offset = 79, .length = 3},
+		{.offset = 95, .length = 3},
+		{.offset = 111, .length = 3},
+		{.offset = 127, .length = 97}
+	}
+};
+
+/*
+ * ECC placement definitions in oobfree type format
+ * There are 13 bytes of ecc for every 512 byte block and it has to be read
+ * consecutively and immediately after the 512 byte data block for hardware to
+ * generate the error bit offsets in 512 byte data
+ * Managing the ecc bytes in the following way makes it easier for software to
+ * read ecc bytes consecutive to data bytes. This way is similar to
+ * oobfree structure maintained already in u-boot nand driver
+ */
+static struct fsmc_eccplace fsmc_eccpl_lp = {
+	.eccplace = {
+		{.offset = 2, .length = 13},
+		{.offset = 18, .length = 13},
+		{.offset = 34, .length = 13},
+		{.offset = 50, .length = 13},
+		{.offset = 66, .length = 13},
+		{.offset = 82, .length = 13},
+		{.offset = 98, .length = 13},
+		{.offset = 114, .length = 13}
+	}
+};
+
+static struct nand_ecclayout fsmc_ecc4_sp_layout = {
+	.eccbytes = 13,
+	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
+		9, 10, 11, 12, 13, 14
+	},
+	.oobfree = {
+		{.offset = 15, .length = 1},
+	}
+};
+
+static struct fsmc_eccplace fsmc_eccpl_sp = {
+	.eccplace = {
+		{.offset = 0, .length = 4},
+		{.offset = 6, .length = 9}
+	}
+};
+
+static struct nand_ecclayout fsmc_ecc1_layout = {
+	.eccbytes = 24,
+	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
+		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
+	.oobfree = {
+		{.offset = 8, .length = 8},
+		{.offset = 24, .length = 8},
+		{.offset = 40, .length = 8},
+		{.offset = 56, .length = 8},
+		{.offset = 72, .length = 8},
+		{.offset = 88, .length = 8},
+		{.offset = 104, .length = 8},
+		{.offset = 120, .length = 8}
+	}
+};
+
+/* Count the number of 0's in buff upto a max of max_bits */
+static int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+	int k, written_bits = 0;
+
+	for (k = 0; k < size; k++) {
+		written_bits += hweight8(~buff[k]);
+		if (written_bits > max_bits)
+			break;
+	}
+
+	return written_bits;
+}
+
+static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	ulong IO_ADDR_W;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		IO_ADDR_W = (ulong)this->IO_ADDR_W;
+
+		IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
+		if (ctrl & NAND_CLE)
+			IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
+		if (ctrl & NAND_ALE)
+			IO_ADDR_W |= CONFIG_SYS_NAND_ALE;
+
+		if (ctrl & NAND_NCE) {
+			writel(readl(&fsmc_regs_p->pc) |
+					FSMC_ENABLE, &fsmc_regs_p->pc);
+		} else {
+			writel(readl(&fsmc_regs_p->pc) &
+					~FSMC_ENABLE, &fsmc_regs_p->pc);
+		}
+		this->IO_ADDR_W = (void *)IO_ADDR_W;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, this->IO_ADDR_W);
+}
+
+static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
+		u_char *read_ecc, u_char *calc_ecc)
+{
+	/* The calculated ecc is actually the correction index in data */
+	u32 err_idx[8];
+	u32 num_err, i;
+	u32 ecc1, ecc2, ecc3, ecc4;
+
+	num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;
+
+	if (likely(num_err == 0))
+		return 0;
+
+	if (unlikely(num_err > 8)) {
+		/*
+		 * This is a temporary erase check. A newly erased page read
+		 * would result in an ecc error because the oob data is also
+		 * erased to FF and the calculated ecc for an FF data is not
+		 * FF..FF.
+		 * This is a workaround to skip performing correction in case
+		 * data is FF..FF
+		 *
+		 * Logic:
+		 * For every page, each bit written as 0 is counted until these
+		 * number of bits are greater than 8 (the maximum correction
+		 * capability of FSMC for each 512 + 13 bytes)
+		 */
+
+		int bits_ecc = count_written_bits(read_ecc, 13, 8);
+		int bits_data = count_written_bits(dat, 512, 8);
+
+		if ((bits_ecc + bits_data) <= 8) {
+			if (bits_data)
+				memset(dat, 0xff, 512);
+			return bits_data + bits_ecc;
+		}
+
+		return -EBADMSG;
+	}
+
+	ecc1 = readl(&fsmc_regs_p->ecc1);
+	ecc2 = readl(&fsmc_regs_p->ecc2);
+	ecc3 = readl(&fsmc_regs_p->ecc3);
+	ecc4 = readl(&fsmc_regs_p->sts);
+
+	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
+	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
+	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
+	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
+	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
+	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
+	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
+	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
+
+	i = 0;
+	while (i < num_err) {
+		err_idx[i] ^= 3;
+
+		if (err_idx[i] < 512 * 8)
+			__change_bit(err_idx[i], dat);
+
+		i++;
+	}
+
+	return num_err;
+}
+
+static int fsmc_read_hwecc(struct mtd_info *mtd,
+			const u_char *data, u_char *ecc)
+{
+	u_int ecc_tmp;
+	int timeout = CONFIG_SYS_HZ;
+	ulong start;
+
+	switch (fsmc_version) {
+	case FSMC_VER8:
+		start = get_timer(0);
+		while (get_timer(start) < timeout) {
+			/*
+			 * Busy waiting for ecc computation
+			 * to finish for 512 bytes
+			 */
+			if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
+				break;
+		}
+
+		ecc_tmp = readl(&fsmc_regs_p->ecc1);
+		ecc[0] = (u_char) (ecc_tmp >> 0);
+		ecc[1] = (u_char) (ecc_tmp >> 8);
+		ecc[2] = (u_char) (ecc_tmp >> 16);
+		ecc[3] = (u_char) (ecc_tmp >> 24);
+
+		ecc_tmp = readl(&fsmc_regs_p->ecc2);
+		ecc[4] = (u_char) (ecc_tmp >> 0);
+		ecc[5] = (u_char) (ecc_tmp >> 8);
+		ecc[6] = (u_char) (ecc_tmp >> 16);
+		ecc[7] = (u_char) (ecc_tmp >> 24);
+
+		ecc_tmp = readl(&fsmc_regs_p->ecc3);
+		ecc[8] = (u_char) (ecc_tmp >> 0);
+		ecc[9] = (u_char) (ecc_tmp >> 8);
+		ecc[10] = (u_char) (ecc_tmp >> 16);
+		ecc[11] = (u_char) (ecc_tmp >> 24);
+
+		ecc_tmp = readl(&fsmc_regs_p->sts);
+		ecc[12] = (u_char) (ecc_tmp >> 16);
+		break;
+
+	default:
+		ecc_tmp = readl(&fsmc_regs_p->ecc1);
+		ecc[0] = (u_char) (ecc_tmp >> 0);
+		ecc[1] = (u_char) (ecc_tmp >> 8);
+		ecc[2] = (u_char) (ecc_tmp >> 16);
+		break;
+	}
+
+	return 0;
+}
+
+void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
+			&fsmc_regs_p->pc);
+	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
+			&fsmc_regs_p->pc);
+	writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
+			&fsmc_regs_p->pc);
+}
+
+/*
+ * fsmc_read_page_hwecc
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @oob_required:	caller expects OOB data read to chip->oob_poi
+ * @page:	page number to read
+ *
+ * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
+ * performed in a strict sequence as follows:
+ * data(512 byte) -> ecc(13 byte)
+ * After this read, fsmc hardware generates and reports error data bits(upto a
+ * max of 8 bits)
+ */
+static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 uint8_t *buf, int oob_required, int page)
+{
+	struct fsmc_eccplace *fsmc_eccpl;
+	int i, j, s, stat, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	int off, len, group = 0;
+	uint8_t oob[13] __attribute__ ((aligned (2)));
+
+	/* Differentiate between small and large page ecc place definitions */
+	if (mtd->writesize == 512)
+		fsmc_eccpl = &fsmc_eccpl_sp;
+	else
+		fsmc_eccpl = &fsmc_eccpl_lp;
+
+	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
+
+		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->read_buf(mtd, p, eccsize);
+
+		for (j = 0; j < eccbytes;) {
+			off = fsmc_eccpl->eccplace[group].offset;
+			len = fsmc_eccpl->eccplace[group].length;
+			group++;
+
+			/*
+			 * length is intentionally kept a higher multiple of 2
+			 * to read at least 13 bytes even in case of 16 bit NAND
+			 * devices
+			 */
+			if (chip->options & NAND_BUSWIDTH_16)
+				len = roundup(len, 2);
+			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
+			chip->read_buf(mtd, oob + j, len);
+			j += len;
+		}
+
+		memcpy(&ecc_code[i], oob, 13);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i],
+				&ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+
+	return 0;
+}
+
+#ifndef CONFIG_SPL_BUILD
+/*
+ * fsmc_nand_switch_ecc - switch the ECC operation between different engines
+ *
+ * @eccstrength		- the number of bits that could be corrected
+ *			  (1 - HW, 4 - SW BCH4)
+ */
+int fsmc_nand_switch_ecc(uint32_t eccstrength)
+{
+	struct nand_chip *nand;
+	struct mtd_info *mtd;
+	int err;
+
+	/*
+	 * This functions is only called on SPEAr600 platforms, supporting
+	 * 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
+	 * Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
+	 * function, as it doesn't need to switch to a different ECC layout.
+	 */
+	mtd = get_nand_dev_by_index(nand_curr_device);
+	nand = mtd_to_nand(mtd);
+
+	/* Setup the ecc configurations again */
+	if (eccstrength == 1) {
+		nand->ecc.mode = NAND_ECC_HW;
+		nand->ecc.bytes = 3;
+		nand->ecc.strength = 1;
+		nand->ecc.layout = &fsmc_ecc1_layout;
+		nand->ecc.calculate = fsmc_read_hwecc;
+		nand->ecc.correct = nand_correct_data;
+	} else if (eccstrength == 4) {
+		/*
+		 * .calculate .correct and .bytes will be set in
+		 * nand_scan_tail()
+		 */
+		nand->ecc.mode = NAND_ECC_SOFT_BCH;
+		nand->ecc.strength = 4;
+		nand->ecc.layout = NULL;
+	} else {
+		printf("Error: ECC strength %d not supported!\n", eccstrength);
+	}
+
+	/* Update NAND handling after ECC mode switch */
+	err = nand_scan_tail(mtd);
+
+	return err;
+}
+#endif /* CONFIG_SPL_BUILD */
+
+int fsmc_nand_init(struct nand_chip *nand)
+{
+	static int chip_nr;
+	struct mtd_info *mtd;
+	u32 peripid2 = readl(&fsmc_regs_p->peripid2);
+
+	fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
+		FSMC_REVISION_MSK;
+
+	writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);
+
+#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
+	writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
+			&fsmc_regs_p->pc);
+#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
+	writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
+			&fsmc_regs_p->pc);
+#else
+#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
+#endif
+	writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
+			&fsmc_regs_p->pc);
+	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+			&fsmc_regs_p->comm);
+	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
+			&fsmc_regs_p->attrib);
+
+	nand->options = 0;
+#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
+	nand->options |= NAND_BUSWIDTH_16;
+#endif
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.size = 512;
+	nand->ecc.calculate = fsmc_read_hwecc;
+	nand->ecc.hwctl = fsmc_enable_hwecc;
+	nand->cmd_ctrl = fsmc_nand_hwcontrol;
+	nand->IO_ADDR_R = nand->IO_ADDR_W =
+		(void  __iomem *)CONFIG_SYS_NAND_BASE;
+	nand->badblockbits = 7;
+
+	mtd = nand_to_mtd(nand);
+
+	switch (fsmc_version) {
+	case FSMC_VER8:
+		nand->ecc.bytes = 13;
+		nand->ecc.strength = 8;
+		nand->ecc.correct = fsmc_bch8_correct_data;
+		nand->ecc.read_page = fsmc_read_page_hwecc;
+		if (mtd->writesize == 512)
+			nand->ecc.layout = &fsmc_ecc4_sp_layout;
+		else {
+			if (mtd->oobsize == 224)
+				nand->ecc.layout = &fsmc_ecc4_224_layout;
+			else
+				nand->ecc.layout = &fsmc_ecc4_lp_layout;
+		}
+
+		break;
+	default:
+		nand->ecc.bytes = 3;
+		nand->ecc.strength = 1;
+		nand->ecc.layout = &fsmc_ecc1_layout;
+		nand->ecc.correct = nand_correct_data;
+		break;
+	}
+
+	/* Detect NAND chips */
+	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
+		return -ENXIO;
+
+	if (nand_scan_tail(mtd))
+		return -ENXIO;
+
+	if (nand_register(chip_nr++, mtd))
+		return -ENXIO;
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/kb9202_nand.c b/drivers/mtd/nand/raw/kb9202_nand.c
new file mode 100644
index 0000000..0f68f1c
--- /dev/null
+++ b/drivers/mtd/nand/raw/kb9202_nand.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2006
+ * KwikByte <kb9200_dev@kwikbyte.com>
+ *
+ * (C) Copyright 2009
+ * Matthias Kaehlcke <matthias@kaehlcke.net>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/AT91RM9200.h>
+#include <asm/arch/hardware.h>
+
+#include <nand.h>
+
+/*
+ *      hardware specific access to control-lines
+ */
+
+#define MASK_ALE        (1 << 22)       /* our ALE is A22 */
+#define MASK_CLE        (1 << 21)       /* our CLE is A21 */
+
+#define KB9202_NAND_NCE (1 << 28) /* EN* on D28 */
+#define KB9202_NAND_BUSY (1 << 29) /* RB* on D29 */
+
+#define KB9202_SMC2_NWS (1 << 2)
+#define KB9202_SMC2_TDF (1 << 8)
+#define KB9202_SMC2_RWSETUP (1 << 24)
+#define KB9202_SMC2_RWHOLD (1 << 29)
+
+/*
+ *	Board-specific function to access device control signals
+ */
+static void kb9202_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
+
+		/* clear ALE and CLE bits */
+		IO_ADDR_W &= ~(MASK_ALE | MASK_CLE);
+
+		if (ctrl & NAND_CLE)
+			IO_ADDR_W |= MASK_CLE;
+
+		if (ctrl & NAND_ALE)
+			IO_ADDR_W |= MASK_ALE;
+
+		this->IO_ADDR_W = (void *) IO_ADDR_W;
+
+		if (ctrl & NAND_NCE)
+			writel(KB9202_NAND_NCE, AT91C_PIOC_CODR);
+		else
+			writel(KB9202_NAND_NCE, AT91C_PIOC_SODR);
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, this->IO_ADDR_W);
+}
+
+
+/*
+ * Board-specific function to access the device ready signal.
+ */
+static int kb9202_nand_ready(struct mtd_info *mtd)
+{
+	return readl(AT91C_PIOC_PDSR) & KB9202_NAND_BUSY;
+}
+
+
+/*
+ * Board-specific NAND init.  Copied from include/linux/mtd/nand.h for reference.
+ *
+ * struct nand_chip - NAND Private Flash Chip Data
+ * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the flash device
+ * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the flash device
+ * @hwcontrol:		[BOARDSPECIFIC] hardwarespecific function for accesing control-lines
+ * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line
+ *			If set to NULL no access to ready/busy is available and the ready/busy information
+ *			is read from the chip status register
+ * @enable_hwecc:	[BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only
+ *			be provided if a hardware ECC is available
+ * @eccmode:		[BOARDSPECIFIC] mode of ecc, see defines
+ * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR)
+ * @options:		[BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about
+ *			special functionality. See the defines for further explanation
+*/
+/*
+ * This routine initializes controller and GPIOs.
+ */
+int board_nand_init(struct nand_chip *nand)
+{
+	unsigned int value;
+
+	nand->ecc.mode = NAND_ECC_SOFT;
+	nand->cmd_ctrl = kb9202_nand_hwcontrol;
+	nand->dev_ready = kb9202_nand_ready;
+
+	/* in case running outside of bootloader */
+	writel(1 << AT91C_ID_PIOC, AT91C_PMC_PCER);
+
+	/* setup nand flash access (allow ample margin) */
+	/* 4 wait states, 1 setup, 1 hold, 1 float for 8-bit device */
+	writel(AT91C_SMC2_WSEN | KB9202_SMC2_NWS | KB9202_SMC2_TDF |
+		AT91C_SMC2_DBW_8 | KB9202_SMC2_RWSETUP | KB9202_SMC2_RWHOLD,
+		AT91C_SMC_CSR3);
+
+	/* enable internal NAND controller */
+	value = readl(AT91C_EBI_CSA);
+	value |= AT91C_EBI_CS3A_SMC_SmartMedia;
+	writel(value, AT91C_EBI_CSA);
+
+	/* enable SMOE/SMWE */
+	writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_ASR);
+	writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_PDR);
+	writel(AT91C_PC1_BFRDY_SMOE | AT91C_PC3_BFBAA_SMWE, AT91C_PIOC_OER);
+
+	/* set NCE to high */
+	writel(KB9202_NAND_NCE, AT91C_PIOC_SODR);
+
+	/* disable output on pin connected to the busy line of the NAND */
+	writel(KB9202_NAND_BUSY, AT91C_PIOC_ODR);
+
+	/* enable the PIO to control NCE and BUSY */
+	writel(KB9202_NAND_NCE | KB9202_NAND_BUSY, AT91C_PIOC_PER);
+
+	/* enable output for NCE */
+	writel(KB9202_NAND_NCE, AT91C_PIOC_OER);
+
+	return (0);
+}
diff --git a/drivers/mtd/nand/raw/kirkwood_nand.c b/drivers/mtd/nand/raw/kirkwood_nand.c
new file mode 100644
index 0000000..0757fa8
--- /dev/null
+++ b/drivers/mtd/nand/raw/kirkwood_nand.c
@@ -0,0 +1,91 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2009
+ * Marvell Semiconductor <www.marvell.com>
+ * Written-by: Prafulla Wadaskar <prafulla@marvell.com>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <asm/arch/soc.h>
+#include <asm/arch/mpp.h>
+#include <nand.h>
+
+/* NAND Flash Soc registers */
+struct kwnandf_registers {
+	u32 rd_params;	/* 0x10418 */
+	u32 wr_param;	/* 0x1041c */
+	u8  pad[0x10470 - 0x1041c - 4];
+	u32 ctrl;	/* 0x10470 */
+};
+
+static struct kwnandf_registers *nf_reg =
+	(struct kwnandf_registers *)KW_NANDF_BASE;
+
+static u32 nand_mpp_backup[9] = { 0 };
+
+/*
+ * hardware specific access to control-lines/bits
+ */
+#define NAND_ACTCEBOOT_BIT		0x02
+
+static void kw_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+			      unsigned int ctrl)
+{
+	struct nand_chip *nc = mtd_to_nand(mtd);
+	u32 offs;
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		offs = (1 << 0);	/* Commands with A[1:0] == 01 */
+	else if (ctrl & NAND_ALE)
+		offs = (1 << 1);	/* Addresses with A[1:0] == 10 */
+	else
+		return;
+
+	writeb(cmd, nc->IO_ADDR_W + offs);
+}
+
+void kw_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	u32 data;
+	static const u32 nand_config[] = {
+		MPP0_NF_IO2,
+		MPP1_NF_IO3,
+		MPP2_NF_IO4,
+		MPP3_NF_IO5,
+		MPP4_NF_IO6,
+		MPP5_NF_IO7,
+		MPP18_NF_IO0,
+		MPP19_NF_IO1,
+		0
+	};
+
+	if (chip >= 0)
+		kirkwood_mpp_conf(nand_config, nand_mpp_backup);
+	else
+		kirkwood_mpp_conf(nand_mpp_backup, NULL);
+
+	data = readl(&nf_reg->ctrl);
+	data |= NAND_ACTCEBOOT_BIT;
+	writel(data, &nf_reg->ctrl);
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+	nand->options = NAND_COPYBACK | NAND_CACHEPRG | NAND_NO_PADDING;
+#if defined(CONFIG_SYS_NAND_NO_SUBPAGE_WRITE)
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+#endif
+#if defined(CONFIG_NAND_ECC_BCH)
+	nand->ecc.mode = NAND_ECC_SOFT_BCH;
+#else
+	nand->ecc.mode = NAND_ECC_SOFT;
+#endif
+	nand->cmd_ctrl = kw_nand_hwcontrol;
+	nand->chip_delay = 40;
+	nand->select_chip = kw_nand_select_chip;
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/kmeter1_nand.c b/drivers/mtd/nand/raw/kmeter1_nand.c
new file mode 100644
index 0000000..7103300
--- /dev/null
+++ b/drivers/mtd/nand/raw/kmeter1_nand.c
@@ -0,0 +1,122 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2009
+ * Heiko Schocher, DENX Software Engineering, hs@denx.de
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+
+#define CONFIG_NAND_MODE_REG	(void *)(CONFIG_SYS_NAND_BASE + 0x20000)
+#define CONFIG_NAND_DATA_REG	(void *)(CONFIG_SYS_NAND_BASE + 0x30000)
+
+#define read_mode()	in_8(CONFIG_NAND_MODE_REG)
+#define write_mode(val)	out_8(CONFIG_NAND_MODE_REG, val)
+#define read_data()	in_8(CONFIG_NAND_DATA_REG)
+#define write_data(val)	out_8(CONFIG_NAND_DATA_REG, val)
+
+#define KPN_RDY2	(1 << 7)
+#define KPN_RDY1	(1 << 6)
+#define KPN_WPN		(1 << 4)
+#define KPN_CE2N	(1 << 3)
+#define KPN_CE1N	(1 << 2)
+#define KPN_ALE		(1 << 1)
+#define KPN_CLE		(1 << 0)
+
+#define KPN_DEFAULT_CHIP_DELAY 50
+
+static int kpn_chip_ready(void)
+{
+	if (read_mode() & KPN_RDY1)
+		return 1;
+
+	return 0;
+}
+
+static void kpn_wait_rdy(void)
+{
+	int cnt = 1000000;
+
+	while (--cnt && !kpn_chip_ready())
+		udelay(1);
+
+	if (!cnt)
+		printf ("timeout while waiting for RDY\n");
+}
+
+static void kpn_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	u8 reg_val = read_mode();
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		reg_val = reg_val & ~(KPN_ALE + KPN_CLE);
+
+		if (ctrl & NAND_CLE)
+			reg_val = reg_val | KPN_CLE;
+		if (ctrl & NAND_ALE)
+			reg_val = reg_val | KPN_ALE;
+		if (ctrl & NAND_NCE)
+			reg_val = reg_val & ~KPN_CE1N;
+		else
+			reg_val = reg_val | KPN_CE1N;
+
+		write_mode(reg_val);
+	}
+	if (cmd != NAND_CMD_NONE)
+		write_data(cmd);
+
+	/* wait until flash is ready */
+	kpn_wait_rdy();
+}
+
+static u_char kpn_nand_read_byte(struct mtd_info *mtd)
+{
+	return read_data();
+}
+
+static void kpn_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++) {
+		write_data(buf[i]);
+		kpn_wait_rdy();
+	}
+}
+
+static void kpn_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = read_data();
+}
+
+static int kpn_nand_dev_ready(struct mtd_info *mtd)
+{
+	kpn_wait_rdy();
+
+	return 1;
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+#if defined(CONFIG_NAND_ECC_BCH)
+	nand->ecc.mode = NAND_ECC_SOFT_BCH;
+#else
+	nand->ecc.mode = NAND_ECC_SOFT;
+#endif
+
+	/* Reference hardware control function */
+	nand->cmd_ctrl  = kpn_nand_hwcontrol;
+	nand->read_byte  = kpn_nand_read_byte;
+	nand->write_buf  = kpn_nand_write_buf;
+	nand->read_buf   = kpn_nand_read_buf;
+	nand->dev_ready  = kpn_nand_dev_ready;
+	nand->chip_delay = KPN_DEFAULT_CHIP_DELAY;
+
+	/* reset mode register */
+	write_mode(KPN_CE1N + KPN_CE2N + KPN_WPN);
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/lpc32xx_nand_mlc.c b/drivers/mtd/nand/raw/lpc32xx_nand_mlc.c
new file mode 100644
index 0000000..5d4ffea
--- /dev/null
+++ b/drivers/mtd/nand/raw/lpc32xx_nand_mlc.c
@@ -0,0 +1,761 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * LPC32xx MLC NAND flash controller driver
+ *
+ * (C) Copyright 2014 3ADEV <http://3adev.com>
+ * Written by Albert ARIBAUD <albert.aribaud@3adev.fr>
+ *
+ * NOTE:
+ *
+ * The MLC NAND flash controller provides hardware Reed-Solomon ECC
+ * covering in- and out-of-band data together. Therefore, in- and out-
+ * of-band data must be written together in order to have a valid ECC.
+ *
+ * Consequently, pages with meaningful in-band data are written with
+ * blank (all-ones) out-of-band data and a valid ECC, and any later
+ * out-of-band data write will void the ECC.
+ *
+ * Therefore, code which reads such late-written out-of-band data
+ * should not rely on the ECC validity.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+#include <nand.h>
+#include <asm/arch/clk.h>
+#include <asm/arch/sys_proto.h>
+
+/*
+ * MLC NAND controller registers.
+ */
+struct lpc32xx_nand_mlc_registers {
+	u8 buff[32768]; /* controller's serial data buffer */
+	u8 data[32768]; /* NAND's raw data buffer */
+	u32 cmd;
+	u32 addr;
+	u32 ecc_enc_reg;
+	u32 ecc_dec_reg;
+	u32 ecc_auto_enc_reg;
+	u32 ecc_auto_dec_reg;
+	u32 rpr;
+	u32 wpr;
+	u32 rubp;
+	u32 robp;
+	u32 sw_wp_add_low;
+	u32 sw_wp_add_hig;
+	u32 icr;
+	u32 time_reg;
+	u32 irq_mr;
+	u32 irq_sr;
+	u32 lock_pr;
+	u32 isr;
+	u32 ceh;
+};
+
+/* LOCK_PR register defines */
+#define LOCK_PR_UNLOCK_KEY 0x0000A25E  /* Magic unlock value */
+
+/* ICR defines */
+#define ICR_LARGE_BLOCKS 0x00000004	/* configure for 2KB blocks */
+#define ICR_ADDR4        0x00000002	/* configure for 4-word addrs */
+
+/* CEH defines */
+#define CEH_NORMAL_CE  0x00000001	/* do not force CE ON */
+
+/* ISR register defines */
+#define ISR_NAND_READY        0x00000001
+#define ISR_CONTROLLER_READY  0x00000002
+#define ISR_ECC_READY         0x00000004
+#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1)
+#define ISR_DECODER_FAILURE   0x00000040
+#define ISR_DECODER_ERROR     0x00000008
+
+/* time-out for NAND chip / controller loops, in us */
+#define LPC32X_NAND_TIMEOUT 5000
+
+/*
+ * There is a single instance of the NAND MLC controller
+ */
+
+static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers
+	= (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE;
+
+#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o)
+
+/**
+ * OOB data in each small page are 6 'free' then 10 ECC bytes.
+ * To make things easier, when reading large pages, the four pages'
+ * 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer,
+ * while the the four ECC bytes are groupe in its last 40 bytes.
+ *
+ * The struct below represents how free vs ecc oob bytes are stored
+ * in the buffer.
+ *
+ * Note: the OOB bytes contain the bad block marker at offsets 0 and 1.
+ */
+
+struct lpc32xx_oob {
+	struct {
+		uint8_t free_oob_bytes[6];
+	} free[4];
+	struct {
+		uint8_t ecc_oob_bytes[10];
+	} ecc[4];
+};
+
+/*
+ * Initialize the controller
+ */
+
+static void lpc32xx_nand_init(void)
+{
+	unsigned int clk;
+
+	/* Configure controller for no software write protection, x8 bus
+	   width, large block device, and 4 address words */
+
+	/* unlock controller registers with magic key */
+	writel(LOCK_PR_UNLOCK_KEY,
+	       &lpc32xx_nand_mlc_registers->lock_pr);
+
+	/* enable large blocks and large NANDs */
+	writel(ICR_LARGE_BLOCKS | ICR_ADDR4,
+	       &lpc32xx_nand_mlc_registers->icr);
+
+	/* Make sure MLC interrupts are disabled */
+	writel(0, &lpc32xx_nand_mlc_registers->irq_mr);
+
+	/* Normal chip enable operation */
+	writel(CEH_NORMAL_CE,
+	       &lpc32xx_nand_mlc_registers->ceh);
+
+	/* Setup NAND timing */
+	clk = get_hclk_clk_rate();
+
+	writel(
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA,    0x07, 16) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH,    0x0F, 12) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW,     0x0F, 8) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH,    0x0F, 4) |
+		clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW,     0x0F, 0),
+		&lpc32xx_nand_mlc_registers->time_reg);
+}
+
+#if !defined(CONFIG_SPL_BUILD)
+
+/**
+ * lpc32xx_cmd_ctrl - write command to either cmd or data register
+ */
+
+static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd);
+	else if (ctrl & NAND_ALE)
+		writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr);
+}
+
+/**
+ * lpc32xx_read_byte - read a byte from the NAND
+ * @mtd:	MTD device structure
+ */
+
+static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
+{
+	return readb(&lpc32xx_nand_mlc_registers->data);
+}
+
+/**
+ * lpc32xx_dev_ready - test if NAND device (actually controller) is ready
+ * @mtd:	MTD device structure
+ * @mode:	mode to set the ECC HW to.
+ */
+
+static int lpc32xx_dev_ready(struct mtd_info *mtd)
+{
+	/* means *controller* ready for us */
+	int status = readl(&lpc32xx_nand_mlc_registers->isr);
+	return status & ISR_CONTROLLER_READY;
+}
+
+/**
+ * ECC layout -- this is needed whatever ECC mode we are using.
+ * In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes.
+ * To make U-Boot's life easier, we pack 'useable' OOB at the
+ * front and R/S ECC at the back.
+ */
+
+static struct nand_ecclayout lpc32xx_largepage_ecclayout = {
+	.eccbytes = 40,
+	.eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
+		   34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
+		   44, 45, 46, 47, 48, 48, 50, 51, 52, 53,
+		   54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+		   },
+	.oobfree = {
+		/* bytes 0 and 1 are used for the bad block marker */
+		{
+			.offset = 2,
+			.length = 22
+		},
+	}
+};
+
+/**
+ * lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Use large block Auto Decode Read Mode(1) as described in User Manual
+ * section 8.6.2.1.
+ *
+ * The initial Read Mode and Read Start commands are sent by the caller.
+ *
+ * ECC will be false if out-of-band data has been updated since in-band
+ * data was initially written.
+ */
+
+static int lpc32xx_read_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required,
+	int page)
+{
+	unsigned int i, status, timeout, err, max_bitflips = 0;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	/* go through all four small pages */
+	for (i = 0; i < 4; i++) {
+		/* start auto decode (reads 528 NAND bytes) */
+		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+		/* wait for controller to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_CONTROLLER_READY)
+				break;
+			udelay(1);
+		}
+		/* if decoder failed, return failure */
+		if (status & ISR_DECODER_FAILURE)
+			return -1;
+		/* keep count of maximum bitflips performed */
+		if (status & ISR_DECODER_ERROR) {
+			err = ISR_DECODER_ERRORS(status);
+			if (err > max_bitflips)
+				max_bitflips = err;
+		}
+		/* copy first 512 bytes into buffer */
+		memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512);
+		/* copy next 6 bytes at front of OOB buffer */
+		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+		/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
+		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
+	}
+	return max_bitflips;
+}
+
+/**
+ * lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Read NAND directly; can read pages with invalid ECC.
+ */
+
+static int lpc32xx_read_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required,
+	int page)
+{
+	unsigned int i, status, timeout;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	/* when we get here we've already had the Read Mode(1) */
+
+	/* go through all four small pages */
+	for (i = 0; i < 4; i++) {
+		/* wait for NAND to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_NAND_READY)
+				break;
+			udelay(1);
+		}
+		/* if NAND stalled, return failure */
+		if (!(status & ISR_NAND_READY))
+			return -1;
+		/* copy first 512 bytes into buffer */
+		memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512);
+		/* copy next 6 bytes at front of OOB buffer */
+		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6);
+		/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
+		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10);
+	}
+	return 0;
+}
+
+/**
+ * lpc32xx_read_oob - read out-of-band data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ *
+ * Read out-of-band data. User Manual section 8.6.4 suggests using Read
+ * Mode(3) which the controller will turn into a Read Mode(1) internally
+ * but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0)
+ * directly.
+ *
+ * ECC covers in- and out-of-band data and was written when out-of-band
+ * data was blank. Therefore, if the out-of-band being read here is not
+ * blank, then the ECC will be false and the read will return bitflips,
+ * even in case of ECC failure where we will return 5 bitflips. The
+ * caller should be prepared to handle this.
+ */
+
+static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+	int page)
+{
+	unsigned int i, status, timeout, err, max_bitflips = 0;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	/* No command was sent before calling read_oob() so send one */
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+	/* go through all four small pages */
+	for (i = 0; i < 4; i++) {
+		/* start auto decode (reads 528 NAND bytes) */
+		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+		/* wait for controller to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_CONTROLLER_READY)
+				break;
+			udelay(1);
+		}
+		/* if decoder failure, count 'one too many' bitflips */
+		if (status & ISR_DECODER_FAILURE)
+			max_bitflips = 5;
+		/* keep count of maximum bitflips performed */
+		if (status & ISR_DECODER_ERROR) {
+			err = ISR_DECODER_ERRORS(status);
+			if (err > max_bitflips)
+				max_bitflips = err;
+		}
+		/* set read pointer to OOB area */
+		writel(0, &lpc32xx_nand_mlc_registers->robp);
+		/* copy next 6 bytes at front of OOB buffer */
+		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+		/* copy next 10 bytes (R/S ECC) at back of OOB buffer */
+		memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
+	}
+	return max_bitflips;
+}
+
+/**
+ * lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * Use large block Auto Encode as per User Manual section 8.6.4.
+ *
+ * The initial Write Serial Input and final Auto Program commands are
+ * sent by the caller.
+ */
+
+static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const uint8_t *buf, int oob_required,
+	int page)
+{
+	unsigned int i, status, timeout;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	/* when we get here we've already had the SEQIN */
+	for (i = 0; i < 4; i++) {
+		/* start encode (expects 518 writes to buff) */
+		writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg);
+		/* copy first 512 bytes from buffer */
+		memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
+		/* copy next 6 bytes from OOB buffer -- excluding ECC */
+		memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
+		/* wait for ECC to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_ECC_READY)
+				break;
+			udelay(1);
+		}
+		/* if ECC stalled, return failure */
+		if (!(status & ISR_ECC_READY))
+			return -1;
+		/* Trigger auto encode (writes 528 bytes to NAND) */
+		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg);
+		/* wait for controller to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_CONTROLLER_READY)
+				break;
+			udelay(1);
+		}
+		/* if controller stalled, return error */
+		if (!(status & ISR_CONTROLLER_READY))
+			return -1;
+	}
+	return 0;
+}
+
+/**
+ * lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Use large block write but without encode.
+ *
+ * The initial Write Serial Input and final Auto Program commands are
+ * sent by the caller.
+ *
+ * This function will write the full out-of-band data, including the
+ * ECC area. Therefore, it can write pages with valid *or* invalid ECC.
+ */
+
+static int lpc32xx_write_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, const uint8_t *buf, int oob_required,
+	int page)
+{
+	unsigned int i;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	/* when we get here we've already had the Read Mode(1) */
+	for (i = 0; i < 4; i++) {
+		/* copy first 512 bytes from buffer */
+		memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
+		/* copy next 6 bytes into OOB buffer -- excluding ECC */
+		memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
+		/* copy next 10 bytes into OOB buffer -- that is 'ECC' */
+		memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10);
+	}
+	return 0;
+}
+
+/**
+ * lpc32xx_write_oob - write out-of-band data
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ *
+ * Since ECC covers in- and out-of-band data, writing out-of-band data
+ * with ECC will render the page ECC wrong -- or, if the page was blank,
+ * then it will produce a good ECC but a later in-band data write will
+ * render it wrong.
+ *
+ * Therefore, do not compute or write any ECC, and always return success.
+ *
+ * This implies that we do four writes, since non-ECC out-of-band data
+ * are not contiguous in a large page.
+ */
+
+static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+	int page)
+{
+	/* update oob on all 4 subpages in sequence */
+	unsigned int i, status, timeout;
+	struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
+
+	for (i = 0; i < 4; i++) {
+		/* start data input */
+		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page);
+		/* copy 6 non-ECC out-of-band bytes directly into NAND */
+		memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6);
+		/* program page */
+		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+		/* wait for NAND to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_NAND_READY)
+				break;
+			udelay(1);
+		}
+		/* if NAND stalled, return error */
+		if (!(status & ISR_NAND_READY))
+			return -1;
+	}
+	return 0;
+}
+
+/**
+ * lpc32xx_waitfunc - wait until a command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for controller and FLASH to both be ready.
+ */
+
+static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	int status;
+	unsigned int timeout;
+	/* wait until both controller and NAND are ready */
+	for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+		status = readl(&lpc32xx_nand_mlc_registers->isr);
+		if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
+		    == (ISR_CONTROLLER_READY || ISR_NAND_READY))
+			break;
+		udelay(1);
+	}
+	/* if controller or NAND stalled, return error */
+	if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
+	    != (ISR_CONTROLLER_READY || ISR_NAND_READY))
+		return -1;
+	/* write NAND status command */
+	writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd);
+	/* read back status and return it */
+	return readb(&lpc32xx_nand_mlc_registers->data);
+}
+
+/*
+ * We are self-initializing, so we need our own chip struct
+ */
+
+static struct nand_chip lpc32xx_chip;
+
+/*
+ * Initialize the controller
+ */
+
+void board_nand_init(void)
+{
+	struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip);
+	int ret;
+
+	/* Set all BOARDSPECIFIC (actually core-specific) fields  */
+
+	lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff;
+	lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff;
+	lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl;
+	/* do not set init_size: nand_base.c will read sizes from chip */
+	lpc32xx_chip.dev_ready = lpc32xx_dev_ready;
+	/* do not set setup_read_retry: this is NAND-chip-specific */
+	/* do not set chip_delay: we have dev_ready defined. */
+	lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE;
+
+	/* Set needed ECC fields */
+
+	lpc32xx_chip.ecc.mode = NAND_ECC_HW;
+	lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout;
+	lpc32xx_chip.ecc.size = 512;
+	lpc32xx_chip.ecc.bytes = 10;
+	lpc32xx_chip.ecc.strength = 4;
+	lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc;
+	lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw;
+	lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc;
+	lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw;
+	lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob;
+	lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob;
+	lpc32xx_chip.waitfunc = lpc32xx_waitfunc;
+
+	lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */
+
+	/* BBT options: read from last two pages */
+	lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK
+		| NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE
+		| NAND_BBT_WRITE;
+
+	/* Initialize NAND interface */
+	lpc32xx_nand_init();
+
+	/* identify chip */
+	ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL);
+	if (ret) {
+		pr_err("nand_scan_ident returned %i", ret);
+		return;
+	}
+
+	/* finish scanning the chip */
+	ret = nand_scan_tail(mtd);
+	if (ret) {
+		pr_err("nand_scan_tail returned %i", ret);
+		return;
+	}
+
+	/* chip is good, register it */
+	ret = nand_register(0, mtd);
+	if (ret)
+		pr_err("nand_register returned %i", ret);
+}
+
+#else /* defined(CONFIG_SPL_BUILD) */
+
+void nand_init(void)
+{
+	/* enable NAND controller */
+	lpc32xx_mlc_nand_init();
+	/* initialize NAND controller */
+	lpc32xx_nand_init();
+}
+
+void nand_deselect(void)
+{
+	/* nothing to do, but SPL requires this function */
+}
+
+static int read_single_page(uint8_t *dest, int page,
+	struct lpc32xx_oob *oob)
+{
+	int status, i, timeout, err, max_bitflips = 0;
+
+	/* enter read mode */
+	writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd);
+	/* send column (lsb then MSB) and page (lsb to MSB) */
+	writel(0, &lpc32xx_nand_mlc_registers->addr);
+	writel(0, &lpc32xx_nand_mlc_registers->addr);
+	writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr);
+	writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr);
+	writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr);
+	/* start reading */
+	writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd);
+
+	/* large page auto decode read */
+	for (i = 0; i < 4; i++) {
+		/* start auto decode (reads 528 NAND bytes) */
+		writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
+		/* wait for controller to return to ready state */
+		for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
+			status = readl(&lpc32xx_nand_mlc_registers->isr);
+			if (status & ISR_CONTROLLER_READY)
+				break;
+			udelay(1);
+		}
+		/* if controller stalled, return error */
+		if (!(status & ISR_CONTROLLER_READY))
+			return -1;
+		/* if decoder failure, return error */
+		if (status & ISR_DECODER_FAILURE)
+			return -1;
+		/* keep count of maximum bitflips performed */
+		if (status & ISR_DECODER_ERROR) {
+			err = ISR_DECODER_ERRORS(status);
+			if (err > max_bitflips)
+				max_bitflips = err;
+		}
+		/* copy first 512 bytes into buffer */
+		memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512);
+		/* copy next 6 bytes bytes into OOB buffer */
+		memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
+	}
+	return max_bitflips;
+}
+
+/*
+ * Load U-Boot signed image.
+ * This loads an image from NAND, skipping bad blocks.
+ * A block is declared bad if at least one of its readable pages has
+ * a bad block marker in its OOB at position 0.
+ * If all pages ion a block are unreadable, the block is considered
+ * bad (i.e., assumed not to be part of the image) and skipped.
+ *
+ * IMPORTANT NOTE:
+ *
+ * If the first block of the image is fully unreadable, it will be
+ * ignored and skipped as if it had been marked bad. If it was not
+ * actually marked bad at the time of writing the image, the resulting
+ * image loaded will lack a header and magic number. It could thus be
+ * considered as a raw, headerless, image and SPL might erroneously
+ * jump into it.
+ *
+ * In order to avoid this risk, LPC32XX-based boards which use this
+ * driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE.
+ */
+
+#define BYTES_PER_PAGE 2048
+#define PAGES_PER_BLOCK 64
+#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK)
+#define PAGES_PER_CHIP_MAX 524288
+
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
+{
+	int bytes_left = size;
+	int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE);
+	int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK);
+	int block = 0;
+	int page = offs / BYTES_PER_PAGE;
+	/* perform reads block by block */
+	while (blocks_left) {
+		/* compute first page number to read */
+		void *block_page_dst = dst;
+		/* read at most one block, possibly less */
+		int block_bytes_left = bytes_left;
+		if (block_bytes_left > BYTES_PER_BLOCK)
+			block_bytes_left = BYTES_PER_BLOCK;
+		/* keep track of good, failed, and "bad" pages */
+		int block_pages_good = 0;
+		int block_pages_bad = 0;
+		int block_pages_err = 0;
+		/* we shall read a full block of pages, maybe less */
+		int block_pages_left = pages_left;
+		if (block_pages_left > PAGES_PER_BLOCK)
+			block_pages_left = PAGES_PER_BLOCK;
+		int block_pages = block_pages_left;
+		int block_page = page;
+		/* while pages are left and the block is not known as bad */
+		while ((block_pages > 0) && (block_pages_bad == 0)) {
+			/* we will read OOB, too, for bad block markers */
+			struct lpc32xx_oob oob;
+			/* read page */
+			int res = read_single_page(block_page_dst, block_page,
+						   &oob);
+			/* count readable pages */
+			if (res >= 0) {
+				/* this page is good */
+				block_pages_good++;
+				/* this page is bad */
+				if ((oob.free[0].free_oob_bytes[0] != 0xff)
+				    | (oob.free[0].free_oob_bytes[1] != 0xff))
+					block_pages_bad++;
+			} else
+				/* count errors */
+				block_pages_err++;
+			/* we're done with this page */
+			block_page++;
+			block_page_dst += BYTES_PER_PAGE;
+			if (block_pages)
+				block_pages--;
+		}
+		/* a fully unreadable block is considered bad */
+		if (block_pages_good == 0)
+			block_pages_bad = block_pages_err;
+		/* errors are fatal only in good blocks */
+		if ((block_pages_err > 0) && (block_pages_bad == 0))
+			return -1;
+		/* we keep reads only of good blocks */
+		if (block_pages_bad == 0) {
+			dst += block_bytes_left;
+			bytes_left -= block_bytes_left;
+			pages_left -= block_pages_left;
+			blocks_left--;
+		}
+		/* good or bad, we're done with this block */
+		block++;
+		page += PAGES_PER_BLOCK;
+	}
+
+	/* report success */
+	return 0;
+}
+
+#endif /* CONFIG_SPL_BUILD */
diff --git a/drivers/mtd/nand/raw/lpc32xx_nand_slc.c b/drivers/mtd/nand/raw/lpc32xx_nand_slc.c
new file mode 100644
index 0000000..99f6e15
--- /dev/null
+++ b/drivers/mtd/nand/raw/lpc32xx_nand_slc.c
@@ -0,0 +1,597 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * LPC32xx SLC NAND flash controller driver
+ *
+ * (C) Copyright 2015 Vladimir Zapolskiy <vz@mleia.com>
+ *
+ * Hardware ECC support original source code
+ * Copyright (C) 2008 by NXP Semiconductors
+ * Author: Kevin Wells
+ *
+ * Copyright (c) 2015 Tyco Fire Protection Products.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+#include <asm/arch/config.h>
+#include <asm/arch/clk.h>
+#include <asm/arch/sys_proto.h>
+#include <asm/arch/dma.h>
+#include <asm/arch/cpu.h>
+
+#if defined(CONFIG_DMA_LPC32XX) && defined(CONFIG_SPL_BUILD)
+#warning "DMA support in SPL image is not tested"
+#endif
+
+struct lpc32xx_nand_slc_regs {
+	u32 data;
+	u32 addr;
+	u32 cmd;
+	u32 stop;
+	u32 ctrl;
+	u32 cfg;
+	u32 stat;
+	u32 int_stat;
+	u32 ien;
+	u32 isr;
+	u32 icr;
+	u32 tac;
+	u32 tc;
+	u32 ecc;
+	u32 dma_data;
+};
+
+/* CFG register */
+#define CFG_CE_LOW		(1 << 5)
+#define CFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
+#define CFG_ECC_EN		(1 << 3) /* ECC enable bit */
+#define CFG_DMA_BURST		(1 << 2) /* DMA burst bit */
+#define CFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
+
+/* CTRL register */
+#define CTRL_SW_RESET		(1 << 2)
+#define CTRL_ECC_CLEAR		(1 << 1) /* Reset ECC bit */
+#define CTRL_DMA_START		(1 << 0) /* Start DMA channel bit */
+
+/* STAT register */
+#define STAT_DMA_FIFO		(1 << 2) /* DMA FIFO has data bit */
+#define STAT_NAND_READY		(1 << 0)
+
+/* INT_STAT register */
+#define INT_STAT_TC		(1 << 1)
+#define INT_STAT_RDY		(1 << 0)
+
+/* TAC register bits, be aware of overflows */
+#define TAC_W_RDY(n)		(max_t(uint32_t, (n), 0xF) << 28)
+#define TAC_W_WIDTH(n)		(max_t(uint32_t, (n), 0xF) << 24)
+#define TAC_W_HOLD(n)		(max_t(uint32_t, (n), 0xF) << 20)
+#define TAC_W_SETUP(n)		(max_t(uint32_t, (n), 0xF) << 16)
+#define TAC_R_RDY(n)		(max_t(uint32_t, (n), 0xF) << 12)
+#define TAC_R_WIDTH(n)		(max_t(uint32_t, (n), 0xF) << 8)
+#define TAC_R_HOLD(n)		(max_t(uint32_t, (n), 0xF) << 4)
+#define TAC_R_SETUP(n)		(max_t(uint32_t, (n), 0xF) << 0)
+
+/* NAND ECC Layout for small page NAND devices
+ * Note: For large page devices, the default layouts are used. */
+static struct nand_ecclayout lpc32xx_nand_oob_16 = {
+	.eccbytes = 6,
+	.eccpos = {10, 11, 12, 13, 14, 15},
+	.oobfree = {
+		{.offset = 0,
+		 . length = 4},
+		{.offset = 6,
+		 . length = 4}
+		}
+};
+
+#if defined(CONFIG_DMA_LPC32XX)
+#define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / CONFIG_SYS_NAND_ECCSIZE)
+
+/*
+ * DMA Descriptors
+ * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area)
+ * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area)
+ */
+static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1];
+static u32 ecc_buffer[8]; /* MAX ECC size */
+static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */
+
+/*
+ * Helper macro for the DMA client (i.e. NAND SLC):
+ * - to write the next DMA linked list item address
+ *   (see arch/include/asm/arch-lpc32xx/dma.h).
+ * - to assign the DMA data register to DMA source or destination address.
+ * - to assign the ECC register to DMA source or destination address.
+ */
+#define lpc32xx_dmac_next_lli(x)	((u32)x)
+#define lpc32xx_dmac_set_dma_data()	((u32)&lpc32xx_nand_slc_regs->dma_data)
+#define lpc32xx_dmac_set_ecc()		((u32)&lpc32xx_nand_slc_regs->ecc)
+#endif
+
+static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs
+	= (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE;
+
+static void lpc32xx_nand_init(void)
+{
+	uint32_t hclk = get_hclk_clk_rate();
+
+	/* Reset SLC NAND controller */
+	writel(CTRL_SW_RESET, &lpc32xx_nand_slc_regs->ctrl);
+
+	/* 8-bit bus, no DMA, no ECC, ordinary CE signal */
+	writel(0, &lpc32xx_nand_slc_regs->cfg);
+
+	/* Interrupts disabled and cleared */
+	writel(0, &lpc32xx_nand_slc_regs->ien);
+	writel(INT_STAT_TC | INT_STAT_RDY,
+	       &lpc32xx_nand_slc_regs->icr);
+
+	/* Configure NAND flash timings */
+	writel(TAC_W_RDY(CONFIG_LPC32XX_NAND_SLC_WDR_CLKS) |
+	       TAC_W_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_WWIDTH) |
+	       TAC_W_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_WHOLD) |
+	       TAC_W_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_WSETUP) |
+	       TAC_R_RDY(CONFIG_LPC32XX_NAND_SLC_RDR_CLKS) |
+	       TAC_R_WIDTH(hclk / CONFIG_LPC32XX_NAND_SLC_RWIDTH) |
+	       TAC_R_HOLD(hclk / CONFIG_LPC32XX_NAND_SLC_RHOLD) |
+	       TAC_R_SETUP(hclk / CONFIG_LPC32XX_NAND_SLC_RSETUP),
+	       &lpc32xx_nand_slc_regs->tac);
+}
+
+static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd,
+				  int cmd, unsigned int ctrl)
+{
+	debug("ctrl: 0x%08x, cmd: 0x%08x\n", ctrl, cmd);
+
+	if (ctrl & NAND_NCE)
+		setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);
+	else
+		clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->cmd);
+	else if (ctrl & NAND_ALE)
+		writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->addr);
+}
+
+static int lpc32xx_nand_dev_ready(struct mtd_info *mtd)
+{
+	return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY;
+}
+
+#if defined(CONFIG_DMA_LPC32XX)
+/*
+ * Prepares DMA descriptors for NAND RD/WR operations
+ * If the size is < 256 Bytes then it is assumed to be
+ * an OOB transfer
+ */
+static void lpc32xx_nand_dma_configure(struct nand_chip *chip,
+				       const u8 *buffer, int size,
+				       int read)
+{
+	u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
+	struct lpc32xx_dmac_ll *dmalist_cur;
+	struct lpc32xx_dmac_ll *dmalist_cur_ecc;
+
+	/*
+	 * CTRL descriptor entry for reading ECC
+	 * Copy Multiple times to sync DMA with Flash Controller
+	 */
+	ecc_ctrl = 0x5 |
+			DMAC_CHAN_SRC_BURST_1 |
+			DMAC_CHAN_DEST_BURST_1 |
+			DMAC_CHAN_SRC_WIDTH_32 |
+			DMAC_CHAN_DEST_WIDTH_32 |
+			DMAC_CHAN_DEST_AHB1;
+
+	/* CTRL descriptor entry for reading/writing Data */
+	ctrl = (CONFIG_SYS_NAND_ECCSIZE / 4) |
+			DMAC_CHAN_SRC_BURST_4 |
+			DMAC_CHAN_DEST_BURST_4 |
+			DMAC_CHAN_SRC_WIDTH_32 |
+			DMAC_CHAN_DEST_WIDTH_32 |
+			DMAC_CHAN_DEST_AHB1;
+
+	/* CTRL descriptor entry for reading/writing Spare Area */
+	oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) |
+			DMAC_CHAN_SRC_BURST_4 |
+			DMAC_CHAN_DEST_BURST_4 |
+			DMAC_CHAN_SRC_WIDTH_32 |
+			DMAC_CHAN_DEST_WIDTH_32 |
+			DMAC_CHAN_DEST_AHB1;
+
+	if (read) {
+		dmasrc = lpc32xx_dmac_set_dma_data();
+		dmadst = (u32)buffer;
+		ctrl |= DMAC_CHAN_DEST_AUTOINC;
+	} else {
+		dmadst = lpc32xx_dmac_set_dma_data();
+		dmasrc = (u32)buffer;
+		ctrl |= DMAC_CHAN_SRC_AUTOINC;
+	}
+
+	/*
+	 * Write Operation Sequence for Small Block NAND
+	 * ----------------------------------------------------------
+	 * 1. X'fer 256 bytes of data from Memory to Flash.
+	 * 2. Copy generated ECC data from Register to Spare Area
+	 * 3. X'fer next 256 bytes of data from Memory to Flash.
+	 * 4. Copy generated ECC data from Register to Spare Area.
+	 * 5. X'fer 16 byets of Spare area from Memory to Flash.
+	 * Read Operation Sequence for Small Block NAND
+	 * ----------------------------------------------------------
+	 * 1. X'fer 256 bytes of data from Flash to Memory.
+	 * 2. Copy generated ECC data from Register to ECC calc Buffer.
+	 * 3. X'fer next 256 bytes of data from Flash to Memory.
+	 * 4. Copy generated ECC data from Register to ECC calc Buffer.
+	 * 5. X'fer 16 bytes of Spare area from Flash to Memory.
+	 * Write Operation Sequence for Large Block NAND
+	 * ----------------------------------------------------------
+	 * 1. Steps(1-4) of Write Operations repeate for four times
+	 * which generates 16 DMA descriptors to X'fer 2048 bytes of
+	 * data & 32 bytes of ECC data.
+	 * 2. X'fer 64 bytes of Spare area from Memory to Flash.
+	 * Read Operation Sequence for Large Block NAND
+	 * ----------------------------------------------------------
+	 * 1. Steps(1-4) of Read Operations repeate for four times
+	 * which generates 16 DMA descriptors to X'fer 2048 bytes of
+	 * data & 32 bytes of ECC data.
+	 * 2. X'fer 64 bytes of Spare area from Flash to Memory.
+	 */
+
+	for (i = 0; i < size/CONFIG_SYS_NAND_ECCSIZE; i++) {
+		dmalist_cur = &dmalist[i * 2];
+		dmalist_cur_ecc = &dmalist[(i * 2) + 1];
+
+		dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256)));
+		dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst);
+		dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc);
+		dmalist_cur->next_ctrl = ctrl;
+
+		dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc();
+		dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i];
+		dmalist_cur_ecc->next_lli =
+			lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]);
+		dmalist_cur_ecc->next_ctrl = ecc_ctrl;
+	}
+
+	if (i) { /* Data only transfer */
+		dmalist_cur_ecc = &dmalist[(i * 2) - 1];
+		dmalist_cur_ecc->next_lli = 0;
+		dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN;
+		return;
+	}
+
+	/* OOB only transfer */
+	if (read) {
+		dmasrc = lpc32xx_dmac_set_dma_data();
+		dmadst = (u32)buffer;
+		oob_ctrl |= DMAC_CHAN_DEST_AUTOINC;
+	} else {
+		dmadst = lpc32xx_dmac_set_dma_data();
+		dmasrc = (u32)buffer;
+		oob_ctrl |= DMAC_CHAN_SRC_AUTOINC;
+	}
+
+	/* Read/ Write Spare Area Data To/From Flash */
+	dmalist_cur = &dmalist[i * 2];
+	dmalist_cur->dma_src = dmasrc;
+	dmalist_cur->dma_dest = dmadst;
+	dmalist_cur->next_lli = 0;
+	dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN);
+}
+
+static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf,
+			      int len, int read)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 config;
+	int ret;
+
+	/* DMA Channel Configuration */
+	config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) |
+		(read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) |
+		(read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) |
+		DMAC_CHAN_ENABLE;
+
+	/* Prepare DMA descriptors */
+	lpc32xx_nand_dma_configure(chip, buf, len, read);
+
+	/* Setup SLC controller and start transfer */
+	if (read)
+		setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
+	else  /* NAND_ECC_WRITE */
+		clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR);
+	setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST);
+
+	/* Write length for new transfers */
+	if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) |
+	      readl(&lpc32xx_nand_slc_regs->tc))) {
+		int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0;
+		writel(len + tmp, &lpc32xx_nand_slc_regs->tc);
+	}
+
+	setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
+
+	/* Start DMA transfers */
+	ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config);
+	if (unlikely(ret < 0))
+		BUG();
+
+
+	/* Wait for NAND to be ready */
+	while (!lpc32xx_nand_dev_ready(mtd))
+		;
+
+	/* Wait till DMA transfer is DONE */
+	if (lpc32xx_dma_wait_status(dmachan))
+		pr_err("NAND DMA transfer error!\r\n");
+
+	/* Stop DMA & HW ECC */
+	clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START);
+	clrbits_le32(&lpc32xx_nand_slc_regs->cfg,
+		     CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC);
+}
+
+static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count)
+{
+	int i;
+	for (i = 0; i < (count * CONFIG_SYS_NAND_ECCBYTES);
+	     i += CONFIG_SYS_NAND_ECCBYTES) {
+		u32 ce = ecc[i / CONFIG_SYS_NAND_ECCBYTES];
+		ce = ~(ce << 2) & 0xFFFFFF;
+		spare[i+2] = (u8)(ce & 0xFF); ce >>= 8;
+		spare[i+1] = (u8)(ce & 0xFF); ce >>= 8;
+		spare[i]   = (u8)(ce & 0xFF);
+	}
+	return 0;
+}
+
+static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
+				 uint8_t *ecc_code)
+{
+	return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS);
+}
+
+/*
+ * Enables and prepares SLC NAND controller
+ * for doing data transfers with H/W ECC enabled.
+ */
+static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode)
+{
+	/* Clear ECC */
+	writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl);
+
+	/* Setup SLC controller for H/W ECC operations */
+	setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC);
+}
+
+/*
+ * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * mtd:	MTD block structure
+ * dat:	raw data read from the chip
+ * read_ecc:	ECC from the chip
+ * calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat,
+			 u_char *read_ecc, u_char *calc_ecc)
+{
+	unsigned int i;
+	int ret1, ret2 = 0;
+	u_char *r = read_ecc;
+	u_char *c = calc_ecc;
+	u16 data_offset = 0;
+
+	for (i = 0 ; i < ECCSTEPS ; i++) {
+		r += CONFIG_SYS_NAND_ECCBYTES;
+		c += CONFIG_SYS_NAND_ECCBYTES;
+		data_offset += CONFIG_SYS_NAND_ECCSIZE;
+
+		ret1 = nand_correct_data(mtd, dat + data_offset, r, c);
+		if (ret1 < 0)
+			return -EBADMSG;
+		else
+			ret2 += ret1;
+	}
+
+	return ret2;
+}
+#endif
+
+#if defined(CONFIG_DMA_LPC32XX)
+static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	lpc32xx_nand_xfer(mtd, buf, len, 1);
+}
+#else
+static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	while (len-- > 0)
+		*buf++ = readl(&lpc32xx_nand_slc_regs->data);
+}
+#endif
+
+static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
+{
+	return readl(&lpc32xx_nand_slc_regs->data);
+}
+
+#if defined(CONFIG_DMA_LPC32XX)
+static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				  int len)
+{
+	lpc32xx_nand_xfer(mtd, buf, len, 0);
+}
+#else
+static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	while (len-- > 0)
+		writel(*buf++, &lpc32xx_nand_slc_regs->data);
+}
+#endif
+
+static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	writel(byte, &lpc32xx_nand_slc_regs->data);
+}
+
+#if defined(CONFIG_DMA_LPC32XX)
+/* Reuse the logic from "nand_read_page_hwecc()" */
+static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i;
+	int stat;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	unsigned int max_bitflips = 0;
+
+	/*
+	 * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
+	 * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
+	 * of a page size using DMA controller scatter/gather mode through
+	 * linked list; the ECC read is done without any software intervention.
+	 */
+
+	lpc32xx_hwecc_enable(mtd, NAND_ECC_READ);
+	lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
+	lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
+	lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]);
+	if (stat < 0)
+		mtd->ecc_stats.failed++;
+	else {
+		mtd->ecc_stats.corrected += stat;
+		max_bitflips = max_t(unsigned int, max_bitflips, stat);
+	}
+
+	return max_bitflips;
+}
+
+/* Reuse the logic from "nand_write_page_hwecc()" */
+static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
+				    struct nand_chip *chip,
+				    const uint8_t *buf, int oob_required,
+				    int page)
+{
+	int i;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	const uint8_t *p = buf;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+	/*
+	 * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes
+	 * and section 9.7, the NAND SLC & DMA allowed single DMA transaction
+	 * of a page size using DMA controller scatter/gather mode through
+	 * linked list; the ECC read is done without any software intervention.
+	 */
+
+	lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE);
+	lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps);
+	lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+#endif
+
+/*
+ * LPC32xx has only one SLC NAND controller, don't utilize
+ * CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function
+ * both in SPL NAND and U-Boot images.
+ */
+int board_nand_init(struct nand_chip *lpc32xx_chip)
+{
+#if defined(CONFIG_DMA_LPC32XX)
+	int ret;
+
+	/* Acquire a channel for our use */
+	ret = lpc32xx_dma_get_channel();
+	if (unlikely(ret < 0)) {
+		pr_info("Unable to get free DMA channel for NAND transfers\n");
+		return -1;
+	}
+	dmachan = (unsigned int)ret;
+#endif
+
+	lpc32xx_chip->cmd_ctrl  = lpc32xx_nand_cmd_ctrl;
+	lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready;
+
+	/*
+	 * The implementation of these functions is quite common, but
+	 * they MUST be defined, because access to data register
+	 * is strictly 32-bit aligned.
+	 */
+	lpc32xx_chip->read_byte  = lpc32xx_read_byte;
+	lpc32xx_chip->write_byte = lpc32xx_write_byte;
+
+#if defined(CONFIG_DMA_LPC32XX)
+	/* Hardware ECC calculation is supported when DMA driver is selected */
+	lpc32xx_chip->ecc.mode		= NAND_ECC_HW;
+
+	lpc32xx_chip->read_buf		= lpc32xx_dma_read_buf;
+	lpc32xx_chip->write_buf		= lpc32xx_dma_write_buf;
+
+	lpc32xx_chip->ecc.calculate	= lpc32xx_ecc_calculate;
+	lpc32xx_chip->ecc.correct	= lpc32xx_correct_data;
+	lpc32xx_chip->ecc.hwctl		= lpc32xx_hwecc_enable;
+	lpc32xx_chip->chip_delay	= 2000;
+
+	lpc32xx_chip->ecc.read_page	= lpc32xx_read_page_hwecc;
+	lpc32xx_chip->ecc.write_page	= lpc32xx_write_page_hwecc;
+	lpc32xx_chip->options		|= NAND_NO_SUBPAGE_WRITE;
+#else
+	/*
+	 * Hardware ECC calculation is not supported by the driver,
+	 * because it requires DMA support, see LPC32x0 User Manual,
+	 * note after SLC_ECC register description (UM10326, p.198)
+	 */
+	lpc32xx_chip->ecc.mode = NAND_ECC_SOFT;
+
+	/*
+	 * The implementation of these functions is quite common, but
+	 * they MUST be defined, because access to data register
+	 * is strictly 32-bit aligned.
+	 */
+	lpc32xx_chip->read_buf   = lpc32xx_read_buf;
+	lpc32xx_chip->write_buf  = lpc32xx_write_buf;
+#endif
+
+	/*
+	 * These values are predefined
+	 * for both small and large page NAND flash devices.
+	 */
+	lpc32xx_chip->ecc.size     = CONFIG_SYS_NAND_ECCSIZE;
+	lpc32xx_chip->ecc.bytes    = CONFIG_SYS_NAND_ECCBYTES;
+	lpc32xx_chip->ecc.strength = 1;
+
+	if (CONFIG_SYS_NAND_PAGE_SIZE != NAND_LARGE_BLOCK_PAGE_SIZE)
+		lpc32xx_chip->ecc.layout = &lpc32xx_nand_oob_16;
+
+#if defined(CONFIG_SYS_NAND_USE_FLASH_BBT)
+	lpc32xx_chip->bbt_options |= NAND_BBT_USE_FLASH;
+#endif
+
+	/* Initialize NAND interface */
+	lpc32xx_nand_init();
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
new file mode 100644
index 0000000..cf97e0f
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -0,0 +1,1307 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <linux/err.h>
+#include <asm/io.h>
+#if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
+	defined(CONFIG_MX51) || defined(CONFIG_MX53)
+#include <asm/arch/imx-regs.h>
+#endif
+#include "mxc_nand.h"
+
+#define DRIVER_NAME "mxc_nand"
+
+struct mxc_nand_host {
+	struct nand_chip		*nand;
+
+	struct mxc_nand_regs __iomem	*regs;
+#ifdef MXC_NFC_V3_2
+	struct mxc_nand_ip_regs __iomem	*ip_regs;
+#endif
+	int				spare_only;
+	int				status_request;
+	int				pagesize_2k;
+	int				clk_act;
+	uint16_t			col_addr;
+	unsigned int			page_addr;
+};
+
+static struct mxc_nand_host mxc_host;
+static struct mxc_nand_host *host = &mxc_host;
+
+/* Define delays in microsec for NAND device operations */
+#define TROP_US_DELAY   2000
+/* Macros to get byte and bit positions of ECC */
+#define COLPOS(x)  ((x) >> 3)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/* OOB placement block for use with hardware ecc generation */
+#if defined(MXC_NFC_V1)
+#ifndef CONFIG_SYS_NAND_LARGEPAGE
+static struct nand_ecclayout nand_hw_eccoob = {
+	.eccbytes = 5,
+	.eccpos = {6, 7, 8, 9, 10},
+	.oobfree = { {0, 5}, {11, 5}, }
+};
+#else
+static struct nand_ecclayout nand_hw_eccoob2k = {
+	.eccbytes = 20,
+	.eccpos = {
+		6, 7, 8, 9, 10,
+		22, 23, 24, 25, 26,
+		38, 39, 40, 41, 42,
+		54, 55, 56, 57, 58,
+	},
+	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
+};
+#endif
+#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+#ifndef CONFIG_SYS_NAND_LARGEPAGE
+static struct nand_ecclayout nand_hw_eccoob = {
+	.eccbytes = 9,
+	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
+	.oobfree = { {2, 5} }
+};
+#else
+static struct nand_ecclayout nand_hw_eccoob2k = {
+	.eccbytes = 36,
+	.eccpos = {
+		7, 8, 9, 10, 11, 12, 13, 14, 15,
+		23, 24, 25, 26, 27, 28, 29, 30, 31,
+		39, 40, 41, 42, 43, 44, 45, 46, 47,
+		55, 56, 57, 58, 59, 60, 61, 62, 63,
+	},
+	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
+};
+#endif
+#endif
+
+static int is_16bit_nand(void)
+{
+#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
+	return 1;
+#else
+	return 0;
+#endif
+}
+
+static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
+{
+	uint32_t *d = dest;
+
+	size >>= 2;
+	while (size--)
+		__raw_writel(__raw_readl(source++), d++);
+	return dest;
+}
+
+/*
+ * This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit.
+ */
+static void wait_op_done(struct mxc_nand_host *host, int max_retries,
+				uint16_t param)
+{
+	uint32_t tmp;
+
+	while (max_retries-- > 0) {
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+		tmp = readnfc(&host->regs->config2);
+		if (tmp & NFC_V1_V2_CONFIG2_INT) {
+			tmp &= ~NFC_V1_V2_CONFIG2_INT;
+			writenfc(tmp, &host->regs->config2);
+#elif defined(MXC_NFC_V3_2)
+		tmp = readnfc(&host->ip_regs->ipc);
+		if (tmp & NFC_V3_IPC_INT) {
+			tmp &= ~NFC_V3_IPC_INT;
+			writenfc(tmp, &host->ip_regs->ipc);
+#endif
+			break;
+		}
+		udelay(1);
+	}
+	if (max_retries < 0) {
+		pr_debug("%s(%d): INT not set\n",
+				__func__, param);
+	}
+}
+
+/*
+ * This function issues the specified command to the NAND device and
+ * waits for completion.
+ */
+static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
+{
+	pr_debug("send_cmd(host, 0x%x)\n", cmd);
+
+	writenfc(cmd, &host->regs->flash_cmd);
+	writenfc(NFC_CMD, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, cmd);
+}
+
+/*
+ * This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command.
+ */
+static void send_addr(struct mxc_nand_host *host, uint16_t addr)
+{
+	pr_debug("send_addr(host, 0x%x)\n", addr);
+
+	writenfc(addr, &host->regs->flash_addr);
+	writenfc(NFC_ADDR, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, addr);
+}
+
+/*
+ * This function requests the NANDFC to initiate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device.
+ */
+static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
+			int spare_only)
+{
+	if (spare_only)
+		pr_debug("send_prog_page (%d)\n", spare_only);
+
+	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+		int i;
+		/*
+		 *  The controller copies the 64 bytes of spare data from
+		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
+		 *  Copy the contiguous data starting in spare_area[0] to
+		 *  the four spare area buffers.
+		 */
+		for (i = 1; i < 4; i++) {
+			void __iomem *src = &host->regs->spare_area[0][i * 16];
+			void __iomem *dst = &host->regs->spare_area[i][0];
+
+			mxc_nand_memcpy32(dst, src, 16);
+		}
+	}
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	writenfc(buf_id, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+	uint32_t tmp = readnfc(&host->regs->config1);
+	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
+	writenfc(tmp, &host->regs->config1);
+#endif
+
+	/* Configure spare or page+spare access */
+	if (!host->pagesize_2k) {
+		uint32_t config1 = readnfc(&host->regs->config1);
+		if (spare_only)
+			config1 |= NFC_CONFIG1_SP_EN;
+		else
+			config1 &= ~NFC_CONFIG1_SP_EN;
+		writenfc(config1, &host->regs->config1);
+	}
+
+	writenfc(NFC_INPUT, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, spare_only);
+}
+
+/*
+ * Requests NANDFC to initiate the transfer of data from the
+ * NAND device into in the NANDFC ram buffer.
+ */
+static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
+		int spare_only)
+{
+	pr_debug("send_read_page (%d)\n", spare_only);
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	writenfc(buf_id, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+	uint32_t tmp = readnfc(&host->regs->config1);
+	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
+	writenfc(tmp, &host->regs->config1);
+#endif
+
+	/* Configure spare or page+spare access */
+	if (!host->pagesize_2k) {
+		uint32_t config1 = readnfc(&host->regs->config1);
+		if (spare_only)
+			config1 |= NFC_CONFIG1_SP_EN;
+		else
+			config1 &= ~NFC_CONFIG1_SP_EN;
+		writenfc(config1, &host->regs->config1);
+	}
+
+	writenfc(NFC_OUTPUT, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, spare_only);
+
+	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+		int i;
+
+		/*
+		 *  The controller copies the 64 bytes of spare data to
+		 *  the first 16 bytes of each of the 4 spare buffers.
+		 *  Make the data contiguous starting in spare_area[0].
+		 */
+		for (i = 1; i < 4; i++) {
+			void __iomem *src = &host->regs->spare_area[i][0];
+			void __iomem *dst = &host->regs->spare_area[0][i * 16];
+
+			mxc_nand_memcpy32(dst, src, 16);
+		}
+	}
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id(struct mxc_nand_host *host)
+{
+	uint32_t tmp;
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	/* NANDFC buffer 0 is used for device ID output */
+	writenfc(0x0, &host->regs->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+	tmp = readnfc(&host->regs->config1);
+	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
+	writenfc(tmp, &host->regs->config1);
+#endif
+
+	/* Read ID into main buffer */
+	tmp = readnfc(&host->regs->config1);
+	tmp &= ~NFC_CONFIG1_SP_EN;
+	writenfc(tmp, &host->regs->config1);
+
+	writenfc(NFC_ID, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, 0);
+}
+
+/*
+ * This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status.
+ */
+static uint16_t get_dev_status(struct mxc_nand_host *host)
+{
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	void __iomem *main_buf = host->regs->main_area[1];
+	uint32_t store;
+#endif
+	uint32_t ret, tmp;
+	/* Issue status request to NAND device */
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	/* store the main area1 first word, later do recovery */
+	store = readl(main_buf);
+	/* NANDFC buffer 1 is used for device status */
+	writenfc(1, &host->regs->buf_addr);
+#endif
+
+	/* Read status into main buffer */
+	tmp = readnfc(&host->regs->config1);
+	tmp &= ~NFC_CONFIG1_SP_EN;
+	writenfc(tmp, &host->regs->config1);
+
+	writenfc(NFC_STATUS, &host->regs->operation);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, TROP_US_DELAY, 0);
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	/*
+	 *  Status is placed in first word of main buffer
+	 * get status, then recovery area 1 data
+	 */
+	ret = readw(main_buf);
+	writel(store, main_buf);
+#elif defined(MXC_NFC_V3_2)
+	ret = readnfc(&host->regs->config1) >> 16;
+#endif
+
+	return ret;
+}
+
+/* This function is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+	/*
+	 * NFC handles R/B internally. Therefore, this function
+	 * always returns status as ready.
+	 */
+	return 1;
+}
+
+static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	uint16_t tmp = readnfc(&host->regs->config1);
+
+	if (on)
+		tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
+	else
+		tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+	writenfc(tmp, &host->regs->config1);
+#elif defined(MXC_NFC_V3_2)
+	uint32_t tmp = readnfc(&host->ip_regs->config2);
+
+	if (on)
+		tmp |= NFC_V3_CONFIG2_ECC_EN;
+	else
+		tmp &= ~NFC_V3_CONFIG2_ECC_EN;
+	writenfc(tmp, &host->ip_regs->config2);
+#endif
+}
+
+#ifdef CONFIG_MXC_NAND_HWECC
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	/*
+	 * If HW ECC is enabled, we turn it on during init. There is
+	 * no need to enable again here.
+	 */
+}
+
+#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
+				      struct nand_chip *chip,
+				      int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	uint8_t *buf = chip->oob_poi;
+	int length = mtd->oobsize;
+	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	uint8_t *bufpoi = buf;
+	int i, toread;
+
+	pr_debug("%s: Reading OOB area of page %u to oob %p\n",
+			 __func__, page, buf);
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
+	for (i = 0; i < chip->ecc.steps; i++) {
+		toread = min_t(int, length, chip->ecc.prepad);
+		if (toread) {
+			chip->read_buf(mtd, bufpoi, toread);
+			bufpoi += toread;
+			length -= toread;
+		}
+		bufpoi += chip->ecc.bytes;
+		host->col_addr += chip->ecc.bytes;
+		length -= chip->ecc.bytes;
+
+		toread = min_t(int, length, chip->ecc.postpad);
+		if (toread) {
+			chip->read_buf(mtd, bufpoi, toread);
+			bufpoi += toread;
+			length -= toread;
+		}
+	}
+	if (length > 0)
+		chip->read_buf(mtd, bufpoi, length);
+
+	_mxc_nand_enable_hwecc(mtd, 0);
+	chip->cmdfunc(mtd, NAND_CMD_READOOB,
+			mtd->writesize + chip->ecc.prepad, page);
+	bufpoi = buf + chip->ecc.prepad;
+	length = mtd->oobsize - chip->ecc.prepad;
+	for (i = 0; i < chip->ecc.steps; i++) {
+		toread = min_t(int, length, chip->ecc.bytes);
+		chip->read_buf(mtd, bufpoi, toread);
+		bufpoi += eccpitch;
+		length -= eccpitch;
+		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
+	}
+	_mxc_nand_enable_hwecc(mtd, 1);
+	return 1;
+}
+
+static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
+					   struct nand_chip *chip,
+					   uint8_t *buf,
+					   int oob_required,
+					   int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size;
+	int n;
+
+	_mxc_nand_enable_hwecc(mtd, 0);
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+
+	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
+		host->col_addr = n * eccsize;
+		chip->read_buf(mtd, buf, eccsize);
+		buf += eccsize;
+
+		host->col_addr = mtd->writesize + n * eccpitch;
+		if (chip->ecc.prepad) {
+			chip->read_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->read_buf(mtd, oob, eccbytes);
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->read_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size)
+		chip->read_buf(mtd, oob, size);
+	_mxc_nand_enable_hwecc(mtd, 1);
+
+	return 0;
+}
+
+static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
+				       struct nand_chip *chip,
+				       uint8_t *buf,
+				       int oob_required,
+				       int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	int n, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+
+	pr_debug("Reading page %u to buf %p oob %p\n",
+		 page, buf, oob);
+
+	/* first read the data area and the available portion of OOB */
+	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
+		int stat;
+
+		host->col_addr = n * eccsize;
+
+		chip->read_buf(mtd, p, eccsize);
+
+		host->col_addr = mtd->writesize + n * eccpitch;
+
+		if (chip->ecc.prepad) {
+			chip->read_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->read_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	n = mtd->oobsize - (oob - chip->oob_poi);
+	if (n)
+		chip->read_buf(mtd, oob, n);
+
+	/* Then switch ECC off and read the OOB area to get the ECC code */
+	_mxc_nand_enable_hwecc(mtd, 0);
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
+	eccsteps = chip->ecc.steps;
+	oob = chip->oob_poi + chip->ecc.prepad;
+	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
+		host->col_addr = mtd->writesize +
+				 n * eccpitch +
+				 chip->ecc.prepad;
+		chip->read_buf(mtd, oob, eccbytes);
+		oob += eccbytes + chip->ecc.postpad;
+	}
+	_mxc_nand_enable_hwecc(mtd, 1);
+	return 0;
+}
+
+static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
+				       struct nand_chip *chip, int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	int length = mtd->oobsize;
+	int i, len, status, steps = chip->ecc.steps;
+	const uint8_t *bufpoi = chip->oob_poi;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	for (i = 0; i < steps; i++) {
+		len = min_t(int, length, eccpitch);
+
+		chip->write_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		length -= len;
+		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
+	}
+	if (length > 0)
+		chip->write_buf(mtd, bufpoi, length);
+
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
+					     struct nand_chip *chip,
+					     const uint8_t *buf,
+					     int oob_required, int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size;
+	int n;
+
+	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
+		host->col_addr = n * eccsize;
+		chip->write_buf(mtd, buf, eccsize);
+		buf += eccsize;
+
+		host->col_addr = mtd->writesize + n * eccpitch;
+
+		if (chip->ecc.prepad) {
+			chip->write_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		host->col_addr += eccbytes;
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->write_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size)
+		chip->write_buf(mtd, oob, size);
+	return 0;
+}
+
+static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
+					 struct nand_chip *chip,
+					 const uint8_t *buf,
+					 int oob_required, int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	int i, n, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsteps = chip->ecc.steps;
+	const uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+
+	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+	for (i = n = 0;
+	     eccsteps;
+	     n++, eccsteps--, i += eccbytes, p += eccsize) {
+		host->col_addr = n * eccsize;
+
+		chip->write_buf(mtd, p, eccsize);
+
+		host->col_addr = mtd->writesize + n * eccpitch;
+
+		if (chip->ecc.prepad) {
+			chip->write_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->write_buf(mtd, oob, eccbytes);
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->write_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	i = mtd->oobsize - (oob - chip->oob_poi);
+	if (i)
+		chip->write_buf(mtd, oob, i);
+	return 0;
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+				 u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint32_t ecc_status = readl(&host->regs->ecc_status_result);
+	int subpages = mtd->writesize / nand_chip->subpagesize;
+	int pg2blk_shift = nand_chip->phys_erase_shift -
+			   nand_chip->page_shift;
+
+	do {
+		if ((ecc_status & 0xf) > 4) {
+			static int last_bad = -1;
+
+			if (last_bad != host->page_addr >> pg2blk_shift) {
+				last_bad = host->page_addr >> pg2blk_shift;
+				printk(KERN_DEBUG
+				       "MXC_NAND: HWECC uncorrectable ECC error"
+				       " in block %u page %u subpage %d\n",
+				       last_bad, host->page_addr,
+				       mtd->writesize / nand_chip->subpagesize
+					    - subpages);
+			}
+			return -EBADMSG;
+		}
+		ecc_status >>= 4;
+		subpages--;
+	} while (subpages > 0);
+
+	return 0;
+}
+#else
+#define mxc_nand_read_page_syndrome NULL
+#define mxc_nand_read_page_raw_syndrome NULL
+#define mxc_nand_read_oob_syndrome NULL
+#define mxc_nand_write_page_syndrome NULL
+#define mxc_nand_write_page_raw_syndrome NULL
+#define mxc_nand_write_oob_syndrome NULL
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+				 u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	/*
+	 * 1-Bit errors are automatically corrected in HW.  No need for
+	 * additional correction.  2-Bit errors cannot be corrected by
+	 * HW ECC, so we need to return failure
+	 */
+	uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
+
+	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+		return -EBADMSG;
+	}
+
+	return 0;
+}
+#endif
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				  u_char *ecc_code)
+{
+	return 0;
+}
+#endif
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint8_t ret = 0;
+	uint16_t col;
+	uint16_t __iomem *main_buf =
+		(uint16_t __iomem *)host->regs->main_area[0];
+	uint16_t __iomem *spare_buf =
+		(uint16_t __iomem *)host->regs->spare_area[0];
+	union {
+		uint16_t word;
+		uint8_t bytes[2];
+	} nfc_word;
+
+	/* Check for status request */
+	if (host->status_request)
+		return get_dev_status(host) & 0xFF;
+
+	/* Get column for 16-bit access */
+	col = host->col_addr >> 1;
+
+	/* If we are accessing the spare region */
+	if (host->spare_only)
+		nfc_word.word = readw(&spare_buf[col]);
+	else
+		nfc_word.word = readw(&main_buf[col]);
+
+	/* Pick upper/lower byte of word from RAM buffer */
+	ret = nfc_word.bytes[host->col_addr & 0x1];
+
+	/* Update saved column address */
+	if (nand_chip->options & NAND_BUSWIDTH_16)
+		host->col_addr += 2;
+	else
+		host->col_addr++;
+
+	return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint16_t col, ret;
+	uint16_t __iomem *p;
+
+	pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
+
+	col = host->col_addr;
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	if (col < mtd->writesize) {
+		p = (uint16_t __iomem *)(host->regs->main_area[0] +
+				(col >> 1));
+	} else {
+		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
+				((col - mtd->writesize) >> 1));
+	}
+
+	if (col & 1) {
+		union {
+			uint16_t word;
+			uint8_t bytes[2];
+		} nfc_word[3];
+
+		nfc_word[0].word = readw(p);
+		nfc_word[1].word = readw(p + 1);
+
+		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
+		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
+
+		ret = nfc_word[2].word;
+	} else {
+		ret = readw(p);
+	}
+
+	/* Update saved column address */
+	host->col_addr = col + 2;
+
+	return ret;
+}
+
+/*
+ * Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash
+ */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+				const u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int n, col, i = 0;
+
+	pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+		 len);
+
+	col = host->col_addr;
+
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	n = mtd->writesize + mtd->oobsize - col;
+	n = min(len, n);
+
+	pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
+
+	while (n > 0) {
+		void __iomem *p;
+
+		if (col < mtd->writesize) {
+			p = host->regs->main_area[0] + (col & ~3);
+		} else {
+			p = host->regs->spare_area[0] -
+						mtd->writesize + (col & ~3);
+		}
+
+		pr_debug("%s:%d: p = %p\n", __func__,
+			 __LINE__, p);
+
+		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
+			union {
+				uint32_t word;
+				uint8_t bytes[4];
+			} nfc_word;
+
+			nfc_word.word = readl(p);
+			nfc_word.bytes[col & 3] = buf[i++];
+			n--;
+			col++;
+
+			writel(nfc_word.word, p);
+		} else {
+			int m = mtd->writesize - col;
+
+			if (col >= mtd->writesize)
+				m += mtd->oobsize;
+
+			m = min(n, m) & ~3;
+
+			pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+				 __func__,  __LINE__, n, m, i, col);
+
+			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
+			col += m;
+			i += m;
+			n -= m;
+		}
+	}
+	/* Update saved column address */
+	host->col_addr = col;
+}
+
+/*
+ * Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int n, col, i = 0;
+
+	pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
+		 len);
+
+	col = host->col_addr;
+
+	/* Adjust saved column address */
+	if (col < mtd->writesize && host->spare_only)
+		col += mtd->writesize;
+
+	n = mtd->writesize + mtd->oobsize - col;
+	n = min(len, n);
+
+	while (n > 0) {
+		void __iomem *p;
+
+		if (col < mtd->writesize) {
+			p = host->regs->main_area[0] + (col & ~3);
+		} else {
+			p = host->regs->spare_area[0] -
+					mtd->writesize + (col & ~3);
+		}
+
+		if (((col | (int)&buf[i]) & 3) || n < 4) {
+			union {
+				uint32_t word;
+				uint8_t bytes[4];
+			} nfc_word;
+
+			nfc_word.word = readl(p);
+			buf[i++] = nfc_word.bytes[col & 3];
+			n--;
+			col++;
+		} else {
+			int m = mtd->writesize - col;
+
+			if (col >= mtd->writesize)
+				m += mtd->oobsize;
+
+			m = min(n, m) & ~3;
+			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
+
+			col += m;
+			i += m;
+			n -= m;
+		}
+	}
+	/* Update saved column address */
+	host->col_addr = col;
+}
+
+/*
+ * This function is used by upper layer for select and
+ * deselect of the NAND chip
+ */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	switch (chip) {
+	case -1:
+		/* TODO: Disable the NFC clock */
+		if (host->clk_act)
+			host->clk_act = 0;
+		break;
+	case 0:
+		/* TODO: Enable the NFC clock */
+		if (!host->clk_act)
+			host->clk_act = 1;
+		break;
+
+	default:
+		break;
+	}
+}
+
+/*
+ * Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash
+ */
+void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+				int column, int page_addr)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+		 command, column, page_addr);
+
+	/* Reset command state information */
+	host->status_request = false;
+
+	/* Command pre-processing step */
+	switch (command) {
+
+	case NAND_CMD_STATUS:
+		host->col_addr = 0;
+		host->status_request = true;
+		break;
+
+	case NAND_CMD_READ0:
+		host->page_addr = page_addr;
+		host->col_addr = column;
+		host->spare_only = false;
+		break;
+
+	case NAND_CMD_READOOB:
+		host->col_addr = column;
+		host->spare_only = true;
+		if (host->pagesize_2k)
+			command = NAND_CMD_READ0; /* only READ0 is valid */
+		break;
+
+	case NAND_CMD_SEQIN:
+		if (column >= mtd->writesize) {
+			/*
+			 * before sending SEQIN command for partial write,
+			 * we need read one page out. FSL NFC does not support
+			 * partial write. It always sends out 512+ecc+512+ecc
+			 * for large page nand flash. But for small page nand
+			 * flash, it does support SPARE ONLY operation.
+			 */
+			if (host->pagesize_2k) {
+				/* call ourself to read a page */
+				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+						page_addr);
+			}
+
+			host->col_addr = column - mtd->writesize;
+			host->spare_only = true;
+
+			/* Set program pointer to spare region */
+			if (!host->pagesize_2k)
+				send_cmd(host, NAND_CMD_READOOB);
+		} else {
+			host->spare_only = false;
+			host->col_addr = column;
+
+			/* Set program pointer to page start */
+			if (!host->pagesize_2k)
+				send_cmd(host, NAND_CMD_READ0);
+		}
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		send_prog_page(host, 0, host->spare_only);
+
+		if (host->pagesize_2k && is_mxc_nfc_1()) {
+			/* data in 4 areas */
+			send_prog_page(host, 1, host->spare_only);
+			send_prog_page(host, 2, host->spare_only);
+			send_prog_page(host, 3, host->spare_only);
+		}
+
+		break;
+	}
+
+	/* Write out the command to the device. */
+	send_cmd(host, command);
+
+	/* Write out column address, if necessary */
+	if (column != -1) {
+		/*
+		 * MXC NANDFC can only perform full page+spare or
+		 * spare-only read/write. When the upper layers perform
+		 * a read/write buffer operation, we will use the saved
+		 * column address to index into the full page.
+		 */
+		send_addr(host, 0);
+		if (host->pagesize_2k)
+			/* another col addr cycle for 2k page */
+			send_addr(host, 0);
+	}
+
+	/* Write out page address, if necessary */
+	if (page_addr != -1) {
+		u32 page_mask = nand_chip->pagemask;
+		do {
+			send_addr(host, page_addr & 0xFF);
+			page_addr >>= 8;
+			page_mask >>= 8;
+		} while (page_mask);
+	}
+
+	/* Command post-processing step */
+	switch (command) {
+
+	case NAND_CMD_RESET:
+		break;
+
+	case NAND_CMD_READOOB:
+	case NAND_CMD_READ0:
+		if (host->pagesize_2k) {
+			/* send read confirm command */
+			send_cmd(host, NAND_CMD_READSTART);
+			/* read for each AREA */
+			send_read_page(host, 0, host->spare_only);
+			if (is_mxc_nfc_1()) {
+				send_read_page(host, 1, host->spare_only);
+				send_read_page(host, 2, host->spare_only);
+				send_read_page(host, 3, host->spare_only);
+			}
+		} else {
+			send_read_page(host, 0, host->spare_only);
+		}
+		break;
+
+	case NAND_CMD_READID:
+		host->col_addr = 0;
+		send_read_id(host);
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		break;
+
+	case NAND_CMD_STATUS:
+		break;
+
+	case NAND_CMD_ERASE2:
+		break;
+	}
+}
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	0,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	0,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+#endif
+
+int board_nand_init(struct nand_chip *this)
+{
+	struct mtd_info *mtd;
+#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+	uint32_t tmp;
+#endif
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	this->bbt_options |= NAND_BBT_USE_FLASH;
+	this->bbt_td = &bbt_main_descr;
+	this->bbt_md = &bbt_mirror_descr;
+#endif
+
+	/* structures must be linked */
+	mtd = &this->mtd;
+	host->nand = this;
+
+	/* 5 us command delay time */
+	this->chip_delay = 5;
+
+	nand_set_controller_data(this, host);
+	this->dev_ready = mxc_nand_dev_ready;
+	this->cmdfunc = mxc_nand_command;
+	this->select_chip = mxc_nand_select_chip;
+	this->read_byte = mxc_nand_read_byte;
+	this->read_word = mxc_nand_read_word;
+	this->write_buf = mxc_nand_write_buf;
+	this->read_buf = mxc_nand_read_buf;
+
+	host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
+#ifdef MXC_NFC_V3_2
+	host->ip_regs =
+		(struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
+#endif
+	host->clk_act = 1;
+
+#ifdef CONFIG_MXC_NAND_HWECC
+	this->ecc.calculate = mxc_nand_calculate_ecc;
+	this->ecc.hwctl = mxc_nand_enable_hwecc;
+	this->ecc.correct = mxc_nand_correct_data;
+	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
+		this->ecc.mode = NAND_ECC_HW_SYNDROME;
+		this->ecc.read_page = mxc_nand_read_page_syndrome;
+		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
+		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
+		this->ecc.write_page = mxc_nand_write_page_syndrome;
+		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
+		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
+		this->ecc.bytes = 9;
+		this->ecc.prepad = 7;
+	} else {
+		this->ecc.mode = NAND_ECC_HW;
+	}
+
+	if (is_mxc_nfc_1())
+		this->ecc.strength = 1;
+	else
+		this->ecc.strength = 4;
+
+	host->pagesize_2k = 0;
+
+	this->ecc.size = 512;
+	_mxc_nand_enable_hwecc(mtd, 1);
+#else
+	this->ecc.layout = &nand_soft_eccoob;
+	this->ecc.mode = NAND_ECC_SOFT;
+	_mxc_nand_enable_hwecc(mtd, 0);
+#endif
+	/* Reset NAND */
+	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	/* NAND bus width determines access functions used by upper layer */
+	if (is_16bit_nand())
+		this->options |= NAND_BUSWIDTH_16;
+
+#ifdef CONFIG_SYS_NAND_LARGEPAGE
+	host->pagesize_2k = 1;
+	this->ecc.layout = &nand_hw_eccoob2k;
+#else
+	host->pagesize_2k = 0;
+	this->ecc.layout = &nand_hw_eccoob;
+#endif
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+#ifdef MXC_NFC_V2_1
+	tmp = readnfc(&host->regs->config1);
+	tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
+	tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
+	writenfc(tmp, &host->regs->config1);
+	if (host->pagesize_2k)
+		writenfc(64/2, &host->regs->spare_area_size);
+	else
+		writenfc(16/2, &host->regs->spare_area_size);
+#endif
+
+	/*
+	 * preset operation
+	 * Unlock the internal RAM Buffer
+	 */
+	writenfc(0x2, &host->regs->config);
+
+	/* Blocks to be unlocked */
+	writenfc(0x0, &host->regs->unlockstart_blkaddr);
+	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
+	 * unlockend_blkaddr, but the magic 0x4000 does not always work
+	 * when writing more than some 32 megabytes (on 2k page nands)
+	 * However 0xFFFF doesn't seem to have this kind
+	 * of limitation (tried it back and forth several times).
+	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
+	 * only, but probably this was not tested there for v1.
+	 * The very same limitation seems to apply to this kernel driver.
+	 * This might be NAND chip specific and the i.MX31 datasheet is
+	 * extremely vague about the semantics of this register.
+	 */
+	writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
+
+	/* Unlock Block Command for given address range */
+	writenfc(0x4, &host->regs->wrprot);
+#elif defined(MXC_NFC_V3_2)
+	writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
+	writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
+
+	/* Unlock the internal RAM Buffer */
+	writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
+			&host->ip_regs->wrprot);
+
+	/* Blocks to be unlocked */
+	for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
+		writenfc(0x0 | 0xFFFF << 16,
+				&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
+
+	writenfc(0, &host->ip_regs->ipc);
+
+	tmp = readnfc(&host->ip_regs->config2);
+	tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
+			NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
+	tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
+
+	if (host->pagesize_2k) {
+		tmp |= NFC_V3_CONFIG2_SPAS(64/2);
+		tmp |= NFC_V3_CONFIG2_PS_2048;
+	} else {
+		tmp |= NFC_V3_CONFIG2_SPAS(16/2);
+		tmp |= NFC_V3_CONFIG2_PS_512;
+	}
+
+	writenfc(tmp, &host->ip_regs->config2);
+
+	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
+			NFC_V3_CONFIG3_NO_SDMA |
+			NFC_V3_CONFIG3_RBB_MODE |
+			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
+			NFC_V3_CONFIG3_ADD_OP(0);
+
+	if (!(this->options & NAND_BUSWIDTH_16))
+		tmp |= NFC_V3_CONFIG3_FW8;
+
+	writenfc(tmp, &host->ip_regs->config3);
+
+	writenfc(0, &host->ip_regs->delay_line);
+#endif
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/mxc_nand.h b/drivers/mtd/nand/raw/mxc_nand.h
new file mode 100644
index 0000000..1c7f3a2
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxc_nand.h
@@ -0,0 +1,208 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * (c) 2009 Magnus Lilja <lilja.magnus@gmail.com>
+ */
+
+#ifndef __MXC_NAND_H
+#define __MXC_NAND_H
+
+/*
+ * Register map and bit definitions for the Freescale NAND Flash Controller
+ * present in various i.MX devices.
+ *
+ * MX31 and MX27 have version 1, which has:
+ *	4 512-byte main buffers and
+ *	4 16-byte spare buffers
+ *	to support up to 2K byte pagesize nand.
+ *	Reading or writing a 2K page requires 4 FDI/FDO cycles.
+ *
+ * MX25 and MX35 have version 2.1, and MX51 and MX53 have version 3.2, which
+ * have:
+ *	8 512-byte main buffers and
+ *	8 64-byte spare buffers
+ *	to support up to 4K byte pagesize nand.
+ *	Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
+ *	Also some of registers are moved and/or changed meaning as seen below.
+ */
+#if defined(CONFIG_MX27) || defined(CONFIG_MX31)
+#define MXC_NFC_V1
+#define is_mxc_nfc_1()		1
+#define is_mxc_nfc_21()		0
+#define is_mxc_nfc_32()		0
+#elif defined(CONFIG_MX25) || defined(CONFIG_MX35)
+#define MXC_NFC_V2_1
+#define is_mxc_nfc_1()		0
+#define is_mxc_nfc_21()		1
+#define is_mxc_nfc_32()		0
+#elif defined(CONFIG_MX51) || defined(CONFIG_MX53)
+#define MXC_NFC_V3
+#define MXC_NFC_V3_2
+#define is_mxc_nfc_1()		0
+#define is_mxc_nfc_21()		0
+#define is_mxc_nfc_32()		1
+#else
+#error "MXC NFC implementation not supported"
+#endif
+#define is_mxc_nfc_3()		is_mxc_nfc_32()
+
+#if defined(MXC_NFC_V1)
+#define NAND_MXC_NR_BUFS		4
+#define NAND_MXC_SPARE_BUF_SIZE		16
+#define NAND_MXC_REG_OFFSET		0xe00
+#define NAND_MXC_2K_MULTI_CYCLE
+#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+#define NAND_MXC_NR_BUFS		8
+#define NAND_MXC_SPARE_BUF_SIZE		64
+#define NAND_MXC_REG_OFFSET		0x1e00
+#endif
+
+struct mxc_nand_regs {
+	u8 main_area[NAND_MXC_NR_BUFS][0x200];
+	u8 spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
+	/*
+	 * reserved size is offset of nfc registers
+	 * minus total main and spare sizes
+	 */
+	u8 reserved1[NAND_MXC_REG_OFFSET
+		- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
+#if defined(MXC_NFC_V1)
+	u16 buf_size;
+	u16 reserved2;
+	u16 buf_addr;
+	u16 flash_addr;
+	u16 flash_cmd;
+	u16 config;
+	u16 ecc_status_result;
+	u16 rsltmain_area;
+	u16 rsltspare_area;
+	u16 wrprot;
+	u16 unlockstart_blkaddr;
+	u16 unlockend_blkaddr;
+	u16 nf_wrprst;
+	u16 config1;
+	u16 config2;
+#elif defined(MXC_NFC_V2_1)
+	u16 reserved2[2];
+	u16 buf_addr;
+	u16 flash_addr;
+	u16 flash_cmd;
+	u16 config;
+	u32 ecc_status_result;
+	u16 spare_area_size;
+	u16 wrprot;
+	u16 reserved3[2];
+	u16 nf_wrprst;
+	u16 config1;
+	u16 config2;
+	u16 reserved4;
+	u16 unlockstart_blkaddr;
+	u16 unlockend_blkaddr;
+	u16 unlockstart_blkaddr1;
+	u16 unlockend_blkaddr1;
+	u16 unlockstart_blkaddr2;
+	u16 unlockend_blkaddr2;
+	u16 unlockstart_blkaddr3;
+	u16 unlockend_blkaddr3;
+#elif defined(MXC_NFC_V3_2)
+	u32 flash_cmd;
+	u32 flash_addr[12];
+	u32 config1;
+	u32 ecc_status_result;
+	u32 status_sum;
+	u32 launch;
+#endif
+};
+
+#ifdef MXC_NFC_V3_2
+struct mxc_nand_ip_regs {
+	u32 wrprot;
+	u32 wrprot_unlock_blkaddr[8];
+	u32 config2;
+	u32 config3;
+	u32 ipc;
+	u32 err_addr;
+	u32 delay_line;
+};
+#endif
+
+/* Set FCMD to 1, rest to 0 for Command operation */
+#define NFC_CMD				0x1
+
+/* Set FADD to 1, rest to 0 for Address operation */
+#define NFC_ADDR			0x2
+
+/* Set FDI to 1, rest to 0 for Input operation */
+#define NFC_INPUT			0x4
+
+/* Set FDO to 001, rest to 0 for Data Output operation */
+#define NFC_OUTPUT			0x8
+
+/* Set FDO to 010, rest to 0 for Read ID operation */
+#define NFC_ID				0x10
+
+/* Set FDO to 100, rest to 0 for Read Status operation */
+#define NFC_STATUS			0x20
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+#define NFC_CONFIG1_SP_EN		(1 << 2)
+#define NFC_CONFIG1_RST			(1 << 6)
+#define NFC_CONFIG1_CE			(1 << 7)
+#elif defined(MXC_NFC_V3_2)
+#define NFC_CONFIG1_SP_EN		(1 << 0)
+#define NFC_CONFIG1_CE			(1 << 1)
+#define NFC_CONFIG1_RST			(1 << 2)
+#endif
+#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
+#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
+#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
+#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
+#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
+#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
+#define NFC_V3_CONFIG1_RBA_MASK		(0x7 << 4)
+#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7) << 4)
+
+#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
+#define NFC_V3_CONFIG2_PS_MASK		(0x3 << 0)
+#define NFC_V3_CONFIG2_PS_512		(0 << 0)
+#define NFC_V3_CONFIG2_PS_2048		(1 << 0)
+#define NFC_V3_CONFIG2_PS_4096		(2 << 0)
+#define NFC_V3_CONFIG2_ONE_CYCLE	(1 << 2)
+#define NFC_V3_CONFIG2_ECC_EN		(1 << 3)
+#define NFC_V3_CONFIG2_2CMD_PHASES	(1 << 4)
+#define NFC_V3_CONFIG2_NUM_ADDR_PH0	(1 << 5)
+#define NFC_V3_CONFIG2_ECC_MODE_8	(1 << 6)
+#define NFC_V3_CONFIG2_PPB_MASK		(0x3 << 7)
+#define NFC_V3_CONFIG2_PPB(x)		(((x) & 0x3) << 7)
+#define NFC_V3_CONFIG2_EDC_MASK		(0x7 << 9)
+#define NFC_V3_CONFIG2_EDC(x)		(((x) & 0x7) << 9)
+#define NFC_V3_CONFIG2_NUM_ADDR_PH1(x)	(((x) & 0x3) << 12)
+#define NFC_V3_CONFIG2_INT_MSK		(1 << 15)
+#define NFC_V3_CONFIG2_SPAS_MASK	(0xff << 16)
+#define NFC_V3_CONFIG2_SPAS(x)		(((x) & 0xff) << 16)
+#define NFC_V3_CONFIG2_ST_CMD_MASK	(0xff << 24)
+#define NFC_V3_CONFIG2_ST_CMD(x)	(((x) & 0xff) << 24)
+
+#define NFC_V3_CONFIG3_ADD_OP(x)	(((x) & 0x3) << 0)
+#define NFC_V3_CONFIG3_FW8		(1 << 3)
+#define NFC_V3_CONFIG3_SBB(x)		(((x) & 0x7) << 8)
+#define NFC_V3_CONFIG3_NUM_OF_DEVS(x)	(((x) & 0x7) << 12)
+#define NFC_V3_CONFIG3_RBB_MODE		(1 << 15)
+#define NFC_V3_CONFIG3_NO_SDMA		(1 << 20)
+
+#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
+#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
+
+#define NFC_V3_IPC_CREQ			(1 << 0)
+#define NFC_V3_IPC_INT			(1 << 31)
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+#define operation	config2
+#define readnfc		readw
+#define writenfc	writew
+#elif defined(MXC_NFC_V3_2)
+#define operation	launch
+#define readnfc		readl
+#define writenfc	writel
+#endif
+
+#endif /* __MXC_NAND_H */
diff --git a/drivers/mtd/nand/raw/mxc_nand_spl.c b/drivers/mtd/nand/raw/mxc_nand_spl.c
new file mode 100644
index 0000000..6c03db8
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxc_nand_spl.c
@@ -0,0 +1,350 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2009
+ * Magnus Lilja <lilja.magnus@gmail.com>
+ *
+ * (C) Copyright 2008
+ * Maxim Artamonov, <scn1874 at yandex.ru>
+ *
+ * (C) Copyright 2006-2008
+ * Stefan Roese, DENX Software Engineering, sr at denx.de.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/arch/imx-regs.h>
+#include <asm/io.h>
+#include "mxc_nand.h"
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR;
+#elif defined(MXC_NFC_V3_2)
+static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR_AXI;
+static struct mxc_nand_ip_regs *const nfc_ip = (void *)NFC_BASE_ADDR;
+#endif
+
+static void nfc_wait_ready(void)
+{
+	uint32_t tmp;
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	while (!(readnfc(&nfc->config2) & NFC_V1_V2_CONFIG2_INT))
+		;
+
+	/* Reset interrupt flag */
+	tmp = readnfc(&nfc->config2);
+	tmp &= ~NFC_V1_V2_CONFIG2_INT;
+	writenfc(tmp, &nfc->config2);
+#elif defined(MXC_NFC_V3_2)
+	while (!(readnfc(&nfc_ip->ipc) & NFC_V3_IPC_INT))
+		;
+
+	/* Reset interrupt flag */
+	tmp = readnfc(&nfc_ip->ipc);
+	tmp &= ~NFC_V3_IPC_INT;
+	writenfc(tmp, &nfc_ip->ipc);
+#endif
+}
+
+static void nfc_nand_init(void)
+{
+#if defined(MXC_NFC_V3_2)
+	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
+	int tmp;
+
+	tmp = (readnfc(&nfc_ip->config2) & ~(NFC_V3_CONFIG2_SPAS_MASK |
+			NFC_V3_CONFIG2_EDC_MASK | NFC_V3_CONFIG2_PS_MASK)) |
+		NFC_V3_CONFIG2_SPAS(CONFIG_SYS_NAND_OOBSIZE / 2) |
+		NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_ECC_EN |
+		NFC_V3_CONFIG2_ONE_CYCLE;
+	if (CONFIG_SYS_NAND_PAGE_SIZE == 4096)
+		tmp |= NFC_V3_CONFIG2_PS_4096;
+	else if (CONFIG_SYS_NAND_PAGE_SIZE == 2048)
+		tmp |= NFC_V3_CONFIG2_PS_2048;
+	else if (CONFIG_SYS_NAND_PAGE_SIZE == 512)
+		tmp |= NFC_V3_CONFIG2_PS_512;
+	/*
+	 * if spare size is larger that 16 bytes per 512 byte hunk
+	 * then use 8 symbol correction instead of 4
+	 */
+	if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
+		tmp |= NFC_V3_CONFIG2_ECC_MODE_8;
+	else
+		tmp &= ~NFC_V3_CONFIG2_ECC_MODE_8;
+	writenfc(tmp, &nfc_ip->config2);
+
+	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
+			NFC_V3_CONFIG3_NO_SDMA |
+			NFC_V3_CONFIG3_RBB_MODE |
+			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
+			NFC_V3_CONFIG3_ADD_OP(0);
+#ifndef CONFIG_SYS_NAND_BUSWIDTH_16
+	tmp |= NFC_V3_CONFIG3_FW8;
+#endif
+	writenfc(tmp, &nfc_ip->config3);
+
+	writenfc(0, &nfc_ip->delay_line);
+#elif defined(MXC_NFC_V2_1)
+	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
+	int config1;
+
+	writenfc(CONFIG_SYS_NAND_OOBSIZE / 2, &nfc->spare_area_size);
+
+	/* unlocking RAM Buff */
+	writenfc(0x2, &nfc->config);
+
+	/* hardware ECC checking and correct */
+	config1 = readnfc(&nfc->config1) | NFC_V1_V2_CONFIG1_ECC_EN |
+			NFC_V1_V2_CONFIG1_INT_MSK | NFC_V2_CONFIG1_ONE_CYCLE |
+			NFC_V2_CONFIG1_FP_INT;
+	/*
+	 * if spare size is larger that 16 bytes per 512 byte hunk
+	 * then use 8 symbol correction instead of 4
+	 */
+	if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
+		config1 &= ~NFC_V2_CONFIG1_ECC_MODE_4;
+	else
+		config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
+	writenfc(config1, &nfc->config1);
+#elif defined(MXC_NFC_V1)
+	/* unlocking RAM Buff */
+	writenfc(0x2, &nfc->config);
+
+	/* hardware ECC checking and correct */
+	writenfc(NFC_V1_V2_CONFIG1_ECC_EN | NFC_V1_V2_CONFIG1_INT_MSK,
+			&nfc->config1);
+#endif
+}
+
+static void nfc_nand_command(unsigned short command)
+{
+	writenfc(command, &nfc->flash_cmd);
+	writenfc(NFC_CMD, &nfc->operation);
+	nfc_wait_ready();
+}
+
+static void nfc_nand_address(unsigned short address)
+{
+	writenfc(address, &nfc->flash_addr);
+	writenfc(NFC_ADDR, &nfc->operation);
+	nfc_wait_ready();
+}
+
+static void nfc_nand_page_address(unsigned int page_address)
+{
+	unsigned int page_count;
+
+	nfc_nand_address(0x00);
+
+	/* code only for large page flash */
+	if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
+		nfc_nand_address(0x00);
+
+	page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
+
+	if (page_address <= page_count) {
+		page_count--; /* transform 0x01000000 to 0x00ffffff */
+		do {
+			nfc_nand_address(page_address & 0xff);
+			page_address = page_address >> 8;
+			page_count = page_count >> 8;
+		} while (page_count);
+	}
+
+	nfc_nand_address(0x00);
+}
+
+static void nfc_nand_data_output(void)
+{
+#ifdef NAND_MXC_2K_MULTI_CYCLE
+	int i;
+#endif
+
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	writenfc(0, &nfc->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+	int config1 = readnfc(&nfc->config1);
+	config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
+	writenfc(config1, &nfc->config1);
+#endif
+	writenfc(NFC_OUTPUT, &nfc->operation);
+	nfc_wait_ready();
+#ifdef NAND_MXC_2K_MULTI_CYCLE
+	/*
+	 * This NAND controller requires multiple input commands
+	 * for pages larger than 512 bytes.
+	 */
+	for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
+		writenfc(i, &nfc->buf_addr);
+		writenfc(NFC_OUTPUT, &nfc->operation);
+		nfc_wait_ready();
+	}
+#endif
+}
+
+static int nfc_nand_check_ecc(void)
+{
+#if defined(MXC_NFC_V1)
+	u16 ecc_status = readw(&nfc->ecc_status_result);
+	return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2;
+#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
+	u32 ecc_status = readl(&nfc->ecc_status_result);
+	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
+	int err_limit = CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16 ? 8 : 4;
+	int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512;
+
+	do {
+		if ((ecc_status & 0xf) > err_limit)
+			return 1;
+		ecc_status >>= 4;
+	} while (--subpages);
+
+	return 0;
+#endif
+}
+
+static void nfc_nand_read_page(unsigned int page_address)
+{
+	/* read in first 0 buffer */
+#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
+	writenfc(0, &nfc->buf_addr);
+#elif defined(MXC_NFC_V3_2)
+	int config1 = readnfc(&nfc->config1);
+	config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
+	writenfc(config1, &nfc->config1);
+#endif
+	nfc_nand_command(NAND_CMD_READ0);
+	nfc_nand_page_address(page_address);
+
+	if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
+		nfc_nand_command(NAND_CMD_READSTART);
+
+	nfc_nand_data_output(); /* fill the main buffer 0 */
+}
+
+static int nfc_read_page(unsigned int page_address, unsigned char *buf)
+{
+	int i;
+	u32 *src;
+	u32 *dst;
+
+	nfc_nand_read_page(page_address);
+
+	if (nfc_nand_check_ecc())
+		return -EBADMSG;
+
+	src = (u32 *)&nfc->main_area[0][0];
+	dst = (u32 *)buf;
+
+	/* main copy loop from NAND-buffer to SDRAM memory */
+	for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) {
+		writel(readl(src), dst);
+		src++;
+		dst++;
+	}
+
+	return 0;
+}
+
+static int is_badblock(int pagenumber)
+{
+	int page = pagenumber;
+	u32 badblock;
+	u32 *src;
+
+	/* Check the first two pages for bad block markers */
+	for (page = pagenumber; page < pagenumber + 2; page++) {
+		nfc_nand_read_page(page);
+
+		src = (u32 *)&nfc->spare_area[0][0];
+
+		/*
+		 * IMPORTANT NOTE: The nand flash controller uses a non-
+		 * standard layout for large page devices. This can
+		 * affect the position of the bad block marker.
+		 */
+		/* Get the bad block marker */
+		badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
+		badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
+		badblock &= 0xff;
+
+		/* bad block marker verify */
+		if (badblock != 0xff)
+			return 1; /* potential bad block */
+	}
+
+	return 0;
+}
+
+int nand_spl_load_image(uint32_t from, unsigned int size, void *buf)
+{
+	int i;
+	unsigned int page;
+	unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
+				CONFIG_SYS_NAND_PAGE_SIZE;
+
+	nfc_nand_init();
+
+	/* Convert to page number */
+	page = from / CONFIG_SYS_NAND_PAGE_SIZE;
+	i = 0;
+
+	size = roundup(size, CONFIG_SYS_NAND_PAGE_SIZE);
+	while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) {
+		if (nfc_read_page(page, buf) < 0)
+			return -1;
+
+		page++;
+		i++;
+		buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;
+
+		/*
+		 * Check if we have crossed a block boundary, and if so
+		 * check for bad block.
+		 */
+		if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) {
+			/*
+			 * Yes, new block. See if this block is good. If not,
+			 * loop until we find a good block.
+			 */
+			while (is_badblock(page)) {
+				page = page + CONFIG_SYS_NAND_PAGE_COUNT;
+				/* Check i we've reached the end of flash. */
+				if (page >= maxpages)
+					return -1;
+			}
+		}
+	}
+
+	return 0;
+}
+
+#ifndef CONFIG_SPL_FRAMEWORK
+/*
+ * The main entry for NAND booting. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts it from there.
+ */
+void nand_boot(void)
+{
+	__attribute__((noreturn)) void (*uboot)(void);
+
+	/*
+	 * CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must
+	 * be aligned to full pages
+	 */
+	if (!nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
+			CONFIG_SYS_NAND_U_BOOT_SIZE,
+			(uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) {
+		/* Copy from NAND successful, start U-Boot */
+		uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+		uboot();
+	} else {
+		/* Unrecoverable error when copying from NAND */
+		hang();
+	}
+}
+#endif
+
+void nand_init(void) {}
+void nand_deselect(void) {}
diff --git a/drivers/mtd/nand/raw/mxs_nand.c b/drivers/mtd/nand/raw/mxs_nand.c
new file mode 100644
index 0000000..e334181
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxs_nand.c
@@ -0,0 +1,1302 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Freescale i.MX28 NAND flash driver
+ *
+ * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
+ * on behalf of DENX Software Engineering GmbH
+ *
+ * Based on code from LTIB:
+ * Freescale GPMI NFC NAND Flash Driver
+ *
+ * Copyright (C) 2010 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ */
+
+#include <common.h>
+#include <dm.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/sizes.h>
+#include <linux/types.h>
+#include <malloc.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/imx-regs.h>
+#include <asm/mach-imx/regs-bch.h>
+#include <asm/mach-imx/regs-gpmi.h>
+#include <asm/arch/sys_proto.h>
+#include "mxs_nand.h"
+
+#define	MXS_NAND_DMA_DESCRIPTOR_COUNT		4
+
+#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
+#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	2
+#else
+#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	0
+#endif
+#define	MXS_NAND_METADATA_SIZE			10
+#define	MXS_NAND_BITS_PER_ECC_LEVEL		13
+
+#if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
+#define	MXS_NAND_COMMAND_BUFFER_SIZE		32
+#else
+#define	MXS_NAND_COMMAND_BUFFER_SIZE		CONFIG_SYS_CACHELINE_SIZE
+#endif
+
+#define	MXS_NAND_BCH_TIMEOUT			10000
+
+struct nand_ecclayout fake_ecc_layout;
+
+/*
+ * Cache management functions
+ */
+#ifndef	CONFIG_SYS_DCACHE_OFF
+static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
+{
+	uint32_t addr = (uint32_t)info->data_buf;
+
+	flush_dcache_range(addr, addr + info->data_buf_size);
+}
+
+static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
+{
+	uint32_t addr = (uint32_t)info->data_buf;
+
+	invalidate_dcache_range(addr, addr + info->data_buf_size);
+}
+
+static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
+{
+	uint32_t addr = (uint32_t)info->cmd_buf;
+
+	flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
+}
+#else
+static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
+static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
+static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
+#endif
+
+static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
+{
+	struct mxs_dma_desc *desc;
+
+	if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
+		printf("MXS NAND: Too many DMA descriptors requested\n");
+		return NULL;
+	}
+
+	desc = info->desc[info->desc_index];
+	info->desc_index++;
+
+	return desc;
+}
+
+static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
+{
+	int i;
+	struct mxs_dma_desc *desc;
+
+	for (i = 0; i < info->desc_index; i++) {
+		desc = info->desc[i];
+		memset(desc, 0, sizeof(struct mxs_dma_desc));
+		desc->address = (dma_addr_t)desc;
+	}
+
+	info->desc_index = 0;
+}
+
+static uint32_t mxs_nand_aux_status_offset(void)
+{
+	return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
+}
+
+static inline int mxs_nand_calc_mark_offset(struct bch_geometry *geo,
+					    uint32_t page_data_size)
+{
+	uint32_t chunk_data_size_in_bits = geo->ecc_chunk_size * 8;
+	uint32_t chunk_ecc_size_in_bits = geo->ecc_strength * geo->gf_len;
+	uint32_t chunk_total_size_in_bits;
+	uint32_t block_mark_chunk_number;
+	uint32_t block_mark_chunk_bit_offset;
+	uint32_t block_mark_bit_offset;
+
+	chunk_total_size_in_bits =
+			chunk_data_size_in_bits + chunk_ecc_size_in_bits;
+
+	/* Compute the bit offset of the block mark within the physical page. */
+	block_mark_bit_offset = page_data_size * 8;
+
+	/* Subtract the metadata bits. */
+	block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
+
+	/*
+	 * Compute the chunk number (starting at zero) in which the block mark
+	 * appears.
+	 */
+	block_mark_chunk_number =
+			block_mark_bit_offset / chunk_total_size_in_bits;
+
+	/*
+	 * Compute the bit offset of the block mark within its chunk, and
+	 * validate it.
+	 */
+	block_mark_chunk_bit_offset = block_mark_bit_offset -
+			(block_mark_chunk_number * chunk_total_size_in_bits);
+
+	if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
+		return -EINVAL;
+
+	/*
+	 * Now that we know the chunk number in which the block mark appears,
+	 * we can subtract all the ECC bits that appear before it.
+	 */
+	block_mark_bit_offset -=
+		block_mark_chunk_number * chunk_ecc_size_in_bits;
+
+	geo->block_mark_byte_offset = block_mark_bit_offset >> 3;
+	geo->block_mark_bit_offset = block_mark_bit_offset & 0x7;
+
+	return 0;
+}
+
+static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo,
+						   struct mtd_info *mtd,
+						   unsigned int ecc_strength,
+						   unsigned int ecc_step)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+
+	switch (ecc_step) {
+	case SZ_512:
+		geo->gf_len = 13;
+		break;
+	case SZ_1K:
+		geo->gf_len = 14;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	geo->ecc_chunk_size = ecc_step;
+	geo->ecc_strength = round_up(ecc_strength, 2);
+
+	/* Keep the C >= O */
+	if (geo->ecc_chunk_size < mtd->oobsize)
+		return -EINVAL;
+
+	if (geo->ecc_strength > nand_info->max_ecc_strength_supported)
+		return -EINVAL;
+
+	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
+
+	return 0;
+}
+
+static inline int mxs_nand_calc_ecc_layout(struct bch_geometry *geo,
+					   struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+
+	/* The default for the length of Galois Field. */
+	geo->gf_len = 13;
+
+	/* The default for chunk size. */
+	geo->ecc_chunk_size = 512;
+
+	if (geo->ecc_chunk_size < mtd->oobsize) {
+		geo->gf_len = 14;
+		geo->ecc_chunk_size *= 2;
+	}
+
+	if (mtd->oobsize > geo->ecc_chunk_size) {
+		printf("Not support the NAND chips whose oob size is larger then %d bytes!\n",
+		       geo->ecc_chunk_size);
+		return -EINVAL;
+	}
+
+	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
+
+	/*
+	 * Determine the ECC layout with the formula:
+	 *	ECC bits per chunk = (total page spare data bits) /
+	 *		(bits per ECC level) / (chunks per page)
+	 * where:
+	 *	total page spare data bits =
+	 *		(page oob size - meta data size) * (bits per byte)
+	 */
+	geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8)
+			/ (geo->gf_len * geo->ecc_chunk_count);
+
+	geo->ecc_strength = min(round_down(geo->ecc_strength, 2),
+				nand_info->max_ecc_strength_supported);
+
+	return 0;
+}
+
+/*
+ * Wait for BCH complete IRQ and clear the IRQ
+ */
+static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info)
+{
+	int timeout = MXS_NAND_BCH_TIMEOUT;
+	int ret;
+
+	ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg,
+		BCH_CTRL_COMPLETE_IRQ, timeout);
+
+	writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr);
+
+	return ret;
+}
+
+/*
+ * This is the function that we install in the cmd_ctrl function pointer of the
+ * owning struct nand_chip. The only functions in the reference implementation
+ * that use these functions pointers are cmdfunc and select_chip.
+ *
+ * In this driver, we implement our own select_chip, so this function will only
+ * be called by the reference implementation's cmdfunc. For this reason, we can
+ * ignore the chip enable bit and concentrate only on sending bytes to the NAND
+ * Flash.
+ */
+static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	/*
+	 * If this condition is true, something is _VERY_ wrong in MTD
+	 * subsystem!
+	 */
+	if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
+		printf("MXS NAND: Command queue too long\n");
+		return;
+	}
+
+	/*
+	 * Every operation begins with a command byte and a series of zero or
+	 * more address bytes. These are distinguished by either the Address
+	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+	 * asserted. When MTD is ready to execute the command, it will
+	 * deasert both latch enables.
+	 *
+	 * Rather than run a separate DMA operation for every single byte, we
+	 * queue them up and run a single DMA operation for the entire series
+	 * of command and data bytes.
+	 */
+	if (ctrl & (NAND_ALE | NAND_CLE)) {
+		if (data != NAND_CMD_NONE)
+			nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
+		return;
+	}
+
+	/*
+	 * If control arrives here, MTD has deasserted both the ALE and CLE,
+	 * which means it's ready to run an operation. Check if we have any
+	 * bytes to send.
+	 */
+	if (nand_info->cmd_queue_len == 0)
+		return;
+
+	/* Compile the DMA descriptor -- a descriptor that sends command. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
+		MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_CLE |
+		GPMI_CTRL0_ADDRESS_INCREMENT |
+		nand_info->cmd_queue_len;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Flush caches */
+	mxs_nand_flush_cmd_buf(nand_info);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret)
+		printf("MXS NAND: Error sending command\n");
+
+	mxs_nand_return_dma_descs(nand_info);
+
+	/* Reset the command queue. */
+	nand_info->cmd_queue_len = 0;
+}
+
+/*
+ * Test if the NAND flash is ready.
+ */
+static int mxs_nand_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+	uint32_t tmp;
+
+	tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat);
+	tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
+
+	return tmp & 1;
+}
+
+/*
+ * Select the NAND chip.
+ */
+static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+
+	nand_info->cur_chip = chip;
+}
+
+/*
+ * Handle block mark swapping.
+ *
+ * Note that, when this function is called, it doesn't know whether it's
+ * swapping the block mark, or swapping it *back* -- but it doesn't matter
+ * because the the operation is the same.
+ */
+static void mxs_nand_swap_block_mark(struct bch_geometry *geo,
+				     uint8_t *data_buf, uint8_t *oob_buf)
+{
+	uint32_t bit_offset = geo->block_mark_bit_offset;
+	uint32_t buf_offset = geo->block_mark_byte_offset;
+
+	uint32_t src;
+	uint32_t dst;
+
+	/*
+	 * Get the byte from the data area that overlays the block mark. Since
+	 * the ECC engine applies its own view to the bits in the page, the
+	 * physical block mark won't (in general) appear on a byte boundary in
+	 * the data.
+	 */
+	src = data_buf[buf_offset] >> bit_offset;
+	src |= data_buf[buf_offset + 1] << (8 - bit_offset);
+
+	dst = oob_buf[0];
+
+	oob_buf[0] = src;
+
+	data_buf[buf_offset] &= ~(0xff << bit_offset);
+	data_buf[buf_offset + 1] &= 0xff << bit_offset;
+
+	data_buf[buf_offset] |= dst << bit_offset;
+	data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
+}
+
+/*
+ * Read data from NAND.
+ */
+static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	if (length > NAND_MAX_PAGESIZE) {
+		printf("MXS NAND: DMA buffer too big\n");
+		return;
+	}
+
+	if (!buf) {
+		printf("MXS NAND: DMA buffer is NULL\n");
+		return;
+	}
+
+	/* Compile the DMA descriptor - a descriptor that reads data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(length << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_READ |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		length;
+
+	mxs_dma_desc_append(channel, d);
+
+	/*
+	 * A DMA descriptor that waits for the command to end and the chip to
+	 * become ready.
+	 *
+	 * I think we actually should *not* be waiting for the chip to become
+	 * ready because, after all, we don't care. I think the original code
+	 * did that and no one has re-thought it yet.
+	 */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
+		MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Invalidate caches */
+	mxs_nand_inval_data_buf(nand_info);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA read error\n");
+		goto rtn;
+	}
+
+	/* Invalidate caches */
+	mxs_nand_inval_data_buf(nand_info);
+
+	memcpy(buf, nand_info->data_buf, length);
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Write data to NAND.
+ */
+static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int length)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	if (length > NAND_MAX_PAGESIZE) {
+		printf("MXS NAND: DMA buffer too big\n");
+		return;
+	}
+
+	if (!buf) {
+		printf("MXS NAND: DMA buffer is NULL\n");
+		return;
+	}
+
+	memcpy(nand_info->data_buf, buf, length);
+
+	/* Compile the DMA descriptor - a descriptor that writes data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
+		(length << MXS_DMA_DESC_BYTES_OFFSET);
+
+	d->cmd.address = (dma_addr_t)nand_info->data_buf;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		length;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Flush caches */
+	mxs_nand_flush_data_buf(nand_info);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret)
+		printf("MXS NAND: DMA write error\n");
+
+	mxs_nand_return_dma_descs(nand_info);
+}
+
+/*
+ * Read a single byte from NAND.
+ */
+static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
+{
+	uint8_t buf;
+	mxs_nand_read_buf(mtd, &buf, 1);
+	return buf;
+}
+
+/*
+ * Read a page from NAND.
+ */
+static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+					uint8_t *buf, int oob_required,
+					int page)
+{
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct bch_geometry *geo = &nand_info->bch_geometry;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	uint32_t corrected = 0, failed = 0;
+	uint8_t	*status;
+	int i, ret;
+
+	/* Compile the DMA descriptor - wait for ready. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - enable the BCH block and read. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_WAIT4END |	(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_READ |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		(mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] =
+		GPMI_ECCCTRL_ENABLE_ECC |
+		GPMI_ECCCTRL_ECC_CMD_DECODE |
+		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+	d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
+	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - disable the BCH block. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
+		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
+		(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA |
+		(mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] = 0;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM;
+
+	d->cmd.address = 0;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Invalidate caches */
+	mxs_nand_inval_data_buf(nand_info);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA read error\n");
+		goto rtn;
+	}
+
+	ret = mxs_nand_wait_for_bch_complete(nand_info);
+	if (ret) {
+		printf("MXS NAND: BCH read timeout\n");
+		goto rtn;
+	}
+
+	/* Invalidate caches */
+	mxs_nand_inval_data_buf(nand_info);
+
+	/* Read DMA completed, now do the mark swapping. */
+	mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
+
+	/* Loop over status bytes, accumulating ECC status. */
+	status = nand_info->oob_buf + mxs_nand_aux_status_offset();
+	for (i = 0; i < geo->ecc_chunk_count; i++) {
+		if (status[i] == 0x00)
+			continue;
+
+		if (status[i] == 0xff)
+			continue;
+
+		if (status[i] == 0xfe) {
+			failed++;
+			continue;
+		}
+
+		corrected += status[i];
+	}
+
+	/* Propagate ECC status to the owning MTD. */
+	mtd->ecc_stats.failed += failed;
+	mtd->ecc_stats.corrected += corrected;
+
+	/*
+	 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
+	 * details about our policy for delivering the OOB.
+	 *
+	 * We fill the caller's buffer with set bits, and then copy the block
+	 * mark to the caller's buffer. Note that, if block mark swapping was
+	 * necessary, it has already been done, so we can rely on the first
+	 * byte of the auxiliary buffer to contain the block mark.
+	 */
+	memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+	nand->oob_poi[0] = nand_info->oob_buf[0];
+
+	memcpy(buf, nand_info->data_buf, mtd->writesize);
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+
+	return ret;
+}
+
+/*
+ * Write a page to NAND.
+ */
+static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
+				struct nand_chip *nand, const uint8_t *buf,
+				int oob_required, int page)
+{
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct bch_geometry *geo = &nand_info->bch_geometry;
+	struct mxs_dma_desc *d;
+	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
+	int ret;
+
+	memcpy(nand_info->data_buf, buf, mtd->writesize);
+	memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
+
+	/* Handle block mark swapping. */
+	mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf);
+
+	/* Compile the DMA descriptor - write data. */
+	d = mxs_nand_get_dma_desc(nand_info);
+	d->cmd.data =
+		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
+		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
+		(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
+
+	d->cmd.address = 0;
+
+	d->cmd.pio_words[0] =
+		GPMI_CTRL0_COMMAND_MODE_WRITE |
+		GPMI_CTRL0_WORD_LENGTH |
+		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
+		GPMI_CTRL0_ADDRESS_NAND_DATA;
+	d->cmd.pio_words[1] = 0;
+	d->cmd.pio_words[2] =
+		GPMI_ECCCTRL_ENABLE_ECC |
+		GPMI_ECCCTRL_ECC_CMD_ENCODE |
+		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
+	d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
+	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
+	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
+
+	mxs_dma_desc_append(channel, d);
+
+	/* Flush caches */
+	mxs_nand_flush_data_buf(nand_info);
+
+	/* Execute the DMA chain. */
+	ret = mxs_dma_go(channel);
+	if (ret) {
+		printf("MXS NAND: DMA write error\n");
+		goto rtn;
+	}
+
+	ret = mxs_nand_wait_for_bch_complete(nand_info);
+	if (ret) {
+		printf("MXS NAND: BCH write timeout\n");
+		goto rtn;
+	}
+
+rtn:
+	mxs_nand_return_dma_descs(nand_info);
+	return 0;
+}
+
+/*
+ * Read OOB from NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
+					struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+	int ret;
+
+	if (ops->mode == MTD_OPS_RAW)
+		nand_info->raw_oob_mode = 1;
+	else
+		nand_info->raw_oob_mode = 0;
+
+	ret = nand_info->hooked_read_oob(mtd, from, ops);
+
+	nand_info->raw_oob_mode = 0;
+
+	return ret;
+}
+
+/*
+ * Write OOB to NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
+					struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+	int ret;
+
+	if (ops->mode == MTD_OPS_RAW)
+		nand_info->raw_oob_mode = 1;
+	else
+		nand_info->raw_oob_mode = 0;
+
+	ret = nand_info->hooked_write_oob(mtd, to, ops);
+
+	nand_info->raw_oob_mode = 0;
+
+	return ret;
+}
+
+/*
+ * Mark a block bad in NAND.
+ *
+ * This function is a veneer that replaces the function originally installed by
+ * the NAND Flash MTD code.
+ */
+static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
+	int ret;
+
+	nand_info->marking_block_bad = 1;
+
+	ret = nand_info->hooked_block_markbad(mtd, ofs);
+
+	nand_info->marking_block_bad = 0;
+
+	return ret;
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark, so all
+ *    write operations take measures to protect it.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ *    true state of the block mark, no matter where that block mark appears in
+ *    the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ *    return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ *    page, using the conventional definition of which bytes are data and which
+ *    are OOB. This gives the caller a way to see the actual, physical bytes
+ *    in the page, without the distortions applied by our ECC engine.
+ *
+ * What we do for this specific read operation depends on whether we're doing
+ * "raw" read, or an ECC-based read.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ *
+ * Since our OOB *is* covered by ECC, we need this information. So, we hook the
+ * ecc.read_oob and ecc.write_oob function pointers in the owning
+ * struct mtd_info with our own functions. These hook functions set the
+ * raw_oob_mode field so that, when control finally arrives here, we'll know
+ * what to do.
+ */
+static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+				int page)
+{
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+
+	/*
+	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
+	 * get the bytes from the physical page. If we're not doing a raw read,
+	 * we need to fill the buffer with set bits.
+	 */
+	if (nand_info->raw_oob_mode) {
+		/*
+		 * If control arrives here, we're doing a "raw" read. Send the
+		 * command to read the conventional OOB and read it.
+		 */
+		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
+	} else {
+		/*
+		 * If control arrives here, we're not doing a "raw" read. Fill
+		 * the OOB buffer with set bits and correct the block mark.
+		 */
+		memset(nand->oob_poi, 0xff, mtd->oobsize);
+
+		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+		mxs_nand_read_buf(mtd, nand->oob_poi, 1);
+	}
+
+	return 0;
+
+}
+
+/*
+ * Write OOB data to NAND.
+ */
+static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+					int page)
+{
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	uint8_t block_mark = 0;
+
+	/*
+	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
+	 * the NAND Flash MTD model that make it essentially impossible to write
+	 * the out-of-band bytes.
+	 *
+	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
+	 * mark a block bad, we can do that.
+	 */
+
+	if (!nand_info->marking_block_bad) {
+		printf("NXS NAND: Writing OOB isn't supported\n");
+		return -EIO;
+	}
+
+	/* Write the block mark. */
+	nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	nand->write_buf(mtd, &block_mark, 1);
+	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+	/* Check if it worked. */
+	if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+
+/*
+ * Claims all blocks are good.
+ *
+ * In principle, this function is *only* called when the NAND Flash MTD system
+ * isn't allowed to keep an in-memory bad block table, so it is forced to ask
+ * the driver for bad block information.
+ *
+ * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
+ * this function is *only* called when we take it away.
+ *
+ * Thus, this function is only called when we want *all* blocks to look good,
+ * so it *always* return success.
+ */
+static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	return 0;
+}
+
+static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+
+	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
+		return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
+				chip->ecc.strength, chip->ecc.size);
+
+	if (nand_info->use_minimum_ecc ||
+		mxs_nand_calc_ecc_layout(geo, mtd)) {
+		if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
+			return -EINVAL;
+
+		return mxs_nand_calc_ecc_layout_by_info(geo, mtd,
+				chip->ecc_strength_ds, chip->ecc_step_ds);
+	}
+
+	return 0;
+}
+
+/*
+ * At this point, the physical NAND Flash chips have been identified and
+ * counted, so we know the physical geometry. This enables us to make some
+ * important configuration decisions.
+ *
+ * The return value of this function propagates directly back to this driver's
+ * board_nand_init(). Anything other than zero will cause this driver to
+ * tear everything down and declare failure.
+ */
+int mxs_nand_setup_ecc(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
+	struct bch_geometry *geo = &nand_info->bch_geometry;
+	struct mxs_bch_regs *bch_regs = nand_info->bch_regs;
+	uint32_t tmp;
+	int ret;
+
+	ret = mxs_nand_set_geometry(mtd, geo);
+	if (ret)
+		return ret;
+
+	mxs_nand_calc_mark_offset(geo, mtd->writesize);
+
+	/* Configure BCH and set NFC geometry */
+	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
+
+	/* Configure layout 0 */
+	tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
+	tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
+	tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET;
+	tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
+	tmp |= (geo->gf_len == 14 ? 1 : 0) <<
+		BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
+	writel(tmp, &bch_regs->hw_bch_flash0layout0);
+
+	tmp = (mtd->writesize + mtd->oobsize)
+		<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
+	tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET;
+	tmp |= geo->ecc_chunk_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
+	tmp |= (geo->gf_len == 14 ? 1 : 0) <<
+		BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
+	writel(tmp, &bch_regs->hw_bch_flash0layout1);
+
+	/* Set *all* chip selects to use layout 0 */
+	writel(0, &bch_regs->hw_bch_layoutselect);
+
+	/* Enable BCH complete interrupt */
+	writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
+
+	/* Hook some operations at the MTD level. */
+	if (mtd->_read_oob != mxs_nand_hook_read_oob) {
+		nand_info->hooked_read_oob = mtd->_read_oob;
+		mtd->_read_oob = mxs_nand_hook_read_oob;
+	}
+
+	if (mtd->_write_oob != mxs_nand_hook_write_oob) {
+		nand_info->hooked_write_oob = mtd->_write_oob;
+		mtd->_write_oob = mxs_nand_hook_write_oob;
+	}
+
+	if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
+		nand_info->hooked_block_markbad = mtd->_block_markbad;
+		mtd->_block_markbad = mxs_nand_hook_block_markbad;
+	}
+
+	return 0;
+}
+
+/*
+ * Allocate DMA buffers
+ */
+int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
+{
+	uint8_t *buf;
+	const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
+
+	nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
+
+	/* DMA buffers */
+	buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
+	if (!buf) {
+		printf("MXS NAND: Error allocating DMA buffers\n");
+		return -ENOMEM;
+	}
+
+	memset(buf, 0, nand_info->data_buf_size);
+
+	nand_info->data_buf = buf;
+	nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
+	/* Command buffers */
+	nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
+				MXS_NAND_COMMAND_BUFFER_SIZE);
+	if (!nand_info->cmd_buf) {
+		free(buf);
+		printf("MXS NAND: Error allocating command buffers\n");
+		return -ENOMEM;
+	}
+	memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
+	nand_info->cmd_queue_len = 0;
+
+	return 0;
+}
+
+/*
+ * Initializes the NFC hardware.
+ */
+int mxs_nand_init_dma(struct mxs_nand_info *info)
+{
+	int i = 0, j, ret = 0;
+
+	info->desc = malloc(sizeof(struct mxs_dma_desc *) *
+				MXS_NAND_DMA_DESCRIPTOR_COUNT);
+	if (!info->desc) {
+		ret = -ENOMEM;
+		goto err1;
+	}
+
+	/* Allocate the DMA descriptors. */
+	for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
+		info->desc[i] = mxs_dma_desc_alloc();
+		if (!info->desc[i]) {
+			ret = -ENOMEM;
+			goto err2;
+		}
+	}
+
+	/* Init the DMA controller. */
+	mxs_dma_init();
+	for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
+		j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
+		ret = mxs_dma_init_channel(j);
+		if (ret)
+			goto err3;
+	}
+
+	/* Reset the GPMI block. */
+	mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg);
+	mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg);
+
+	/*
+	 * Choose NAND mode, set IRQ polarity, disable write protection and
+	 * select BCH ECC.
+	 */
+	clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1,
+			GPMI_CTRL1_GPMI_MODE,
+			GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
+			GPMI_CTRL1_BCH_MODE);
+
+	return 0;
+
+err3:
+	for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
+		mxs_dma_release(j);
+err2:
+	for (--i; i >= 0; i--)
+		mxs_dma_desc_free(info->desc[i]);
+	free(info->desc);
+err1:
+	if (ret == -ENOMEM)
+		printf("MXS NAND: Unable to allocate DMA descriptors\n");
+	return ret;
+}
+
+int mxs_nand_init_spl(struct nand_chip *nand)
+{
+	struct mxs_nand_info *nand_info;
+	int err;
+
+	nand_info = malloc(sizeof(struct mxs_nand_info));
+	if (!nand_info) {
+		printf("MXS NAND: Failed to allocate private data\n");
+		return -ENOMEM;
+	}
+	memset(nand_info, 0, sizeof(struct mxs_nand_info));
+
+	nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
+	nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
+	err = mxs_nand_alloc_buffers(nand_info);
+	if (err)
+		return err;
+
+	err = mxs_nand_init_dma(nand_info);
+	if (err)
+		return err;
+
+	nand_set_controller_data(nand, nand_info);
+
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
+	nand->dev_ready		= mxs_nand_device_ready;
+	nand->select_chip	= mxs_nand_select_chip;
+
+	nand->read_byte		= mxs_nand_read_byte;
+	nand->read_buf		= mxs_nand_read_buf;
+
+	nand->ecc.read_page	= mxs_nand_ecc_read_page;
+
+	nand->ecc.mode		= NAND_ECC_HW;
+	nand->ecc.bytes		= 9;
+	nand->ecc.size		= 512;
+	nand->ecc.strength	= 8;
+
+	return 0;
+}
+
+int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info)
+{
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	int err;
+
+	nand = &nand_info->chip;
+	mtd = nand_to_mtd(nand);
+	err = mxs_nand_alloc_buffers(nand_info);
+	if (err)
+		return err;
+
+	err = mxs_nand_init_dma(nand_info);
+	if (err)
+		goto err_free_buffers;
+
+	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+#endif
+
+	nand_set_controller_data(nand, nand_info);
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	if (nand_info->dev)
+		nand->flash_node = dev_of_offset(nand_info->dev);
+
+	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
+
+	nand->dev_ready		= mxs_nand_device_ready;
+	nand->select_chip	= mxs_nand_select_chip;
+	nand->block_bad		= mxs_nand_block_bad;
+
+	nand->read_byte		= mxs_nand_read_byte;
+
+	nand->read_buf		= mxs_nand_read_buf;
+	nand->write_buf		= mxs_nand_write_buf;
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
+		goto err_free_buffers;
+
+	if (mxs_nand_setup_ecc(mtd))
+		goto err_free_buffers;
+
+	nand->ecc.read_page	= mxs_nand_ecc_read_page;
+	nand->ecc.write_page	= mxs_nand_ecc_write_page;
+	nand->ecc.read_oob	= mxs_nand_ecc_read_oob;
+	nand->ecc.write_oob	= mxs_nand_ecc_write_oob;
+
+	nand->ecc.layout	= &fake_ecc_layout;
+	nand->ecc.mode		= NAND_ECC_HW;
+	nand->ecc.size		= nand_info->bch_geometry.ecc_chunk_size;
+	nand->ecc.strength	= nand_info->bch_geometry.ecc_strength;
+
+	/* second phase scan */
+	err = nand_scan_tail(mtd);
+	if (err)
+		goto err_free_buffers;
+
+	err = nand_register(0, mtd);
+	if (err)
+		goto err_free_buffers;
+
+	return 0;
+
+err_free_buffers:
+	free(nand_info->data_buf);
+	free(nand_info->cmd_buf);
+
+	return err;
+}
+
+#ifndef CONFIG_NAND_MXS_DT
+void board_nand_init(void)
+{
+	struct mxs_nand_info *nand_info;
+
+	nand_info = malloc(sizeof(struct mxs_nand_info));
+	if (!nand_info) {
+		printf("MXS NAND: Failed to allocate private data\n");
+			return;
+	}
+	memset(nand_info, 0, sizeof(struct mxs_nand_info));
+
+	nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
+	nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
+
+	/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
+	if (is_mx6sx() || is_mx7())
+		nand_info->max_ecc_strength_supported = 62;
+	else
+		nand_info->max_ecc_strength_supported = 40;
+
+#ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC
+	nand_info->use_minimum_ecc = true;
+#endif
+
+	if (mxs_nand_init_ctrl(nand_info) < 0)
+		goto err;
+
+	return;
+
+err:
+	free(nand_info);
+}
+#endif
diff --git a/drivers/mtd/nand/raw/mxs_nand.h b/drivers/mtd/nand/raw/mxs_nand.h
new file mode 100644
index 0000000..4bd65cd
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxs_nand.h
@@ -0,0 +1,73 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * NXP GPMI NAND flash driver
+ *
+ * Copyright (C) 2018 Toradex
+ * Authors:
+ * Stefan Agner <stefan.agner@toradex.com>
+ */
+
+#include <linux/mtd/mtd.h>
+#include <asm/cache.h>
+#include <nand.h>
+#include <asm/mach-imx/dma.h>
+
+/**
+ * @gf_len:                   The length of Galois Field. (e.g., 13 or 14)
+ * @ecc_strength:             A number that describes the strength of the ECC
+ *                            algorithm.
+ * @ecc_chunk_size:           The size, in bytes, of a single ECC chunk. Note
+ *                            the first chunk in the page includes both data and
+ *                            metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count:          The number of ECC chunks in the page,
+ * @block_mark_byte_offset:   The byte offset in the ECC-based page view at
+ *                            which the underlying physical block mark appears.
+ * @block_mark_bit_offset:    The bit offset into the ECC-based page view at
+ *                            which the underlying physical block mark appears.
+ */
+struct bch_geometry {
+	unsigned int  gf_len;
+	unsigned int  ecc_strength;
+	unsigned int  ecc_chunk_size;
+	unsigned int  ecc_chunk_count;
+	unsigned int  block_mark_byte_offset;
+	unsigned int  block_mark_bit_offset;
+};
+
+struct mxs_nand_info {
+	struct nand_chip chip;
+	struct udevice *dev;
+	unsigned int	max_ecc_strength_supported;
+	bool		use_minimum_ecc;
+	int		cur_chip;
+
+	uint32_t	cmd_queue_len;
+	uint32_t	data_buf_size;
+	struct bch_geometry bch_geometry;
+
+	uint8_t		*cmd_buf;
+	uint8_t		*data_buf;
+	uint8_t		*oob_buf;
+
+	uint8_t		marking_block_bad;
+	uint8_t		raw_oob_mode;
+
+	struct mxs_gpmi_regs *gpmi_regs;
+	struct mxs_bch_regs *bch_regs;
+
+	/* Functions with altered behaviour */
+	int		(*hooked_read_oob)(struct mtd_info *mtd,
+				loff_t from, struct mtd_oob_ops *ops);
+	int		(*hooked_write_oob)(struct mtd_info *mtd,
+				loff_t to, struct mtd_oob_ops *ops);
+	int		(*hooked_block_markbad)(struct mtd_info *mtd,
+				loff_t ofs);
+
+	/* DMA descriptors */
+	struct mxs_dma_desc	**desc;
+	uint32_t		desc_index;
+};
+
+int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info);
+int mxs_nand_init_spl(struct nand_chip *nand);
+int mxs_nand_setup_ecc(struct mtd_info *mtd);
diff --git a/drivers/mtd/nand/raw/mxs_nand_dt.c b/drivers/mtd/nand/raw/mxs_nand_dt.c
new file mode 100644
index 0000000..44dec5d
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxs_nand_dt.c
@@ -0,0 +1,94 @@
+/*
+ * NXP GPMI NAND flash driver (DT initialization)
+ *
+ * Copyright (C) 2018 Toradex
+ * Authors:
+ * Stefan Agner <stefan.agner@toradex.com>
+ *
+ * Based on denali_dt.c
+ *
+ * SPDX-License-Identifier:	GPL-2.0+
+ */
+
+#include <dm.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/printk.h>
+
+#include "mxs_nand.h"
+
+struct mxs_nand_dt_data {
+	unsigned int max_ecc_strength_supported;
+};
+
+static const struct mxs_nand_dt_data mxs_nand_imx6q_data = {
+	.max_ecc_strength_supported = 40,
+};
+
+static const struct mxs_nand_dt_data mxs_nand_imx7d_data = {
+	.max_ecc_strength_supported = 62,
+};
+
+static const struct udevice_id mxs_nand_dt_ids[] = {
+	{
+		.compatible = "fsl,imx6q-gpmi-nand",
+		.data = (unsigned long)&mxs_nand_imx6q_data,
+	},
+	{
+		.compatible = "fsl,imx7d-gpmi-nand",
+		.data = (unsigned long)&mxs_nand_imx7d_data,
+	},
+	{ /* sentinel */ }
+};
+
+static int mxs_nand_dt_probe(struct udevice *dev)
+{
+	struct mxs_nand_info *info = dev_get_priv(dev);
+	const struct mxs_nand_dt_data *data;
+	struct resource res;
+	int ret;
+
+	data = (void *)dev_get_driver_data(dev);
+	if (data)
+		info->max_ecc_strength_supported = data->max_ecc_strength_supported;
+
+	info->dev = dev;
+
+	ret = dev_read_resource_byname(dev, "gpmi-nand", &res);
+	if (ret)
+		return ret;
+
+	info->gpmi_regs = devm_ioremap(dev, res.start, resource_size(&res));
+
+
+	ret = dev_read_resource_byname(dev, "bch", &res);
+	if (ret)
+		return ret;
+
+	info->bch_regs = devm_ioremap(dev, res.start, resource_size(&res));
+
+	info->use_minimum_ecc = dev_read_bool(dev, "fsl,use-minimum-ecc");
+
+	return mxs_nand_init_ctrl(info);
+}
+
+U_BOOT_DRIVER(mxs_nand_dt) = {
+	.name = "mxs-nand-dt",
+	.id = UCLASS_MTD,
+	.of_match = mxs_nand_dt_ids,
+	.probe = mxs_nand_dt_probe,
+	.priv_auto_alloc_size = sizeof(struct mxs_nand_info),
+};
+
+void board_nand_init(void)
+{
+	struct udevice *dev;
+	int ret;
+
+	ret = uclass_get_device_by_driver(UCLASS_MTD,
+					  DM_GET_DRIVER(mxs_nand_dt),
+					  &dev);
+	if (ret && ret != -ENODEV)
+		pr_err("Failed to initialize MXS NAND controller. (error %d)\n",
+		       ret);
+}
diff --git a/drivers/mtd/nand/raw/mxs_nand_spl.c b/drivers/mtd/nand/raw/mxs_nand_spl.c
new file mode 100644
index 0000000..2d7bbe8
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxs_nand_spl.c
@@ -0,0 +1,264 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2014 Gateworks Corporation
+ * Author: Tim Harvey <tharvey@gateworks.com>
+ */
+#include <common.h>
+#include <nand.h>
+#include <malloc.h>
+#include "mxs_nand.h"
+
+static struct mtd_info *mtd;
+static struct nand_chip nand_chip;
+
+static void mxs_nand_command(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 timeo, time_start;
+
+	/* write out the command to the device */
+	chip->cmd_ctrl(mtd, command, NAND_CLE);
+
+	/* Serially input address */
+	if (column != -1) {
+		chip->cmd_ctrl(mtd, column, NAND_ALE);
+		chip->cmd_ctrl(mtd, column >> 8, NAND_ALE);
+	}
+	if (page_addr != -1) {
+		chip->cmd_ctrl(mtd, page_addr, NAND_ALE);
+		chip->cmd_ctrl(mtd, page_addr >> 8, NAND_ALE);
+		/* One more address cycle for devices > 128MiB */
+		if (chip->chipsize > (128 << 20))
+			chip->cmd_ctrl(mtd, page_addr >> 16, NAND_ALE);
+	}
+	chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
+
+	if (command == NAND_CMD_READ0) {
+		chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_CLE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
+	}
+
+	/* wait for nand ready */
+	ndelay(100);
+	timeo = (CONFIG_SYS_HZ * 20) / 1000;
+	time_start = get_timer(0);
+	while (get_timer(time_start) < timeo) {
+		if (chip->dev_ready(mtd))
+			break;
+	}
+}
+
+#if defined (CONFIG_SPL_NAND_IDENT)
+
+/* Trying to detect the NAND flash using ONFi, JEDEC, and (extended) IDs */
+static int mxs_flash_full_ident(struct mtd_info *mtd)
+{
+	int nand_maf_id, nand_dev_id;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_flash_dev *type;
+
+	type = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, NULL);
+
+	if (IS_ERR(type)) {
+		chip->select_chip(mtd, -1);
+		return PTR_ERR(type);
+	}
+
+	return 0;
+}
+
+#else
+
+/* Trying to detect the NAND flash using ONFi only */
+static int mxs_flash_onfi_ident(struct mtd_info *mtd)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	int i;
+	u8 mfg_id, dev_id;
+	u8 id_data[8];
+	struct nand_onfi_params *p = &chip->onfi_params;
+
+	/* Reset the chip */
+	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	/* Send the command for reading device ID */
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read manufacturer and device IDs */
+	mfg_id = chip->read_byte(mtd);
+	dev_id = chip->read_byte(mtd);
+
+	/* Try again to make sure */
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+	for (i = 0; i < 8; i++)
+		id_data[i] = chip->read_byte(mtd);
+	if (id_data[0] != mfg_id || id_data[1] != dev_id) {
+		printf("second ID read did not match");
+		return -1;
+	}
+	debug("0x%02x:0x%02x ", mfg_id, dev_id);
+
+	/* read ONFI */
+	chip->onfi_version = 0;
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
+	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
+	    chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') {
+		return -2;
+	}
+
+	/* we have ONFI, probe it */
+	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
+	chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
+	mtd->name = p->model;
+	mtd->writesize = le32_to_cpu(p->byte_per_page);
+	mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
+	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+	chip->chipsize = le32_to_cpu(p->blocks_per_lun);
+	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+	/* Calculate the address shift from the page size */
+	chip->page_shift = ffs(mtd->writesize) - 1;
+	chip->phys_erase_shift = ffs(mtd->erasesize) - 1;
+	/* Convert chipsize to number of pages per chip -1 */
+	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+	chip->badblockbits = 8;
+
+	debug("erasesize=%d (>>%d)\n", mtd->erasesize, chip->phys_erase_shift);
+	debug("writesize=%d (>>%d)\n", mtd->writesize, chip->page_shift);
+	debug("oobsize=%d\n", mtd->oobsize);
+	debug("chipsize=%lld\n", chip->chipsize);
+
+	return 0;
+}
+
+#endif /* CONFIG_SPL_NAND_IDENT */
+
+static int mxs_flash_ident(struct mtd_info *mtd)
+{
+	int ret;
+#if defined (CONFIG_SPL_NAND_IDENT)
+	ret = mxs_flash_full_ident(mtd);
+#else
+	ret = mxs_flash_onfi_ident(mtd);
+#endif
+	return ret;
+}
+
+static int mxs_read_page_ecc(struct mtd_info *mtd, void *buf, unsigned int page)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, page);
+	ret = nand_chip.ecc.read_page(mtd, chip, buf, 1, page);
+	if (ret < 0) {
+		printf("read_page failed %d\n", ret);
+		return -1;
+	}
+	return 0;
+}
+
+static int is_badblock(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	unsigned int block = offs >> chip->phys_erase_shift;
+	unsigned int page = offs >> chip->page_shift;
+
+	debug("%s offs=0x%08x block:%d page:%d\n", __func__, (int)offs, block,
+	      page);
+	chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+	memset(chip->oob_poi, 0, mtd->oobsize);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return chip->oob_poi[0] != 0xff;
+}
+
+/* setup mtd and nand structs and init mxs_nand driver */
+static int mxs_nand_init(void)
+{
+	/* return if already initalized */
+	if (nand_chip.numchips)
+		return 0;
+
+	/* init mxs nand driver */
+	mxs_nand_init_spl(&nand_chip);
+	mtd = nand_to_mtd(&nand_chip);
+	/* set mtd functions */
+	nand_chip.cmdfunc = mxs_nand_command;
+	nand_chip.numchips = 1;
+
+	/* identify flash device */
+	if (mxs_flash_ident(mtd)) {
+		printf("Failed to identify\n");
+		return -1;
+	}
+
+	/* allocate and initialize buffers */
+	nand_chip.buffers = memalign(ARCH_DMA_MINALIGN,
+				     sizeof(*nand_chip.buffers));
+	nand_chip.oob_poi = nand_chip.buffers->databuf + mtd->writesize;
+	/* setup flash layout (does not scan as we override that) */
+	mtd->size = nand_chip.chipsize;
+	nand_chip.scan_bbt(mtd);
+
+	return 0;
+}
+
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *buf)
+{
+	struct nand_chip *chip;
+	unsigned int page;
+	unsigned int nand_page_per_block;
+	unsigned int sz = 0;
+
+	if (mxs_nand_init())
+		return -ENODEV;
+	chip = mtd_to_nand(mtd);
+	page = offs >> chip->page_shift;
+	nand_page_per_block = mtd->erasesize / mtd->writesize;
+
+	debug("%s offset:0x%08x len:%d page:%d\n", __func__, offs, size, page);
+
+	size = roundup(size, mtd->writesize);
+	while (sz < size) {
+		if (mxs_read_page_ecc(mtd, buf, page) < 0)
+			return -1;
+		sz += mtd->writesize;
+		offs += mtd->writesize;
+		page++;
+		buf += mtd->writesize;
+
+		/*
+		 * Check if we have crossed a block boundary, and if so
+		 * check for bad block.
+		 */
+		if (!(page % nand_page_per_block)) {
+			/*
+			 * Yes, new block. See if this block is good. If not,
+			 * loop until we find a good block.
+			 */
+			while (is_badblock(mtd, offs, 1)) {
+				page = page + nand_page_per_block;
+				/* Check i we've reached the end of flash. */
+				if (page >= mtd->size >> chip->page_shift)
+					return -ENOMEM;
+			}
+		}
+	}
+
+	return 0;
+}
+
+int nand_default_bbt(struct mtd_info *mtd)
+{
+	return 0;
+}
+
+void nand_init(void)
+{
+}
+
+void nand_deselect(void)
+{
+}
+
diff --git a/drivers/mtd/nand/raw/nand.c b/drivers/mtd/nand/raw/nand.c
new file mode 100644
index 0000000..bca51ff
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand.c
@@ -0,0 +1,175 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * (C) Copyright 2005
+ * 2N Telekomunikace, a.s. <www.2n.cz>
+ * Ladislav Michl <michl@2n.cz>
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <errno.h>
+#include <linux/mtd/concat.h>
+
+#ifndef CONFIG_SYS_NAND_BASE_LIST
+#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
+#endif
+
+int nand_curr_device = -1;
+
+static struct mtd_info *nand_info[CONFIG_SYS_MAX_NAND_DEVICE];
+
+#ifndef CONFIG_SYS_NAND_SELF_INIT
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+static ulong base_address[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
+#endif
+
+static char dev_name[CONFIG_SYS_MAX_NAND_DEVICE][8];
+
+static unsigned long total_nand_size; /* in kiB */
+
+struct mtd_info *get_nand_dev_by_index(int dev)
+{
+	if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE || !nand_info[dev] ||
+	    !nand_info[dev]->name)
+		return NULL;
+
+	return nand_info[dev];
+}
+
+int nand_mtd_to_devnum(struct mtd_info *mtd)
+{
+	int i;
+
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) {
+		if (mtd && get_nand_dev_by_index(i) == mtd)
+			return i;
+	}
+
+	return -ENODEV;
+}
+
+/* Register an initialized NAND mtd device with the U-Boot NAND command. */
+int nand_register(int devnum, struct mtd_info *mtd)
+{
+	if (devnum >= CONFIG_SYS_MAX_NAND_DEVICE)
+		return -EINVAL;
+
+	nand_info[devnum] = mtd;
+
+	sprintf(dev_name[devnum], "nand%d", devnum);
+	mtd->name = dev_name[devnum];
+
+#ifdef CONFIG_MTD_DEVICE
+	/*
+	 * Add MTD device so that we can reference it later
+	 * via the mtdcore infrastructure (e.g. ubi).
+	 */
+	add_mtd_device(mtd);
+#endif
+
+	total_nand_size += mtd->size / 1024;
+
+	if (nand_curr_device == -1)
+		nand_curr_device = devnum;
+
+	return 0;
+}
+
+#ifndef CONFIG_SYS_NAND_SELF_INIT
+static void nand_init_chip(int i)
+{
+	struct nand_chip *nand = &nand_chip[i];
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	ulong base_addr = base_address[i];
+	int maxchips = CONFIG_SYS_NAND_MAX_CHIPS;
+
+	if (maxchips < 1)
+		maxchips = 1;
+
+	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
+
+	if (board_nand_init(nand))
+		return;
+
+	if (nand_scan(mtd, maxchips))
+		return;
+
+	nand_register(i, mtd);
+}
+#endif
+
+#ifdef CONFIG_MTD_CONCAT
+static void create_mtd_concat(void)
+{
+	struct mtd_info *nand_info_list[CONFIG_SYS_MAX_NAND_DEVICE];
+	int nand_devices_found = 0;
+	int i;
+
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) {
+		struct mtd_info *mtd = get_nand_dev_by_index(i);
+		if (mtd != NULL) {
+			nand_info_list[nand_devices_found] = mtd;
+			nand_devices_found++;
+		}
+	}
+	if (nand_devices_found > 1) {
+		struct mtd_info *mtd;
+		char c_mtd_name[16];
+
+		/*
+		 * We detected multiple devices. Concatenate them together.
+		 */
+		sprintf(c_mtd_name, "nand%d", nand_devices_found);
+		mtd = mtd_concat_create(nand_info_list, nand_devices_found,
+					c_mtd_name);
+
+		if (mtd == NULL)
+			return;
+
+		nand_register(nand_devices_found, mtd);
+	}
+
+	return;
+}
+#else
+static void create_mtd_concat(void)
+{
+}
+#endif
+
+unsigned long nand_size(void)
+{
+	return total_nand_size;
+}
+
+void nand_init(void)
+{
+	static int initialized;
+
+	/*
+	 * Avoid initializing NAND Flash multiple times,
+	 * otherwise it will calculate a wrong total size.
+	 */
+	if (initialized)
+		return;
+	initialized = 1;
+
+#ifdef CONFIG_SYS_NAND_SELF_INIT
+	board_nand_init();
+#else
+	int i;
+
+	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+		nand_init_chip(i);
+#endif
+
+#ifdef CONFIG_SYS_NAND_SELECT_DEVICE
+	/*
+	 * Select the chip in the board/cpu specific driver
+	 */
+	board_nand_select_device(mtd_to_nand(get_nand_dev_by_index(nand_curr_device)),
+				 nand_curr_device);
+#endif
+
+	create_mtd_concat();
+}
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
new file mode 100644
index 0000000..92daebe
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -0,0 +1,4619 @@
+/*
+ *  Overview:
+ *   This is the generic MTD driver for NAND flash devices. It should be
+ *   capable of working with almost all NAND chips currently available.
+ *
+ *	Additional technical information is available on
+ *	http://www.linux-mtd.infradead.org/doc/nand.html
+ *
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  Credits:
+ *	David Woodhouse for adding multichip support
+ *
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ *  TODO:
+ *	Enable cached programming for 2k page size chips
+ *	Check, if mtd->ecctype should be set to MTD_ECC_HW
+ *	if we have HW ECC support.
+ *	BBT table is not serialized, has to be fixed
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <common.h>
+#if CONFIG_IS_ENABLED(OF_CONTROL)
+#include <fdtdec.h>
+#endif
+#include <malloc.h>
+#include <watchdog.h>
+#include <linux/err.h>
+#include <linux/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/nand_bch.h>
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+#include <asm/io.h>
+#include <linux/errno.h>
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_8 = {
+	.eccbytes = 3,
+	.eccpos = {0, 1, 2},
+	.oobfree = {
+		{.offset = 3,
+		 .length = 2},
+		{.offset = 6,
+		 .length = 2} }
+};
+
+static struct nand_ecclayout nand_oob_16 = {
+	.eccbytes = 6,
+	.eccpos = {0, 1, 2, 3, 6, 7},
+	.oobfree = {
+		{.offset = 8,
+		 . length = 8} }
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+	.eccbytes = 24,
+	.eccpos = {
+		   40, 41, 42, 43, 44, 45, 46, 47,
+		   48, 49, 50, 51, 52, 53, 54, 55,
+		   56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = {
+		{.offset = 2,
+		 .length = 38} }
+};
+
+static struct nand_ecclayout nand_oob_128 = {
+	.eccbytes = 48,
+	.eccpos = {
+		   80, 81, 82, 83, 84, 85, 86, 87,
+		   88, 89, 90, 91, 92, 93, 94, 95,
+		   96, 97, 98, 99, 100, 101, 102, 103,
+		   104, 105, 106, 107, 108, 109, 110, 111,
+		   112, 113, 114, 115, 116, 117, 118, 119,
+		   120, 121, 122, 123, 124, 125, 126, 127},
+	.oobfree = {
+		{.offset = 2,
+		 .length = 78} }
+};
+
+static int nand_get_device(struct mtd_info *mtd, int new_state);
+
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops);
+
+/*
+ * For devices which display every fart in the system on a separate LED. Is
+ * compiled away when LED support is disabled.
+ */
+DEFINE_LED_TRIGGER(nand_led_trigger);
+
+static int check_offs_len(struct mtd_info *mtd,
+					loff_t ofs, uint64_t len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret = 0;
+
+	/* Start address must align on block boundary */
+	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
+		pr_debug("%s: unaligned address\n", __func__);
+		ret = -EINVAL;
+	}
+
+	/* Length must align on block boundary */
+	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
+		pr_debug("%s: length not block aligned\n", __func__);
+		ret = -EINVAL;
+	}
+
+	return ret;
+}
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Release chip lock and wake up anyone waiting on the device.
+ */
+static void nand_release_device(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* De-select the NAND device */
+	chip->select_chip(mtd, -1);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswidth
+ */
+uint8_t nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return readb(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth with endianness conversion.
+ *
+ */
+static uint8_t nand_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth without endianness conversion.
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return readw(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chipnr: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	switch (chipnr) {
+	case -1:
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+		break;
+	case 0:
+		break;
+
+	default:
+		BUG();
+	}
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write single byte to chip
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0]
+ */
+static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	chip->write_buf(mtd, &byte, 1);
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
+ */
+static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint16_t word = byte;
+
+	/*
+	 * It's not entirely clear what should happen to I/O[15:8] when writing
+	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
+	 *
+	 *    When the host supports a 16-bit bus width, only data is
+	 *    transferred at the 16-bit width. All address and command line
+	 *    transfers shall use only the lower 8-bits of the data bus. During
+	 *    command transfers, the host may place any value on the upper
+	 *    8-bits of the data bus. During address transfers, the host shall
+	 *    set the upper 8-bits of the data bus to 00h.
+	 *
+	 * One user of the write_byte callback is nand_onfi_set_features. The
+	 * four parameters are specified to be written to I/O[7:0], but this is
+	 * neither an address nor a command transfer. Let's assume a 0 on the
+	 * upper I/O lines is OK.
+	 */
+	chip->write_buf(mtd, (uint8_t *)&word, 2);
+}
+
+static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		writeb(buf[i], addr);
+}
+static void ioread8_rep(void *addr, uint8_t *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = readb(addr);
+}
+
+static void ioread16_rep(void *addr, void *buf, int len)
+{
+	int i;
+ 	u16 *p = (u16 *) buf;
+
+	for (i = 0; i < len; i++)
+		p[i] = readw(addr);
+}
+
+static void iowrite16_rep(void *addr, void *buf, int len)
+{
+	int i;
+        u16 *p = (u16 *) buf;
+
+        for (i = 0; i < len; i++)
+                writew(p[i], addr);
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswidth.
+ */
+void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	iowrite8_rep(chip->IO_ADDR_W, buf, len);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswidth.
+ */
+void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	ioread8_rep(chip->IO_ADDR_R, buf, len);
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswidth.
+ */
+void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+
+	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswidth.
+ */
+void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+
+	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	int page, res = 0, i = 0;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u16 bad;
+
+	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+		ofs += mtd->erasesize - mtd->writesize;
+
+	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+
+	do {
+		if (chip->options & NAND_BUSWIDTH_16) {
+			chip->cmdfunc(mtd, NAND_CMD_READOOB,
+					chip->badblockpos & 0xFE, page);
+			bad = cpu_to_le16(chip->read_word(mtd));
+			if (chip->badblockpos & 0x1)
+				bad >>= 8;
+			else
+				bad &= 0xFF;
+		} else {
+			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
+					page);
+			bad = chip->read_byte(mtd);
+		}
+
+		if (likely(chip->badblockbits == 8))
+			res = bad != 0xFF;
+		else
+			res = hweight8(bad) < chip->badblockbits;
+		ofs += mtd->writesize;
+		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+		i++;
+	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
+
+	return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by a hardware
+ * specific driver. It provides the details for writing a bad block marker to a
+ * block.
+ */
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_oob_ops ops;
+	uint8_t buf[2] = { 0, 0 };
+	int ret = 0, res, i = 0;
+
+	memset(&ops, 0, sizeof(ops));
+	ops.oobbuf = buf;
+	ops.ooboffs = chip->badblockpos;
+	if (chip->options & NAND_BUSWIDTH_16) {
+		ops.ooboffs &= ~0x01;
+		ops.len = ops.ooblen = 2;
+	} else {
+		ops.len = ops.ooblen = 1;
+	}
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	/* Write to first/last page(s) if necessary */
+	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+		ofs += mtd->erasesize - mtd->writesize;
+	do {
+		res = nand_do_write_oob(mtd, ofs, &ops);
+		if (!ret)
+			ret = res;
+
+		i++;
+		ofs += mtd->writesize;
+	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
+
+	return ret;
+}
+
+/**
+ * nand_block_markbad_lowlevel - mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This function performs the generic NAND bad block marking steps (i.e., bad
+ * block table(s) and/or marker(s)). We only allow the hardware driver to
+ * specify how to write bad block markers to OOB (chip->block_markbad).
+ *
+ * We try operations in the following order:
+ *  (1) erase the affected block, to allow OOB marker to be written cleanly
+ *  (2) write bad block marker to OOB area of affected block (unless flag
+ *      NAND_BBT_NO_OOB_BBM is present)
+ *  (3) update the BBT
+ * Note that we retain the first error encountered in (2) or (3), finish the
+ * procedures, and dump the error in the end.
+*/
+static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int res, ret = 0;
+
+	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
+		struct erase_info einfo;
+
+		/* Attempt erase before marking OOB */
+		memset(&einfo, 0, sizeof(einfo));
+		einfo.mtd = mtd;
+		einfo.addr = ofs;
+		einfo.len = 1ULL << chip->phys_erase_shift;
+		nand_erase_nand(mtd, &einfo, 0);
+
+		/* Write bad block marker to OOB */
+		nand_get_device(mtd, FL_WRITING);
+		ret = chip->block_markbad(mtd, ofs);
+		nand_release_device(mtd);
+	}
+
+	/* Mark block bad in BBT */
+	if (chip->bbt) {
+		res = nand_markbad_bbt(mtd, ofs);
+		if (!ret)
+			ret = res;
+	}
+
+	if (!ret)
+		mtd->ecc_stats.badblocks++;
+
+	return ret;
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ *
+ * Check, if the device is write protected. The function expects, that the
+ * device is already selected.
+ */
+static int nand_check_wp(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* Broken xD cards report WP despite being writable */
+	if (chip->options & NAND_BROKEN_XD)
+		return 0;
+
+	/* Check the WP bit */
+	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
+}
+
+/**
+ * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check if the block is marked as reserved.
+ */
+static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (!chip->bbt)
+		return 0;
+	/* Return info from the table */
+	return nand_isreserved_bbt(mtd, ofs);
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (!(chip->options & NAND_SKIP_BBTSCAN) &&
+	    !(chip->options & NAND_BBT_SCANNED)) {
+		chip->options |= NAND_BBT_SCANNED;
+		chip->scan_bbt(mtd);
+	}
+
+	if (!chip->bbt)
+		return chip->block_bad(mtd, ofs);
+
+	/* Return info from the table */
+	return nand_isbad_bbt(mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @mtd: MTD device structure
+ *
+ * Wait for the ready pin after a command, and warn if a timeout occurs.
+ */
+void nand_wait_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
+	u32 time_start;
+
+	time_start = get_timer(0);
+	/* Wait until command is processed or timeout occurs */
+	while (get_timer(time_start) < timeo) {
+		if (chip->dev_ready)
+			if (chip->dev_ready(mtd))
+				break;
+	}
+
+	if (!chip->dev_ready(mtd))
+		pr_warn("timeout while waiting for chip to become ready\n");
+}
+EXPORT_SYMBOL_GPL(nand_wait_ready);
+
+/**
+ * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
+ * @mtd: MTD device structure
+ * @timeo: Timeout in ms
+ *
+ * Wait for status ready (i.e. command done) or timeout.
+ */
+static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 time_start;
+
+	timeo = (CONFIG_SYS_HZ * timeo) / 1000;
+	time_start = get_timer(0);
+	while (get_timer(time_start) < timeo) {
+		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
+			break;
+		WATCHDOG_RESET();
+	}
+};
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page devices
+ * (512 Bytes per page).
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+			 int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
+
+	/* Write out the command to the device */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		chip->cmd_ctrl(mtd, readcmd, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	chip->cmd_ctrl(mtd, command, ctrl);
+
+	/* Address cycle, when necessary */
+	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
+	/* Serially input address */
+	if (column != -1) {
+		/* Adjust columns for 16 bit buswidth */
+		if (chip->options & NAND_BUSWIDTH_16 &&
+				!nand_opcode_8bits(command))
+			column >>= 1;
+		chip->cmd_ctrl(mtd, column, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	if (page_addr != -1) {
+		chip->cmd_ctrl(mtd, page_addr, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
+		if (chip->options & NAND_ROW_ADDR_3)
+			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
+	}
+	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status and sequential
+	 * in needs no delay
+	 */
+	switch (command) {
+
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->dev_ready)
+			break;
+		udelay(chip->chip_delay);
+		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd,
+			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(mtd, 250);
+		return;
+
+		/* This applies to read commands */
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		 */
+		if (!chip->dev_ready) {
+			udelay(chip->chip_delay);
+			return;
+		}
+	}
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(mtd);
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page
+ * devices. We don't have the separate regions as we have in the small page
+ * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
+ */
+static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
+			    int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* Emulate NAND_CMD_READOOB */
+	if (command == NAND_CMD_READOOB) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Command latch cycle */
+	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+
+	if (column != -1 || page_addr != -1) {
+		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (chip->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			chip->cmd_ctrl(mtd, column, ctrl);
+			ctrl &= ~NAND_CTRL_CHANGE;
+			chip->cmd_ctrl(mtd, column >> 8, ctrl);
+		}
+		if (page_addr != -1) {
+			chip->cmd_ctrl(mtd, page_addr, ctrl);
+			chip->cmd_ctrl(mtd, page_addr >> 8,
+				       NAND_NCE | NAND_ALE);
+			if (chip->options & NAND_ROW_ADDR_3)
+				chip->cmd_ctrl(mtd, page_addr >> 16,
+					       NAND_NCE | NAND_ALE);
+		}
+	}
+	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status, sequential
+	 * in and status need no delay.
+	 */
+	switch (command) {
+
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_RNDIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->dev_ready)
+			break;
+		udelay(chip->chip_delay);
+		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(mtd, 250);
+		return;
+
+	case NAND_CMD_RNDOUT:
+		/* No ready / busy check necessary */
+		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+		return;
+
+	case NAND_CMD_READ0:
+		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+
+		/* This applies to read commands */
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay.
+		 */
+		if (!chip->dev_ready) {
+			udelay(chip->chip_delay);
+			return;
+		}
+	}
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(mtd);
+}
+
+/**
+ * panic_nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Used when in panic, no locks are taken.
+ */
+static void panic_nand_get_device(struct nand_chip *chip,
+		      struct mtd_info *mtd, int new_state)
+{
+	/* Hardware controller shared among independent devices */
+	chip->controller->active = chip;
+	chip->state = new_state;
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int
+nand_get_device(struct mtd_info *mtd, int new_state)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	chip->state = new_state;
+	return 0;
+}
+
+/**
+ * panic_nand_wait - [GENERIC] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ * @timeo: timeout
+ *
+ * Wait for command done. This is a helper function for nand_wait used when
+ * we are in interrupt context. May happen when in panic and trying to write
+ * an oops through mtdoops.
+ */
+static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
+			    unsigned long timeo)
+{
+	int i;
+	for (i = 0; i < timeo; i++) {
+		if (chip->dev_ready) {
+			if (chip->dev_ready(mtd))
+				break;
+		} else {
+			if (chip->read_byte(mtd) & NAND_STATUS_READY)
+				break;
+		}
+		mdelay(1);
+	}
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for command done. This applies to erase and program only.
+ */
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	int status;
+	unsigned long timeo = 400;
+
+	led_trigger_event(nand_led_trigger, LED_FULL);
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in any
+	 * case on any machine.
+	 */
+	ndelay(100);
+
+	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+
+ 	u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
+ 	u32 time_start;
+ 
+ 	time_start = get_timer(0);
+ 	while (get_timer(time_start) < timer) {
+		if (chip->dev_ready) {
+			if (chip->dev_ready(mtd))
+				break;
+		} else {
+			if (chip->read_byte(mtd) & NAND_STATUS_READY)
+				break;
+		}
+	}
+	led_trigger_event(nand_led_trigger, LED_OFF);
+
+	status = (int)chip->read_byte(mtd);
+	/* This can happen if in case of timeout or buggy dev_ready */
+	WARN_ON(!(status & NAND_STATUS_READY));
+	return status;
+}
+
+/**
+ * nand_reset_data_interface - Reset data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Reset the Data interface and timings to ONFI mode 0.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_data_interface *conf;
+	int ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * The ONFI specification says:
+	 * "
+	 * To transition from NV-DDR or NV-DDR2 to the SDR data
+	 * interface, the host shall use the Reset (FFh) command
+	 * using SDR timing mode 0. A device in any timing mode is
+	 * required to recognize Reset (FFh) command issued in SDR
+	 * timing mode 0.
+	 * "
+	 *
+	 * Configure the data interface in SDR mode and set the
+	 * timings to timing mode 0.
+	 */
+
+	conf = nand_get_default_data_interface();
+	ret = chip->setup_data_interface(mtd, chipnr, conf);
+	if (ret)
+		pr_err("Failed to configure data interface to SDR timing mode 0\n");
+
+	return ret;
+}
+
+/**
+ * nand_setup_data_interface - Setup the best data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Find and configure the best data interface and NAND timings supported by
+ * the chip and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	if (!chip->setup_data_interface || !chip->data_interface)
+		return 0;
+
+	/*
+	 * Ensure the timing mode has been changed on the chip side
+	 * before changing timings on the controller side.
+	 */
+	if (chip->onfi_version) {
+		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
+			chip->onfi_timing_mode_default,
+		};
+
+		ret = chip->onfi_set_features(mtd, chip,
+				ONFI_FEATURE_ADDR_TIMING_MODE,
+				tmode_param);
+		if (ret)
+			goto err;
+	}
+
+	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
+err:
+	return ret;
+}
+
+/**
+ * nand_init_data_interface - find the best data interface and timings
+ * @chip: The NAND chip
+ *
+ * Find the best data interface and NAND timings supported by the chip
+ * and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table. After this
+ * function nand_chip->data_interface is initialized with the best timing mode
+ * available.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_init_data_interface(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int modes, mode, ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * First try to identify the best timings from ONFI parameters and
+	 * if the NAND does not support ONFI, fallback to the default ONFI
+	 * timing mode.
+	 */
+	modes = onfi_get_async_timing_mode(chip);
+	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
+		if (!chip->onfi_timing_mode_default)
+			return 0;
+
+		modes = GENMASK(chip->onfi_timing_mode_default, 0);
+	}
+
+	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
+				       GFP_KERNEL);
+	if (!chip->data_interface)
+		return -ENOMEM;
+
+	for (mode = fls(modes) - 1; mode >= 0; mode--) {
+		ret = onfi_init_data_interface(chip, chip->data_interface,
+					       NAND_SDR_IFACE, mode);
+		if (ret)
+			continue;
+
+		/* Pass -1 to only */
+		ret = chip->setup_data_interface(mtd,
+						 NAND_DATA_IFACE_CHECK_ONLY,
+						 chip->data_interface);
+		if (!ret) {
+			chip->onfi_timing_mode_default = mode;
+			break;
+		}
+	}
+
+	return 0;
+}
+
+static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
+{
+	kfree(chip->data_interface);
+}
+
+/**
+ * nand_reset - Reset and initialize a NAND device
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Returns 0 for success or negative error code otherwise
+ */
+int nand_reset(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	ret = nand_reset_data_interface(chip, chipnr);
+	if (ret)
+		return ret;
+
+	/*
+	 * The CS line has to be released before we can apply the new NAND
+	 * interface settings, hence this weird ->select_chip() dance.
+	 */
+	chip->select_chip(mtd, chipnr);
+	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	chip->select_chip(mtd, -1);
+
+	chip->select_chip(mtd, chipnr);
+	ret = nand_setup_data_interface(chip, chipnr);
+	chip->select_chip(mtd, -1);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+/**
+ * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
+ * @buf: buffer to test
+ * @len: buffer length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a buffer contains only 0xff, which means the underlying region
+ * has been erased and is ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region is not erased.
+ * Note: The logic of this function has been extracted from the memweight
+ * implementation, except that nand_check_erased_buf function exit before
+ * testing the whole buffer if the number of bitflips exceed the
+ * bitflips_threshold value.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold.
+ */
+static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
+{
+	const unsigned char *bitmap = buf;
+	int bitflips = 0;
+	int weight;
+
+	for (; len && ((uintptr_t)bitmap) % sizeof(long);
+	     len--, bitmap++) {
+		weight = hweight8(*bitmap);
+		bitflips += BITS_PER_BYTE - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	for (; len >= 4; len -= 4, bitmap += 4) {
+		weight = hweight32(*((u32 *)bitmap));
+		bitflips += 32 - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	for (; len > 0; len--, bitmap++) {
+		weight = hweight8(*bitmap);
+		bitflips += BITS_PER_BYTE - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	return bitflips;
+}
+
+/**
+ * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
+ *				 0xff data
+ * @data: data buffer to test
+ * @datalen: data length
+ * @ecc: ECC buffer
+ * @ecclen: ECC length
+ * @extraoob: extra OOB buffer
+ * @extraooblen: extra OOB length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a data buffer and its associated ECC and OOB data contains only
+ * 0xff pattern, which means the underlying region has been erased and is
+ * ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region as not erased.
+ *
+ * Note:
+ * 1/ ECC algorithms are working on pre-defined block sizes which are usually
+ *    different from the NAND page size. When fixing bitflips, ECC engines will
+ *    report the number of errors per chunk, and the NAND core infrastructure
+ *    expect you to return the maximum number of bitflips for the whole page.
+ *    This is why you should always use this function on a single chunk and
+ *    not on the whole page. After checking each chunk you should update your
+ *    max_bitflips value accordingly.
+ * 2/ When checking for bitflips in erased pages you should not only check
+ *    the payload data but also their associated ECC data, because a user might
+ *    have programmed almost all bits to 1 but a few. In this case, we
+ *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
+ *    this case.
+ * 3/ The extraoob argument is optional, and should be used if some of your OOB
+ *    data are protected by the ECC engine.
+ *    It could also be used if you support subpages and want to attach some
+ *    extra OOB data to an ECC chunk.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold. In case of success, the passed buffers are filled with 0xff.
+ */
+int nand_check_erased_ecc_chunk(void *data, int datalen,
+				void *ecc, int ecclen,
+				void *extraoob, int extraooblen,
+				int bitflips_threshold)
+{
+	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
+
+	data_bitflips = nand_check_erased_buf(data, datalen,
+					      bitflips_threshold);
+	if (data_bitflips < 0)
+		return data_bitflips;
+
+	bitflips_threshold -= data_bitflips;
+
+	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
+	if (ecc_bitflips < 0)
+		return ecc_bitflips;
+
+	bitflips_threshold -= ecc_bitflips;
+
+	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
+						  bitflips_threshold);
+	if (extraoob_bitflips < 0)
+		return extraoob_bitflips;
+
+	if (data_bitflips)
+		memset(data, 0xff, datalen);
+
+	if (ecc_bitflips)
+		memset(ecc, 0xff, ecclen);
+
+	if (extraoob_bitflips)
+		memset(extraoob, 0xff, extraooblen);
+
+	return data_bitflips + ecc_bitflips + extraoob_bitflips;
+}
+EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
+
+/**
+ * nand_read_page_raw - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	chip->read_buf(mtd, buf, mtd->writesize);
+	if (oob_required)
+		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	return 0;
+}
+
+/**
+ * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * We need a special oob layout and handling even when OOB isn't used.
+ */
+static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
+				       struct nand_chip *chip, uint8_t *buf,
+				       int oob_required, int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size;
+
+	for (steps = chip->ecc.steps; steps > 0; steps--) {
+		chip->read_buf(mtd, buf, eccsize);
+		buf += eccsize;
+
+		if (chip->ecc.prepad) {
+			chip->read_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->read_buf(mtd, oob, eccbytes);
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->read_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size)
+		chip->read_buf(mtd, oob, size);
+
+	return 0;
+}
+
+/**
+ * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ */
+static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	unsigned int max_bitflips = 0;
+
+	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @data_offs: offset of requested data within the page
+ * @readlen: data length
+ * @bufpoi: buffer to store read data
+ * @page: page number to read
+ */
+static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
+			int page)
+{
+	int start_step, end_step, num_steps;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	uint8_t *p;
+	int data_col_addr, i, gaps = 0;
+	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
+	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
+	int index;
+	unsigned int max_bitflips = 0;
+
+	/* Column address within the page aligned to ECC size (256bytes) */
+	start_step = data_offs / chip->ecc.size;
+	end_step = (data_offs + readlen - 1) / chip->ecc.size;
+	num_steps = end_step - start_step + 1;
+	index = start_step * chip->ecc.bytes;
+
+	/* Data size aligned to ECC ecc.size */
+	datafrag_len = num_steps * chip->ecc.size;
+	eccfrag_len = num_steps * chip->ecc.bytes;
+
+	data_col_addr = start_step * chip->ecc.size;
+	/* If we read not a page aligned data */
+	if (data_col_addr != 0)
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
+
+	p = bufpoi + data_col_addr;
+	chip->read_buf(mtd, p, datafrag_len);
+
+	/* Calculate ECC */
+	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
+		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
+
+	/*
+	 * The performance is faster if we position offsets according to
+	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
+	 */
+	for (i = 0; i < eccfrag_len - 1; i++) {
+		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
+			gaps = 1;
+			break;
+		}
+	}
+	if (gaps) {
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	} else {
+		/*
+		 * Send the command to read the particular ECC bytes take care
+		 * about buswidth alignment in read_buf.
+		 */
+		aligned_pos = eccpos[index] & ~(busw - 1);
+		aligned_len = eccfrag_len;
+		if (eccpos[index] & (busw - 1))
+			aligned_len++;
+		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
+			aligned_len++;
+
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+					mtd->writesize + aligned_pos, -1);
+		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
+	}
+
+	for (i = 0; i < eccfrag_len; i++)
+		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
+
+	p = bufpoi + data_col_addr;
+	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p,
+			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
+						&chip->buffers->ecccode[i],
+						chip->ecc.bytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers which need a special oob layout.
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	unsigned int max_bitflips = 0;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->read_buf(mtd, p, eccsize);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+						&ecc_code[i], eccbytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Hardware ECC for large page chips, require OOB to be read first. For this
+ * ECC mode, the write_page method is re-used from ECC_HW. These methods
+ * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
+ * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
+ * the data area, by overwriting the NAND manufacturer bad block markings.
+ */
+static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	unsigned int max_bitflips = 0;
+
+	/* Read the OOB area first */
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->read_buf(mtd, p, eccsize);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+						&ecc_code[i], eccbytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+				   uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+	unsigned int max_bitflips = 0;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->read_buf(mtd, p, eccsize);
+
+		if (chip->ecc.prepad) {
+			chip->read_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
+		chip->read_buf(mtd, oob, eccbytes);
+		stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->read_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
+							   oob - eccpadbytes,
+							   eccpadbytes,
+							   NULL, 0,
+							   chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	i = mtd->oobsize - (oob - chip->oob_poi);
+	if (i)
+		chip->read_buf(mtd, oob, i);
+
+	return max_bitflips;
+}
+
+/**
+ * nand_transfer_oob - [INTERN] Transfer oob to client buffer
+ * @chip: nand chip structure
+ * @oob: oob destination address
+ * @ops: oob ops structure
+ * @len: size of oob to transfer
+ */
+static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
+				  struct mtd_oob_ops *ops, size_t len)
+{
+	switch (ops->mode) {
+
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_RAW:
+		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
+		return oob + len;
+
+	case MTD_OPS_AUTO_OOB: {
+		struct nand_oobfree *free = chip->ecc.layout->oobfree;
+		uint32_t boffs = 0, roffs = ops->ooboffs;
+		size_t bytes = 0;
+
+		for (; free->length && len; free++, len -= bytes) {
+			/* Read request not from offset 0? */
+			if (unlikely(roffs)) {
+				if (roffs >= free->length) {
+					roffs -= free->length;
+					continue;
+				}
+				boffs = free->offset + roffs;
+				bytes = min_t(size_t, len,
+					      (free->length - roffs));
+				roffs = 0;
+			} else {
+				bytes = min_t(size_t, len, free->length);
+				boffs = free->offset;
+			}
+			memcpy(oob, chip->oob_poi + boffs, bytes);
+			oob += bytes;
+		}
+		return oob;
+	}
+	default:
+		BUG();
+	}
+	return NULL;
+}
+
+/**
+ * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
+ * @mtd: MTD device structure
+ * @retry_mode: the retry mode to use
+ *
+ * Some vendors supply a special command to shift the Vt threshold, to be used
+ * when there are too many bitflips in a page (i.e., ECC error). After setting
+ * a new threshold, the host should retry reading the page.
+ */
+static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	pr_debug("setting READ RETRY mode %d\n", retry_mode);
+
+	if (retry_mode >= chip->read_retries)
+		return -EINVAL;
+
+	if (!chip->setup_read_retry)
+		return -EOPNOTSUPP;
+
+	return chip->setup_read_retry(mtd, retry_mode);
+}
+
+/**
+ * nand_do_read_ops - [INTERN] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob ops structure
+ *
+ * Internal function. Called with chip held.
+ */
+static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	int chipnr, page, realpage, col, bytes, aligned, oob_required;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret = 0;
+	uint32_t readlen = ops->len;
+	uint32_t oobreadlen = ops->ooblen;
+	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
+
+	uint8_t *bufpoi, *oob, *buf;
+	int use_bufpoi;
+	unsigned int max_bitflips = 0;
+	int retry_mode = 0;
+	bool ecc_fail = false;
+
+	chipnr = (int)(from >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	realpage = (int)(from >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	col = (int)(from & (mtd->writesize - 1));
+
+	buf = ops->datbuf;
+	oob = ops->oobbuf;
+	oob_required = oob ? 1 : 0;
+
+	while (1) {
+		unsigned int ecc_failures = mtd->ecc_stats.failed;
+
+		WATCHDOG_RESET();
+		bytes = min(mtd->writesize - col, readlen);
+		aligned = (bytes == mtd->writesize);
+
+		if (!aligned)
+			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
+		else
+			use_bufpoi = 0;
+
+		/* Is the current page in the buffer? */
+		if (realpage != chip->pagebuf || oob) {
+			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
+
+			if (use_bufpoi && aligned)
+				pr_debug("%s: using read bounce buffer for buf@%p\n",
+						 __func__, buf);
+
+read_retry:
+			if (nand_standard_page_accessors(&chip->ecc))
+				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
+
+			/*
+			 * Now read the page into the buffer.  Absent an error,
+			 * the read methods return max bitflips per ecc step.
+			 */
+			if (unlikely(ops->mode == MTD_OPS_RAW))
+				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
+							      oob_required,
+							      page);
+			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
+				 !oob)
+				ret = chip->ecc.read_subpage(mtd, chip,
+							col, bytes, bufpoi,
+							page);
+			else
+				ret = chip->ecc.read_page(mtd, chip, bufpoi,
+							  oob_required, page);
+			if (ret < 0) {
+				if (use_bufpoi)
+					/* Invalidate page cache */
+					chip->pagebuf = -1;
+				break;
+			}
+
+			max_bitflips = max_t(unsigned int, max_bitflips, ret);
+
+			/* Transfer not aligned data */
+			if (use_bufpoi) {
+				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
+				    !(mtd->ecc_stats.failed - ecc_failures) &&
+				    (ops->mode != MTD_OPS_RAW)) {
+					chip->pagebuf = realpage;
+					chip->pagebuf_bitflips = ret;
+				} else {
+					/* Invalidate page cache */
+					chip->pagebuf = -1;
+				}
+				memcpy(buf, chip->buffers->databuf + col, bytes);
+			}
+
+			if (unlikely(oob)) {
+				int toread = min(oobreadlen, max_oobsize);
+
+				if (toread) {
+					oob = nand_transfer_oob(chip,
+						oob, ops, toread);
+					oobreadlen -= toread;
+				}
+			}
+
+			if (chip->options & NAND_NEED_READRDY) {
+				/* Apply delay or wait for ready/busy pin */
+				if (!chip->dev_ready)
+					udelay(chip->chip_delay);
+				else
+					nand_wait_ready(mtd);
+			}
+
+			if (mtd->ecc_stats.failed - ecc_failures) {
+				if (retry_mode + 1 < chip->read_retries) {
+					retry_mode++;
+					ret = nand_setup_read_retry(mtd,
+							retry_mode);
+					if (ret < 0)
+						break;
+
+					/* Reset failures; retry */
+					mtd->ecc_stats.failed = ecc_failures;
+					goto read_retry;
+				} else {
+					/* No more retry modes; real failure */
+					ecc_fail = true;
+				}
+			}
+
+			buf += bytes;
+		} else {
+			memcpy(buf, chip->buffers->databuf + col, bytes);
+			buf += bytes;
+			max_bitflips = max_t(unsigned int, max_bitflips,
+					     chip->pagebuf_bitflips);
+		}
+
+		readlen -= bytes;
+
+		/* Reset to retry mode 0 */
+		if (retry_mode) {
+			ret = nand_setup_read_retry(mtd, 0);
+			if (ret < 0)
+				break;
+			retry_mode = 0;
+		}
+
+		if (!readlen)
+			break;
+
+		/* For subsequent reads align to page boundary */
+		col = 0;
+		/* Increment page address */
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+	chip->select_chip(mtd, -1);
+
+	ops->retlen = ops->len - (size_t) readlen;
+	if (oob)
+		ops->oobretlen = ops->ooblen - oobreadlen;
+
+	if (ret < 0)
+		return ret;
+
+	if (ecc_fail)
+		return -EBADMSG;
+
+	return max_bitflips;
+}
+
+/**
+ * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	return 0;
+}
+
+/**
+ * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
+ *			    with syndromes
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+				  int page)
+{
+	int length = mtd->oobsize;
+	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsize = chip->ecc.size;
+	uint8_t *bufpoi = chip->oob_poi;
+	int i, toread, sndrnd = 0, pos;
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
+	for (i = 0; i < chip->ecc.steps; i++) {
+		if (sndrnd) {
+			pos = eccsize + i * (eccsize + chunk);
+			if (mtd->writesize > 512)
+				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
+			else
+				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
+		} else
+			sndrnd = 1;
+		toread = min_t(int, length, chunk);
+		chip->read_buf(mtd, bufpoi, toread);
+		bufpoi += toread;
+		length -= toread;
+	}
+	if (length > 0)
+		chip->read_buf(mtd, bufpoi, length);
+
+	return 0;
+}
+
+/**
+ * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+			      int page)
+{
+	int status = 0;
+	const uint8_t *buf = chip->oob_poi;
+	int length = mtd->oobsize;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	chip->write_buf(mtd, buf, length);
+	/* Send command to program the OOB data */
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
+ *			     with syndrome - only for large page flash
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int nand_write_oob_syndrome(struct mtd_info *mtd,
+				   struct nand_chip *chip, int page)
+{
+	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsize = chip->ecc.size, length = mtd->oobsize;
+	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
+	const uint8_t *bufpoi = chip->oob_poi;
+
+	/*
+	 * data-ecc-data-ecc ... ecc-oob
+	 * or
+	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
+	 */
+	if (!chip->ecc.prepad && !chip->ecc.postpad) {
+		pos = steps * (eccsize + chunk);
+		steps = 0;
+	} else
+		pos = eccsize;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
+	for (i = 0; i < steps; i++) {
+		if (sndcmd) {
+			if (mtd->writesize <= 512) {
+				uint32_t fill = 0xFFFFFFFF;
+
+				len = eccsize;
+				while (len > 0) {
+					int num = min_t(int, len, 4);
+					chip->write_buf(mtd, (uint8_t *)&fill,
+							num);
+					len -= num;
+				}
+			} else {
+				pos = eccsize + i * (eccsize + chunk);
+				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
+			}
+		} else
+			sndcmd = 1;
+		len = min_t(int, length, chunk);
+		chip->write_buf(mtd, bufpoi, len);
+		bufpoi += len;
+		length -= len;
+	}
+	if (length > 0)
+		chip->write_buf(mtd, bufpoi, length);
+
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/**
+ * nand_do_read_oob - [INTERN] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operations description structure
+ *
+ * NAND read out-of-band data from the spare area.
+ */
+static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	int page, realpage, chipnr;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_ecc_stats stats;
+	int readlen = ops->ooblen;
+	int len;
+	uint8_t *buf = ops->oobbuf;
+	int ret = 0;
+
+	pr_debug("%s: from = 0x%08Lx, len = %i\n",
+			__func__, (unsigned long long)from, readlen);
+
+	stats = mtd->ecc_stats;
+
+	len = mtd_oobavail(mtd, ops);
+
+	if (unlikely(ops->ooboffs >= len)) {
+		pr_debug("%s: attempt to start read outside oob\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	/* Do not allow reads past end of device */
+	if (unlikely(from >= mtd->size ||
+		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
+					(from >> chip->page_shift)) * len)) {
+		pr_debug("%s: attempt to read beyond end of device\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	chipnr = (int)(from >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	/* Shift to get page */
+	realpage = (int)(from >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	while (1) {
+		WATCHDOG_RESET();
+
+		if (ops->mode == MTD_OPS_RAW)
+			ret = chip->ecc.read_oob_raw(mtd, chip, page);
+		else
+			ret = chip->ecc.read_oob(mtd, chip, page);
+
+		if (ret < 0)
+			break;
+
+		len = min(len, readlen);
+		buf = nand_transfer_oob(chip, buf, ops, len);
+
+		if (chip->options & NAND_NEED_READRDY) {
+			/* Apply delay or wait for ready/busy pin */
+			if (!chip->dev_ready)
+				udelay(chip->chip_delay);
+			else
+				nand_wait_ready(mtd);
+		}
+
+		readlen -= len;
+		if (!readlen)
+			break;
+
+		/* Increment page address */
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+	chip->select_chip(mtd, -1);
+
+	ops->oobretlen = ops->ooblen - readlen;
+
+	if (ret < 0)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operation description structure
+ *
+ * NAND read data and/or out-of-band data.
+ */
+static int nand_read_oob(struct mtd_info *mtd, loff_t from,
+			 struct mtd_oob_ops *ops)
+{
+	int ret = -ENOTSUPP;
+
+	ops->retlen = 0;
+
+	/* Do not allow reads past end of device */
+	if (ops->datbuf && (from + ops->len) > mtd->size) {
+		pr_debug("%s: attempt to read beyond end of device\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	nand_get_device(mtd, FL_READING);
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+	case MTD_OPS_RAW:
+		break;
+
+	default:
+		goto out;
+	}
+
+	if (!ops->datbuf)
+		ret = nand_do_read_oob(mtd, from, ops);
+	else
+		ret = nand_do_read_ops(mtd, from, ops);
+
+out:
+	nand_release_device(mtd);
+	return ret;
+}
+
+
+/**
+ * nand_write_page_raw - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	chip->write_buf(mtd, buf, mtd->writesize);
+	if (oob_required)
+		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+/**
+ * nand_write_page_raw_syndrome - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * We need a special oob layout and handling even when ECC isn't checked.
+ */
+static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
+					struct nand_chip *chip,
+					const uint8_t *buf, int oob_required,
+					int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size;
+
+	for (steps = chip->ecc.steps; steps > 0; steps--) {
+		chip->write_buf(mtd, buf, eccsize);
+		buf += eccsize;
+
+		if (chip->ecc.prepad) {
+			chip->write_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->write_buf(mtd, oob, eccbytes);
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->write_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size)
+		chip->write_buf(mtd, oob, size);
+
+	return 0;
+}
+/**
+ * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required,
+				 int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	const uint8_t *p = buf;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+	/* Software ECC calculation */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+}
+
+/**
+ * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				  const uint8_t *buf, int oob_required,
+				  int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	const uint8_t *p = buf;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+		chip->write_buf(mtd, p, eccsize);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+
+/**
+ * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @offset:	column address of subpage within the page
+ * @data_len:	data length
+ * @buf:	data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_subpage_hwecc(struct mtd_info *mtd,
+				struct nand_chip *chip, uint32_t offset,
+				uint32_t data_len, const uint8_t *buf,
+				int oob_required, int page)
+{
+	uint8_t *oob_buf  = chip->oob_poi;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	int ecc_size      = chip->ecc.size;
+	int ecc_bytes     = chip->ecc.bytes;
+	int ecc_steps     = chip->ecc.steps;
+	uint32_t *eccpos  = chip->ecc.layout->eccpos;
+	uint32_t start_step = offset / ecc_size;
+	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
+	int oob_bytes       = mtd->oobsize / ecc_steps;
+	int step, i;
+
+	for (step = 0; step < ecc_steps; step++) {
+		/* configure controller for WRITE access */
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+		/* write data (untouched subpages already masked by 0xFF) */
+		chip->write_buf(mtd, buf, ecc_size);
+
+		/* mask ECC of un-touched subpages by padding 0xFF */
+		if ((step < start_step) || (step > end_step))
+			memset(ecc_calc, 0xff, ecc_bytes);
+		else
+			chip->ecc.calculate(mtd, buf, ecc_calc);
+
+		/* mask OOB of un-touched subpages by padding 0xFF */
+		/* if oob_required, preserve OOB metadata of written subpage */
+		if (!oob_required || (step < start_step) || (step > end_step))
+			memset(oob_buf, 0xff, oob_bytes);
+
+		buf += ecc_size;
+		ecc_calc += ecc_bytes;
+		oob_buf  += oob_bytes;
+	}
+
+	/* copy calculated ECC for whole page to chip->buffer->oob */
+	/* this include masked-value(0xFF) for unwritten subpages */
+	ecc_calc = chip->buffers->ecccalc;
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	/* write OOB buffer to NAND device */
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+
+/**
+ * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_write_page_syndrome(struct mtd_info *mtd,
+				    struct nand_chip *chip,
+				    const uint8_t *buf, int oob_required,
+				    int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	const uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+		chip->write_buf(mtd, p, eccsize);
+
+		if (chip->ecc.prepad) {
+			chip->write_buf(mtd, oob, chip->ecc.prepad);
+			oob += chip->ecc.prepad;
+		}
+
+		chip->ecc.calculate(mtd, p, oob);
+		chip->write_buf(mtd, oob, eccbytes);
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			chip->write_buf(mtd, oob, chip->ecc.postpad);
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	i = mtd->oobsize - (oob - chip->oob_poi);
+	if (i)
+		chip->write_buf(mtd, oob, i);
+
+	return 0;
+}
+
+/**
+ * nand_write_page - [REPLACEABLE] write one page
+ * @mtd: MTD device structure
+ * @chip: NAND chip descriptor
+ * @offset: address offset within the page
+ * @data_len: length of actual data to be written
+ * @buf: the data to write
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ * @raw: use _raw version of write_page
+ */
+static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+		uint32_t offset, int data_len, const uint8_t *buf,
+		int oob_required, int page, int raw)
+{
+	int status, subpage;
+
+	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
+		chip->ecc.write_subpage)
+		subpage = offset || (data_len < mtd->writesize);
+	else
+		subpage = 0;
+
+	if (nand_standard_page_accessors(&chip->ecc))
+		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+
+	if (unlikely(raw))
+		status = chip->ecc.write_page_raw(mtd, chip, buf,
+						  oob_required, page);
+	else if (subpage)
+		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
+						 buf, oob_required, page);
+	else
+		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
+					      page);
+
+	if (status < 0)
+		return status;
+
+	if (nand_standard_page_accessors(&chip->ecc)) {
+		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+		status = chip->waitfunc(mtd, chip);
+		if (status & NAND_STATUS_FAIL)
+			return -EIO;
+	}
+
+	return 0;
+}
+
+/**
+ * nand_fill_oob - [INTERN] Transfer client buffer to oob
+ * @mtd: MTD device structure
+ * @oob: oob data buffer
+ * @len: oob data write length
+ * @ops: oob ops structure
+ */
+static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
+			      struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/*
+	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
+	 * data from a previous OOB read.
+	 */
+	memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+	switch (ops->mode) {
+
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_RAW:
+		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
+		return oob + len;
+
+	case MTD_OPS_AUTO_OOB: {
+		struct nand_oobfree *free = chip->ecc.layout->oobfree;
+		uint32_t boffs = 0, woffs = ops->ooboffs;
+		size_t bytes = 0;
+
+		for (; free->length && len; free++, len -= bytes) {
+			/* Write request not from offset 0? */
+			if (unlikely(woffs)) {
+				if (woffs >= free->length) {
+					woffs -= free->length;
+					continue;
+				}
+				boffs = free->offset + woffs;
+				bytes = min_t(size_t, len,
+					      (free->length - woffs));
+				woffs = 0;
+			} else {
+				bytes = min_t(size_t, len, free->length);
+				boffs = free->offset;
+			}
+			memcpy(chip->oob_poi + boffs, oob, bytes);
+			oob += bytes;
+		}
+		return oob;
+	}
+	default:
+		BUG();
+	}
+	return NULL;
+}
+
+#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
+
+/**
+ * nand_do_write_ops - [INTERN] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operations description structure
+ *
+ * NAND write with ECC.
+ */
+static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int chipnr, realpage, page, column;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint32_t writelen = ops->len;
+
+	uint32_t oobwritelen = ops->ooblen;
+	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
+
+	uint8_t *oob = ops->oobbuf;
+	uint8_t *buf = ops->datbuf;
+	int ret;
+	int oob_required = oob ? 1 : 0;
+
+	ops->retlen = 0;
+	if (!writelen)
+		return 0;
+
+	/* Reject writes, which are not page aligned */
+	if (NOTALIGNED(to)) {
+		pr_notice("%s: attempt to write non page aligned data\n",
+			   __func__);
+		return -EINVAL;
+	}
+
+	column = to & (mtd->writesize - 1);
+
+	chipnr = (int)(to >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		ret = -EIO;
+		goto err_out;
+	}
+
+	realpage = (int)(to >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	/* Invalidate the page cache, when we write to the cached page */
+	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
+	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
+		chip->pagebuf = -1;
+
+	/* Don't allow multipage oob writes with offset */
+	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
+		ret = -EINVAL;
+		goto err_out;
+	}
+
+	while (1) {
+		int bytes = mtd->writesize;
+		uint8_t *wbuf = buf;
+		int use_bufpoi;
+		int part_pagewr = (column || writelen < mtd->writesize);
+
+		if (part_pagewr)
+			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
+		else
+			use_bufpoi = 0;
+
+		WATCHDOG_RESET();
+		/* Partial page write?, or need to use bounce buffer */
+		if (use_bufpoi) {
+			pr_debug("%s: using write bounce buffer for buf@%p\n",
+					 __func__, buf);
+			if (part_pagewr)
+				bytes = min_t(int, bytes - column, writelen);
+			chip->pagebuf = -1;
+			memset(chip->buffers->databuf, 0xff, mtd->writesize);
+			memcpy(&chip->buffers->databuf[column], buf, bytes);
+			wbuf = chip->buffers->databuf;
+		}
+
+		if (unlikely(oob)) {
+			size_t len = min(oobwritelen, oobmaxlen);
+			oob = nand_fill_oob(mtd, oob, len, ops);
+			oobwritelen -= len;
+		} else {
+			/* We still need to erase leftover OOB data */
+			memset(chip->oob_poi, 0xff, mtd->oobsize);
+		}
+		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
+					oob_required, page,
+					(ops->mode == MTD_OPS_RAW));
+		if (ret)
+			break;
+
+		writelen -= bytes;
+		if (!writelen)
+			break;
+
+		column = 0;
+		buf += bytes;
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+
+	ops->retlen = ops->len - writelen;
+	if (unlikely(oob))
+		ops->oobretlen = ops->ooblen;
+
+err_out:
+	chip->select_chip(mtd, -1);
+	return ret;
+}
+
+/**
+ * panic_nand_write - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write with ECC. Used when performing writes in interrupt context, this
+ * may for example be called by mtdoops when writing an oops while in panic.
+ */
+static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+			    size_t *retlen, const uint8_t *buf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_oob_ops ops;
+	int ret;
+
+	/* Wait for the device to get ready */
+	panic_nand_wait(mtd, chip, 400);
+
+	/* Grab the device */
+	panic_nand_get_device(chip, mtd, FL_WRITING);
+
+	memset(&ops, 0, sizeof(ops));
+	ops.len = len;
+	ops.datbuf = (uint8_t *)buf;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	ret = nand_do_write_ops(mtd, to, &ops);
+
+	*retlen = ops.retlen;
+	return ret;
+}
+
+/**
+ * nand_do_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ *
+ * NAND write out-of-band.
+ */
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int chipnr, page, status, len;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	pr_debug("%s: to = 0x%08x, len = %i\n",
+			 __func__, (unsigned int)to, (int)ops->ooblen);
+
+	len = mtd_oobavail(mtd, ops);
+
+	/* Do not allow write past end of page */
+	if ((ops->ooboffs + ops->ooblen) > len) {
+		pr_debug("%s: attempt to write past end of page\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	if (unlikely(ops->ooboffs >= len)) {
+		pr_debug("%s: attempt to start write outside oob\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	/* Do not allow write past end of device */
+	if (unlikely(to >= mtd->size ||
+		     ops->ooboffs + ops->ooblen >
+			((mtd->size >> chip->page_shift) -
+			 (to >> chip->page_shift)) * len)) {
+		pr_debug("%s: attempt to write beyond end of device\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	chipnr = (int)(to >> chip->chip_shift);
+
+	/*
+	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
+	 * of my DiskOnChip 2000 test units) will clear the whole data page too
+	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
+	 * it in the doc2000 driver in August 1999.  dwmw2.
+	 */
+	nand_reset(chip, chipnr);
+
+	chip->select_chip(mtd, chipnr);
+
+	/* Shift to get page */
+	page = (int)(to >> chip->page_shift);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		chip->select_chip(mtd, -1);
+		return -EROFS;
+	}
+
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page == chip->pagebuf)
+		chip->pagebuf = -1;
+
+	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
+
+	if (ops->mode == MTD_OPS_RAW)
+		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
+	else
+		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
+
+	chip->select_chip(mtd, -1);
+
+	if (status)
+		return status;
+
+	ops->oobretlen = ops->ooblen;
+
+	return 0;
+}
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ */
+static int nand_write_oob(struct mtd_info *mtd, loff_t to,
+			  struct mtd_oob_ops *ops)
+{
+	int ret = -ENOTSUPP;
+
+	ops->retlen = 0;
+
+	/* Do not allow writes past end of device */
+	if (ops->datbuf && (to + ops->len) > mtd->size) {
+		pr_debug("%s: attempt to write beyond end of device\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	nand_get_device(mtd, FL_WRITING);
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+	case MTD_OPS_RAW:
+		break;
+
+	default:
+		goto out;
+	}
+
+	if (!ops->datbuf)
+		ret = nand_do_write_oob(mtd, to, ops);
+	else
+		ret = nand_do_write_ops(mtd, to, ops);
+
+out:
+	nand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * single_erase - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips. Returns NAND status.
+ */
+static int single_erase(struct mtd_info *mtd, int page)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	/* Send commands to erase a block */
+	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+	return chip->waitfunc(mtd, chip);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks.
+ */
+static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+	return nand_erase_nand(mtd, instr, 0);
+}
+
+/**
+ * nand_erase_nand - [INTERN] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks.
+ */
+int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+		    int allowbbt)
+{
+	int page, status, pages_per_block, ret, chipnr;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	loff_t len;
+
+	pr_debug("%s: start = 0x%012llx, len = %llu\n",
+			__func__, (unsigned long long)instr->addr,
+			(unsigned long long)instr->len);
+
+	if (check_offs_len(mtd, instr->addr, instr->len))
+		return -EINVAL;
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device(mtd, FL_ERASING);
+
+	/* Shift to get first page */
+	page = (int)(instr->addr >> chip->page_shift);
+	chipnr = (int)(instr->addr >> chip->chip_shift);
+
+	/* Calculate pages in each block */
+	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
+
+	/* Select the NAND device */
+	chip->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		pr_debug("%s: device is write protected!\n",
+				__func__);
+		instr->state = MTD_ERASE_FAILED;
+		goto erase_exit;
+	}
+
+	/* Loop through the pages */
+	len = instr->len;
+
+	instr->state = MTD_ERASING;
+
+	while (len) {
+		WATCHDOG_RESET();
+
+		/* Check if we have a bad block, we do not erase bad blocks! */
+		if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
+					chip->page_shift, allowbbt)) {
+			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
+				    __func__, page);
+			instr->state = MTD_ERASE_FAILED;
+			goto erase_exit;
+		}
+
+		/*
+		 * Invalidate the page cache, if we erase the block which
+		 * contains the current cached page.
+		 */
+		if (page <= chip->pagebuf && chip->pagebuf <
+		    (page + pages_per_block))
+			chip->pagebuf = -1;
+
+		status = chip->erase(mtd, page & chip->pagemask);
+
+		/* See if block erase succeeded */
+		if (status & NAND_STATUS_FAIL) {
+			pr_debug("%s: failed erase, page 0x%08x\n",
+					__func__, page);
+			instr->state = MTD_ERASE_FAILED;
+			instr->fail_addr =
+				((loff_t)page << chip->page_shift);
+			goto erase_exit;
+		}
+
+		/* Increment page address and decrement length */
+		len -= (1ULL << chip->phys_erase_shift);
+		page += pages_per_block;
+
+		/* Check, if we cross a chip boundary */
+		if (len && !(page & chip->pagemask)) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+	instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+
+	/* Deselect and wake up anyone waiting on the device */
+	chip->select_chip(mtd, -1);
+	nand_release_device(mtd);
+
+	/* Do call back function */
+	if (!ret)
+		mtd_erase_callback(instr);
+
+	/* Return more or less happy */
+	return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function.
+ */
+static void nand_sync(struct mtd_info *mtd)
+{
+	pr_debug("%s: called\n", __func__);
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device(mtd, FL_SYNCING);
+	/* Release it and go back */
+	nand_release_device(mtd);
+}
+
+/**
+ * nand_block_isbad - [MTD Interface] Check if block at offset is bad
+ * @mtd: MTD device structure
+ * @offs: offset relative to mtd start
+ */
+static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int chipnr = (int)(offs >> chip->chip_shift);
+	int ret;
+
+	/* Select the NAND device */
+	nand_get_device(mtd, FL_READING);
+	chip->select_chip(mtd, chipnr);
+
+	ret = nand_block_checkbad(mtd, offs, 0);
+
+	chip->select_chip(mtd, -1);
+	nand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	int ret;
+
+	ret = nand_block_isbad(mtd, ofs);
+	if (ret) {
+		/* If it was bad already, return success and do nothing */
+		if (ret > 0)
+			return 0;
+		return ret;
+	}
+
+	return nand_block_markbad_lowlevel(mtd, ofs);
+}
+
+/**
+ * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
+			int addr, uint8_t *subfeature_param)
+{
+	int status;
+	int i;
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+	if (!chip->onfi_version ||
+	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
+	      & ONFI_OPT_CMD_SET_GET_FEATURES))
+		return -ENOTSUPP;
+#endif
+
+	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		chip->write_byte(mtd, subfeature_param[i]);
+
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+	return 0;
+}
+
+/**
+ * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
+			int addr, uint8_t *subfeature_param)
+{
+	int i;
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+	if (!chip->onfi_version ||
+	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
+	      & ONFI_OPT_CMD_SET_GET_FEATURES))
+		return -ENOTSUPP;
+#endif
+
+	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		*subfeature_param++ = chip->read_byte(mtd);
+	return 0;
+}
+
+/* Set default functions */
+static void nand_set_defaults(struct nand_chip *chip, int busw)
+{
+	/* check for proper chip_delay setup, set 20us if not */
+	if (!chip->chip_delay)
+		chip->chip_delay = 20;
+
+	/* check, if a user supplied command function given */
+	if (chip->cmdfunc == NULL)
+		chip->cmdfunc = nand_command;
+
+	/* check, if a user supplied wait function given */
+	if (chip->waitfunc == NULL)
+		chip->waitfunc = nand_wait;
+
+	if (!chip->select_chip)
+		chip->select_chip = nand_select_chip;
+
+	/* set for ONFI nand */
+	if (!chip->onfi_set_features)
+		chip->onfi_set_features = nand_onfi_set_features;
+	if (!chip->onfi_get_features)
+		chip->onfi_get_features = nand_onfi_get_features;
+
+	/* If called twice, pointers that depend on busw may need to be reset */
+	if (!chip->read_byte || chip->read_byte == nand_read_byte)
+		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+	if (!chip->read_word)
+		chip->read_word = nand_read_word;
+	if (!chip->block_bad)
+		chip->block_bad = nand_block_bad;
+	if (!chip->block_markbad)
+		chip->block_markbad = nand_default_block_markbad;
+	if (!chip->write_buf || chip->write_buf == nand_write_buf)
+		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+	if (!chip->write_byte || chip->write_byte == nand_write_byte)
+		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+	if (!chip->read_buf || chip->read_buf == nand_read_buf)
+		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+	if (!chip->scan_bbt)
+		chip->scan_bbt = nand_default_bbt;
+
+	if (!chip->controller) {
+		chip->controller = &chip->hwcontrol;
+		spin_lock_init(&chip->controller->lock);
+		init_waitqueue_head(&chip->controller->wq);
+	}
+
+	if (!chip->buf_align)
+		chip->buf_align = 1;
+}
+
+/* Sanitize ONFI strings so we can safely print them */
+static void sanitize_string(char *s, size_t len)
+{
+	ssize_t i;
+
+	/* Null terminate */
+	s[len - 1] = 0;
+
+	/* Remove non printable chars */
+	for (i = 0; i < len - 1; i++) {
+		if (s[i] < ' ' || s[i] > 127)
+			s[i] = '?';
+	}
+
+	/* Remove trailing spaces */
+	strim(s);
+}
+
+static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
+{
+	int i;
+	while (len--) {
+		crc ^= *p++ << 8;
+		for (i = 0; i < 8; i++)
+			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
+	}
+
+	return crc;
+}
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+/* Parse the Extended Parameter Page. */
+static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
+		struct nand_chip *chip, struct nand_onfi_params *p)
+{
+	struct onfi_ext_param_page *ep;
+	struct onfi_ext_section *s;
+	struct onfi_ext_ecc_info *ecc;
+	uint8_t *cursor;
+	int ret = -EINVAL;
+	int len;
+	int i;
+
+	len = le16_to_cpu(p->ext_param_page_length) * 16;
+	ep = kmalloc(len, GFP_KERNEL);
+	if (!ep)
+		return -ENOMEM;
+
+	/* Send our own NAND_CMD_PARAM. */
+	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
+
+	/* Use the Change Read Column command to skip the ONFI param pages. */
+	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+			sizeof(*p) * p->num_of_param_pages , -1);
+
+	/* Read out the Extended Parameter Page. */
+	chip->read_buf(mtd, (uint8_t *)ep, len);
+	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
+		!= le16_to_cpu(ep->crc))) {
+		pr_debug("fail in the CRC.\n");
+		goto ext_out;
+	}
+
+	/*
+	 * Check the signature.
+	 * Do not strictly follow the ONFI spec, maybe changed in future.
+	 */
+	if (strncmp((char *)ep->sig, "EPPS", 4)) {
+		pr_debug("The signature is invalid.\n");
+		goto ext_out;
+	}
+
+	/* find the ECC section. */
+	cursor = (uint8_t *)(ep + 1);
+	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
+		s = ep->sections + i;
+		if (s->type == ONFI_SECTION_TYPE_2)
+			break;
+		cursor += s->length * 16;
+	}
+	if (i == ONFI_EXT_SECTION_MAX) {
+		pr_debug("We can not find the ECC section.\n");
+		goto ext_out;
+	}
+
+	/* get the info we want. */
+	ecc = (struct onfi_ext_ecc_info *)cursor;
+
+	if (!ecc->codeword_size) {
+		pr_debug("Invalid codeword size\n");
+		goto ext_out;
+	}
+
+	chip->ecc_strength_ds = ecc->ecc_bits;
+	chip->ecc_step_ds = 1 << ecc->codeword_size;
+	ret = 0;
+
+ext_out:
+	kfree(ep);
+	return ret;
+}
+
+static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
+
+	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
+			feature);
+}
+
+/*
+ * Configure chip properties from Micron vendor-specific ONFI table
+ */
+static void nand_onfi_detect_micron(struct nand_chip *chip,
+		struct nand_onfi_params *p)
+{
+	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
+
+	if (le16_to_cpu(p->vendor_revision) < 1)
+		return;
+
+	chip->read_retries = micron->read_retry_options;
+	chip->setup_read_retry = nand_setup_read_retry_micron;
+}
+
+/*
+ * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
+					int *busw)
+{
+	struct nand_onfi_params *p = &chip->onfi_params;
+	int i, j;
+	int val;
+
+	/* Try ONFI for unknown chip or LP */
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
+	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
+		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
+		return 0;
+
+	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
+	for (i = 0; i < 3; i++) {
+		for (j = 0; j < sizeof(*p); j++)
+			((uint8_t *)p)[j] = chip->read_byte(mtd);
+		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
+				le16_to_cpu(p->crc)) {
+			break;
+		}
+	}
+
+	if (i == 3) {
+		pr_err("Could not find valid ONFI parameter page; aborting\n");
+		return 0;
+	}
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & (1 << 5))
+		chip->onfi_version = 23;
+	else if (val & (1 << 4))
+		chip->onfi_version = 22;
+	else if (val & (1 << 3))
+		chip->onfi_version = 21;
+	else if (val & (1 << 2))
+		chip->onfi_version = 20;
+	else if (val & (1 << 1))
+		chip->onfi_version = 10;
+
+	if (!chip->onfi_version) {
+		pr_info("unsupported ONFI version: %d\n", val);
+		return 0;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	if (!mtd->name)
+		mtd->name = p->model;
+
+	mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+	/*
+	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
+	 * (don't ask me who thought of this...). MTD assumes that these
+	 * dimensions will be power-of-2, so just truncate the remaining area.
+	 */
+	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize *= mtd->writesize;
+
+	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+	/* See erasesize comment */
+	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+	chip->bits_per_cell = p->bits_per_cell;
+
+	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
+		*busw = NAND_BUSWIDTH_16;
+	else
+		*busw = 0;
+
+	if (p->ecc_bits != 0xff) {
+		chip->ecc_strength_ds = p->ecc_bits;
+		chip->ecc_step_ds = 512;
+	} else if (chip->onfi_version >= 21 &&
+		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+
+		/*
+		 * The nand_flash_detect_ext_param_page() uses the
+		 * Change Read Column command which maybe not supported
+		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
+		 * now. We do not replace user supplied command function.
+		 */
+		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+			chip->cmdfunc = nand_command_lp;
+
+		/* The Extended Parameter Page is supported since ONFI 2.1. */
+		if (nand_flash_detect_ext_param_page(mtd, chip, p))
+			pr_warn("Failed to detect ONFI extended param page\n");
+	} else {
+		pr_warn("Could not retrieve ONFI ECC requirements\n");
+	}
+
+	if (p->jedec_id == NAND_MFR_MICRON)
+		nand_onfi_detect_micron(chip, p);
+
+	return 1;
+}
+#else
+static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
+					int *busw)
+{
+	return 0;
+}
+#endif
+
+/*
+ * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
+					int *busw)
+{
+	struct nand_jedec_params *p = &chip->jedec_params;
+	struct jedec_ecc_info *ecc;
+	int val;
+	int i, j;
+
+	/* Try JEDEC for unknown chip or LP */
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
+	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
+		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
+		chip->read_byte(mtd) != 'C')
+		return 0;
+
+	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
+	for (i = 0; i < 3; i++) {
+		for (j = 0; j < sizeof(*p); j++)
+			((uint8_t *)p)[j] = chip->read_byte(mtd);
+
+		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
+				le16_to_cpu(p->crc))
+			break;
+	}
+
+	if (i == 3) {
+		pr_err("Could not find valid JEDEC parameter page; aborting\n");
+		return 0;
+	}
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & (1 << 2))
+		chip->jedec_version = 10;
+	else if (val & (1 << 1))
+		chip->jedec_version = 1; /* vendor specific version */
+
+	if (!chip->jedec_version) {
+		pr_info("unsupported JEDEC version: %d\n", val);
+		return 0;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	if (!mtd->name)
+		mtd->name = p->model;
+
+	mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize *= mtd->writesize;
+
+	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+	chip->bits_per_cell = p->bits_per_cell;
+
+	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
+		*busw = NAND_BUSWIDTH_16;
+	else
+		*busw = 0;
+
+	/* ECC info */
+	ecc = &p->ecc_info[0];
+
+	if (ecc->codeword_size >= 9) {
+		chip->ecc_strength_ds = ecc->ecc_bits;
+		chip->ecc_step_ds = 1 << ecc->codeword_size;
+	} else {
+		pr_warn("Invalid codeword size\n");
+	}
+
+	return 1;
+}
+
+/*
+ * nand_id_has_period - Check if an ID string has a given wraparound period
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+ * @period: the period of repitition
+ *
+ * Check if an ID string is repeated within a given sequence of bytes at
+ * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
+ * period of 3). This is a helper function for nand_id_len(). Returns non-zero
+ * if the repetition has a period of @period; otherwise, returns zero.
+ */
+static int nand_id_has_period(u8 *id_data, int arrlen, int period)
+{
+	int i, j;
+	for (i = 0; i < period; i++)
+		for (j = i + period; j < arrlen; j += period)
+			if (id_data[i] != id_data[j])
+				return 0;
+	return 1;
+}
+
+/*
+ * nand_id_len - Get the length of an ID string returned by CMD_READID
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+
+ * Returns the length of the ID string, according to known wraparound/trailing
+ * zero patterns. If no pattern exists, returns the length of the array.
+ */
+static int nand_id_len(u8 *id_data, int arrlen)
+{
+	int last_nonzero, period;
+
+	/* Find last non-zero byte */
+	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
+		if (id_data[last_nonzero])
+			break;
+
+	/* All zeros */
+	if (last_nonzero < 0)
+		return 0;
+
+	/* Calculate wraparound period */
+	for (period = 1; period < arrlen; period++)
+		if (nand_id_has_period(id_data, arrlen, period))
+			break;
+
+	/* There's a repeated pattern */
+	if (period < arrlen)
+		return period;
+
+	/* There are trailing zeros */
+	if (last_nonzero < arrlen - 1)
+		return last_nonzero + 1;
+
+	/* No pattern detected */
+	return arrlen;
+}
+
+/* Extract the bits of per cell from the 3rd byte of the extended ID */
+static int nand_get_bits_per_cell(u8 cellinfo)
+{
+	int bits;
+
+	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
+	bits >>= NAND_CI_CELLTYPE_SHIFT;
+	return bits + 1;
+}
+
+/*
+ * Many new NAND share similar device ID codes, which represent the size of the
+ * chip. The rest of the parameters must be decoded according to generic or
+ * manufacturer-specific "extended ID" decoding patterns.
+ */
+static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
+				u8 id_data[8], int *busw)
+{
+	int extid, id_len;
+	/* The 3rd id byte holds MLC / multichip data */
+	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+	/* The 4th id byte is the important one */
+	extid = id_data[3];
+
+	id_len = nand_id_len(id_data, 8);
+
+	/*
+	 * Field definitions are in the following datasheets:
+	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
+	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
+	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
+	 *
+	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
+	 * ID to decide what to do.
+	 */
+	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
+			!nand_is_slc(chip) && id_data[5] != 0x00) {
+		/* Calc pagesize */
+		mtd->writesize = 2048 << (extid & 0x03);
+		extid >>= 2;
+		/* Calc oobsize */
+		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
+		case 1:
+			mtd->oobsize = 128;
+			break;
+		case 2:
+			mtd->oobsize = 218;
+			break;
+		case 3:
+			mtd->oobsize = 400;
+			break;
+		case 4:
+			mtd->oobsize = 436;
+			break;
+		case 5:
+			mtd->oobsize = 512;
+			break;
+		case 6:
+			mtd->oobsize = 640;
+			break;
+		case 7:
+		default: /* Other cases are "reserved" (unknown) */
+			mtd->oobsize = 1024;
+			break;
+		}
+		extid >>= 2;
+		/* Calc blocksize */
+		mtd->erasesize = (128 * 1024) <<
+			(((extid >> 1) & 0x04) | (extid & 0x03));
+		*busw = 0;
+	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
+			!nand_is_slc(chip)) {
+		unsigned int tmp;
+
+		/* Calc pagesize */
+		mtd->writesize = 2048 << (extid & 0x03);
+		extid >>= 2;
+		/* Calc oobsize */
+		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
+		case 0:
+			mtd->oobsize = 128;
+			break;
+		case 1:
+			mtd->oobsize = 224;
+			break;
+		case 2:
+			mtd->oobsize = 448;
+			break;
+		case 3:
+			mtd->oobsize = 64;
+			break;
+		case 4:
+			mtd->oobsize = 32;
+			break;
+		case 5:
+			mtd->oobsize = 16;
+			break;
+		default:
+			mtd->oobsize = 640;
+			break;
+		}
+		extid >>= 2;
+		/* Calc blocksize */
+		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
+		if (tmp < 0x03)
+			mtd->erasesize = (128 * 1024) << tmp;
+		else if (tmp == 0x03)
+			mtd->erasesize = 768 * 1024;
+		else
+			mtd->erasesize = (64 * 1024) << tmp;
+		*busw = 0;
+	} else {
+		/* Calc pagesize */
+		mtd->writesize = 1024 << (extid & 0x03);
+		extid >>= 2;
+		/* Calc oobsize */
+		mtd->oobsize = (8 << (extid & 0x01)) *
+			(mtd->writesize >> 9);
+		extid >>= 2;
+		/* Calc blocksize. Blocksize is multiples of 64KiB */
+		mtd->erasesize = (64 * 1024) << (extid & 0x03);
+		extid >>= 2;
+		/* Get buswidth information */
+		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+		/*
+		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
+		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
+		 * follows:
+		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
+		 *                         110b -> 24nm
+		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
+		 */
+		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
+				nand_is_slc(chip) &&
+				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
+				!(id_data[4] & 0x80) /* !BENAND */) {
+			mtd->oobsize = 32 * mtd->writesize >> 9;
+		}
+
+	}
+}
+
+/*
+ * Old devices have chip data hardcoded in the device ID table. nand_decode_id
+ * decodes a matching ID table entry and assigns the MTD size parameters for
+ * the chip.
+ */
+static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
+				struct nand_flash_dev *type, u8 id_data[8],
+				int *busw)
+{
+	int maf_id = id_data[0];
+
+	mtd->erasesize = type->erasesize;
+	mtd->writesize = type->pagesize;
+	mtd->oobsize = mtd->writesize / 32;
+	*busw = type->options & NAND_BUSWIDTH_16;
+
+	/* All legacy ID NAND are small-page, SLC */
+	chip->bits_per_cell = 1;
+
+	/*
+	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
+	 * some Spansion chips have erasesize that conflicts with size
+	 * listed in nand_ids table.
+	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
+	 */
+	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
+			&& id_data[6] == 0x00 && id_data[7] == 0x00
+			&& mtd->writesize == 512) {
+		mtd->erasesize = 128 * 1024;
+		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
+	}
+}
+
+/*
+ * Set the bad block marker/indicator (BBM/BBI) patterns according to some
+ * heuristic patterns using various detected parameters (e.g., manufacturer,
+ * page size, cell-type information).
+ */
+static void nand_decode_bbm_options(struct mtd_info *mtd,
+				    struct nand_chip *chip, u8 id_data[8])
+{
+	int maf_id = id_data[0];
+
+	/* Set the bad block position */
+	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
+		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
+	else
+		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
+
+	/*
+	 * Bad block marker is stored in the last page of each block on Samsung
+	 * and Hynix MLC devices; stored in first two pages of each block on
+	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
+	 * AMD/Spansion, and Macronix.  All others scan only the first page.
+	 */
+	if (!nand_is_slc(chip) &&
+			(maf_id == NAND_MFR_SAMSUNG ||
+			 maf_id == NAND_MFR_HYNIX))
+		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+	else if ((nand_is_slc(chip) &&
+				(maf_id == NAND_MFR_SAMSUNG ||
+				 maf_id == NAND_MFR_HYNIX ||
+				 maf_id == NAND_MFR_TOSHIBA ||
+				 maf_id == NAND_MFR_AMD ||
+				 maf_id == NAND_MFR_MACRONIX)) ||
+			(mtd->writesize == 2048 &&
+			 maf_id == NAND_MFR_MICRON))
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+}
+
+static inline bool is_full_id_nand(struct nand_flash_dev *type)
+{
+	return type->id_len;
+}
+
+static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
+		   struct nand_flash_dev *type, u8 *id_data, int *busw)
+{
+	if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
+		mtd->writesize = type->pagesize;
+		mtd->erasesize = type->erasesize;
+		mtd->oobsize = type->oobsize;
+
+		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+		chip->chipsize = (uint64_t)type->chipsize << 20;
+		chip->options |= type->options;
+		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
+		chip->ecc_step_ds = NAND_ECC_STEP(type);
+		chip->onfi_timing_mode_default =
+					type->onfi_timing_mode_default;
+
+		*busw = type->options & NAND_BUSWIDTH_16;
+
+		if (!mtd->name)
+			mtd->name = type->name;
+
+		return true;
+	}
+	return false;
+}
+
+/*
+ * Get the flash and manufacturer id and lookup if the type is supported.
+ */
+struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
+						  struct nand_chip *chip,
+						  int *maf_id, int *dev_id,
+						  struct nand_flash_dev *type)
+{
+	int busw;
+	int i, maf_idx;
+	u8 id_data[8];
+
+	/*
+	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
+	 * after power-up.
+	 */
+	nand_reset(chip, 0);
+
+	/* Select the device */
+	chip->select_chip(mtd, 0);
+
+	/* Send the command for reading device ID */
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read manufacturer and device IDs */
+	*maf_id = chip->read_byte(mtd);
+	*dev_id = chip->read_byte(mtd);
+
+	/*
+	 * Try again to make sure, as some systems the bus-hold or other
+	 * interface concerns can cause random data which looks like a
+	 * possibly credible NAND flash to appear. If the two results do
+	 * not match, ignore the device completely.
+	 */
+
+	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read entire ID string */
+	for (i = 0; i < 8; i++)
+		id_data[i] = chip->read_byte(mtd);
+
+	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
+		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
+			*maf_id, *dev_id, id_data[0], id_data[1]);
+		return ERR_PTR(-ENODEV);
+	}
+
+	if (!type)
+		type = nand_flash_ids;
+
+	for (; type->name != NULL; type++) {
+		if (is_full_id_nand(type)) {
+			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
+				goto ident_done;
+		} else if (*dev_id == type->dev_id) {
+			break;
+		}
+	}
+
+	chip->onfi_version = 0;
+	if (!type->name || !type->pagesize) {
+		/* Check if the chip is ONFI compliant */
+		if (nand_flash_detect_onfi(mtd, chip, &busw))
+			goto ident_done;
+
+		/* Check if the chip is JEDEC compliant */
+		if (nand_flash_detect_jedec(mtd, chip, &busw))
+			goto ident_done;
+	}
+
+	if (!type->name)
+		return ERR_PTR(-ENODEV);
+
+	if (!mtd->name)
+		mtd->name = type->name;
+
+	chip->chipsize = (uint64_t)type->chipsize << 20;
+
+	if (!type->pagesize) {
+		/* Decode parameters from extended ID */
+		nand_decode_ext_id(mtd, chip, id_data, &busw);
+	} else {
+		nand_decode_id(mtd, chip, type, id_data, &busw);
+	}
+	/* Get chip options */
+	chip->options |= type->options;
+
+	/*
+	 * Check if chip is not a Samsung device. Do not clear the
+	 * options for chips which do not have an extended id.
+	 */
+	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
+		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+ident_done:
+
+	/* Try to identify manufacturer */
+	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
+		if (nand_manuf_ids[maf_idx].id == *maf_id)
+			break;
+	}
+
+	if (chip->options & NAND_BUSWIDTH_AUTO) {
+		WARN_ON(chip->options & NAND_BUSWIDTH_16);
+		chip->options |= busw;
+		nand_set_defaults(chip, busw);
+	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
+		/*
+		 * Check, if buswidth is correct. Hardware drivers should set
+		 * chip correct!
+		 */
+		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+			*maf_id, *dev_id);
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
+		pr_warn("bus width %d instead %d bit\n",
+			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
+			   busw ? 16 : 8);
+		return ERR_PTR(-EINVAL);
+	}
+
+	nand_decode_bbm_options(mtd, chip, id_data);
+
+	/* Calculate the address shift from the page size */
+	chip->page_shift = ffs(mtd->writesize) - 1;
+	/* Convert chipsize to number of pages per chip -1 */
+	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+
+	chip->bbt_erase_shift = chip->phys_erase_shift =
+		ffs(mtd->erasesize) - 1;
+	if (chip->chipsize & 0xffffffff)
+		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
+	else {
+		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
+		chip->chip_shift += 32 - 1;
+	}
+
+	if (chip->chip_shift - chip->page_shift > 16)
+		chip->options |= NAND_ROW_ADDR_3;
+
+	chip->badblockbits = 8;
+	chip->erase = single_erase;
+
+	/* Do not replace user supplied command function! */
+	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+		chip->cmdfunc = nand_command_lp;
+
+	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+		*maf_id, *dev_id);
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+	if (chip->onfi_version)
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+				chip->onfi_params.model);
+	else if (chip->jedec_version)
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+				chip->jedec_params.model);
+	else
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+				type->name);
+#else
+	if (chip->jedec_version)
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+				chip->jedec_params.model);
+	else
+		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+				type->name);
+
+	pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
+		type->name);
+#endif
+
+	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
+		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
+		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
+	return type;
+}
+EXPORT_SYMBOL(nand_get_flash_type);
+
+#if CONFIG_IS_ENABLED(OF_CONTROL)
+DECLARE_GLOBAL_DATA_PTR;
+
+static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
+{
+	int ret, ecc_mode = -1, ecc_strength, ecc_step;
+	const void *blob = gd->fdt_blob;
+	const char *str;
+
+	ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
+	if (ret == 16)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+	str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
+	if (str) {
+		if (!strcmp(str, "none"))
+			ecc_mode = NAND_ECC_NONE;
+		else if (!strcmp(str, "soft"))
+			ecc_mode = NAND_ECC_SOFT;
+		else if (!strcmp(str, "hw"))
+			ecc_mode = NAND_ECC_HW;
+		else if (!strcmp(str, "hw_syndrome"))
+			ecc_mode = NAND_ECC_HW_SYNDROME;
+		else if (!strcmp(str, "hw_oob_first"))
+			ecc_mode = NAND_ECC_HW_OOB_FIRST;
+		else if (!strcmp(str, "soft_bch"))
+			ecc_mode = NAND_ECC_SOFT_BCH;
+	}
+
+
+	ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
+	ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
+
+	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
+	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
+		pr_err("must set both strength and step size in DT\n");
+		return -EINVAL;
+	}
+
+	if (ecc_mode >= 0)
+		chip->ecc.mode = ecc_mode;
+
+	if (ecc_strength >= 0)
+		chip->ecc.strength = ecc_strength;
+
+	if (ecc_step > 0)
+		chip->ecc.size = ecc_step;
+
+	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
+		chip->ecc.options |= NAND_ECC_MAXIMIZE;
+
+	return 0;
+}
+#else
+static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
+{
+	return 0;
+}
+#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
+
+/**
+ * nand_scan_ident - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for
+ * @table: alternative NAND ID table
+ *
+ * This is the first phase of the normal nand_scan() function. It reads the
+ * flash ID and sets up MTD fields accordingly.
+ *
+ */
+int nand_scan_ident(struct mtd_info *mtd, int maxchips,
+		    struct nand_flash_dev *table)
+{
+	int i, nand_maf_id, nand_dev_id;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_flash_dev *type;
+	int ret;
+
+	if (chip->flash_node) {
+		ret = nand_dt_init(mtd, chip, chip->flash_node);
+		if (ret)
+			return ret;
+	}
+
+	/* Set the default functions */
+	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
+
+	/* Read the flash type */
+	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
+				   &nand_dev_id, table);
+
+	if (IS_ERR(type)) {
+		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
+			pr_warn("No NAND device found\n");
+		chip->select_chip(mtd, -1);
+		return PTR_ERR(type);
+	}
+
+	/* Initialize the ->data_interface field. */
+	ret = nand_init_data_interface(chip);
+	if (ret)
+		return ret;
+
+	/*
+	 * Setup the data interface correctly on the chip and controller side.
+	 * This explicit call to nand_setup_data_interface() is only required
+	 * for the first die, because nand_reset() has been called before
+	 * ->data_interface and ->default_onfi_timing_mode were set.
+	 * For the other dies, nand_reset() will automatically switch to the
+	 * best mode for us.
+	 */
+	ret = nand_setup_data_interface(chip, 0);
+	if (ret)
+		return ret;
+
+	chip->select_chip(mtd, -1);
+
+	/* Check for a chip array */
+	for (i = 1; i < maxchips; i++) {
+		/* See comment in nand_get_flash_type for reset */
+		nand_reset(chip, i);
+
+		chip->select_chip(mtd, i);
+		/* Send the command for reading device ID */
+		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+		/* Read manufacturer and device IDs */
+		if (nand_maf_id != chip->read_byte(mtd) ||
+		    nand_dev_id != chip->read_byte(mtd)) {
+			chip->select_chip(mtd, -1);
+			break;
+		}
+		chip->select_chip(mtd, -1);
+	}
+
+#ifdef DEBUG
+	if (i > 1)
+		pr_info("%d chips detected\n", i);
+#endif
+
+	/* Store the number of chips and calc total size for mtd */
+	chip->numchips = i;
+	mtd->size = i * chip->chipsize;
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_scan_ident);
+
+/**
+ * nand_check_ecc_caps - check the sanity of preset ECC settings
+ * @chip: nand chip info structure
+ * @caps: ECC caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * When ECC step size and strength are already set, check if they are supported
+ * by the controller and the calculated ECC bytes fit within the chip's OOB.
+ * On success, the calculated ECC bytes is set.
+ */
+int nand_check_ecc_caps(struct nand_chip *chip,
+			const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int preset_step = chip->ecc.size;
+	int preset_strength = chip->ecc.strength;
+	int nsteps, ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	if (!preset_step || !preset_strength)
+		return -ENODATA;
+
+	nsteps = mtd->writesize / preset_step;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+
+		if (stepinfo->stepsize != preset_step)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			if (stepinfo->strengths[j] != preset_strength)
+				continue;
+
+			ecc_bytes = caps->calc_ecc_bytes(preset_step,
+							 preset_strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				return ecc_bytes;
+
+			if (ecc_bytes * nsteps > oobavail) {
+				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
+				       preset_step, preset_strength);
+				return -ENOSPC;
+			}
+
+			chip->ecc.bytes = ecc_bytes;
+
+			return 0;
+		}
+	}
+
+	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
+	       preset_step, preset_strength);
+
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
+
+/**
+ * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * If a chip's ECC requirement is provided, try to meet it with the least
+ * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
+ * On success, the chosen ECC settings are set.
+ */
+int nand_match_ecc_req(struct nand_chip *chip,
+		       const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int req_step = chip->ecc_step_ds;
+	int req_strength = chip->ecc_strength_ds;
+	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
+	int best_step, best_strength, best_ecc_bytes;
+	int best_ecc_bytes_total = INT_MAX;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	/* No information provided by the NAND chip */
+	if (!req_step || !req_strength)
+		return -ENOTSUPP;
+
+	/* number of correctable bits the chip requires in a page */
+	req_corr = mtd->writesize / req_step * req_strength;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			/*
+			 * If both step size and strength are smaller than the
+			 * chip's requirement, it is not easy to compare the
+			 * resulted reliability.
+			 */
+			if (step_size < req_step && strength < req_strength)
+				continue;
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+			ecc_bytes_total = ecc_bytes * nsteps;
+
+			if (ecc_bytes_total > oobavail ||
+			    strength * nsteps < req_corr)
+				continue;
+
+			/*
+			 * We assume the best is to meet the chip's requrement
+			 * with the least number of ECC bytes.
+			 */
+			if (ecc_bytes_total < best_ecc_bytes_total) {
+				best_ecc_bytes_total = ecc_bytes_total;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (best_ecc_bytes_total == INT_MAX)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_match_ecc_req);
+
+/**
+ * nand_maximize_ecc - choose the max ECC strength available
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * Choose the max ECC strength that is supported on the controller, and can fit
+ * within the chip's OOB.  On success, the chosen ECC settings are set.
+ */
+int nand_maximize_ecc(struct nand_chip *chip,
+		      const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int step_size, strength, nsteps, ecc_bytes, corr;
+	int best_corr = 0;
+	int best_step = 0;
+	int best_strength, best_ecc_bytes;
+	int i, j;
+
+	if (WARN_ON(oobavail < 0))
+		return -EINVAL;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		/* If chip->ecc.size is already set, respect it */
+		if (chip->ecc.size && step_size != chip->ecc.size)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+
+			if (ecc_bytes * nsteps > oobavail)
+				continue;
+
+			corr = strength * nsteps;
+
+			/*
+			 * If the number of correctable bits is the same,
+			 * bigger step_size has more reliability.
+			 */
+			if (corr > best_corr ||
+			    (corr == best_corr && step_size > best_step)) {
+				best_corr = corr;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (!best_corr)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_maximize_ecc);
+
+/*
+ * Check if the chip configuration meet the datasheet requirements.
+
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+static bool nand_ecc_strength_good(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int corr, ds_corr;
+
+	if (ecc->size == 0 || chip->ecc_step_ds == 0)
+		/* Not enough information */
+		return true;
+
+	/*
+	 * We get the number of corrected bits per page to compare
+	 * the correction density.
+	 */
+	corr = (mtd->writesize * ecc->strength) / ecc->size;
+	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
+
+	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
+}
+
+static bool invalid_ecc_page_accessors(struct nand_chip *chip)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (nand_standard_page_accessors(ecc))
+		return false;
+
+	/*
+	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
+	 * controller driver implements all the page accessors because
+	 * default helpers are not suitable when the core does not
+	 * send the READ0/PAGEPROG commands.
+	 */
+	return (!ecc->read_page || !ecc->write_page ||
+		!ecc->read_page_raw || !ecc->write_page_raw ||
+		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
+		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
+		 ecc->hwctl && ecc->calculate));
+}
+
+/**
+ * nand_scan_tail - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ *
+ * This is the second phase of the normal nand_scan() function. It fills out
+ * all the uninitialized function pointers with the defaults and scans for a
+ * bad block table if appropriate.
+ */
+int nand_scan_tail(struct mtd_info *mtd)
+{
+	int i;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct nand_buffers *nbuf;
+
+	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
+	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
+			!(chip->bbt_options & NAND_BBT_USE_FLASH));
+
+	if (invalid_ecc_page_accessors(chip)) {
+		pr_err("Invalid ECC page accessors setup\n");
+		return -EINVAL;
+	}
+
+	if (!(chip->options & NAND_OWN_BUFFERS)) {
+		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
+		chip->buffers = nbuf;
+	} else {
+		if (!chip->buffers)
+			return -ENOMEM;
+	}
+
+	/* Set the internal oob buffer location, just after the page data */
+	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
+
+	/*
+	 * If no default placement scheme is given, select an appropriate one.
+	 */
+	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
+		switch (mtd->oobsize) {
+		case 8:
+			ecc->layout = &nand_oob_8;
+			break;
+		case 16:
+			ecc->layout = &nand_oob_16;
+			break;
+		case 64:
+			ecc->layout = &nand_oob_64;
+			break;
+		case 128:
+			ecc->layout = &nand_oob_128;
+			break;
+		default:
+			pr_warn("No oob scheme defined for oobsize %d\n",
+				   mtd->oobsize);
+			BUG();
+		}
+	}
+
+	if (!chip->write_page)
+		chip->write_page = nand_write_page;
+
+	/*
+	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
+	 * selected and we have 256 byte pagesize fallback to software ECC
+	 */
+
+	switch (ecc->mode) {
+	case NAND_ECC_HW_OOB_FIRST:
+		/* Similar to NAND_ECC_HW, but a separate read_page handle */
+		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
+			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
+			BUG();
+		}
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_hwecc_oob_first;
+
+	case NAND_ECC_HW:
+		/* Use standard hwecc read page function? */
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_hwecc;
+		if (!ecc->write_page)
+			ecc->write_page = nand_write_page_hwecc;
+		if (!ecc->read_page_raw)
+			ecc->read_page_raw = nand_read_page_raw;
+		if (!ecc->write_page_raw)
+			ecc->write_page_raw = nand_write_page_raw;
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_std;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_std;
+		if (!ecc->read_subpage)
+			ecc->read_subpage = nand_read_subpage;
+		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
+			ecc->write_subpage = nand_write_subpage_hwecc;
+
+	case NAND_ECC_HW_SYNDROME:
+		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
+		    (!ecc->read_page ||
+		     ecc->read_page == nand_read_page_hwecc ||
+		     !ecc->write_page ||
+		     ecc->write_page == nand_write_page_hwecc)) {
+			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
+			BUG();
+		}
+		/* Use standard syndrome read/write page function? */
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_syndrome;
+		if (!ecc->write_page)
+			ecc->write_page = nand_write_page_syndrome;
+		if (!ecc->read_page_raw)
+			ecc->read_page_raw = nand_read_page_raw_syndrome;
+		if (!ecc->write_page_raw)
+			ecc->write_page_raw = nand_write_page_raw_syndrome;
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_syndrome;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_syndrome;
+
+		if (mtd->writesize >= ecc->size) {
+			if (!ecc->strength) {
+				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
+				BUG();
+			}
+			break;
+		}
+		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+			ecc->size, mtd->writesize);
+		ecc->mode = NAND_ECC_SOFT;
+
+	case NAND_ECC_SOFT:
+		ecc->calculate = nand_calculate_ecc;
+		ecc->correct = nand_correct_data;
+		ecc->read_page = nand_read_page_swecc;
+		ecc->read_subpage = nand_read_subpage;
+		ecc->write_page = nand_write_page_swecc;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->write_oob = nand_write_oob_std;
+		if (!ecc->size)
+			ecc->size = 256;
+		ecc->bytes = 3;
+		ecc->strength = 1;
+		break;
+
+	case NAND_ECC_SOFT_BCH:
+		if (!mtd_nand_has_bch()) {
+			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+			BUG();
+		}
+		ecc->calculate = nand_bch_calculate_ecc;
+		ecc->correct = nand_bch_correct_data;
+		ecc->read_page = nand_read_page_swecc;
+		ecc->read_subpage = nand_read_subpage;
+		ecc->write_page = nand_write_page_swecc;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->write_oob = nand_write_oob_std;
+		/*
+		 * Board driver should supply ecc.size and ecc.strength values
+		 * to select how many bits are correctable. Otherwise, default
+		 * to 4 bits for large page devices.
+		 */
+		if (!ecc->size && (mtd->oobsize >= 64)) {
+			ecc->size = 512;
+			ecc->strength = 4;
+		}
+
+		/* See nand_bch_init() for details. */
+		ecc->bytes = 0;
+		ecc->priv = nand_bch_init(mtd);
+		if (!ecc->priv) {
+			pr_warn("BCH ECC initialization failed!\n");
+			BUG();
+		}
+		break;
+
+	case NAND_ECC_NONE:
+		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
+		ecc->read_page = nand_read_page_raw;
+		ecc->write_page = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->write_oob = nand_write_oob_std;
+		ecc->size = mtd->writesize;
+		ecc->bytes = 0;
+		ecc->strength = 0;
+		break;
+
+	default:
+		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
+		BUG();
+	}
+
+	/* For many systems, the standard OOB write also works for raw */
+	if (!ecc->read_oob_raw)
+		ecc->read_oob_raw = ecc->read_oob;
+	if (!ecc->write_oob_raw)
+		ecc->write_oob_raw = ecc->write_oob;
+
+	/*
+	 * The number of bytes available for a client to place data into
+	 * the out of band area.
+	 */
+	mtd->oobavail = 0;
+	if (ecc->layout) {
+		for (i = 0; ecc->layout->oobfree[i].length; i++)
+			mtd->oobavail += ecc->layout->oobfree[i].length;
+	}
+
+	/* ECC sanity check: warn if it's too weak */
+	if (!nand_ecc_strength_good(mtd))
+		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
+			mtd->name);
+
+	/*
+	 * Set the number of read / write steps for one page depending on ECC
+	 * mode.
+	 */
+	ecc->steps = mtd->writesize / ecc->size;
+	if (ecc->steps * ecc->size != mtd->writesize) {
+		pr_warn("Invalid ECC parameters\n");
+		BUG();
+	}
+	ecc->total = ecc->steps * ecc->bytes;
+
+	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
+	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
+		switch (ecc->steps) {
+		case 2:
+			mtd->subpage_sft = 1;
+			break;
+		case 4:
+		case 8:
+		case 16:
+			mtd->subpage_sft = 2;
+			break;
+		}
+	}
+	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+	/* Initialize state */
+	chip->state = FL_READY;
+
+	/* Invalidate the pagebuffer reference */
+	chip->pagebuf = -1;
+
+	/* Large page NAND with SOFT_ECC should support subpage reads */
+	switch (ecc->mode) {
+	case NAND_ECC_SOFT:
+	case NAND_ECC_SOFT_BCH:
+		if (chip->page_shift > 9)
+			chip->options |= NAND_SUBPAGE_READ;
+		break;
+
+	default:
+		break;
+	}
+
+	/* Fill in remaining MTD driver data */
+	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
+	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
+						MTD_CAP_NANDFLASH;
+	mtd->_erase = nand_erase;
+	mtd->_panic_write = panic_nand_write;
+	mtd->_read_oob = nand_read_oob;
+	mtd->_write_oob = nand_write_oob;
+	mtd->_sync = nand_sync;
+	mtd->_lock = NULL;
+	mtd->_unlock = NULL;
+	mtd->_block_isreserved = nand_block_isreserved;
+	mtd->_block_isbad = nand_block_isbad;
+	mtd->_block_markbad = nand_block_markbad;
+	mtd->writebufsize = mtd->writesize;
+
+	/* propagate ecc info to mtd_info */
+	mtd->ecclayout = ecc->layout;
+	mtd->ecc_strength = ecc->strength;
+	mtd->ecc_step_size = ecc->size;
+	/*
+	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
+	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
+	 * properly set.
+	 */
+	if (!mtd->bitflip_threshold)
+		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_scan_tail);
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for
+ *
+ * This fills out all the uninitialized function pointers with the defaults.
+ * The flash ID is read and the mtd/chip structures are filled with the
+ * appropriate values.
+ */
+int nand_scan(struct mtd_info *mtd, int maxchips)
+{
+	int ret;
+
+	ret = nand_scan_ident(mtd, maxchips, NULL);
+	if (!ret)
+		ret = nand_scan_tail(mtd);
+	return ret;
+}
+EXPORT_SYMBOL(nand_scan);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Generic NAND flash driver code");
diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
new file mode 100644
index 0000000..ba785c5
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_bbt.c
@@ -0,0 +1,1373 @@
+/*
+ *  Overview:
+ *   Bad block table support for the NAND driver
+ *
+ *  Copyright © 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the BBT descriptor(s). If no flash based BBT
+ * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory
+ * marked good / bad blocks. This information is used to create a memory BBT.
+ * Once a new bad block is discovered then the "factory" information is updated
+ * on the device.
+ * If a flash based BBT is specified then the function first tries to find the
+ * BBT on flash. If a BBT is found then the contents are read and the memory
+ * based BBT is created. If a mirrored BBT is selected then the mirror is
+ * searched too and the versions are compared. If the mirror has a greater
+ * version number, then the mirror BBT is used to build the memory based BBT.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the BBTs is out of date or does not exist it is (re)created.
+ * If no BBT exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created BBTs like the one found on M-SYS DOC devices
+ * the BBT is searched and read but never created
+ *
+ * The auto generated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the OOB area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date. If the NAND
+ * controller needs the complete OOB area for the ECC information then the
+ * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of
+ * course): it moves the ident pattern and the version byte into the data area
+ * and the OOB area will remain untouched.
+ *
+ * The table uses 2 bits per block
+ * 11b:		block is good
+ * 00b:		block is factory marked bad
+ * 01b, 10b:	block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b:		block is good
+ * 01b:		block is marked bad due to wear
+ * 10b:		block is reserved (to protect the bbt area)
+ * 11b:		block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space necessary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <linux/compat.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/bbm.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/bitops.h>
+#include <linux/string.h>
+
+#define BBT_BLOCK_GOOD		0x00
+#define BBT_BLOCK_WORN		0x01
+#define BBT_BLOCK_RESERVED	0x02
+#define BBT_BLOCK_FACTORY_BAD	0x03
+
+#define BBT_ENTRY_MASK		0x03
+#define BBT_ENTRY_SHIFT		2
+
+static int nand_update_bbt(struct mtd_info *mtd, loff_t offs);
+
+static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block)
+{
+	uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT];
+	entry >>= (block & BBT_ENTRY_MASK) * 2;
+	return entry & BBT_ENTRY_MASK;
+}
+
+static inline void bbt_mark_entry(struct nand_chip *chip, int block,
+		uint8_t mark)
+{
+	uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2);
+	chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk;
+}
+
+static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td)
+{
+	if (memcmp(buf, td->pattern, td->len))
+		return -1;
+	return 0;
+}
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block tables and
+ * good / bad block identifiers.
+ */
+static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+	if (td->options & NAND_BBT_NO_OOB)
+		return check_pattern_no_oob(buf, td);
+
+	/* Compare the pattern */
+	if (memcmp(buf + paglen + td->offs, td->pattern, td->len))
+		return -1;
+
+	return 0;
+}
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @td:	search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block tables and
+ * good / bad block identifiers. Same as check_pattern, but no optional empty
+ * check.
+ */
+static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
+{
+	/* Compare the pattern */
+	if (memcmp(buf + td->offs, td->pattern, td->len))
+		return -1;
+	return 0;
+}
+
+/**
+ * add_marker_len - compute the length of the marker in data area
+ * @td: BBT descriptor used for computation
+ *
+ * The length will be 0 if the marker is located in OOB area.
+ */
+static u32 add_marker_len(struct nand_bbt_descr *td)
+{
+	u32 len;
+
+	if (!(td->options & NAND_BBT_NO_OOB))
+		return 0;
+
+	len = td->len;
+	if (td->options & NAND_BBT_VERSION)
+		len++;
+	return len;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @td: the bbt describtion table
+ * @offs: block number offset in the table
+ *
+ * Read the bad block table starting from page.
+ */
+static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
+		struct nand_bbt_descr *td, int offs)
+{
+	int res, ret = 0, i, j, act = 0;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	size_t retlen, len, totlen;
+	loff_t from;
+	int bits = td->options & NAND_BBT_NRBITS_MSK;
+	uint8_t msk = (uint8_t)((1 << bits) - 1);
+	u32 marker_len;
+	int reserved_block_code = td->reserved_block_code;
+
+	totlen = (num * bits) >> 3;
+	marker_len = add_marker_len(td);
+	from = ((loff_t)page) << this->page_shift;
+
+	while (totlen) {
+		len = min(totlen, (size_t)(1 << this->bbt_erase_shift));
+		if (marker_len) {
+			/*
+			 * In case the BBT marker is not in the OOB area it
+			 * will be just in the first page.
+			 */
+			len -= marker_len;
+			from += marker_len;
+			marker_len = 0;
+		}
+		res = mtd_read(mtd, from, len, &retlen, buf);
+		if (res < 0) {
+			if (mtd_is_eccerr(res)) {
+				pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n",
+					from & ~mtd->writesize);
+				return res;
+			} else if (mtd_is_bitflip(res)) {
+				pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n",
+					from & ~mtd->writesize);
+				ret = res;
+			} else {
+				pr_info("nand_bbt: error reading BBT\n");
+				return res;
+			}
+		}
+
+		/* Analyse data */
+		for (i = 0; i < len; i++) {
+			uint8_t dat = buf[i];
+			for (j = 0; j < 8; j += bits, act++) {
+				uint8_t tmp = (dat >> j) & msk;
+				if (tmp == msk)
+					continue;
+				if (reserved_block_code && (tmp == reserved_block_code)) {
+					pr_info("nand_read_bbt: reserved block at 0x%012llx\n",
+						 (loff_t)(offs + act) <<
+						 this->bbt_erase_shift);
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_RESERVED);
+					mtd->ecc_stats.bbtblocks++;
+					continue;
+				}
+				/*
+				 * Leave it for now, if it's matured we can
+				 * move this message to pr_debug.
+				 */
+				pr_info("nand_read_bbt: bad block at 0x%012llx\n",
+					 (loff_t)(offs + act) <<
+					 this->bbt_erase_shift);
+				/* Factory marked bad or worn out? */
+				if (tmp == 0)
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_FACTORY_BAD);
+				else
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_WORN);
+				mtd->ecc_stats.badblocks++;
+			}
+		}
+		totlen -= len;
+		from += len;
+	}
+	return ret;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips; applies only if
+ *        NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page. We assume
+ * that the bbt bits are in consecutive order.
+ */
+static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int res = 0, i;
+
+	if (td->options & NAND_BBT_PERCHIP) {
+		int offs = 0;
+		for (i = 0; i < this->numchips; i++) {
+			if (chip == -1 || chip == i)
+				res = read_bbt(mtd, buf, td->pages[i],
+					this->chipsize >> this->bbt_erase_shift,
+					td, offs);
+			if (res)
+				return res;
+			offs += this->chipsize >> this->bbt_erase_shift;
+		}
+	} else {
+		res = read_bbt(mtd, buf, td->pages[0],
+				mtd->size >> this->bbt_erase_shift, td, 0);
+		if (res)
+			return res;
+	}
+	return 0;
+}
+
+/* BBT marker is in the first page, no OOB */
+static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 struct nand_bbt_descr *td)
+{
+	size_t retlen;
+	size_t len;
+
+	len = td->len;
+	if (td->options & NAND_BBT_VERSION)
+		len++;
+
+	return mtd_read(mtd, offs, len, &retlen, buf);
+}
+
+/**
+ * scan_read_oob - [GENERIC] Scan data+OOB region to buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @offs: offset at which to scan
+ * @len: length of data region to read
+ *
+ * Scan read data from data+OOB. May traverse multiple pages, interleaving
+ * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest"
+ * ECC condition (error or bitflip). May quit on the first (non-ECC) error.
+ */
+static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 size_t len)
+{
+	struct mtd_oob_ops ops;
+	int res, ret = 0;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooboffs = 0;
+	ops.ooblen = mtd->oobsize;
+
+	while (len > 0) {
+		ops.datbuf = buf;
+		ops.len = min(len, (size_t)mtd->writesize);
+		ops.oobbuf = buf + ops.len;
+
+		res = mtd_read_oob(mtd, offs, &ops);
+		if (res) {
+			if (!mtd_is_bitflip_or_eccerr(res))
+				return res;
+			else if (mtd_is_eccerr(res) || !ret)
+				ret = res;
+		}
+
+		buf += mtd->oobsize + mtd->writesize;
+		len -= mtd->writesize;
+		offs += mtd->writesize;
+	}
+	return ret;
+}
+
+static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 size_t len, struct nand_bbt_descr *td)
+{
+	if (td->options & NAND_BBT_NO_OOB)
+		return scan_read_data(mtd, buf, offs, td);
+	else
+		return scan_read_oob(mtd, buf, offs, len);
+}
+
+/* Scan write data with oob to flash */
+static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
+			  uint8_t *buf, uint8_t *oob)
+{
+	struct mtd_oob_ops ops;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooboffs = 0;
+	ops.ooblen = mtd->oobsize;
+	ops.datbuf = buf;
+	ops.oobbuf = oob;
+	ops.len = len;
+
+	return mtd_write_oob(mtd, offs, &ops);
+}
+
+static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+	u32 ver_offs = td->veroffs;
+
+	if (!(td->options & NAND_BBT_NO_OOB))
+		ver_offs += mtd->writesize;
+	return ver_offs;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md:	descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page. We
+ * assume that the bbt bits are in consecutive order.
+ */
+static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
+			  struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	/* Read the primary version, if available */
+	if (td->options & NAND_BBT_VERSION) {
+		scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift,
+			      mtd->writesize, td);
+		td->version[0] = buf[bbt_get_ver_offs(mtd, td)];
+		pr_info("Bad block table at page %d, version 0x%02X\n",
+			 td->pages[0], td->version[0]);
+	}
+
+	/* Read the mirror version, if available */
+	if (md && (md->options & NAND_BBT_VERSION)) {
+		scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift,
+			      mtd->writesize, md);
+		md->version[0] = buf[bbt_get_ver_offs(mtd, md)];
+		pr_info("Bad block table at page %d, version 0x%02X\n",
+			 md->pages[0], md->version[0]);
+	}
+}
+
+/* Scan a given block partially */
+static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
+			   loff_t offs, uint8_t *buf, int numpages)
+{
+	struct mtd_oob_ops ops;
+	int j, ret;
+
+	ops.ooblen = mtd->oobsize;
+	ops.oobbuf = buf;
+	ops.ooboffs = 0;
+	ops.datbuf = NULL;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	for (j = 0; j < numpages; j++) {
+		/*
+		 * Read the full oob until read_oob is fixed to handle single
+		 * byte reads for 16 bit buswidth.
+		 */
+		ret = mtd_read_oob(mtd, offs, &ops);
+		/* Ignore ECC errors when checking for BBM */
+		if (ret && !mtd_is_bitflip_or_eccerr(ret))
+			return ret;
+
+		if (check_short_pattern(buf, bd))
+			return 1;
+
+		offs += mtd->writesize;
+	}
+	return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips; applies only
+ *        if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device for the given good/bad block
+ * identify pattern.
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
+	struct nand_bbt_descr *bd, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, numblocks, numpages;
+	int startblock;
+	loff_t from;
+
+	pr_info("Scanning device for bad blocks\n");
+
+	if (bd->options & NAND_BBT_SCAN2NDPAGE)
+		numpages = 2;
+	else
+		numpages = 1;
+
+	if (chip == -1) {
+		numblocks = mtd->size >> this->bbt_erase_shift;
+		startblock = 0;
+		from = 0;
+	} else {
+		if (chip >= this->numchips) {
+			pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n",
+			       chip + 1, this->numchips);
+			return -EINVAL;
+		}
+		numblocks = this->chipsize >> this->bbt_erase_shift;
+		startblock = chip * numblocks;
+		numblocks += startblock;
+		from = (loff_t)startblock << this->bbt_erase_shift;
+	}
+
+	if (this->bbt_options & NAND_BBT_SCANLASTPAGE)
+		from += mtd->erasesize - (mtd->writesize * numpages);
+
+	for (i = startblock; i < numblocks; i++) {
+		int ret;
+
+		BUG_ON(bd->options & NAND_BBT_NO_OOB);
+
+		ret = scan_block_fast(mtd, bd, from, buf, numpages);
+		if (ret < 0)
+			return ret;
+
+		if (ret) {
+			bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD);
+			pr_warn("Bad eraseblock %d at 0x%012llx\n",
+				i, (unsigned long long)from);
+			mtd->ecc_stats.badblocks++;
+		}
+
+		from += (1 << this->bbt_erase_shift);
+	}
+	return 0;
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern. Search is
+ * preformed either from the beginning up or from the end of the device
+ * downwards. The search starts always at the start of a block. If the option
+ * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains
+ * the bad block information of this chip. This is necessary to provide support
+ * for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page in a block.
+ */
+static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, chips;
+	int startblock, block, dir;
+	int scanlen = mtd->writesize + mtd->oobsize;
+	int bbtblocks;
+	int blocktopage = this->bbt_erase_shift - this->page_shift;
+
+	/* Search direction top -> down? */
+	if (td->options & NAND_BBT_LASTBLOCK) {
+		startblock = (mtd->size >> this->bbt_erase_shift) - 1;
+		dir = -1;
+	} else {
+		startblock = 0;
+		dir = 1;
+	}
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		bbtblocks = this->chipsize >> this->bbt_erase_shift;
+		startblock &= bbtblocks - 1;
+	} else {
+		chips = 1;
+		bbtblocks = mtd->size >> this->bbt_erase_shift;
+	}
+
+	for (i = 0; i < chips; i++) {
+		/* Reset version information */
+		td->version[i] = 0;
+		td->pages[i] = -1;
+		/* Scan the maximum number of blocks */
+		for (block = 0; block < td->maxblocks; block++) {
+
+			int actblock = startblock + dir * block;
+			loff_t offs = (loff_t)actblock << this->bbt_erase_shift;
+
+			/* Read first page */
+			scan_read(mtd, buf, offs, mtd->writesize, td);
+			if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
+				td->pages[i] = actblock << blocktopage;
+				if (td->options & NAND_BBT_VERSION) {
+					offs = bbt_get_ver_offs(mtd, td);
+					td->version[i] = buf[offs];
+				}
+				break;
+			}
+		}
+		startblock += this->chipsize >> this->bbt_erase_shift;
+	}
+	/* Check, if we found a bbt for each requested chip */
+	for (i = 0; i < chips; i++) {
+		if (td->pages[i] == -1)
+			pr_warn("Bad block table not found for chip %d\n", i);
+		else
+			pr_info("Bad block table found at page %d, version 0x%02X\n",
+				td->pages[i], td->version[i]);
+	}
+	return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s).
+ */
+static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf,
+			     struct nand_bbt_descr *td,
+			     struct nand_bbt_descr *md)
+{
+	/* Search the primary table */
+	search_bbt(mtd, buf, td);
+
+	/* Search the mirror table */
+	if (md)
+		search_bbt(mtd, buf, md);
+}
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table.
+ */
+static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
+		     struct nand_bbt_descr *td, struct nand_bbt_descr *md,
+		     int chipsel)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct erase_info einfo;
+	int i, res, chip = 0;
+	int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+	int nrchips, pageoffs, ooboffs;
+	uint8_t msk[4];
+	uint8_t rcode = td->reserved_block_code;
+	size_t retlen, len = 0;
+	loff_t to;
+	struct mtd_oob_ops ops;
+
+	ops.ooblen = mtd->oobsize;
+	ops.ooboffs = 0;
+	ops.datbuf = NULL;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	if (!rcode)
+		rcode = 0xff;
+	/* Write bad block table per chip rather than per device? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+		/* Full device write or specific chip? */
+		if (chipsel == -1) {
+			nrchips = this->numchips;
+		} else {
+			nrchips = chipsel + 1;
+			chip = chipsel;
+		}
+	} else {
+		numblocks = (int)(mtd->size >> this->bbt_erase_shift);
+		nrchips = 1;
+	}
+
+	/* Loop through the chips */
+	for (; chip < nrchips; chip++) {
+		/*
+		 * There was already a version of the table, reuse the page
+		 * This applies for absolute placement too, as we have the
+		 * page nr. in td->pages.
+		 */
+		if (td->pages[chip] != -1) {
+			page = td->pages[chip];
+			goto write;
+		}
+
+		/*
+		 * Automatic placement of the bad block table. Search direction
+		 * top -> down?
+		 */
+		if (td->options & NAND_BBT_LASTBLOCK) {
+			startblock = numblocks * (chip + 1) - 1;
+			dir = -1;
+		} else {
+			startblock = chip * numblocks;
+			dir = 1;
+		}
+
+		for (i = 0; i < td->maxblocks; i++) {
+			int block = startblock + dir * i;
+			/* Check, if the block is bad */
+			switch (bbt_get_entry(this, block)) {
+			case BBT_BLOCK_WORN:
+			case BBT_BLOCK_FACTORY_BAD:
+				continue;
+			}
+			page = block <<
+				(this->bbt_erase_shift - this->page_shift);
+			/* Check, if the block is used by the mirror table */
+			if (!md || md->pages[chip] != page)
+				goto write;
+		}
+		pr_err("No space left to write bad block table\n");
+		return -ENOSPC;
+	write:
+
+		/* Set up shift count and masks for the flash table */
+		bits = td->options & NAND_BBT_NRBITS_MSK;
+		msk[2] = ~rcode;
+		switch (bits) {
+		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01;
+			msk[3] = 0x01;
+			break;
+		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01;
+			msk[3] = 0x03;
+			break;
+		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C;
+			msk[3] = 0x0f;
+			break;
+		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F;
+			msk[3] = 0xff;
+			break;
+		default: return -EINVAL;
+		}
+
+		to = ((loff_t)page) << this->page_shift;
+
+		/* Must we save the block contents? */
+		if (td->options & NAND_BBT_SAVECONTENT) {
+			/* Make it block aligned */
+			to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1);
+			len = 1 << this->bbt_erase_shift;
+			res = mtd_read(mtd, to, len, &retlen, buf);
+			if (res < 0) {
+				if (retlen != len) {
+					pr_info("nand_bbt: error reading block for writing the bad block table\n");
+					return res;
+				}
+				pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n");
+			}
+			/* Read oob data */
+			ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
+			ops.oobbuf = &buf[len];
+			res = mtd_read_oob(mtd, to + mtd->writesize, &ops);
+			if (res < 0 || ops.oobretlen != ops.ooblen)
+				goto outerr;
+
+			/* Calc the byte offset in the buffer */
+			pageoffs = page - (int)(to >> this->page_shift);
+			offs = pageoffs << this->page_shift;
+			/* Preset the bbt area with 0xff */
+			memset(&buf[offs], 0xff, (size_t)(numblocks >> sft));
+			ooboffs = len + (pageoffs * mtd->oobsize);
+
+		} else if (td->options & NAND_BBT_NO_OOB) {
+			ooboffs = 0;
+			offs = td->len;
+			/* The version byte */
+			if (td->options & NAND_BBT_VERSION)
+				offs++;
+			/* Calc length */
+			len = (size_t)(numblocks >> sft);
+			len += offs;
+			/* Make it page aligned! */
+			len = ALIGN(len, mtd->writesize);
+			/* Preset the buffer with 0xff */
+			memset(buf, 0xff, len);
+			/* Pattern is located at the begin of first page */
+			memcpy(buf, td->pattern, td->len);
+		} else {
+			/* Calc length */
+			len = (size_t)(numblocks >> sft);
+			/* Make it page aligned! */
+			len = ALIGN(len, mtd->writesize);
+			/* Preset the buffer with 0xff */
+			memset(buf, 0xff, len +
+			       (len >> this->page_shift)* mtd->oobsize);
+			offs = 0;
+			ooboffs = len;
+			/* Pattern is located in oob area of first page */
+			memcpy(&buf[ooboffs + td->offs], td->pattern, td->len);
+		}
+
+		if (td->options & NAND_BBT_VERSION)
+			buf[ooboffs + td->veroffs] = td->version[chip];
+
+		/* Walk through the memory table */
+		for (i = 0; i < numblocks; i++) {
+			uint8_t dat;
+			int sftcnt = (i << (3 - sft)) & sftmsk;
+			dat = bbt_get_entry(this, chip * numblocks + i);
+			/* Do not store the reserved bbt blocks! */
+			buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt);
+		}
+
+		memset(&einfo, 0, sizeof(einfo));
+		einfo.mtd = mtd;
+		einfo.addr = to;
+		einfo.len = 1 << this->bbt_erase_shift;
+		res = nand_erase_nand(mtd, &einfo, 1);
+		if (res < 0)
+			goto outerr;
+
+		res = scan_write_bbt(mtd, to, len, buf,
+				td->options & NAND_BBT_NO_OOB ? NULL :
+				&buf[len]);
+		if (res < 0)
+			goto outerr;
+
+		pr_info("Bad block table written to 0x%012llx, version 0x%02X\n",
+			 (unsigned long long)to, td->version[chip]);
+
+		/* Mark it as used */
+		td->pages[chip] = page;
+	}
+	return 0;
+
+ outerr:
+	pr_warn("nand_bbt: error while writing bad block table %d\n", res);
+	return res;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device for
+ * manufacturer / software marked good / bad blocks.
+ */
+static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	return create_bbt(mtd, this->buffers->databuf, bd, -1);
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if necessary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt and creates
+ * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found
+ * for the chip/device. Update is necessary if one of the tables is missing or
+ * the version nr. of one table is less than the other.
+ */
+static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+	int i, chips, writeops, create, chipsel, res, res2;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+	struct nand_bbt_descr *rd, *rd2;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP)
+		chips = this->numchips;
+	else
+		chips = 1;
+
+	for (i = 0; i < chips; i++) {
+		writeops = 0;
+		create = 0;
+		rd = NULL;
+		rd2 = NULL;
+		res = res2 = 0;
+		/* Per chip or per device? */
+		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+		/* Mirrored table available? */
+		if (md) {
+			if (td->pages[i] == -1 && md->pages[i] == -1) {
+				create = 1;
+				writeops = 0x03;
+			} else if (td->pages[i] == -1) {
+				rd = md;
+				writeops = 0x01;
+			} else if (md->pages[i] == -1) {
+				rd = td;
+				writeops = 0x02;
+			} else if (td->version[i] == md->version[i]) {
+				rd = td;
+				if (!(td->options & NAND_BBT_VERSION))
+					rd2 = md;
+			} else if (((int8_t)(td->version[i] - md->version[i])) > 0) {
+				rd = td;
+				writeops = 0x02;
+			} else {
+				rd = md;
+				writeops = 0x01;
+			}
+		} else {
+			if (td->pages[i] == -1) {
+				create = 1;
+				writeops = 0x01;
+			} else {
+				rd = td;
+			}
+		}
+
+		if (create) {
+			/* Create the bad block table by scanning the device? */
+			if (!(td->options & NAND_BBT_CREATE))
+				continue;
+
+			/* Create the table in memory by scanning the chip(s) */
+			if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY))
+				create_bbt(mtd, buf, bd, chipsel);
+
+			td->version[i] = 1;
+			if (md)
+				md->version[i] = 1;
+		}
+
+		/* Read back first? */
+		if (rd) {
+			res = read_abs_bbt(mtd, buf, rd, chipsel);
+			if (mtd_is_eccerr(res)) {
+				/* Mark table as invalid */
+				rd->pages[i] = -1;
+				rd->version[i] = 0;
+				i--;
+				continue;
+			}
+		}
+		/* If they weren't versioned, read both */
+		if (rd2) {
+			res2 = read_abs_bbt(mtd, buf, rd2, chipsel);
+			if (mtd_is_eccerr(res2)) {
+				/* Mark table as invalid */
+				rd2->pages[i] = -1;
+				rd2->version[i] = 0;
+				i--;
+				continue;
+			}
+		}
+
+		/* Scrub the flash table(s)? */
+		if (mtd_is_bitflip(res) || mtd_is_bitflip(res2))
+			writeops = 0x03;
+
+		/* Update version numbers before writing */
+		if (md) {
+			td->version[i] = max(td->version[i], md->version[i]);
+			md->version[i] = td->version[i];
+		}
+
+		/* Write the bad block table to the device? */
+		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+			res = write_bbt(mtd, buf, td, md, chipsel);
+			if (res < 0)
+				return res;
+		}
+
+		/* Write the mirror bad block table to the device? */
+		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+			res = write_bbt(mtd, buf, md, td, chipsel);
+			if (res < 0)
+				return res;
+		}
+	}
+	return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent accidental
+ * erasures / writes. The regions are identified by the mark 0x02.
+ */
+static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, j, chips, block, nrblocks, update;
+	uint8_t oldval;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+	} else {
+		chips = 1;
+		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+	}
+
+	for (i = 0; i < chips; i++) {
+		if ((td->options & NAND_BBT_ABSPAGE) ||
+		    !(td->options & NAND_BBT_WRITE)) {
+			if (td->pages[i] == -1)
+				continue;
+			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if ((oldval != BBT_BLOCK_RESERVED) &&
+					td->reserved_block_code)
+				nand_update_bbt(mtd, (loff_t)block <<
+						this->bbt_erase_shift);
+			continue;
+		}
+		update = 0;
+		if (td->options & NAND_BBT_LASTBLOCK)
+			block = ((i + 1) * nrblocks) - td->maxblocks;
+		else
+			block = i * nrblocks;
+		for (j = 0; j < td->maxblocks; j++) {
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if (oldval != BBT_BLOCK_RESERVED)
+				update = 1;
+			block++;
+		}
+		/*
+		 * If we want reserved blocks to be recorded to flash, and some
+		 * new ones have been marked, then we need to update the stored
+		 * bbts.  This should only happen once.
+		 */
+		if (update && td->reserved_block_code)
+			nand_update_bbt(mtd, (loff_t)(block - 1) <<
+					this->bbt_erase_shift);
+	}
+}
+
+/**
+ * verify_bbt_descr - verify the bad block description
+ * @mtd: MTD device structure
+ * @bd: the table to verify
+ *
+ * This functions performs a few sanity checks on the bad block description
+ * table.
+ */
+static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u32 pattern_len;
+	u32 bits;
+	u32 table_size;
+
+	if (!bd)
+		return;
+
+	pattern_len = bd->len;
+	bits = bd->options & NAND_BBT_NRBITS_MSK;
+
+	BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) &&
+			!(this->bbt_options & NAND_BBT_USE_FLASH));
+	BUG_ON(!bits);
+
+	if (bd->options & NAND_BBT_VERSION)
+		pattern_len++;
+
+	if (bd->options & NAND_BBT_NO_OOB) {
+		BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH));
+		BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB));
+		BUG_ON(bd->offs);
+		if (bd->options & NAND_BBT_VERSION)
+			BUG_ON(bd->veroffs != bd->len);
+		BUG_ON(bd->options & NAND_BBT_SAVECONTENT);
+	}
+
+	if (bd->options & NAND_BBT_PERCHIP)
+		table_size = this->chipsize >> this->bbt_erase_shift;
+	else
+		table_size = mtd->size >> this->bbt_erase_shift;
+	table_size >>= 3;
+	table_size *= bits;
+	if (bd->options & NAND_BBT_NO_OOB)
+		table_size += pattern_len;
+	BUG_ON(table_size > (1 << this->bbt_erase_shift));
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already available. If
+ * not it scans the device for manufacturer marked good / bad blocks and writes
+ * the bad block table(s) to the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed by calling
+ * the nand_free_bbt function.
+ */
+static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int len, res;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1;
+	/*
+	 * Allocate memory (2bit per block) and clear the memory bad block
+	 * table.
+	 */
+	this->bbt = kzalloc(len, GFP_KERNEL);
+	if (!this->bbt)
+		return -ENOMEM;
+
+	/*
+	 * If no primary table decriptor is given, scan the device to build a
+	 * memory based bad block table.
+	 */
+	if (!td) {
+		if ((res = nand_memory_bbt(mtd, bd))) {
+			pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
+			goto err;
+		}
+		return 0;
+	}
+	verify_bbt_descr(mtd, td);
+	verify_bbt_descr(mtd, md);
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = vmalloc(len);
+	if (!buf) {
+		res = -ENOMEM;
+		goto err;
+	}
+
+	/* Is the bbt at a given page? */
+	if (td->options & NAND_BBT_ABSPAGE) {
+		read_abs_bbts(mtd, buf, td, md);
+	} else {
+		/* Search the bad block table using a pattern in oob */
+		search_read_bbts(mtd, buf, td, md);
+	}
+
+	res = check_create(mtd, buf, bd);
+	if (res)
+		goto err;
+
+	/* Prevent the bbt regions from erasing / writing */
+	mark_bbt_region(mtd, td);
+	if (md)
+		mark_bbt_region(mtd, md);
+
+	vfree(buf);
+	return 0;
+
+err:
+	kfree(this->bbt);
+	this->bbt = NULL;
+	return res;
+}
+
+/**
+ * nand_update_bbt - update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s).
+ */
+static int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int len, res = 0;
+	int chip, chipsel;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	if (!this->bbt || !td)
+		return -EINVAL;
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = kmalloc(len, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chip = (int)(offs >> this->chip_shift);
+		chipsel = chip;
+	} else {
+		chip = 0;
+		chipsel = -1;
+	}
+
+	td->version[chip]++;
+	if (md)
+		md->version[chip]++;
+
+	/* Write the bad block table to the device? */
+	if (td->options & NAND_BBT_WRITE) {
+		res = write_bbt(mtd, buf, td, md, chipsel);
+		if (res < 0)
+			goto out;
+	}
+	/* Write the mirror bad block table to the device? */
+	if (md && (md->options & NAND_BBT_WRITE)) {
+		res = write_bbt(mtd, buf, md, td, chipsel);
+	}
+
+ out:
+	kfree(buf);
+	return res;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+/* Generic flash bbt descriptors */
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = mirror_pattern
+};
+
+static struct nand_bbt_descr bbt_main_no_oob_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
+		| NAND_BBT_NO_OOB,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_no_oob_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
+		| NAND_BBT_NO_OOB,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = mirror_pattern
+};
+
+#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB)
+/**
+ * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure
+ * @this: NAND chip to create descriptor for
+ *
+ * This function allocates and initializes a nand_bbt_descr for BBM detection
+ * based on the properties of @this. The new descriptor is stored in
+ * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when
+ * passed to this function.
+ */
+static int nand_create_badblock_pattern(struct nand_chip *this)
+{
+	struct nand_bbt_descr *bd;
+	if (this->badblock_pattern) {
+		pr_warn("Bad block pattern already allocated; not replacing\n");
+		return -EINVAL;
+	}
+	bd = kzalloc(sizeof(*bd), GFP_KERNEL);
+	if (!bd)
+		return -ENOMEM;
+	bd->options = this->bbt_options & BADBLOCK_SCAN_MASK;
+	bd->offs = this->badblockpos;
+	bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1;
+	bd->pattern = scan_ff_pattern;
+	bd->options |= NAND_BBT_DYNAMICSTRUCT;
+	this->badblock_pattern = bd;
+	return 0;
+}
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
+ * @mtd: MTD device structure
+ *
+ * This function selects the default bad block table support for the device and
+ * calls the nand_scan_bbt function.
+ */
+int nand_default_bbt(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int ret;
+
+	/* Is a flash based bad block table requested? */
+	if (this->bbt_options & NAND_BBT_USE_FLASH) {
+		/* Use the default pattern descriptors */
+		if (!this->bbt_td) {
+			if (this->bbt_options & NAND_BBT_NO_OOB) {
+				this->bbt_td = &bbt_main_no_oob_descr;
+				this->bbt_md = &bbt_mirror_no_oob_descr;
+			} else {
+				this->bbt_td = &bbt_main_descr;
+				this->bbt_md = &bbt_mirror_descr;
+			}
+		}
+	} else {
+		this->bbt_td = NULL;
+		this->bbt_md = NULL;
+	}
+
+	if (!this->badblock_pattern) {
+		ret = nand_create_badblock_pattern(this);
+		if (ret)
+			return ret;
+	}
+
+	return nand_scan_bbt(mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ */
+int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+	return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED;
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ */
+int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block, res;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+	res = bbt_get_entry(this, block);
+
+	pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+		 (unsigned int)offs, block, res);
+
+	switch (res) {
+	case BBT_BLOCK_GOOD:
+		return 0;
+	case BBT_BLOCK_WORN:
+		return 1;
+	case BBT_BLOCK_RESERVED:
+		return allowbbt ? 0 : 1;
+	}
+	return 1;
+}
+
+/**
+ * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT
+ * @mtd: MTD device structure
+ * @offs: offset of the bad block
+ */
+int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block, ret = 0;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+
+	/* Mark bad block in memory */
+	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
+
+	/* Update flash-based bad block table */
+	if (this->bbt_options & NAND_BBT_USE_FLASH)
+		ret = nand_update_bbt(mtd, offs);
+
+	return ret;
+}
diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
new file mode 100644
index 0000000..afa0418
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -0,0 +1,231 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * This file provides ECC correction for more than 1 bit per block of data,
+ * using binary BCH codes. It relies on the generic BCH library lib/bch.c.
+ *
+ * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
+ *
+ */
+
+#include <common.h>
+/*#include <asm/io.h>*/
+#include <linux/types.h>
+
+#include <linux/bitops.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/bch.h>
+#include <malloc.h>
+
+/**
+ * struct nand_bch_control - private NAND BCH control structure
+ * @bch:       BCH control structure
+ * @ecclayout: private ecc layout for this BCH configuration
+ * @errloc:    error location array
+ * @eccmask:   XOR ecc mask, allows erased pages to be decoded as valid
+ */
+struct nand_bch_control {
+	struct bch_control   *bch;
+	struct nand_ecclayout ecclayout;
+	unsigned int         *errloc;
+	unsigned char        *eccmask;
+};
+
+/**
+ * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block
+ * @mtd:	MTD block structure
+ * @buf:	input buffer with raw data
+ * @code:	output buffer with ECC
+ */
+int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+			   unsigned char *code)
+{
+	const struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_bch_control *nbc = chip->ecc.priv;
+	unsigned int i;
+
+	memset(code, 0, chip->ecc.bytes);
+	encode_bch(nbc->bch, buf, chip->ecc.size, code);
+
+	/* apply mask so that an erased page is a valid codeword */
+	for (i = 0; i < chip->ecc.bytes; i++)
+		code[i] ^= nbc->eccmask[i];
+
+	return 0;
+}
+
+/**
+ * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:	MTD block structure
+ * @buf:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct bit errors for a data byte block
+ */
+int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
+			  unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	const struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_bch_control *nbc = chip->ecc.priv;
+	unsigned int *errloc = nbc->errloc;
+	int i, count;
+
+	count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
+			   NULL, errloc);
+	if (count > 0) {
+		for (i = 0; i < count; i++) {
+			if (errloc[i] < (chip->ecc.size*8))
+				/* error is located in data, correct it */
+				buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
+			/* else error in ecc, no action needed */
+
+			pr_debug("%s: corrected bitflip %u\n",
+				 __func__, errloc[i]);
+		}
+	} else if (count < 0) {
+		printk(KERN_ERR "ecc unrecoverable error\n");
+		count = -EBADMSG;
+	}
+	return count;
+}
+
+/**
+ * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction
+ * @mtd:	MTD block structure
+ *
+ * Returns:
+ *  a pointer to a new NAND BCH control structure, or NULL upon failure
+ *
+ * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
+ * are used to compute BCH parameters m (Galois field order) and t (error
+ * correction capability). @eccbytes should be equal to the number of bytes
+ * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8.
+ *
+ * Example: to configure 4 bit correction per 512 bytes, you should pass
+ * @eccsize = 512  (thus, m=13 is the smallest integer such that 2^m-1 > 512*8)
+ * @eccbytes = 7   (7 bytes are required to store m*t = 13*4 = 52 bits)
+ */
+struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	unsigned int m, t, eccsteps, i;
+	struct nand_ecclayout *layout = nand->ecc.layout;
+	struct nand_bch_control *nbc = NULL;
+	unsigned char *erased_page;
+	unsigned int eccsize = nand->ecc.size;
+	unsigned int eccbytes = nand->ecc.bytes;
+	unsigned int eccstrength = nand->ecc.strength;
+
+	if (!eccbytes && eccstrength) {
+		eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
+		nand->ecc.bytes = eccbytes;
+	}
+
+	if (!eccsize || !eccbytes) {
+		printk(KERN_WARNING "ecc parameters not supplied\n");
+		goto fail;
+	}
+
+	m = fls(1+8*eccsize);
+	t = (eccbytes*8)/m;
+
+	nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
+	if (!nbc)
+		goto fail;
+
+	nbc->bch = init_bch(m, t, 0);
+	if (!nbc->bch)
+		goto fail;
+
+	/* verify that eccbytes has the expected value */
+	if (nbc->bch->ecc_bytes != eccbytes) {
+		printk(KERN_WARNING "invalid eccbytes %u, should be %u\n",
+		       eccbytes, nbc->bch->ecc_bytes);
+		goto fail;
+	}
+
+	eccsteps = mtd->writesize/eccsize;
+
+	/* if no ecc placement scheme was provided, build one */
+	if (!layout) {
+
+		/* handle large page devices only */
+		if (mtd->oobsize < 64) {
+			printk(KERN_WARNING "must provide an oob scheme for "
+			       "oobsize %d\n", mtd->oobsize);
+			goto fail;
+		}
+
+		layout = &nbc->ecclayout;
+		layout->eccbytes = eccsteps*eccbytes;
+
+		/* reserve 2 bytes for bad block marker */
+		if (layout->eccbytes+2 > mtd->oobsize) {
+			printk(KERN_WARNING "no suitable oob scheme available "
+			       "for oobsize %d eccbytes %u\n", mtd->oobsize,
+			       eccbytes);
+			goto fail;
+		}
+		/* put ecc bytes at oob tail */
+		for (i = 0; i < layout->eccbytes; i++)
+			layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i;
+
+		layout->oobfree[0].offset = 2;
+		layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes;
+
+		nand->ecc.layout = layout;
+	}
+
+	/* sanity checks */
+	if (8*(eccsize+eccbytes) >= (1 << m)) {
+		printk(KERN_WARNING "eccsize %u is too large\n", eccsize);
+		goto fail;
+	}
+	if (layout->eccbytes != (eccsteps*eccbytes)) {
+		printk(KERN_WARNING "invalid ecc layout\n");
+		goto fail;
+	}
+
+	nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);
+	nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL);
+	if (!nbc->eccmask || !nbc->errloc)
+		goto fail;
+	/*
+	 * compute and store the inverted ecc of an erased ecc block
+	 */
+	erased_page = kmalloc(eccsize, GFP_KERNEL);
+	if (!erased_page)
+		goto fail;
+
+	memset(erased_page, 0xff, eccsize);
+	memset(nbc->eccmask, 0, eccbytes);
+	encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);
+	kfree(erased_page);
+
+	for (i = 0; i < eccbytes; i++)
+		nbc->eccmask[i] ^= 0xff;
+
+	if (!eccstrength)
+		nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
+
+	return nbc;
+fail:
+	nand_bch_free(nbc);
+	return NULL;
+}
+
+/**
+ * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources
+ * @nbc:	NAND BCH control structure
+ */
+void nand_bch_free(struct nand_bch_control *nbc)
+{
+	if (nbc) {
+		free_bch(nbc->bch);
+		kfree(nbc->errloc);
+		kfree(nbc->eccmask);
+		kfree(nbc);
+	}
+}
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
new file mode 100644
index 0000000..2bc329b
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -0,0 +1,174 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/raw/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ *                         Toshiba America Electronics Components, Inc.
+ *
+ * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <common.h>
+
+#include <linux/errno.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand_ecc.h>
+
+/*
+ * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
+ * only nand_correct_data() is needed
+ */
+
+#if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
+ * @mtd:	MTD block structure
+ * @dat:	raw data
+ * @ecc_code:	buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+		       u_char *ecc_code)
+{
+	uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
+	int i;
+
+	/* Initialize variables */
+	reg1 = reg2 = reg3 = 0;
+
+	/* Build up column parity */
+	for(i = 0; i < 256; i++) {
+		/* Get CP0 - CP5 from table */
+		idx = nand_ecc_precalc_table[*dat++];
+		reg1 ^= (idx & 0x3f);
+
+		/* All bit XOR = 1 ? */
+		if (idx & 0x40) {
+			reg3 ^= (uint8_t) i;
+			reg2 ^= ~((uint8_t) i);
+		}
+	}
+
+	/* Create non-inverted ECC code from line parity */
+	tmp1  = (reg3 & 0x80) >> 0; /* B7 -> B7 */
+	tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
+	tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
+	tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
+	tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
+	tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
+	tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
+	tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
+
+	tmp2  = (reg3 & 0x08) << 4; /* B3 -> B7 */
+	tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
+	tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
+	tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
+	tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
+	tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
+	tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
+	tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
+
+	/* Calculate final ECC code */
+	ecc_code[0] = ~tmp1;
+	ecc_code[1] = ~tmp2;
+	ecc_code[2] = ((~reg1) << 2) | 0x03;
+
+	return 0;
+}
+#endif /* CONFIG_NAND_SPL */
+
+static inline int countbits(uint32_t byte)
+{
+	int res = 0;
+
+	for (;byte; byte >>= 1)
+		res += byte & 0x01;
+	return res;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:	MTD block structure
+ * @dat:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat,
+		      u_char *read_ecc, u_char *calc_ecc)
+{
+	uint8_t s0, s1, s2;
+
+	s1 = calc_ecc[0] ^ read_ecc[0];
+	s0 = calc_ecc[1] ^ read_ecc[1];
+	s2 = calc_ecc[2] ^ read_ecc[2];
+	if ((s0 | s1 | s2) == 0)
+		return 0;
+
+	/* Check for a single bit error */
+	if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
+	    ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
+	    ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
+
+		uint32_t byteoffs, bitnum;
+
+		byteoffs = (s1 << 0) & 0x80;
+		byteoffs |= (s1 << 1) & 0x40;
+		byteoffs |= (s1 << 2) & 0x20;
+		byteoffs |= (s1 << 3) & 0x10;
+
+		byteoffs |= (s0 >> 4) & 0x08;
+		byteoffs |= (s0 >> 3) & 0x04;
+		byteoffs |= (s0 >> 2) & 0x02;
+		byteoffs |= (s0 >> 1) & 0x01;
+
+		bitnum = (s2 >> 5) & 0x04;
+		bitnum |= (s2 >> 4) & 0x02;
+		bitnum |= (s2 >> 3) & 0x01;
+
+		dat[byteoffs] ^= (1 << bitnum);
+
+		return 1;
+	}
+
+	if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
+		return 1;
+
+	return -EBADMSG;
+}
diff --git a/drivers/mtd/nand/raw/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c
new file mode 100644
index 0000000..4009d64
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_ids.c
@@ -0,0 +1,209 @@
+/*
+ *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/sizes.h>
+
+#define LP_OPTIONS NAND_SAMSUNG_LP_OPTIONS
+#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
+
+#define SP_OPTIONS NAND_NEED_READRDY
+#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16)
+
+/*
+ * The chip ID list:
+ *    name, device ID, page size, chip size in MiB, eraseblock size, options
+ *
+ * If page size and eraseblock size are 0, the sizes are taken from the
+ * extended chip ID.
+ */
+struct nand_flash_dev nand_flash_ids[] = {
+#ifdef CONFIG_MTD_NAND_MUSEUM_IDS
+	LEGACY_ID_NAND("NAND 1MiB 5V 8-bit",	0x6e, 1, SZ_4K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 2MiB 5V 8-bit",	0x64, 2, SZ_4K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 1MiB 3,3V 8-bit",	0xe8, 1, SZ_4K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 1MiB 3,3V 8-bit",	0xec, 1, SZ_4K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 2MiB 3,3V 8-bit",	0xea, 2, SZ_4K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 	0xd5, 4, SZ_8K, SP_OPTIONS),
+
+	LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit",	0xe6, 8, SZ_8K, SP_OPTIONS),
+#endif
+	/*
+	 * Some incompatible NAND chips share device ID's and so must be
+	 * listed by full ID. We list them first so that we can easily identify
+	 * the most specific match.
+	 */
+	{"TC58NVG0S3E 1G 3.3V 8-bit",
+		{ .id = {0x98, 0xd1, 0x90, 0x15, 0x76, 0x14, 0x01, 0x00} },
+		  SZ_2K, SZ_128, SZ_128K, 0, 8, 64, NAND_ECC_INFO(1, SZ_512),
+		  2 },
+	{"TC58NVG2S0F 4G 3.3V 8-bit",
+		{ .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} },
+		  SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) },
+	{"TC58NVG2S0H 4G 3.3V 8-bit",
+		{ .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} },
+		  SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) },
+	{"TC58NVG3S0F 8G 3.3V 8-bit",
+		{ .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} },
+		  SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) },
+	{"TC58NVG5D2 32G 3.3V 8-bit",
+		{ .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} },
+		  SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) },
+	{"TC58NVG6D2 64G 3.3V 8-bit",
+		{ .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} },
+		  SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) },
+	{"SDTNRGAMA 64G 3.3V 8-bit",
+		{ .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} },
+		  SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) },
+	{"H27UCG8T2ATR-BC 64G 3.3V 8-bit",
+		{ .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} },
+		  SZ_8K, SZ_8K, SZ_2M, NAND_NEED_SCRAMBLING, 6, 640,
+		  NAND_ECC_INFO(40, SZ_1K), 4 },
+	{"H27QCG8T2E5R‐BCF 64G 3.3V 8-bit",
+		{ .id = {0xad, 0xde, 0x14, 0xa7, 0x42, 0x4a} },
+		  SZ_16K, SZ_8K, SZ_4M, NAND_NEED_SCRAMBLING, 6, 1664,
+		  NAND_ECC_INFO(56, SZ_1K), 1 },
+
+	LEGACY_ID_NAND("NAND 4MiB 5V 8-bit",   0x6B, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS),
+
+	LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit",  0x33, 16, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit",  0x73, 16, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit",  0x35, 32, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit",  0x75, 32, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit",  0x36, 64, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit",  0x76, 64, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit",  0x78, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit",  0x39, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit",  0x79, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS),
+
+	/*
+	 * These are the new chips with large page size. Their page size and
+	 * eraseblock size are determined from the extended ID bytes.
+	 */
+
+	/* 512 Megabit */
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit",  0xA2,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit",  0xA0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xF2,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xD0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xF0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0,  64, LP_OPTIONS16),
+
+	/* 1 Gigabit */
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit",  0xA1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit",  0xF1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit",  0xD1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16),
+
+	/* 2 Gigabit */
+	EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit",  0xAA, 256, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit",  0xDA, 256, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16),
+
+	/* 4 Gigabit */
+	EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit",  0xAC, 512, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit",  0xDC, 512, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16),
+
+	/* 8 Gigabit */
+	EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit",  0xA3, 1024, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit",  0xD3, 1024, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16),
+
+	/* 16 Gigabit */
+	EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit",  0xA5, 2048, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit",  0xD5, 2048, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16),
+
+	/* 32 Gigabit */
+	EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit",  0xA7, 4096, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit",  0xD7, 4096, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16),
+
+	/* 64 Gigabit */
+	EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit",  0xAE, 8192, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit",  0xDE, 8192, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16),
+
+	/* 128 Gigabit */
+	EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit",  0x1A, 16384, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit",  0x3A, 16384, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16),
+
+	/* 256 Gigabit */
+	EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit",  0x1C, 32768, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit",  0x3C, 32768, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16),
+
+	/* 512 Gigabit */
+	EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit",  0x1E, 65536, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit",  0x3E, 65536, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16),
+
+	{NULL}
+};
+
+/* Manufacturer IDs */
+struct nand_manufacturers nand_manuf_ids[] = {
+	{NAND_MFR_TOSHIBA, "Toshiba"},
+	{NAND_MFR_SAMSUNG, "Samsung"},
+	{NAND_MFR_FUJITSU, "Fujitsu"},
+	{NAND_MFR_NATIONAL, "National"},
+	{NAND_MFR_RENESAS, "Renesas"},
+	{NAND_MFR_STMICRO, "ST Micro"},
+	{NAND_MFR_HYNIX, "Hynix"},
+	{NAND_MFR_MICRON, "Micron"},
+	{NAND_MFR_AMD, "AMD/Spansion"},
+	{NAND_MFR_MACRONIX, "Macronix"},
+	{NAND_MFR_EON, "Eon"},
+	{NAND_MFR_SANDISK, "SanDisk"},
+	{NAND_MFR_INTEL, "Intel"},
+	{NAND_MFR_ATO, "ATO"},
+	{0x0, "Unknown"}
+};
+
+EXPORT_SYMBOL(nand_manuf_ids);
+EXPORT_SYMBOL(nand_flash_ids);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Nand device & manufacturer IDs");
diff --git a/drivers/mtd/nand/raw/nand_plat.c b/drivers/mtd/nand/raw/nand_plat.c
new file mode 100644
index 0000000..335c3e3
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_plat.c
@@ -0,0 +1,64 @@
+/*
+ * Genericish driver for memory mapped NAND devices
+ *
+ * Copyright (c) 2006-2009 Analog Devices Inc.
+ * Licensed under the GPL-2 or later.
+ */
+
+/* Your board must implement the following macros:
+ *  NAND_PLAT_WRITE_CMD(chip, cmd)
+ *  NAND_PLAT_WRITE_ADR(chip, cmd)
+ *  NAND_PLAT_INIT()
+ *
+ * It may also implement the following:
+ *  NAND_PLAT_DEV_READY(chip)
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#ifdef NAND_PLAT_GPIO_DEV_READY
+# include <asm/gpio.h>
+# define NAND_PLAT_DEV_READY(chip) gpio_get_value(NAND_PLAT_GPIO_DEV_READY)
+#endif
+
+#include <nand.h>
+
+static void plat_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		NAND_PLAT_WRITE_CMD(this, cmd);
+	else
+		NAND_PLAT_WRITE_ADR(this, cmd);
+}
+
+#ifdef NAND_PLAT_DEV_READY
+static int plat_dev_ready(struct mtd_info *mtd)
+{
+	return NAND_PLAT_DEV_READY((struct nand_chip *)mtd_to_nand(mtd));
+}
+#else
+# define plat_dev_ready NULL
+#endif
+
+int board_nand_init(struct nand_chip *nand)
+{
+#ifdef NAND_PLAT_GPIO_DEV_READY
+	gpio_request(NAND_PLAT_GPIO_DEV_READY, "nand-plat");
+	gpio_direction_input(NAND_PLAT_GPIO_DEV_READY);
+#endif
+
+#ifdef NAND_PLAT_INIT
+	NAND_PLAT_INIT();
+#endif
+
+	nand->cmd_ctrl = plat_cmd_ctrl;
+	nand->dev_ready = plat_dev_ready;
+	nand->ecc.mode = NAND_ECC_SOFT;
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/nand_spl_load.c b/drivers/mtd/nand/raw/nand_spl_load.c
new file mode 100644
index 0000000..ecd373e
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_spl_load.c
@@ -0,0 +1,41 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2011
+ * Heiko Schocher, DENX Software Engineering, hs@denx.de.
+ */
+
+#include <common.h>
+#include <nand.h>
+
+/*
+ * The main entry for NAND booting. It's necessary that SDRAM is already
+ * configured and available since this code loads the main U-Boot image
+ * from NAND into SDRAM and starts it from there.
+ */
+void nand_boot(void)
+{
+	__attribute__((noreturn)) void (*uboot)(void);
+
+	/*
+	 * Load U-Boot image from NAND into RAM
+	 */
+	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
+			CONFIG_SYS_NAND_U_BOOT_SIZE,
+			(void *)CONFIG_SYS_NAND_U_BOOT_DST);
+
+#ifdef CONFIG_NAND_ENV_DST
+	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
+			(void *)CONFIG_NAND_ENV_DST);
+
+#ifdef CONFIG_ENV_OFFSET_REDUND
+	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
+			(void *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
+#endif
+#endif
+
+	/*
+	 * Jump to U-Boot image
+	 */
+	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
+	(*uboot)();
+}
diff --git a/drivers/mtd/nand/raw/nand_spl_loaders.c b/drivers/mtd/nand/raw/nand_spl_loaders.c
new file mode 100644
index 0000000..177c12b
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_spl_loaders.c
@@ -0,0 +1,104 @@
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
+{
+	unsigned int block, lastblock;
+	unsigned int page, page_offset;
+
+	/* offs has to be aligned to a page address! */
+	block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
+	lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
+	page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
+	page_offset = offs % CONFIG_SYS_NAND_PAGE_SIZE;
+
+	while (block <= lastblock) {
+		if (!nand_is_bad_block(block)) {
+			/* Skip bad blocks */
+			while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
+				nand_read_page(block, page, dst);
+				/*
+				 * When offs is not aligned to page address the
+				 * extra offset is copied to dst as well. Copy
+				 * the image such that its first byte will be
+				 * at the dst.
+				 */
+				if (unlikely(page_offset)) {
+					memmove(dst, dst + page_offset,
+						CONFIG_SYS_NAND_PAGE_SIZE);
+					dst = (void *)((int)dst - page_offset);
+					page_offset = 0;
+				}
+				dst += CONFIG_SYS_NAND_PAGE_SIZE;
+				page++;
+			}
+
+			page = 0;
+		} else {
+			lastblock++;
+		}
+
+		block++;
+	}
+
+	return 0;
+}
+
+#ifdef CONFIG_SPL_UBI
+/*
+ * Temporary storage for non NAND page aligned and non NAND page sized
+ * reads. Note: This does not support runtime detected FLASH yet, but
+ * that should be reasonably easy to fix by making the buffer large
+ * enough :)
+ */
+static u8 scratch_buf[CONFIG_SYS_NAND_PAGE_SIZE];
+
+/**
+ * nand_spl_read_block - Read data from physical eraseblock into a buffer
+ * @block:	Number of the physical eraseblock
+ * @offset:	Data offset from the start of @peb
+ * @len:	Data size to read
+ * @dst:	Address of the destination buffer
+ *
+ * This could be further optimized if we'd have a subpage read
+ * function in the simple code. On NAND which allows subpage reads
+ * this would spare quite some time to readout e.g. the VID header of
+ * UBI.
+ *
+ * Notes:
+ *	@offset + @len are not allowed to be larger than a physical
+ *	erase block. No sanity check done for simplicity reasons.
+ *
+ * To support runtime detected flash this needs to be extended by
+ * information about the actual flash geometry, but thats beyond the
+ * scope of this effort and for most applications where fast boot is
+ * required it is not an issue anyway.
+ */
+int nand_spl_read_block(int block, int offset, int len, void *dst)
+{
+	int page, read;
+
+	/* Calculate the page number */
+	page = offset / CONFIG_SYS_NAND_PAGE_SIZE;
+
+	/* Offset to the start of a flash page */
+	offset = offset % CONFIG_SYS_NAND_PAGE_SIZE;
+
+	while (len) {
+		/*
+		 * Non page aligned reads go to the scratch buffer.
+		 * Page aligned reads go directly to the destination.
+		 */
+		if (offset || len < CONFIG_SYS_NAND_PAGE_SIZE) {
+			nand_read_page(block, page, scratch_buf);
+			read = min(len, CONFIG_SYS_NAND_PAGE_SIZE - offset);
+			memcpy(dst, scratch_buf + offset, read);
+			offset = 0;
+		} else {
+			nand_read_page(block, page, dst);
+			read = CONFIG_SYS_NAND_PAGE_SIZE;
+		}
+		page++;
+		len -= read;
+		dst += read;
+	}
+	return 0;
+}
+#endif
diff --git a/drivers/mtd/nand/raw/nand_spl_simple.c b/drivers/mtd/nand/raw/nand_spl_simple.c
new file mode 100644
index 0000000..09e0535
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_spl_simple.c
@@ -0,0 +1,240 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2006-2008
+ * Stefan Roese, DENX Software Engineering, sr@denx.de.
+ */
+
+#include <common.h>
+#include <nand.h>
+#include <asm/io.h>
+#include <linux/mtd/nand_ecc.h>
+
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
+static struct mtd_info *mtd;
+static struct nand_chip nand_chip;
+
+#define ECCSTEPS	(CONFIG_SYS_NAND_PAGE_SIZE / \
+					CONFIG_SYS_NAND_ECCSIZE)
+#define ECCTOTAL	(ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
+
+
+#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
+/*
+ * NAND command for small page NAND devices (512)
+ */
+static int nand_command(int block, int page, uint32_t offs,
+	u8 cmd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	/* Begin command latch cycle */
+	this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	/* Set ALE and clear CLE to start address cycle */
+	/* Column address */
+	this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
+	this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
+		       NAND_CTRL_ALE); /* A[24:17] */
+#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
+	/* One more address cycle for devices > 32MiB */
+	this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
+		       NAND_CTRL_ALE); /* A[28:25] */
+#endif
+	/* Latch in address */
+	this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Wait a while for the data to be ready
+	 */
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+#else
+/*
+ * NAND command for large page NAND devices (2k)
+ */
+static int nand_command(int block, int page, uint32_t offs,
+	u8 cmd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+	void (*hwctrl)(struct mtd_info *mtd, int cmd,
+			unsigned int ctrl) = this->cmd_ctrl;
+
+	while (!this->dev_ready(mtd))
+		;
+
+	/* Emulate NAND_CMD_READOOB */
+	if (cmd == NAND_CMD_READOOB) {
+		offs += CONFIG_SYS_NAND_PAGE_SIZE;
+		cmd = NAND_CMD_READ0;
+	}
+
+	/* Shift the offset from byte addressing to word addressing. */
+	if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
+		offs >>= 1;
+
+	/* Begin command latch cycle */
+	hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	/* Set ALE and clear CLE to start address cycle */
+	/* Column address */
+	hwctrl(mtd, offs & 0xff,
+		    NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
+	hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
+	/* Row address */
+	hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
+	hwctrl(mtd, ((page_addr >> 8) & 0xff),
+		    NAND_CTRL_ALE); /* A[27:20] */
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+	/* One more address cycle for devices > 128MiB */
+	hwctrl(mtd, (page_addr >> 16) & 0x0f,
+		       NAND_CTRL_ALE); /* A[31:28] */
+#endif
+	/* Latch in address */
+	hwctrl(mtd, NAND_CMD_READSTART,
+		    NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Wait a while for the data to be ready
+	 */
+	while (!this->dev_ready(mtd))
+		;
+
+	return 0;
+}
+#endif
+
+static int nand_is_bad_block(int block)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char bb_data[2];
+
+	nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
+		NAND_CMD_READOOB);
+
+	/*
+	 * Read one byte (or two if it's a 16 bit chip).
+	 */
+	if (this->options & NAND_BUSWIDTH_16) {
+		this->read_buf(mtd, bb_data, 2);
+		if (bb_data[0] != 0xff || bb_data[1] != 0xff)
+			return 1;
+	} else {
+		this->read_buf(mtd, bb_data, 1);
+		if (bb_data[0] != 0xff)
+			return 1;
+	}
+
+	return 0;
+}
+
+#if defined(CONFIG_SYS_NAND_HW_ECC_OOBFIRST)
+static int nand_read_page(int block, int page, uchar *dst)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int i;
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	uint8_t *p = dst;
+
+	nand_command(block, page, 0, NAND_CMD_READOOB);
+	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+	nand_command(block, page, 0, NAND_CMD_READ0);
+
+	/* Pick the ECC bytes out of the oob data */
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		this->ecc.hwctl(mtd, NAND_ECC_READ);
+		this->read_buf(mtd, p, eccsize);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+	}
+
+	return 0;
+}
+#else
+static int nand_read_page(int block, int page, void *dst)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ecc_calc[ECCTOTAL];
+	u_char ecc_code[ECCTOTAL];
+	u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+	int i;
+	int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+	int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+	int eccsteps = ECCSTEPS;
+	uint8_t *p = dst;
+
+	nand_command(block, page, 0, NAND_CMD_READ0);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		if (this->ecc.mode != NAND_ECC_SOFT)
+			this->ecc.hwctl(mtd, NAND_ECC_READ);
+		this->read_buf(mtd, p, eccsize);
+		this->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+	this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+
+	/* Pick the ECC bytes out of the oob data */
+	for (i = 0; i < ECCTOTAL; i++)
+		ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+	eccsteps = ECCSTEPS;
+	p = dst;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		/* No chance to do something with the possible error message
+		 * from correct_data(). We just hope that all possible errors
+		 * are corrected by this routine.
+		 */
+		this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+	}
+
+	return 0;
+}
+#endif
+
+/* nand_init() - initialize data to make nand usable by SPL */
+void nand_init(void)
+{
+	/*
+	 * Init board specific nand support
+	 */
+	mtd = nand_to_mtd(&nand_chip);
+	nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
+		(void  __iomem *)CONFIG_SYS_NAND_BASE;
+	board_nand_init(&nand_chip);
+
+#ifdef CONFIG_SPL_NAND_SOFTECC
+	if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
+		nand_chip.ecc.calculate = nand_calculate_ecc;
+		nand_chip.ecc.correct = nand_correct_data;
+	}
+#endif
+
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, 0);
+}
+
+/* Unselect after operation */
+void nand_deselect(void)
+{
+	if (nand_chip.select_chip)
+		nand_chip.select_chip(mtd, -1);
+}
+
+#include "nand_spl_loaders.c"
diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c
new file mode 100644
index 0000000..c0545a4
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_timings.c
@@ -0,0 +1,334 @@
+/*
+ *  Copyright (C) 2014 Free Electrons
+ *
+ *  Author: Boris BREZILLON <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <common.h>
+#include <linux/kernel.h>
+#include <linux/mtd/rawnand.h>
+
+static const struct nand_data_interface onfi_sdr_timings[] = {
+	/* Mode 0 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 20000,
+			.tALS_min = 50000,
+			.tAR_min = 25000,
+			.tCEA_max = 100000,
+			.tCEH_min = 20000,
+			.tCH_min = 20000,
+			.tCHZ_max = 100000,
+			.tCLH_min = 20000,
+			.tCLR_min = 20000,
+			.tCLS_min = 50000,
+			.tCOH_min = 0,
+			.tCS_min = 70000,
+			.tDH_min = 20000,
+			.tDS_min = 40000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 10000,
+			.tITC_max = 1000000,
+			.tRC_min = 100000,
+			.tREA_max = 40000,
+			.tREH_min = 30000,
+			.tRHOH_min = 0,
+			.tRHW_min = 200000,
+			.tRHZ_max = 200000,
+			.tRLOH_min = 0,
+			.tRP_min = 50000,
+			.tRR_min = 40000,
+			.tRST_max = 250000000000ULL,
+			.tWB_max = 200000,
+			.tWC_min = 100000,
+			.tWH_min = 30000,
+			.tWHR_min = 120000,
+			.tWP_min = 50000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 1 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 25000,
+			.tAR_min = 10000,
+			.tCEA_max = 45000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 25000,
+			.tCOH_min = 15000,
+			.tCS_min = 35000,
+			.tDH_min = 10000,
+			.tDS_min = 20000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 50000,
+			.tREA_max = 30000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 25000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 45000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 25000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 2 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 15000,
+			.tAR_min = 10000,
+			.tCEA_max = 30000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 15000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 15000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 35000,
+			.tREA_max = 25000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tRP_min = 17000,
+			.tWC_min = 35000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 17000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 3 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 30000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 15000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 30000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 15000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 4 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 20000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 25000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 12000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 25000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 12000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 5 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 15000,
+			.tDH_min = 5000,
+			.tDS_min = 7000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 20000,
+			.tREA_max = 16000,
+			.tREH_min = 7000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 10000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 20000,
+			.tWH_min = 7000,
+			.tWHR_min = 80000,
+			.tWP_min = 10000,
+			.tWW_min = 100000,
+		},
+	},
+};
+
+/**
+ * onfi_async_timing_mode_to_sdr_timings - [NAND Interface] Retrieve NAND
+ * timings according to the given ONFI timing mode
+ * @mode: ONFI timing mode
+ */
+const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode)
+{
+	if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings))
+		return ERR_PTR(-EINVAL);
+
+	return &onfi_sdr_timings[mode].timings.sdr;
+}
+EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings);
+
+/**
+ * onfi_init_data_interface - [NAND Interface] Initialize a data interface from
+ * given ONFI mode
+ * @iface: The data interface to be initialized
+ * @mode: The ONFI timing mode
+ */
+int onfi_init_data_interface(struct nand_chip *chip,
+			     struct nand_data_interface *iface,
+			     enum nand_data_interface_type type,
+			     int timing_mode)
+{
+	if (type != NAND_SDR_IFACE)
+		return -EINVAL;
+
+	if (timing_mode < 0 || timing_mode >= ARRAY_SIZE(onfi_sdr_timings))
+		return -EINVAL;
+
+	*iface = onfi_sdr_timings[timing_mode];
+
+	/*
+	 * Initialize timings that cannot be deduced from timing mode:
+	 * tR, tPROG, tCCS, ...
+	 * These information are part of the ONFI parameter page.
+	 */
+	if (chip->onfi_version) {
+		struct nand_onfi_params *params = &chip->onfi_params;
+		struct nand_sdr_timings *timings = &iface->timings.sdr;
+
+		/* microseconds -> picoseconds */
+		timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog);
+		timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers);
+		timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r);
+
+		/* nanoseconds -> picoseconds */
+		timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(onfi_init_data_interface);
+
+/**
+ * nand_get_default_data_interface - [NAND Interface] Retrieve NAND
+ * data interface for mode 0. This is used as default timing after
+ * reset.
+ */
+const struct nand_data_interface *nand_get_default_data_interface(void)
+{
+	return &onfi_sdr_timings[0];
+}
+EXPORT_SYMBOL(nand_get_default_data_interface);
diff --git a/drivers/mtd/nand/raw/nand_util.c b/drivers/mtd/nand/raw/nand_util.c
new file mode 100644
index 0000000..fc2235c
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_util.c
@@ -0,0 +1,904 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * drivers/mtd/nand/raw/nand_util.c
+ *
+ * Copyright (C) 2006 by Weiss-Electronic GmbH.
+ * All rights reserved.
+ *
+ * @author:	Guido Classen <clagix@gmail.com>
+ * @descr:	NAND Flash support
+ * @references: borrowed heavily from Linux mtd-utils code:
+ *		flash_eraseall.c by Arcom Control System Ltd
+ *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
+ *			       and Thomas Gleixner (tglx@linutronix.de)
+ *
+ * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
+ * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
+ *
+ * Copyright 2010 Freescale Semiconductor
+ */
+
+#include <common.h>
+#include <command.h>
+#include <watchdog.h>
+#include <malloc.h>
+#include <memalign.h>
+#include <div64.h>
+
+#include <linux/errno.h>
+#include <linux/mtd/mtd.h>
+#include <nand.h>
+#include <jffs2/jffs2.h>
+
+typedef struct erase_info	erase_info_t;
+typedef struct mtd_info		mtd_info_t;
+
+/* support only for native endian JFFS2 */
+#define cpu_to_je16(x) (x)
+#define cpu_to_je32(x) (x)
+
+/**
+ * nand_erase_opts: - erase NAND flash with support for various options
+ *		      (jffs2 formatting)
+ *
+ * @param mtd		nand mtd instance to erase
+ * @param opts		options,  @see struct nand_erase_options
+ * @return		0 in case of success
+ *
+ * This code is ported from flash_eraseall.c from Linux mtd utils by
+ * Arcom Control System Ltd.
+ */
+int nand_erase_opts(struct mtd_info *mtd,
+		    const nand_erase_options_t *opts)
+{
+	struct jffs2_unknown_node cleanmarker;
+	erase_info_t erase;
+	unsigned long erase_length, erased_length; /* in blocks */
+	int result;
+	int percent_complete = -1;
+	const char *mtd_device = mtd->name;
+	struct mtd_oob_ops oob_opts;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if ((opts->offset & (mtd->erasesize - 1)) != 0) {
+		printf("Attempt to erase non block-aligned data\n");
+		return -1;
+	}
+
+	memset(&erase, 0, sizeof(erase));
+	memset(&oob_opts, 0, sizeof(oob_opts));
+
+	erase.mtd = mtd;
+	erase.len = mtd->erasesize;
+	erase.addr = opts->offset;
+	erase_length = lldiv(opts->length + mtd->erasesize - 1,
+			     mtd->erasesize);
+
+	cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+	cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
+	cleanmarker.totlen = cpu_to_je32(8);
+
+	/* scrub option allows to erase badblock. To prevent internal
+	 * check from erase() method, set block check method to dummy
+	 * and disable bad block table while erasing.
+	 */
+	if (opts->scrub) {
+		erase.scrub = opts->scrub;
+		/*
+		 * We don't need the bad block table anymore...
+		 * after scrub, there are no bad blocks left!
+		 */
+		if (chip->bbt) {
+			kfree(chip->bbt);
+		}
+		chip->bbt = NULL;
+		chip->options &= ~NAND_BBT_SCANNED;
+	}
+
+	for (erased_length = 0;
+	     erased_length < erase_length;
+	     erase.addr += mtd->erasesize) {
+
+		WATCHDOG_RESET();
+
+		if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
+			puts("Size of erase exceeds limit\n");
+			return -EFBIG;
+		}
+		if (!opts->scrub) {
+			int ret = mtd_block_isbad(mtd, erase.addr);
+			if (ret > 0) {
+				if (!opts->quiet)
+					printf("\rSkipping bad block at  "
+					       "0x%08llx                 "
+					       "                         \n",
+					       erase.addr);
+
+				if (!opts->spread)
+					erased_length++;
+
+				continue;
+
+			} else if (ret < 0) {
+				printf("\n%s: MTD get bad block failed: %d\n",
+				       mtd_device,
+				       ret);
+				return -1;
+			}
+		}
+
+		erased_length++;
+
+		result = mtd_erase(mtd, &erase);
+		if (result != 0) {
+			printf("\n%s: MTD Erase failure: %d\n",
+			       mtd_device, result);
+			continue;
+		}
+
+		/* format for JFFS2 ? */
+		if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
+			struct mtd_oob_ops ops;
+			ops.ooblen = 8;
+			ops.datbuf = NULL;
+			ops.oobbuf = (uint8_t *)&cleanmarker;
+			ops.ooboffs = 0;
+			ops.mode = MTD_OPS_AUTO_OOB;
+
+			result = mtd_write_oob(mtd, erase.addr, &ops);
+			if (result != 0) {
+				printf("\n%s: MTD writeoob failure: %d\n",
+				       mtd_device, result);
+				continue;
+			}
+		}
+
+		if (!opts->quiet) {
+			unsigned long long n = erased_length * 100ULL;
+			int percent;
+
+			do_div(n, erase_length);
+			percent = (int)n;
+
+			/* output progress message only at whole percent
+			 * steps to reduce the number of messages printed
+			 * on (slow) serial consoles
+			 */
+			if (percent != percent_complete) {
+				percent_complete = percent;
+
+				printf("\rErasing at 0x%llx -- %3d%% complete.",
+				       erase.addr, percent);
+
+				if (opts->jffs2 && result == 0)
+					printf(" Cleanmarker written at 0x%llx.",
+					       erase.addr);
+			}
+		}
+	}
+	if (!opts->quiet)
+		printf("\n");
+
+	return 0;
+}
+
+#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
+
+#define NAND_CMD_LOCK_TIGHT     0x2c
+#define NAND_CMD_LOCK_STATUS    0x7a
+ 
+/******************************************************************************
+ * Support for locking / unlocking operations of some NAND devices
+ *****************************************************************************/
+
+/**
+ * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
+ *	      state
+ *
+ * @param mtd		nand mtd instance
+ * @param tight		bring device in lock tight mode
+ *
+ * @return		0 on success, -1 in case of error
+ *
+ * The lock / lock-tight command only applies to the whole chip. To get some
+ * parts of the chip lock and others unlocked use the following sequence:
+ *
+ * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
+ * - Call nand_unlock() once for each consecutive area to be unlocked
+ * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
+ *
+ *   If the device is in lock-tight state software can't change the
+ *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
+ *   calls will fail. It is only posible to leave lock-tight state by
+ *   an hardware signal (low pulse on _WP pin) or by power down.
+ */
+int nand_lock(struct mtd_info *mtd, int tight)
+{
+	int ret = 0;
+	int status;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* select the NAND device */
+	chip->select_chip(mtd, 0);
+
+	/* check the Lock Tight Status */
+	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
+	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
+		printf("nand_lock: Device is locked tight!\n");
+		ret = -1;
+		goto out;
+	}
+
+	chip->cmdfunc(mtd,
+		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
+		      -1, -1);
+
+	/* call wait ready function */
+	status = chip->waitfunc(mtd, chip);
+
+	/* see if device thinks it succeeded */
+	if (status & 0x01) {
+		ret = -1;
+	}
+
+ out:
+	/* de-select the NAND device */
+	chip->select_chip(mtd, -1);
+	return ret;
+}
+
+/**
+ * nand_get_lock_status: - query current lock state from one page of NAND
+ *			   flash
+ *
+ * @param mtd		nand mtd instance
+ * @param offset	page address to query (must be page-aligned!)
+ *
+ * @return		-1 in case of error
+ *			>0 lock status:
+ *			  bitfield with the following combinations:
+ *			  NAND_LOCK_STATUS_TIGHT: page in tight state
+ *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
+ *
+ */
+int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
+{
+	int ret = 0;
+	int chipnr;
+	int page;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* select the NAND device */
+	chipnr = (int)(offset >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+
+	if ((offset & (mtd->writesize - 1)) != 0) {
+		printf("nand_get_lock_status: "
+			"Start address must be beginning of "
+			"nand page!\n");
+		ret = -1;
+		goto out;
+	}
+
+	/* check the Lock Status */
+	page = (int)(offset >> chip->page_shift);
+	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
+
+	ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
+					  | NAND_LOCK_STATUS_UNLOCK);
+
+ out:
+	/* de-select the NAND device */
+	chip->select_chip(mtd, -1);
+	return ret;
+}
+
+/**
+ * nand_unlock: - Unlock area of NAND pages
+ *		  only one consecutive area can be unlocked at one time!
+ *
+ * @param mtd		nand mtd instance
+ * @param start		start byte address
+ * @param length	number of bytes to unlock (must be a multiple of
+ *			page size mtd->writesize)
+ * @param allexcept	if set, unlock everything not selected
+ *
+ * @return		0 on success, -1 in case of error
+ */
+int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
+	int allexcept)
+{
+	int ret = 0;
+	int chipnr;
+	int status;
+	int page;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	debug("nand_unlock%s: start: %08llx, length: %zd!\n",
+		allexcept ? " (allexcept)" : "", start, length);
+
+	/* select the NAND device */
+	chipnr = (int)(start >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	/* check the WP bit */
+	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
+		printf("nand_unlock: Device is write protected!\n");
+		ret = -1;
+		goto out;
+	}
+
+	/* check the Lock Tight Status */
+	page = (int)(start >> chip->page_shift);
+	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
+	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
+		printf("nand_unlock: Device is locked tight!\n");
+		ret = -1;
+		goto out;
+	}
+
+	if ((start & (mtd->erasesize - 1)) != 0) {
+		printf("nand_unlock: Start address must be beginning of "
+			"nand block!\n");
+		ret = -1;
+		goto out;
+	}
+
+	if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
+		printf("nand_unlock: Length must be a multiple of nand block "
+			"size %08x!\n", mtd->erasesize);
+		ret = -1;
+		goto out;
+	}
+
+	/*
+	 * Set length so that the last address is set to the
+	 * starting address of the last block
+	 */
+	length -= mtd->erasesize;
+
+	/* submit address of first page to unlock */
+	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
+
+	/* submit ADDRESS of LAST page to unlock */
+	page += (int)(length >> chip->page_shift);
+
+	/*
+	 * Page addresses for unlocking are supposed to be block-aligned.
+	 * At least some NAND chips use the low bit to indicate that the
+	 * page range should be inverted.
+	 */
+	if (allexcept)
+		page |= 1;
+
+	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
+
+	/* call wait ready function */
+	status = chip->waitfunc(mtd, chip);
+	/* see if device thinks it succeeded */
+	if (status & 0x01) {
+		/* there was an error */
+		ret = -1;
+		goto out;
+	}
+
+ out:
+	/* de-select the NAND device */
+	chip->select_chip(mtd, -1);
+	return ret;
+}
+#endif
+
+/**
+ * check_skip_len
+ *
+ * Check if there are any bad blocks, and whether length including bad
+ * blocks fits into device
+ *
+ * @param mtd nand mtd instance
+ * @param offset offset in flash
+ * @param length image length
+ * @param used length of flash needed for the requested length
+ * @return 0 if the image fits and there are no bad blocks
+ *         1 if the image fits, but there are bad blocks
+ *        -1 if the image does not fit
+ */
+static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
+			  size_t *used)
+{
+	size_t len_excl_bad = 0;
+	int ret = 0;
+
+	while (len_excl_bad < length) {
+		size_t block_len, block_off;
+		loff_t block_start;
+
+		if (offset >= mtd->size)
+			return -1;
+
+		block_start = offset & ~(loff_t)(mtd->erasesize - 1);
+		block_off = offset & (mtd->erasesize - 1);
+		block_len = mtd->erasesize - block_off;
+
+		if (!nand_block_isbad(mtd, block_start))
+			len_excl_bad += block_len;
+		else
+			ret = 1;
+
+		offset += block_len;
+		*used += block_len;
+	}
+
+	/* If the length is not a multiple of block_len, adjust. */
+	if (len_excl_bad > length)
+		*used -= (len_excl_bad - length);
+
+	return ret;
+}
+
+#ifdef CONFIG_CMD_NAND_TRIMFFS
+static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
+			const size_t *len)
+{
+	size_t l = *len;
+	ssize_t i;
+
+	for (i = l - 1; i >= 0; i--)
+		if (buf[i] != 0xFF)
+			break;
+
+	/* The resulting length must be aligned to the minimum flash I/O size */
+	l = i + 1;
+	l = (l + mtd->writesize - 1) / mtd->writesize;
+	l *=  mtd->writesize;
+
+	/*
+	 * since the input length may be unaligned, prevent access past the end
+	 * of the buffer
+	 */
+	return min(l, *len);
+}
+#endif
+
+/**
+ * nand_verify_page_oob:
+ *
+ * Verify a page of NAND flash, including the OOB.
+ * Reads page of NAND and verifies the contents and OOB against the
+ * values in ops.
+ *
+ * @param mtd		nand mtd instance
+ * @param ops		MTD operations, including data to verify
+ * @param ofs		offset in flash
+ * @return		0 in case of success
+ */
+int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
+			 loff_t ofs)
+{
+	int rval;
+	struct mtd_oob_ops vops;
+	size_t verlen = mtd->writesize + mtd->oobsize;
+
+	memcpy(&vops, ops, sizeof(vops));
+
+	vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
+
+	if (!vops.datbuf)
+		return -ENOMEM;
+
+	vops.oobbuf = vops.datbuf + mtd->writesize;
+
+	rval = mtd_read_oob(mtd, ofs, &vops);
+	if (!rval)
+		rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
+	if (!rval)
+		rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
+
+	free(vops.datbuf);
+
+	return rval ? -EIO : 0;
+}
+
+/**
+ * nand_verify:
+ *
+ * Verify a region of NAND flash.
+ * Reads NAND in page-sized chunks and verifies the contents against
+ * the contents of a buffer.  The offset into the NAND must be
+ * page-aligned, and the function doesn't handle skipping bad blocks.
+ *
+ * @param mtd		nand mtd instance
+ * @param ofs		offset in flash
+ * @param len		buffer length
+ * @param buf		buffer to read from
+ * @return		0 in case of success
+ */
+int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
+{
+	int rval = 0;
+	size_t verofs;
+	size_t verlen = mtd->writesize;
+	uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
+
+	if (!verbuf)
+		return -ENOMEM;
+
+	/* Read the NAND back in page-size groups to limit malloc size */
+	for (verofs = ofs; verofs < ofs + len;
+	     verofs += verlen, buf += verlen) {
+		verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
+		rval = nand_read(mtd, verofs, &verlen, verbuf);
+		if (!rval || (rval == -EUCLEAN))
+			rval = memcmp(buf, verbuf, verlen);
+
+		if (rval)
+			break;
+	}
+
+	free(verbuf);
+
+	return rval ? -EIO : 0;
+}
+
+
+
+/**
+ * nand_write_skip_bad:
+ *
+ * Write image to NAND flash.
+ * Blocks that are marked bad are skipped and the is written to the next
+ * block instead as long as the image is short enough to fit even after
+ * skipping the bad blocks.  Due to bad blocks we may not be able to
+ * perform the requested write.  In the case where the write would
+ * extend beyond the end of the NAND device, both length and actual (if
+ * not NULL) are set to 0.  In the case where the write would extend
+ * beyond the limit we are passed, length is set to 0 and actual is set
+ * to the required length.
+ *
+ * @param mtd		nand mtd instance
+ * @param offset	offset in flash
+ * @param length	buffer length
+ * @param actual	set to size required to write length worth of
+ *			buffer or 0 on error, if not NULL
+ * @param lim		maximum size that actual may be in order to not
+ *			exceed the buffer
+ * @param buffer        buffer to read from
+ * @param flags		flags modifying the behaviour of the write to NAND
+ * @return		0 in case of success
+ */
+int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
+			size_t *actual, loff_t lim, u_char *buffer, int flags)
+{
+	int rval = 0, blocksize;
+	size_t left_to_write = *length;
+	size_t used_for_write = 0;
+	u_char *p_buffer = buffer;
+	int need_skip;
+
+	if (actual)
+		*actual = 0;
+
+	blocksize = mtd->erasesize;
+
+	/*
+	 * nand_write() handles unaligned, partial page writes.
+	 *
+	 * We allow length to be unaligned, for convenience in
+	 * using the $filesize variable.
+	 *
+	 * However, starting at an unaligned offset makes the
+	 * semantics of bad block skipping ambiguous (really,
+	 * you should only start a block skipping access at a
+	 * partition boundary).  So don't try to handle that.
+	 */
+	if ((offset & (mtd->writesize - 1)) != 0) {
+		printf("Attempt to write non page-aligned data\n");
+		*length = 0;
+		return -EINVAL;
+	}
+
+	need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
+
+	if (actual)
+		*actual = used_for_write;
+
+	if (need_skip < 0) {
+		printf("Attempt to write outside the flash area\n");
+		*length = 0;
+		return -EINVAL;
+	}
+
+	if (used_for_write > lim) {
+		puts("Size of write exceeds partition or device limit\n");
+		*length = 0;
+		return -EFBIG;
+	}
+
+	if (!need_skip && !(flags & WITH_DROP_FFS)) {
+		rval = nand_write(mtd, offset, length, buffer);
+
+		if ((flags & WITH_WR_VERIFY) && !rval)
+			rval = nand_verify(mtd, offset, *length, buffer);
+
+		if (rval == 0)
+			return 0;
+
+		*length = 0;
+		printf("NAND write to offset %llx failed %d\n",
+			offset, rval);
+		return rval;
+	}
+
+	while (left_to_write > 0) {
+		size_t block_offset = offset & (mtd->erasesize - 1);
+		size_t write_size, truncated_write_size;
+
+		WATCHDOG_RESET();
+
+		if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
+			printf("Skip bad block 0x%08llx\n",
+				offset & ~(mtd->erasesize - 1));
+			offset += mtd->erasesize - block_offset;
+			continue;
+		}
+
+		if (left_to_write < (blocksize - block_offset))
+			write_size = left_to_write;
+		else
+			write_size = blocksize - block_offset;
+
+		truncated_write_size = write_size;
+#ifdef CONFIG_CMD_NAND_TRIMFFS
+		if (flags & WITH_DROP_FFS)
+			truncated_write_size = drop_ffs(mtd, p_buffer,
+					&write_size);
+#endif
+
+		rval = nand_write(mtd, offset, &truncated_write_size,
+				p_buffer);
+
+		if ((flags & WITH_WR_VERIFY) && !rval)
+			rval = nand_verify(mtd, offset,
+				truncated_write_size, p_buffer);
+
+		offset += write_size;
+		p_buffer += write_size;
+
+		if (rval != 0) {
+			printf("NAND write to offset %llx failed %d\n",
+				offset, rval);
+			*length -= left_to_write;
+			return rval;
+		}
+
+		left_to_write -= write_size;
+	}
+
+	return 0;
+}
+
+/**
+ * nand_read_skip_bad:
+ *
+ * Read image from NAND flash.
+ * Blocks that are marked bad are skipped and the next block is read
+ * instead as long as the image is short enough to fit even after
+ * skipping the bad blocks.  Due to bad blocks we may not be able to
+ * perform the requested read.  In the case where the read would extend
+ * beyond the end of the NAND device, both length and actual (if not
+ * NULL) are set to 0.  In the case where the read would extend beyond
+ * the limit we are passed, length is set to 0 and actual is set to the
+ * required length.
+ *
+ * @param mtd nand mtd instance
+ * @param offset offset in flash
+ * @param length buffer length, on return holds number of read bytes
+ * @param actual set to size required to read length worth of buffer or 0
+ * on error, if not NULL
+ * @param lim maximum size that actual may be in order to not exceed the
+ * buffer
+ * @param buffer buffer to write to
+ * @return 0 in case of success
+ */
+int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
+		       size_t *actual, loff_t lim, u_char *buffer)
+{
+	int rval;
+	size_t left_to_read = *length;
+	size_t used_for_read = 0;
+	u_char *p_buffer = buffer;
+	int need_skip;
+
+	if ((offset & (mtd->writesize - 1)) != 0) {
+		printf("Attempt to read non page-aligned data\n");
+		*length = 0;
+		if (actual)
+			*actual = 0;
+		return -EINVAL;
+	}
+
+	need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
+
+	if (actual)
+		*actual = used_for_read;
+
+	if (need_skip < 0) {
+		printf("Attempt to read outside the flash area\n");
+		*length = 0;
+		return -EINVAL;
+	}
+
+	if (used_for_read > lim) {
+		puts("Size of read exceeds partition or device limit\n");
+		*length = 0;
+		return -EFBIG;
+	}
+
+	if (!need_skip) {
+		rval = nand_read(mtd, offset, length, buffer);
+		if (!rval || rval == -EUCLEAN)
+			return 0;
+
+		*length = 0;
+		printf("NAND read from offset %llx failed %d\n",
+			offset, rval);
+		return rval;
+	}
+
+	while (left_to_read > 0) {
+		size_t block_offset = offset & (mtd->erasesize - 1);
+		size_t read_length;
+
+		WATCHDOG_RESET();
+
+		if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
+			printf("Skipping bad block 0x%08llx\n",
+				offset & ~(mtd->erasesize - 1));
+			offset += mtd->erasesize - block_offset;
+			continue;
+		}
+
+		if (left_to_read < (mtd->erasesize - block_offset))
+			read_length = left_to_read;
+		else
+			read_length = mtd->erasesize - block_offset;
+
+		rval = nand_read(mtd, offset, &read_length, p_buffer);
+		if (rval && rval != -EUCLEAN) {
+			printf("NAND read from offset %llx failed %d\n",
+				offset, rval);
+			*length -= left_to_read;
+			return rval;
+		}
+
+		left_to_read -= read_length;
+		offset       += read_length;
+		p_buffer     += read_length;
+	}
+
+	return 0;
+}
+
+#ifdef CONFIG_CMD_NAND_TORTURE
+
+/**
+ * check_pattern:
+ *
+ * Check if buffer contains only a certain byte pattern.
+ *
+ * @param buf buffer to check
+ * @param patt the pattern to check
+ * @param size buffer size in bytes
+ * @return 1 if there are only patt bytes in buf
+ *         0 if something else was found
+ */
+static int check_pattern(const u_char *buf, u_char patt, int size)
+{
+	int i;
+
+	for (i = 0; i < size; i++)
+		if (buf[i] != patt)
+			return 0;
+	return 1;
+}
+
+/**
+ * nand_torture:
+ *
+ * Torture a block of NAND flash.
+ * This is useful to determine if a block that caused a write error is still
+ * good or should be marked as bad.
+ *
+ * @param mtd nand mtd instance
+ * @param offset offset in flash
+ * @return 0 if the block is still good
+ */
+int nand_torture(struct mtd_info *mtd, loff_t offset)
+{
+	u_char patterns[] = {0xa5, 0x5a, 0x00};
+	struct erase_info instr = {
+		.mtd = mtd,
+		.addr = offset,
+		.len = mtd->erasesize,
+	};
+	size_t retlen;
+	int err, ret = -1, i, patt_count;
+	u_char *buf;
+
+	if ((offset & (mtd->erasesize - 1)) != 0) {
+		puts("Attempt to torture a block at a non block-aligned offset\n");
+		return -EINVAL;
+	}
+
+	if (offset + mtd->erasesize > mtd->size) {
+		puts("Attempt to torture a block outside the flash area\n");
+		return -EINVAL;
+	}
+
+	patt_count = ARRAY_SIZE(patterns);
+
+	buf = malloc_cache_aligned(mtd->erasesize);
+	if (buf == NULL) {
+		puts("Out of memory for erase block buffer\n");
+		return -ENOMEM;
+	}
+
+	for (i = 0; i < patt_count; i++) {
+		err = mtd_erase(mtd, &instr);
+		if (err) {
+			printf("%s: erase() failed for block at 0x%llx: %d\n",
+				mtd->name, instr.addr, err);
+			goto out;
+		}
+
+		/* Make sure the block contains only 0xff bytes */
+		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
+		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
+			printf("%s: read() failed for block at 0x%llx: %d\n",
+				mtd->name, instr.addr, err);
+			goto out;
+		}
+
+		err = check_pattern(buf, 0xff, mtd->erasesize);
+		if (!err) {
+			printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
+				offset);
+			ret = -EIO;
+			goto out;
+		}
+
+		/* Write a pattern and check it */
+		memset(buf, patterns[i], mtd->erasesize);
+		err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
+		if (err || retlen != mtd->erasesize) {
+			printf("%s: write() failed for block at 0x%llx: %d\n",
+				mtd->name, instr.addr, err);
+			goto out;
+		}
+
+		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
+		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
+			printf("%s: read() failed for block at 0x%llx: %d\n",
+				mtd->name, instr.addr, err);
+			goto out;
+		}
+
+		err = check_pattern(buf, patterns[i], mtd->erasesize);
+		if (!err) {
+			printf("Pattern 0x%.2x checking failed for block at "
+					"0x%llx\n", patterns[i], offset);
+			ret = -EIO;
+			goto out;
+		}
+	}
+
+	ret = 0;
+
+out:
+	free(buf);
+	return ret;
+}
+
+#endif
diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
new file mode 100644
index 0000000..35c6dd1
--- /dev/null
+++ b/drivers/mtd/nand/raw/omap_elm.c
@@ -0,0 +1,193 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2010-2011 Texas Instruments, <www.ti.com>
+ * Mansoor Ahamed <mansoor.ahamed@ti.com>
+ *
+ * BCH Error Location Module (ELM) support.
+ *
+ * NOTE:
+ * 1. Supports only continuous mode. Dont see need for page mode in uboot
+ * 2. Supports only syndrome polynomial 0. i.e. poly local variable is
+ *    always set to ELM_DEFAULT_POLY. Dont see need for other polynomial
+ *    sets in uboot
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <linux/mtd/omap_elm.h>
+#include <asm/arch/hardware.h>
+
+#define DRIVER_NAME		"omap-elm"
+#define ELM_DEFAULT_POLY (0)
+
+struct elm *elm_cfg;
+
+/**
+ * elm_load_syndromes - Load BCH syndromes based on bch_type selection
+ * @syndrome: BCH syndrome
+ * @bch_type: BCH4/BCH8/BCH16
+ * @poly: Syndrome Polynomial set to use
+ */
+static void elm_load_syndromes(u8 *syndrome, enum bch_level bch_type, u8 poly)
+{
+	u32 *ptr;
+	u32 val;
+
+	/* reg 0 */
+	ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[0];
+	val = syndrome[0] | (syndrome[1] << 8) | (syndrome[2] << 16) |
+				(syndrome[3] << 24);
+	writel(val, ptr);
+	/* reg 1 */
+	ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[1];
+	val = syndrome[4] | (syndrome[5] << 8) | (syndrome[6] << 16) |
+				(syndrome[7] << 24);
+	writel(val, ptr);
+
+	if (bch_type == BCH_8_BIT || bch_type == BCH_16_BIT) {
+		/* reg 2 */
+		ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[2];
+		val = syndrome[8] | (syndrome[9] << 8) | (syndrome[10] << 16) |
+				(syndrome[11] << 24);
+		writel(val, ptr);
+		/* reg 3 */
+		ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[3];
+		val = syndrome[12] | (syndrome[13] << 8) |
+			(syndrome[14] << 16) | (syndrome[15] << 24);
+		writel(val, ptr);
+	}
+
+	if (bch_type == BCH_16_BIT) {
+		/* reg 4 */
+		ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[4];
+		val = syndrome[16] | (syndrome[17] << 8) |
+			(syndrome[18] << 16) | (syndrome[19] << 24);
+		writel(val, ptr);
+
+		/* reg 5 */
+		ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[5];
+		val = syndrome[20] | (syndrome[21] << 8) |
+			(syndrome[22] << 16) | (syndrome[23] << 24);
+		writel(val, ptr);
+
+		/* reg 6 */
+		ptr = &elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6];
+		val = syndrome[24] | (syndrome[25] << 8) |
+			(syndrome[26] << 16) | (syndrome[27] << 24);
+		writel(val, ptr);
+	}
+}
+
+/**
+ * elm_check_errors - Check for BCH errors and return error locations
+ * @syndrome: BCH syndrome
+ * @bch_type: BCH4/BCH8/BCH16
+ * @error_count: Returns number of errrors in the syndrome
+ * @error_locations: Returns error locations (in decimal) in this array
+ *
+ * Check the provided syndrome for BCH errors and return error count
+ * and locations in the array passed. Returns -1 if error is not correctable,
+ * else returns 0
+ */
+int elm_check_error(u8 *syndrome, enum bch_level bch_type, u32 *error_count,
+		u32 *error_locations)
+{
+	u8 poly = ELM_DEFAULT_POLY;
+	s8 i;
+	u32 location_status;
+
+	elm_load_syndromes(syndrome, bch_type, poly);
+
+	/* start processing */
+	writel((readl(&elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6])
+				| ELM_SYNDROME_FRAGMENT_6_SYNDROME_VALID),
+		&elm_cfg->syndrome_fragments[poly].syndrome_fragment_x[6]);
+
+	/* wait for processing to complete */
+	while ((readl(&elm_cfg->irqstatus) & (0x1 << poly)) != 0x1)
+		;
+	/* clear status */
+	writel((readl(&elm_cfg->irqstatus) | (0x1 << poly)),
+			&elm_cfg->irqstatus);
+
+	/* check if correctable */
+	location_status = readl(&elm_cfg->error_location[poly].location_status);
+	if (!(location_status & ELM_LOCATION_STATUS_ECC_CORRECTABLE_MASK)) {
+		printf("%s: uncorrectable ECC errors\n", DRIVER_NAME);
+		return -EBADMSG;
+	}
+
+	/* get error count */
+	*error_count = readl(&elm_cfg->error_location[poly].location_status) &
+					ELM_LOCATION_STATUS_ECC_NB_ERRORS_MASK;
+
+	for (i = 0; i < *error_count; i++) {
+		error_locations[i] =
+		     readl(&elm_cfg->error_location[poly].error_location_x[i]);
+	}
+
+	return 0;
+}
+
+
+/**
+ * elm_config - Configure ELM module
+ * @level: 4 / 8 / 16 bit BCH
+ *
+ * Configure ELM module based on BCH level.
+ * Set mode as continuous mode.
+ * Currently we are using only syndrome 0 and syndromes 1 to 6 are not used.
+ * Also, the mode is set only for syndrome 0
+ */
+int elm_config(enum bch_level level)
+{
+	u32 val;
+	u8 poly = ELM_DEFAULT_POLY;
+	u32 buffer_size = 0x7FF;
+
+	/* config size and level */
+	val = (u32)(level) & ELM_LOCATION_CONFIG_ECC_BCH_LEVEL_MASK;
+	val |= ((buffer_size << ELM_LOCATION_CONFIG_ECC_SIZE_POS) &
+				ELM_LOCATION_CONFIG_ECC_SIZE_MASK);
+	writel(val, &elm_cfg->location_config);
+
+	/* config continous mode */
+	/* enable interrupt generation for syndrome polynomial set */
+	writel((readl(&elm_cfg->irqenable) | (0x1 << poly)),
+			&elm_cfg->irqenable);
+	/* set continuous mode for the syndrome polynomial set */
+	writel((readl(&elm_cfg->page_ctrl) & ~(0x1 << poly)),
+			&elm_cfg->page_ctrl);
+
+	return 0;
+}
+
+/**
+ * elm_reset - Do a soft reset of ELM
+ *
+ * Perform a soft reset of ELM and return after reset is done.
+ */
+void elm_reset(void)
+{
+	/* initiate reset */
+	writel((readl(&elm_cfg->sysconfig) | ELM_SYSCONFIG_SOFTRESET),
+			&elm_cfg->sysconfig);
+
+	/* wait for reset complete and normal operation */
+	while ((readl(&elm_cfg->sysstatus) & ELM_SYSSTATUS_RESETDONE) !=
+		ELM_SYSSTATUS_RESETDONE)
+		;
+}
+
+/**
+ * elm_init - Initialize ELM module
+ *
+ * Initialize ELM support. Currently it does only base address init
+ * and ELM reset.
+ */
+void elm_init(void)
+{
+	elm_cfg = (struct elm *)ELM_BASE;
+	elm_reset();
+}
diff --git a/drivers/mtd/nand/raw/omap_gpmc.c b/drivers/mtd/nand/raw/omap_gpmc.c
new file mode 100644
index 0000000..6a05050
--- /dev/null
+++ b/drivers/mtd/nand/raw/omap_gpmc.c
@@ -0,0 +1,1037 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
+ * Rohit Choraria <rohitkc@ti.com>
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <asm/arch/mem.h>
+#include <linux/mtd/omap_gpmc.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/bch.h>
+#include <linux/compiler.h>
+#include <nand.h>
+#include <linux/mtd/omap_elm.h>
+
+#define BADBLOCK_MARKER_LENGTH	2
+#define SECTOR_BYTES		512
+#define ECCCLEAR		(0x1 << 8)
+#define ECCRESULTREG1		(0x1 << 0)
+/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
+#define BCH4_BIT_PAD		4
+
+#ifdef CONFIG_BCH
+static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
+				0x97, 0x79, 0xe5, 0x24, 0xb5};
+#endif
+static uint8_t cs_next;
+static __maybe_unused struct nand_ecclayout omap_ecclayout;
+
+#if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
+static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
+	{ CONFIG_NAND_OMAP_GPMC_WSCFG };
+#else
+/* wscfg is preset to zero since its a static variable */
+static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
+#endif
+
+/*
+ * Driver configurations
+ */
+struct omap_nand_info {
+	struct bch_control *control;
+	enum omap_ecc ecc_scheme;
+	uint8_t cs;
+	uint8_t ws;		/* wait status pin (0,1) */
+};
+
+/* We are wasting a bit of memory but al least we are safe */
+static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
+
+/*
+ * omap_nand_hwcontrol - Set the address pointers corretly for the
+ *			following address/data/command operation
+ */
+static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
+				uint32_t ctrl)
+{
+	register struct nand_chip *this = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(this);
+	int cs = info->cs;
+
+	/*
+	 * Point the IO_ADDR to DATA and ADDRESS registers instead
+	 * of chip address
+	 */
+	switch (ctrl) {
+	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
+		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
+		break;
+	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
+		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
+		break;
+	case NAND_CTRL_CHANGE | NAND_NCE:
+		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
+		break;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, this->IO_ADDR_W);
+}
+
+/* Check wait pin as dev ready indicator */
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+	register struct nand_chip *this = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(this);
+	return gpmc_cfg->status & (1 << (8 + info->ws));
+}
+
+/*
+ * gen_true_ecc - This function will generate true ECC value, which
+ * can be used when correcting data read from NAND flash memory core
+ *
+ * @ecc_buf:	buffer to store ecc code
+ *
+ * @return:	re-formatted ECC value
+ */
+static uint32_t gen_true_ecc(uint8_t *ecc_buf)
+{
+	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
+		((ecc_buf[2] & 0x0F) << 8);
+}
+
+/*
+ * omap_correct_data - Compares the ecc read from nand spare area with ECC
+ * registers values and corrects one bit error if it has occurred
+ * Further details can be had from OMAP TRM and the following selected links:
+ * http://en.wikipedia.org/wiki/Hamming_code
+ * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
+ *
+ * @mtd:		 MTD device structure
+ * @dat:		 page data
+ * @read_ecc:		 ecc read from nand flash
+ * @calc_ecc:		 ecc read from ECC registers
+ *
+ * @return 0 if data is OK or corrected, else returns -1
+ */
+static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	uint32_t orig_ecc, new_ecc, res, hm;
+	uint16_t parity_bits, byte;
+	uint8_t bit;
+
+	/* Regenerate the orginal ECC */
+	orig_ecc = gen_true_ecc(read_ecc);
+	new_ecc = gen_true_ecc(calc_ecc);
+	/* Get the XOR of real ecc */
+	res = orig_ecc ^ new_ecc;
+	if (res) {
+		/* Get the hamming width */
+		hm = hweight32(res);
+		/* Single bit errors can be corrected! */
+		if (hm == 12) {
+			/* Correctable data! */
+			parity_bits = res >> 16;
+			bit = (parity_bits & 0x7);
+			byte = (parity_bits >> 3) & 0x1FF;
+			/* Flip the bit to correct */
+			dat[byte] ^= (0x1 << bit);
+		} else if (hm == 1) {
+			printf("Error: Ecc is wrong\n");
+			/* ECC itself is corrupted */
+			return 2;
+		} else {
+			/*
+			 * hm distance != parity pairs OR one, could mean 2 bit
+			 * error OR potentially be on a blank page..
+			 * orig_ecc: contains spare area data from nand flash.
+			 * new_ecc: generated ecc while reading data area.
+			 * Note: if the ecc = 0, all data bits from which it was
+			 * generated are 0xFF.
+			 * The 3 byte(24 bits) ecc is generated per 512byte
+			 * chunk of a page. If orig_ecc(from spare area)
+			 * is 0xFF && new_ecc(computed now from data area)=0x0,
+			 * this means that data area is 0xFF and spare area is
+			 * 0xFF. A sure sign of a erased page!
+			 */
+			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
+				return 0;
+			printf("Error: Bad compare! failed\n");
+			/* detected 2 bit error */
+			return -EBADMSG;
+		}
+	}
+	return 0;
+}
+
+/*
+ * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
+ * @mtd:	MTD device structure
+ * @mode:	Read/Write mode
+ */
+__maybe_unused
+static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
+{
+	struct nand_chip	*nand	= mtd_to_nand(mtd);
+	struct omap_nand_info	*info	= nand_get_controller_data(nand);
+	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
+	unsigned int ecc_algo = 0;
+	unsigned int bch_type = 0;
+	unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
+	u32 ecc_size_config_val = 0;
+	u32 ecc_config_val = 0;
+	int cs = info->cs;
+
+	/* configure GPMC for specific ecc-scheme */
+	switch (info->ecc_scheme) {
+	case OMAP_ECC_HAM1_CODE_SW:
+		return;
+	case OMAP_ECC_HAM1_CODE_HW:
+		ecc_algo = 0x0;
+		bch_type = 0x0;
+		bch_wrapmode = 0x00;
+		eccsize0 = 0xFF;
+		eccsize1 = 0xFF;
+		break;
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+	case OMAP_ECC_BCH8_CODE_HW:
+		ecc_algo = 0x1;
+		bch_type = 0x1;
+		if (mode == NAND_ECC_WRITE) {
+			bch_wrapmode = 0x01;
+			eccsize0 = 0;  /* extra bits in nibbles per sector */
+			eccsize1 = 28; /* OOB bits in nibbles per sector */
+		} else {
+			bch_wrapmode = 0x01;
+			eccsize0 = 26; /* ECC bits in nibbles per sector */
+			eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
+		}
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		ecc_algo = 0x1;
+		bch_type = 0x2;
+		if (mode == NAND_ECC_WRITE) {
+			bch_wrapmode = 0x01;
+			eccsize0 = 0;  /* extra bits in nibbles per sector */
+			eccsize1 = 52; /* OOB bits in nibbles per sector */
+		} else {
+			bch_wrapmode = 0x01;
+			eccsize0 = 52; /* ECC bits in nibbles per sector */
+			eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
+		}
+		break;
+	default:
+		return;
+	}
+	/* Clear ecc and enable bits */
+	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
+	/* Configure ecc size for BCH */
+	ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
+	writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
+
+	/* Configure device details for BCH engine */
+	ecc_config_val = ((ecc_algo << 16)	| /* HAM1 | BCHx */
+			(bch_type << 12)	| /* BCH4/BCH8/BCH16 */
+			(bch_wrapmode << 8)	| /* wrap mode */
+			(dev_width << 7)	| /* bus width */
+			(0x0 << 4)		| /* number of sectors */
+			(cs <<  1)		| /* ECC CS */
+			(0x1));			  /* enable ECC */
+	writel(ecc_config_val, &gpmc_cfg->ecc_config);
+}
+
+/*
+ *  omap_calculate_ecc - Read ECC result
+ *  @mtd:	MTD structure
+ *  @dat:	unused
+ *  @ecc_code:	ecc_code buffer
+ *  Using noninverted ECC can be considered ugly since writing a blank
+ *  page ie. padding will clear the ECC bytes. This is no problem as
+ *  long nobody is trying to write data on the seemingly unused page.
+ *  Reading an erased page will produce an ECC mismatch between
+ *  generated and read ECC bytes that has to be dealt with separately.
+ *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
+ *  is used, the result of read will be 0x0 while the ECC offsets of the
+ *  spare area will be 0xFF which will result in an ECC mismatch.
+ */
+static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
+				uint8_t *ecc_code)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(chip);
+	const uint32_t *ptr;
+	uint32_t val = 0;
+	int8_t i = 0, j;
+
+	switch (info->ecc_scheme) {
+	case OMAP_ECC_HAM1_CODE_HW:
+		val = readl(&gpmc_cfg->ecc1_result);
+		ecc_code[0] = val & 0xFF;
+		ecc_code[1] = (val >> 16) & 0xFF;
+		ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
+		break;
+#ifdef CONFIG_BCH
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+#endif
+	case OMAP_ECC_BCH8_CODE_HW:
+		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
+		val = readl(ptr);
+		ecc_code[i++] = (val >>  0) & 0xFF;
+		ptr--;
+		for (j = 0; j < 3; j++) {
+			val = readl(ptr);
+			ecc_code[i++] = (val >> 24) & 0xFF;
+			ecc_code[i++] = (val >> 16) & 0xFF;
+			ecc_code[i++] = (val >>  8) & 0xFF;
+			ecc_code[i++] = (val >>  0) & 0xFF;
+			ptr--;
+		}
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
+		ecc_code[i++] = (val >>  8) & 0xFF;
+		ecc_code[i++] = (val >>  0) & 0xFF;
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
+		ecc_code[i++] = (val >> 24) & 0xFF;
+		ecc_code[i++] = (val >> 16) & 0xFF;
+		ecc_code[i++] = (val >>  8) & 0xFF;
+		ecc_code[i++] = (val >>  0) & 0xFF;
+		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
+		ecc_code[i++] = (val >> 24) & 0xFF;
+		ecc_code[i++] = (val >> 16) & 0xFF;
+		ecc_code[i++] = (val >>  8) & 0xFF;
+		ecc_code[i++] = (val >>  0) & 0xFF;
+		for (j = 3; j >= 0; j--) {
+			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
+									);
+			ecc_code[i++] = (val >> 24) & 0xFF;
+			ecc_code[i++] = (val >> 16) & 0xFF;
+			ecc_code[i++] = (val >>  8) & 0xFF;
+			ecc_code[i++] = (val >>  0) & 0xFF;
+		}
+		break;
+	default:
+		return -EINVAL;
+	}
+	/* ECC scheme specific syndrome customizations */
+	switch (info->ecc_scheme) {
+	case OMAP_ECC_HAM1_CODE_HW:
+		break;
+#ifdef CONFIG_BCH
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+
+		for (i = 0; i < chip->ecc.bytes; i++)
+			*(ecc_code + i) = *(ecc_code + i) ^
+						bch8_polynomial[i];
+		break;
+#endif
+	case OMAP_ECC_BCH8_CODE_HW:
+		ecc_code[chip->ecc.bytes - 1] = 0x00;
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		break;
+	default:
+		return -EINVAL;
+	}
+	return 0;
+}
+
+#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
+
+#define PREFETCH_CONFIG1_CS_SHIFT	24
+#define PREFETCH_FIFOTHRESHOLD_MAX	0x40
+#define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
+#define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
+#define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
+#define ENABLE_PREFETCH			(1 << 7)
+
+/**
+ * omap_prefetch_enable - configures and starts prefetch transfer
+ * @fifo_th: fifo threshold to be used for read/ write
+ * @count: number of bytes to be transferred
+ * @is_write: prefetch read(0) or write post(1) mode
+ * @cs: chip select to use
+ */
+static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
+{
+	uint32_t val;
+
+	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
+		return -EINVAL;
+
+	if (readl(&gpmc_cfg->prefetch_control))
+		return -EBUSY;
+
+	/* Set the amount of bytes to be prefetched */
+	writel(count, &gpmc_cfg->prefetch_config2);
+
+	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
+		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
+	writel(val, &gpmc_cfg->prefetch_config1);
+
+	/*  Start the prefetch engine */
+	writel(1, &gpmc_cfg->prefetch_control);
+
+	return 0;
+}
+
+/**
+ * omap_prefetch_reset - disables and stops the prefetch engine
+ */
+static void omap_prefetch_reset(void)
+{
+	writel(0, &gpmc_cfg->prefetch_control);
+	writel(0, &gpmc_cfg->prefetch_config1);
+}
+
+static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
+{
+	int ret;
+	uint32_t cnt;
+	struct omap_nand_info *info = nand_get_controller_data(chip);
+
+	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
+	if (ret < 0)
+		return ret;
+
+	do {
+		int i;
+
+		cnt = readl(&gpmc_cfg->prefetch_status);
+		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
+
+		for (i = 0; i < cnt / 4; i++) {
+			*buf++ = readl(CONFIG_SYS_NAND_BASE);
+			len -= 4;
+		}
+	} while (len);
+
+	omap_prefetch_reset();
+
+	return 0;
+}
+
+static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		nand_read_buf16(mtd, buf, len);
+	else
+		nand_read_buf(mtd, buf, len);
+}
+
+static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int ret;
+	uint32_t head, tail;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/*
+	 * If the destination buffer is unaligned, start with reading
+	 * the overlap byte-wise.
+	 */
+	head = ((uint32_t) buf) % 4;
+	if (head) {
+		omap_nand_read(mtd, buf, head);
+		buf += head;
+		len -= head;
+	}
+
+	/*
+	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
+	 * If there's a residue, care for it byte-wise afterwards.
+	 */
+	tail = len % 4;
+
+	ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
+	if (ret < 0) {
+		/* fallback in case the prefetch engine is busy */
+		omap_nand_read(mtd, buf, len);
+	} else if (tail) {
+		buf += len - tail;
+		omap_nand_read(mtd, buf, tail);
+	}
+}
+#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
+
+#ifdef CONFIG_NAND_OMAP_ELM
+/*
+ * omap_reverse_list - re-orders list elements in reverse order [internal]
+ * @list:	pointer to start of list
+ * @length:	length of list
+*/
+static void omap_reverse_list(u8 *list, unsigned int length)
+{
+	unsigned int i, j;
+	unsigned int half_length = length / 2;
+	u8 tmp;
+	for (i = 0, j = length - 1; i < half_length; i++, j--) {
+		tmp = list[i];
+		list[i] = list[j];
+		list[j] = tmp;
+	}
+}
+
+/*
+ * omap_correct_data_bch - Compares the ecc read from nand spare area
+ * with ECC registers values and corrects one bit error if it has occurred
+ *
+ * @mtd:	MTD device structure
+ * @dat:	page data
+ * @read_ecc:	ecc read from nand flash (ignored)
+ * @calc_ecc:	ecc read from ECC registers
+ *
+ * @return 0 if data is OK or corrected, else returns -1
+ */
+static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	uint32_t error_count = 0, error_max;
+	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
+	enum bch_level bch_type;
+	uint32_t i, ecc_flag = 0;
+	uint8_t count;
+	uint32_t byte_pos, bit_pos;
+	int err = 0;
+
+	/* check calculated ecc */
+	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
+		if (calc_ecc[i] != 0x00)
+			ecc_flag = 1;
+	}
+	if (!ecc_flag)
+		return 0;
+
+	/* check for whether its a erased-page */
+	ecc_flag = 0;
+	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
+		if (read_ecc[i] != 0xff)
+			ecc_flag = 1;
+	}
+	if (!ecc_flag)
+		return 0;
+
+	/*
+	 * while reading ECC result we read it in big endian.
+	 * Hence while loading to ELM we have rotate to get the right endian.
+	 */
+	switch (info->ecc_scheme) {
+	case OMAP_ECC_BCH8_CODE_HW:
+		bch_type = BCH_8_BIT;
+		omap_reverse_list(calc_ecc, ecc->bytes - 1);
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		bch_type = BCH_16_BIT;
+		omap_reverse_list(calc_ecc, ecc->bytes);
+		break;
+	default:
+		return -EINVAL;
+	}
+	/* use elm module to check for errors */
+	elm_config(bch_type);
+	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
+	if (err)
+		return err;
+
+	/* correct bch error */
+	for (count = 0; count < error_count; count++) {
+		switch (info->ecc_scheme) {
+		case OMAP_ECC_BCH8_CODE_HW:
+			/* 14th byte in ECC is reserved to match ROM layout */
+			error_max = SECTOR_BYTES + (ecc->bytes - 1);
+			break;
+		case OMAP_ECC_BCH16_CODE_HW:
+			error_max = SECTOR_BYTES + ecc->bytes;
+			break;
+		default:
+			return -EINVAL;
+		}
+		byte_pos = error_max - (error_loc[count] / 8) - 1;
+		bit_pos  = error_loc[count] % 8;
+		if (byte_pos < SECTOR_BYTES) {
+			dat[byte_pos] ^= 1 << bit_pos;
+			debug("nand: bit-flip corrected @data=%d\n", byte_pos);
+		} else if (byte_pos < error_max) {
+			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
+			debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
+								SECTOR_BYTES);
+		} else {
+			err = -EBADMSG;
+			printf("nand: error: invalid bit-flip location\n");
+		}
+	}
+	return (err) ? err : error_count;
+}
+
+/**
+ * omap_read_page_bch - hardware ecc based page read function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @oob_required: caller expects OOB data read to chip->oob_poi
+ * @page:	page number to read
+ *
+ */
+static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint8_t *ecc_code = chip->buffers->ecccode;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+	uint8_t *oob = chip->oob_poi;
+	uint32_t data_pos;
+	uint32_t oob_pos;
+
+	data_pos = 0;
+	/* oob area start */
+	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
+	oob += chip->ecc.layout->eccpos[0];
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
+				oob += eccbytes) {
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		/* read data */
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
+		chip->read_buf(mtd, p, eccsize);
+
+		/* read respective ecc from oob area */
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
+		chip->read_buf(mtd, oob, eccbytes);
+		/* read syndrome */
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		data_pos += eccsize;
+		oob_pos += eccbytes;
+	}
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+	return 0;
+}
+#endif /* CONFIG_NAND_OMAP_ELM */
+
+/*
+ * OMAP3 BCH8 support (with BCH library)
+ */
+#ifdef CONFIG_BCH
+/**
+ * omap_correct_data_bch_sw - Decode received data and correct errors
+ * @mtd: MTD device structure
+ * @data: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ */
+static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
+				 u_char *read_ecc, u_char *calc_ecc)
+{
+	int i, count;
+	/* cannot correct more than 8 errors */
+	unsigned int errloc[8];
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(chip);
+
+	count = decode_bch(info->control, NULL, SECTOR_BYTES,
+				read_ecc, calc_ecc, NULL, errloc);
+	if (count > 0) {
+		/* correct errors */
+		for (i = 0; i < count; i++) {
+			/* correct data only, not ecc bytes */
+			if (errloc[i] < SECTOR_BYTES << 3)
+				data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
+			debug("corrected bitflip %u\n", errloc[i]);
+#ifdef DEBUG
+			puts("read_ecc: ");
+			/*
+			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
+			 * here!
+			 */
+			for (i = 0; i < 13; i++)
+				printf("%02x ", read_ecc[i]);
+			puts("\n");
+			puts("calc_ecc: ");
+			for (i = 0; i < 13; i++)
+				printf("%02x ", calc_ecc[i]);
+			puts("\n");
+#endif
+		}
+	} else if (count < 0) {
+		puts("ecc unrecoverable error\n");
+	}
+	return count;
+}
+
+/**
+ * omap_free_bch - Release BCH ecc resources
+ * @mtd: MTD device structure
+ */
+static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = nand_get_controller_data(chip);
+
+	if (info->control) {
+		free_bch(info->control);
+		info->control = NULL;
+	}
+}
+#endif /* CONFIG_BCH */
+
+/**
+ * omap_select_ecc_scheme - configures driver for particular ecc-scheme
+ * @nand: NAND chip device structure
+ * @ecc_scheme: ecc scheme to configure
+ * @pagesize: number of main-area bytes per page of NAND device
+ * @oobsize: number of OOB/spare bytes per page of NAND device
+ */
+static int omap_select_ecc_scheme(struct nand_chip *nand,
+	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
+	struct omap_nand_info	*info		= nand_get_controller_data(nand);
+	struct nand_ecclayout	*ecclayout	= &omap_ecclayout;
+	int eccsteps = pagesize / SECTOR_BYTES;
+	int i;
+
+	switch (ecc_scheme) {
+	case OMAP_ECC_HAM1_CODE_SW:
+		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
+		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
+		 * initialized in nand_scan_tail(), so just set ecc.mode */
+		info->control		= NULL;
+		nand->ecc.mode		= NAND_ECC_SOFT;
+		nand->ecc.layout	= NULL;
+		nand->ecc.size		= 0;
+		break;
+
+	case OMAP_ECC_HAM1_CODE_HW:
+		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
+		/* check ecc-scheme requirements before updating ecc info */
+		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
+			printf("nand: error: insufficient OOB: require=%d\n", (
+				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
+			return -EINVAL;
+		}
+		info->control		= NULL;
+		/* populate ecc specific fields */
+		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
+		nand->ecc.mode		= NAND_ECC_HW;
+		nand->ecc.strength	= 1;
+		nand->ecc.size		= SECTOR_BYTES;
+		nand->ecc.bytes		= 3;
+		nand->ecc.hwctl		= omap_enable_hwecc;
+		nand->ecc.correct	= omap_correct_data;
+		nand->ecc.calculate	= omap_calculate_ecc;
+		/* define ecc-layout */
+		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
+		for (i = 0; i < ecclayout->eccbytes; i++) {
+			if (nand->options & NAND_BUSWIDTH_16)
+				ecclayout->eccpos[i] = i + 2;
+			else
+				ecclayout->eccpos[i] = i + 1;
+		}
+		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
+						BADBLOCK_MARKER_LENGTH;
+		break;
+
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+#ifdef CONFIG_BCH
+		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
+		/* check ecc-scheme requirements before updating ecc info */
+		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
+			printf("nand: error: insufficient OOB: require=%d\n", (
+				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
+			return -EINVAL;
+		}
+		/* check if BCH S/W library can be used for error detection */
+		info->control = init_bch(13, 8, 0x201b);
+		if (!info->control) {
+			printf("nand: error: could not init_bch()\n");
+			return -ENODEV;
+		}
+		/* populate ecc specific fields */
+		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
+		nand->ecc.mode		= NAND_ECC_HW;
+		nand->ecc.strength	= 8;
+		nand->ecc.size		= SECTOR_BYTES;
+		nand->ecc.bytes		= 13;
+		nand->ecc.hwctl		= omap_enable_hwecc;
+		nand->ecc.correct	= omap_correct_data_bch_sw;
+		nand->ecc.calculate	= omap_calculate_ecc;
+		/* define ecc-layout */
+		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
+		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
+		for (i = 1; i < ecclayout->eccbytes; i++) {
+			if (i % nand->ecc.bytes)
+				ecclayout->eccpos[i] =
+						ecclayout->eccpos[i - 1] + 1;
+			else
+				ecclayout->eccpos[i] =
+						ecclayout->eccpos[i - 1] + 2;
+		}
+		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
+						BADBLOCK_MARKER_LENGTH;
+		break;
+#else
+		printf("nand: error: CONFIG_BCH required for ECC\n");
+		return -EINVAL;
+#endif
+
+	case OMAP_ECC_BCH8_CODE_HW:
+#ifdef CONFIG_NAND_OMAP_ELM
+		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
+		/* check ecc-scheme requirements before updating ecc info */
+		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
+			printf("nand: error: insufficient OOB: require=%d\n", (
+				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
+			return -EINVAL;
+		}
+		/* intialize ELM for ECC error detection */
+		elm_init();
+		info->control		= NULL;
+		/* populate ecc specific fields */
+		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
+		nand->ecc.mode		= NAND_ECC_HW;
+		nand->ecc.strength	= 8;
+		nand->ecc.size		= SECTOR_BYTES;
+		nand->ecc.bytes		= 14;
+		nand->ecc.hwctl		= omap_enable_hwecc;
+		nand->ecc.correct	= omap_correct_data_bch;
+		nand->ecc.calculate	= omap_calculate_ecc;
+		nand->ecc.read_page	= omap_read_page_bch;
+		/* define ecc-layout */
+		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
+		for (i = 0; i < ecclayout->eccbytes; i++)
+			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
+						BADBLOCK_MARKER_LENGTH;
+		break;
+#else
+		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
+		return -EINVAL;
+#endif
+
+	case OMAP_ECC_BCH16_CODE_HW:
+#ifdef CONFIG_NAND_OMAP_ELM
+		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
+		/* check ecc-scheme requirements before updating ecc info */
+		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
+			printf("nand: error: insufficient OOB: require=%d\n", (
+				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
+			return -EINVAL;
+		}
+		/* intialize ELM for ECC error detection */
+		elm_init();
+		/* populate ecc specific fields */
+		nand->ecc.mode		= NAND_ECC_HW;
+		nand->ecc.size		= SECTOR_BYTES;
+		nand->ecc.bytes		= 26;
+		nand->ecc.strength	= 16;
+		nand->ecc.hwctl		= omap_enable_hwecc;
+		nand->ecc.correct	= omap_correct_data_bch;
+		nand->ecc.calculate	= omap_calculate_ecc;
+		nand->ecc.read_page	= omap_read_page_bch;
+		/* define ecc-layout */
+		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
+		for (i = 0; i < ecclayout->eccbytes; i++)
+			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
+		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
+						BADBLOCK_MARKER_LENGTH;
+		break;
+#else
+		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
+		return -EINVAL;
+#endif
+	default:
+		debug("nand: error: ecc scheme not enabled or supported\n");
+		return -EINVAL;
+	}
+
+	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
+	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
+		nand->ecc.layout = ecclayout;
+
+	info->ecc_scheme = ecc_scheme;
+	return 0;
+}
+
+#ifndef CONFIG_SPL_BUILD
+/*
+ * omap_nand_switch_ecc - switch the ECC operation between different engines
+ * (h/w and s/w) and different algorithms (hamming and BCHx)
+ *
+ * @hardware		- true if one of the HW engines should be used
+ * @eccstrength		- the number of bits that could be corrected
+ *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
+ */
+int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
+{
+	struct nand_chip *nand;
+	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
+	int err = 0;
+
+	if (!mtd) {
+		printf("nand: error: no NAND devices found\n");
+		return -ENODEV;
+	}
+
+	nand = mtd_to_nand(mtd);
+	nand->options |= NAND_OWN_BUFFERS;
+	nand->options &= ~NAND_SUBPAGE_READ;
+	/* Setup the ecc configurations again */
+	if (hardware) {
+		if (eccstrength == 1) {
+			err = omap_select_ecc_scheme(nand,
+					OMAP_ECC_HAM1_CODE_HW,
+					mtd->writesize, mtd->oobsize);
+		} else if (eccstrength == 8) {
+			err = omap_select_ecc_scheme(nand,
+					OMAP_ECC_BCH8_CODE_HW,
+					mtd->writesize, mtd->oobsize);
+		} else if (eccstrength == 16) {
+			err = omap_select_ecc_scheme(nand,
+					OMAP_ECC_BCH16_CODE_HW,
+					mtd->writesize, mtd->oobsize);
+		} else {
+			printf("nand: error: unsupported ECC scheme\n");
+			return -EINVAL;
+		}
+	} else {
+		if (eccstrength == 1) {
+			err = omap_select_ecc_scheme(nand,
+					OMAP_ECC_HAM1_CODE_SW,
+					mtd->writesize, mtd->oobsize);
+		} else if (eccstrength == 8) {
+			err = omap_select_ecc_scheme(nand,
+					OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
+					mtd->writesize, mtd->oobsize);
+		} else {
+			printf("nand: error: unsupported ECC scheme\n");
+			return -EINVAL;
+		}
+	}
+
+	/* Update NAND handling after ECC mode switch */
+	if (!err)
+		err = nand_scan_tail(mtd);
+	return err;
+}
+#endif /* CONFIG_SPL_BUILD */
+
+/*
+ * Board-specific NAND initialization. The following members of the
+ * argument are board-specific:
+ * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
+ * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
+ * - cmd_ctrl: hardwarespecific function for accesing control-lines
+ * - waitfunc: hardwarespecific function for accesing device ready/busy line
+ * - ecc.hwctl: function to enable (reset) hardware ecc generator
+ * - ecc.mode: mode of ecc, see defines
+ * - chip_delay: chip dependent delay for transfering data from array to
+ *   read regs (tR)
+ * - options: various chip options. They can partly be set to inform
+ *   nand_scan about special functionality. See the defines for further
+ *   explanation
+ */
+int board_nand_init(struct nand_chip *nand)
+{
+	int32_t gpmc_config = 0;
+	int cs = cs_next++;
+	int err = 0;
+	/*
+	 * xloader/Uboot's gpmc configuration would have configured GPMC for
+	 * nand type of memory. The following logic scans and latches on to the
+	 * first CS with NAND type memory.
+	 * TBD: need to make this logic generic to handle multiple CS NAND
+	 * devices.
+	 */
+	while (cs < GPMC_MAX_CS) {
+		/* Check if NAND type is set */
+		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
+			/* Found it!! */
+			break;
+		}
+		cs++;
+	}
+	if (cs >= GPMC_MAX_CS) {
+		printf("nand: error: Unable to find NAND settings in "
+			"GPMC Configuration - quitting\n");
+		return -ENODEV;
+	}
+
+	gpmc_config = readl(&gpmc_cfg->config);
+	/* Disable Write protect */
+	gpmc_config |= 0x10;
+	writel(gpmc_config, &gpmc_cfg->config);
+
+	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
+	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
+	omap_nand_info[cs].control = NULL;
+	omap_nand_info[cs].cs = cs;
+	omap_nand_info[cs].ws = wscfg[cs];
+	nand_set_controller_data(nand, &omap_nand_info[cs]);
+	nand->cmd_ctrl	= omap_nand_hwcontrol;
+	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
+	nand->chip_delay = 100;
+	nand->ecc.layout = &omap_ecclayout;
+
+	/* configure driver and controller based on NAND device bus-width */
+	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
+#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
+	nand->options |= NAND_BUSWIDTH_16;
+	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
+#else
+	nand->options &= ~NAND_BUSWIDTH_16;
+	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
+#endif
+	/* select ECC scheme */
+#if defined(CONFIG_NAND_OMAP_ECCSCHEME)
+	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
+			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
+#else
+	/* pagesize and oobsize are not required to configure sw ecc-scheme */
+	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
+			0, 0);
+#endif
+	if (err)
+		return err;
+
+#ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
+	nand->read_buf = omap_nand_read_prefetch;
+#else
+	if (nand->options & NAND_BUSWIDTH_16)
+		nand->read_buf = nand_read_buf16;
+	else
+		nand->read_buf = nand_read_buf;
+#endif
+
+	nand->dev_ready = omap_dev_ready;
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/pxa3xx_nand.c b/drivers/mtd/nand/raw/pxa3xx_nand.c
new file mode 100644
index 0000000..4c783f1
--- /dev/null
+++ b/drivers/mtd/nand/raw/pxa3xx_nand.c
@@ -0,0 +1,1828 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * drivers/mtd/nand/raw/pxa3xx_nand.c
+ *
+ * Copyright © 2005 Intel Corporation
+ * Copyright © 2006 Marvell International Ltd.
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <fdtdec.h>
+#include <nand.h>
+#include <linux/errno.h>
+#include <asm/io.h>
+#include <asm/arch/cpu.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/types.h>
+
+#include "pxa3xx_nand.h"
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define TIMEOUT_DRAIN_FIFO	5	/* in ms */
+#define	CHIP_DELAY_TIMEOUT	200
+#define NAND_STOP_DELAY		40
+
+/*
+ * Define a buffer size for the initial command that detects the flash device:
+ * STATUS, READID and PARAM.
+ * ONFI param page is 256 bytes, and there are three redundant copies
+ * to be read. JEDEC param page is 512 bytes, and there are also three
+ * redundant copies to be read.
+ * Hence this buffer should be at least 512 x 3. Let's pick 2048.
+ */
+#define INIT_BUFFER_SIZE	2048
+
+/* registers and bit definitions */
+#define NDCR		(0x00) /* Control register */
+#define NDTR0CS0	(0x04) /* Timing Parameter 0 for CS0 */
+#define NDTR1CS0	(0x0C) /* Timing Parameter 1 for CS0 */
+#define NDSR		(0x14) /* Status Register */
+#define NDPCR		(0x18) /* Page Count Register */
+#define NDBDR0		(0x1C) /* Bad Block Register 0 */
+#define NDBDR1		(0x20) /* Bad Block Register 1 */
+#define NDECCCTRL	(0x28) /* ECC control */
+#define NDDB		(0x40) /* Data Buffer */
+#define NDCB0		(0x48) /* Command Buffer0 */
+#define NDCB1		(0x4C) /* Command Buffer1 */
+#define NDCB2		(0x50) /* Command Buffer2 */
+
+#define NDCR_SPARE_EN		(0x1 << 31)
+#define NDCR_ECC_EN		(0x1 << 30)
+#define NDCR_DMA_EN		(0x1 << 29)
+#define NDCR_ND_RUN		(0x1 << 28)
+#define NDCR_DWIDTH_C		(0x1 << 27)
+#define NDCR_DWIDTH_M		(0x1 << 26)
+#define NDCR_PAGE_SZ		(0x1 << 24)
+#define NDCR_NCSX		(0x1 << 23)
+#define NDCR_ND_MODE		(0x3 << 21)
+#define NDCR_NAND_MODE		(0x0)
+#define NDCR_CLR_PG_CNT		(0x1 << 20)
+#define NFCV1_NDCR_ARB_CNTL	(0x1 << 19)
+#define NDCR_RD_ID_CNT_MASK	(0x7 << 16)
+#define NDCR_RD_ID_CNT(x)	(((x) << 16) & NDCR_RD_ID_CNT_MASK)
+
+#define NDCR_RA_START		(0x1 << 15)
+#define NDCR_PG_PER_BLK		(0x1 << 14)
+#define NDCR_ND_ARB_EN		(0x1 << 12)
+#define NDCR_INT_MASK           (0xFFF)
+
+#define NDSR_MASK		(0xfff)
+#define NDSR_ERR_CNT_OFF	(16)
+#define NDSR_ERR_CNT_MASK       (0x1f)
+#define NDSR_ERR_CNT(sr)	((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
+#define NDSR_RDY                (0x1 << 12)
+#define NDSR_FLASH_RDY          (0x1 << 11)
+#define NDSR_CS0_PAGED		(0x1 << 10)
+#define NDSR_CS1_PAGED		(0x1 << 9)
+#define NDSR_CS0_CMDD		(0x1 << 8)
+#define NDSR_CS1_CMDD		(0x1 << 7)
+#define NDSR_CS0_BBD		(0x1 << 6)
+#define NDSR_CS1_BBD		(0x1 << 5)
+#define NDSR_UNCORERR		(0x1 << 4)
+#define NDSR_CORERR		(0x1 << 3)
+#define NDSR_WRDREQ		(0x1 << 2)
+#define NDSR_RDDREQ		(0x1 << 1)
+#define NDSR_WRCMDREQ		(0x1)
+
+#define NDCB0_LEN_OVRD		(0x1 << 28)
+#define NDCB0_ST_ROW_EN         (0x1 << 26)
+#define NDCB0_AUTO_RS		(0x1 << 25)
+#define NDCB0_CSEL		(0x1 << 24)
+#define NDCB0_EXT_CMD_TYPE_MASK	(0x7 << 29)
+#define NDCB0_EXT_CMD_TYPE(x)	(((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
+#define NDCB0_CMD_TYPE_MASK	(0x7 << 21)
+#define NDCB0_CMD_TYPE(x)	(((x) << 21) & NDCB0_CMD_TYPE_MASK)
+#define NDCB0_NC		(0x1 << 20)
+#define NDCB0_DBC		(0x1 << 19)
+#define NDCB0_ADDR_CYC_MASK	(0x7 << 16)
+#define NDCB0_ADDR_CYC(x)	(((x) << 16) & NDCB0_ADDR_CYC_MASK)
+#define NDCB0_CMD2_MASK		(0xff << 8)
+#define NDCB0_CMD1_MASK		(0xff)
+#define NDCB0_ADDR_CYC_SHIFT	(16)
+
+#define EXT_CMD_TYPE_DISPATCH	6 /* Command dispatch */
+#define EXT_CMD_TYPE_NAKED_RW	5 /* Naked read or Naked write */
+#define EXT_CMD_TYPE_READ	4 /* Read */
+#define EXT_CMD_TYPE_DISP_WR	4 /* Command dispatch with write */
+#define EXT_CMD_TYPE_FINAL	3 /* Final command */
+#define EXT_CMD_TYPE_LAST_RW	1 /* Last naked read/write */
+#define EXT_CMD_TYPE_MONO	0 /* Monolithic read/write */
+
+/*
+ * This should be large enough to read 'ONFI' and 'JEDEC'.
+ * Let's use 7 bytes, which is the maximum ID count supported
+ * by the controller (see NDCR_RD_ID_CNT_MASK).
+ */
+#define READ_ID_BYTES		7
+
+/* macros for registers read/write */
+#define nand_writel(info, off, val)	\
+	writel((val), (info)->mmio_base + (off))
+
+#define nand_readl(info, off)		\
+	readl((info)->mmio_base + (off))
+
+/* error code and state */
+enum {
+	ERR_NONE	= 0,
+	ERR_DMABUSERR	= -1,
+	ERR_SENDCMD	= -2,
+	ERR_UNCORERR	= -3,
+	ERR_BBERR	= -4,
+	ERR_CORERR	= -5,
+};
+
+enum {
+	STATE_IDLE = 0,
+	STATE_PREPARED,
+	STATE_CMD_HANDLE,
+	STATE_DMA_READING,
+	STATE_DMA_WRITING,
+	STATE_DMA_DONE,
+	STATE_PIO_READING,
+	STATE_PIO_WRITING,
+	STATE_CMD_DONE,
+	STATE_READY,
+};
+
+enum pxa3xx_nand_variant {
+	PXA3XX_NAND_VARIANT_PXA,
+	PXA3XX_NAND_VARIANT_ARMADA370,
+};
+
+struct pxa3xx_nand_host {
+	struct nand_chip	chip;
+	void			*info_data;
+
+	/* page size of attached chip */
+	int			use_ecc;
+	int			cs;
+
+	/* calculated from pxa3xx_nand_flash data */
+	unsigned int		col_addr_cycles;
+	unsigned int		row_addr_cycles;
+};
+
+struct pxa3xx_nand_info {
+	struct nand_hw_control	controller;
+	struct pxa3xx_nand_platform_data *pdata;
+
+	struct clk		*clk;
+	void __iomem		*mmio_base;
+	unsigned long		mmio_phys;
+	int			cmd_complete, dev_ready;
+
+	unsigned int		buf_start;
+	unsigned int		buf_count;
+	unsigned int		buf_size;
+	unsigned int		data_buff_pos;
+	unsigned int		oob_buff_pos;
+
+	unsigned char		*data_buff;
+	unsigned char		*oob_buff;
+
+	struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
+	unsigned int		state;
+
+	/*
+	 * This driver supports NFCv1 (as found in PXA SoC)
+	 * and NFCv2 (as found in Armada 370/XP SoC).
+	 */
+	enum pxa3xx_nand_variant variant;
+
+	int			cs;
+	int			use_ecc;	/* use HW ECC ? */
+	int			ecc_bch;	/* using BCH ECC? */
+	int			use_spare;	/* use spare ? */
+	int			need_wait;
+
+	/* Amount of real data per full chunk */
+	unsigned int		chunk_size;
+
+	/* Amount of spare data per full chunk */
+	unsigned int		spare_size;
+
+	/* Number of full chunks (i.e chunk_size + spare_size) */
+	unsigned int            nfullchunks;
+
+	/*
+	 * Total number of chunks. If equal to nfullchunks, then there
+	 * are only full chunks. Otherwise, there is one last chunk of
+	 * size (last_chunk_size + last_spare_size)
+	 */
+	unsigned int            ntotalchunks;
+
+	/* Amount of real data in the last chunk */
+	unsigned int		last_chunk_size;
+
+	/* Amount of spare data in the last chunk */
+	unsigned int		last_spare_size;
+
+	unsigned int		ecc_size;
+	unsigned int		ecc_err_cnt;
+	unsigned int		max_bitflips;
+	int			retcode;
+
+	/*
+	 * Variables only valid during command
+	 * execution. step_chunk_size and step_spare_size is the
+	 * amount of real data and spare data in the current
+	 * chunk. cur_chunk is the current chunk being
+	 * read/programmed.
+	 */
+	unsigned int		step_chunk_size;
+	unsigned int		step_spare_size;
+	unsigned int            cur_chunk;
+
+	/* cached register value */
+	uint32_t		reg_ndcr;
+	uint32_t		ndtr0cs0;
+	uint32_t		ndtr1cs0;
+
+	/* generated NDCBx register values */
+	uint32_t		ndcb0;
+	uint32_t		ndcb1;
+	uint32_t		ndcb2;
+	uint32_t		ndcb3;
+};
+
+static struct pxa3xx_nand_timing timing[] = {
+	/*
+	 * tCH	Enable signal hold time
+	 * tCS	Enable signal setup time
+	 * tWH	ND_nWE high duration
+	 * tWP	ND_nWE pulse time
+	 * tRH	ND_nRE high duration
+	 * tRP	ND_nRE pulse width
+	 * tR	ND_nWE high to ND_nRE low for read
+	 * tWHR	ND_nWE high to ND_nRE low for status read
+	 * tAR	ND_ALE low to ND_nRE low delay
+	 */
+	/*ch  cs  wh  wp   rh  rp   r      whr  ar */
+	{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
+	{ 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
+	{ 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
+	{ 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
+	{  5, 20, 10,  12, 10,  12, 25000,  60, 10, },
+};
+
+static struct pxa3xx_nand_flash builtin_flash_types[] = {
+	/*
+	 * chip_id
+	 * flash_width	Width of Flash memory (DWIDTH_M)
+	 * dfc_width	Width of flash controller(DWIDTH_C)
+	 * *timing
+	 * http://www.linux-mtd.infradead.org/nand-data/nanddata.html
+	 */
+	{ 0x46ec, 16, 16, &timing[1] },
+	{ 0xdaec,  8,  8, &timing[1] },
+	{ 0xd7ec,  8,  8, &timing[1] },
+	{ 0xa12c,  8,  8, &timing[2] },
+	{ 0xb12c, 16, 16, &timing[2] },
+	{ 0xdc2c,  8,  8, &timing[2] },
+	{ 0xcc2c, 16, 16, &timing[2] },
+	{ 0xba20, 16, 16, &timing[3] },
+	{ 0xda98,  8,  8, &timing[4] },
+};
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
+static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,		/* Last 8 blocks in each chip */
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,		/* Last 8 blocks in each chip */
+	.pattern = bbt_mirror_pattern
+};
+#endif
+
+static struct nand_ecclayout ecc_layout_2KB_bch4bit = {
+	.eccbytes = 32,
+	.eccpos = {
+		32, 33, 34, 35, 36, 37, 38, 39,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		48, 49, 50, 51, 52, 53, 54, 55,
+		56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = { {2, 30} }
+};
+
+static struct nand_ecclayout ecc_layout_2KB_bch8bit = {
+	.eccbytes = 64,
+	.eccpos = {
+		64,  65,  66,  67,  68,  69,  70,  71,
+		72,  73,  74,  75,  76,  77,  78,  79,
+		80,  81,  82,  83,  84,  85,  86,  87,
+		88,  89,  90,  91,  92,  93,  94,  95,
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127},
+	.oobfree = { {1, 4}, {6, 26} }
+};
+
+static struct nand_ecclayout ecc_layout_4KB_bch4bit = {
+	.eccbytes = 64,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63,
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127},
+	/* Bootrom looks in bytes 0 & 5 for bad blocks */
+	.oobfree = { {6, 26}, { 64, 32} }
+};
+
+static struct nand_ecclayout ecc_layout_8KB_bch4bit = {
+	.eccbytes = 128,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63,
+
+		96,  97,  98,  99,  100, 101, 102, 103,
+		104, 105, 106, 107, 108, 109, 110, 111,
+		112, 113, 114, 115, 116, 117, 118, 119,
+		120, 121, 122, 123, 124, 125, 126, 127,
+
+		160, 161, 162, 163, 164, 165, 166, 167,
+		168, 169, 170, 171, 172, 173, 174, 175,
+		176, 177, 178, 179, 180, 181, 182, 183,
+		184, 185, 186, 187, 188, 189, 190, 191,
+
+		224, 225, 226, 227, 228, 229, 230, 231,
+		232, 233, 234, 235, 236, 237, 238, 239,
+		240, 241, 242, 243, 244, 245, 246, 247,
+		248, 249, 250, 251, 252, 253, 254, 255},
+
+	/* Bootrom looks in bytes 0 & 5 for bad blocks */
+	.oobfree = { {1, 4}, {6, 26}, { 64, 32}, {128, 32}, {192, 32} }
+};
+
+static struct nand_ecclayout ecc_layout_4KB_bch8bit = {
+	.eccbytes = 128,
+	.eccpos = {
+		32,  33,  34,  35,  36,  37,  38,  39,
+		40,  41,  42,  43,  44,  45,  46,  47,
+		48,  49,  50,  51,  52,  53,  54,  55,
+		56,  57,  58,  59,  60,  61,  62,  63},
+	.oobfree = { }
+};
+
+static struct nand_ecclayout ecc_layout_8KB_bch8bit = {
+	.eccbytes = 256,
+	.eccpos = {},
+	/* HW ECC handles all ECC data and all spare area is free for OOB */
+	.oobfree = {{0, 160} }
+};
+
+#define NDTR0_tCH(c)	(min((c), 7) << 19)
+#define NDTR0_tCS(c)	(min((c), 7) << 16)
+#define NDTR0_tWH(c)	(min((c), 7) << 11)
+#define NDTR0_tWP(c)	(min((c), 7) << 8)
+#define NDTR0_tRH(c)	(min((c), 7) << 3)
+#define NDTR0_tRP(c)	(min((c), 7) << 0)
+
+#define NDTR1_tR(c)	(min((c), 65535) << 16)
+#define NDTR1_tWHR(c)	(min((c), 15) << 4)
+#define NDTR1_tAR(c)	(min((c), 15) << 0)
+
+/* convert nano-seconds to nand flash controller clock cycles */
+#define ns2cycle(ns, clk)	(int)((ns) * (clk / 1000000) / 1000)
+
+static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(void)
+{
+	/* We only support the Armada 370/XP/38x for now */
+	return PXA3XX_NAND_VARIANT_ARMADA370;
+}
+
+static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
+				   const struct pxa3xx_nand_timing *t)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	unsigned long nand_clk = mvebu_get_nand_clock();
+	uint32_t ndtr0, ndtr1;
+
+	ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
+		NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
+		NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
+		NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
+		NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
+		NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
+
+	ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
+		NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
+		NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
+
+	info->ndtr0cs0 = ndtr0;
+	info->ndtr1cs0 = ndtr1;
+	nand_writel(info, NDTR0CS0, ndtr0);
+	nand_writel(info, NDTR1CS0, ndtr1);
+}
+
+static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
+				       const struct nand_sdr_timings *t)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct nand_chip *chip = &host->chip;
+	unsigned long nand_clk = mvebu_get_nand_clock();
+	uint32_t ndtr0, ndtr1;
+
+	u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
+	u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
+	u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
+	u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
+	u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
+	u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
+	u32 tR = chip->chip_delay * 1000;
+	u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
+	u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
+
+	/* fallback to a default value if tR = 0 */
+	if (!tR)
+		tR = 20000;
+
+	ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
+		NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
+		NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
+		NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
+		NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
+		NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
+
+	ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
+		NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
+		NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
+
+	info->ndtr0cs0 = ndtr0;
+	info->ndtr1cs0 = ndtr1;
+	nand_writel(info, NDTR0CS0, ndtr0);
+	nand_writel(info, NDTR1CS0, ndtr1);
+}
+
+static int pxa3xx_nand_init_timings(struct pxa3xx_nand_host *host)
+{
+	const struct nand_sdr_timings *timings;
+	struct nand_chip *chip = &host->chip;
+	struct pxa3xx_nand_info *info = host->info_data;
+	const struct pxa3xx_nand_flash *f = NULL;
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+	int mode, id, ntypes, i;
+
+	mode = onfi_get_async_timing_mode(chip);
+	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
+		ntypes = ARRAY_SIZE(builtin_flash_types);
+
+		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+		id = chip->read_byte(mtd);
+		id |= chip->read_byte(mtd) << 0x8;
+
+		for (i = 0; i < ntypes; i++) {
+			f = &builtin_flash_types[i];
+
+			if (f->chip_id == id)
+				break;
+		}
+
+		if (i == ntypes) {
+			dev_err(&info->pdev->dev, "Error: timings not found\n");
+			return -EINVAL;
+		}
+
+		pxa3xx_nand_set_timing(host, f->timing);
+
+		if (f->flash_width == 16) {
+			info->reg_ndcr |= NDCR_DWIDTH_M;
+			chip->options |= NAND_BUSWIDTH_16;
+		}
+
+		info->reg_ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
+	} else {
+		mode = fls(mode) - 1;
+		if (mode < 0)
+			mode = 0;
+
+		timings = onfi_async_timing_mode_to_sdr_timings(mode);
+		if (IS_ERR(timings))
+			return PTR_ERR(timings);
+
+		pxa3xx_nand_set_sdr_timing(host, timings);
+	}
+
+	return 0;
+}
+
+/**
+ * NOTE: it is a must to set ND_RUN first, then write
+ * command buffer, otherwise, it does not work.
+ * We enable all the interrupt at the same time, and
+ * let pxa3xx_nand_irq to handle all logic.
+ */
+static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
+{
+	uint32_t ndcr;
+
+	ndcr = info->reg_ndcr;
+
+	if (info->use_ecc) {
+		ndcr |= NDCR_ECC_EN;
+		if (info->ecc_bch)
+			nand_writel(info, NDECCCTRL, 0x1);
+	} else {
+		ndcr &= ~NDCR_ECC_EN;
+		if (info->ecc_bch)
+			nand_writel(info, NDECCCTRL, 0x0);
+	}
+
+	ndcr &= ~NDCR_DMA_EN;
+
+	if (info->use_spare)
+		ndcr |= NDCR_SPARE_EN;
+	else
+		ndcr &= ~NDCR_SPARE_EN;
+
+	ndcr |= NDCR_ND_RUN;
+
+	/* clear status bits and run */
+	nand_writel(info, NDSR, NDSR_MASK);
+	nand_writel(info, NDCR, 0);
+	nand_writel(info, NDCR, ndcr);
+}
+
+static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
+{
+	uint32_t ndcr;
+
+	ndcr = nand_readl(info, NDCR);
+	nand_writel(info, NDCR, ndcr | int_mask);
+}
+
+static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
+{
+	if (info->ecc_bch) {
+		u32 ts;
+
+		/*
+		 * According to the datasheet, when reading from NDDB
+		 * with BCH enabled, after each 32 bytes reads, we
+		 * have to make sure that the NDSR.RDDREQ bit is set.
+		 *
+		 * Drain the FIFO 8 32 bits reads at a time, and skip
+		 * the polling on the last read.
+		 */
+		while (len > 8) {
+			readsl(info->mmio_base + NDDB, data, 8);
+
+			ts = get_timer(0);
+			while (!(nand_readl(info, NDSR) & NDSR_RDDREQ)) {
+				if (get_timer(ts) > TIMEOUT_DRAIN_FIFO) {
+					dev_err(&info->pdev->dev,
+						"Timeout on RDDREQ while draining the FIFO\n");
+					return;
+				}
+			}
+
+			data += 32;
+			len -= 8;
+		}
+	}
+
+	readsl(info->mmio_base + NDDB, data, len);
+}
+
+static void handle_data_pio(struct pxa3xx_nand_info *info)
+{
+	switch (info->state) {
+	case STATE_PIO_WRITING:
+		if (info->step_chunk_size)
+			writesl(info->mmio_base + NDDB,
+				info->data_buff + info->data_buff_pos,
+				DIV_ROUND_UP(info->step_chunk_size, 4));
+
+		if (info->step_spare_size)
+			writesl(info->mmio_base + NDDB,
+				info->oob_buff + info->oob_buff_pos,
+				DIV_ROUND_UP(info->step_spare_size, 4));
+		break;
+	case STATE_PIO_READING:
+		if (info->step_chunk_size)
+			drain_fifo(info,
+				   info->data_buff + info->data_buff_pos,
+				   DIV_ROUND_UP(info->step_chunk_size, 4));
+
+		if (info->step_spare_size)
+			drain_fifo(info,
+				   info->oob_buff + info->oob_buff_pos,
+				   DIV_ROUND_UP(info->step_spare_size, 4));
+		break;
+	default:
+		dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
+				info->state);
+		BUG();
+	}
+
+	/* Update buffer pointers for multi-page read/write */
+	info->data_buff_pos += info->step_chunk_size;
+	info->oob_buff_pos += info->step_spare_size;
+}
+
+static void pxa3xx_nand_irq_thread(struct pxa3xx_nand_info *info)
+{
+	handle_data_pio(info);
+
+	info->state = STATE_CMD_DONE;
+	nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
+}
+
+static irqreturn_t pxa3xx_nand_irq(struct pxa3xx_nand_info *info)
+{
+	unsigned int status, is_completed = 0, is_ready = 0;
+	unsigned int ready, cmd_done;
+	irqreturn_t ret = IRQ_HANDLED;
+
+	if (info->cs == 0) {
+		ready           = NDSR_FLASH_RDY;
+		cmd_done        = NDSR_CS0_CMDD;
+	} else {
+		ready           = NDSR_RDY;
+		cmd_done        = NDSR_CS1_CMDD;
+	}
+
+	/* TODO - find out why we need the delay during write operation. */
+	ndelay(1);
+
+	status = nand_readl(info, NDSR);
+
+	if (status & NDSR_UNCORERR)
+		info->retcode = ERR_UNCORERR;
+	if (status & NDSR_CORERR) {
+		info->retcode = ERR_CORERR;
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
+		    info->ecc_bch)
+			info->ecc_err_cnt = NDSR_ERR_CNT(status);
+		else
+			info->ecc_err_cnt = 1;
+
+		/*
+		 * Each chunk composing a page is corrected independently,
+		 * and we need to store maximum number of corrected bitflips
+		 * to return it to the MTD layer in ecc.read_page().
+		 */
+		info->max_bitflips = max_t(unsigned int,
+					   info->max_bitflips,
+					   info->ecc_err_cnt);
+	}
+	if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
+		info->state = (status & NDSR_RDDREQ) ?
+			STATE_PIO_READING : STATE_PIO_WRITING;
+		/* Call the IRQ thread in U-Boot directly */
+		pxa3xx_nand_irq_thread(info);
+		return 0;
+	}
+	if (status & cmd_done) {
+		info->state = STATE_CMD_DONE;
+		is_completed = 1;
+	}
+	if (status & ready) {
+		info->state = STATE_READY;
+		is_ready = 1;
+	}
+
+	/*
+	 * Clear all status bit before issuing the next command, which
+	 * can and will alter the status bits and will deserve a new
+	 * interrupt on its own. This lets the controller exit the IRQ
+	 */
+	nand_writel(info, NDSR, status);
+
+	if (status & NDSR_WRCMDREQ) {
+		status &= ~NDSR_WRCMDREQ;
+		info->state = STATE_CMD_HANDLE;
+
+		/*
+		 * Command buffer registers NDCB{0-2} (and optionally NDCB3)
+		 * must be loaded by writing directly either 12 or 16
+		 * bytes directly to NDCB0, four bytes at a time.
+		 *
+		 * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
+		 * but each NDCBx register can be read.
+		 */
+		nand_writel(info, NDCB0, info->ndcb0);
+		nand_writel(info, NDCB0, info->ndcb1);
+		nand_writel(info, NDCB0, info->ndcb2);
+
+		/* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
+			nand_writel(info, NDCB0, info->ndcb3);
+	}
+
+	if (is_completed)
+		info->cmd_complete = 1;
+	if (is_ready)
+		info->dev_ready = 1;
+
+	return ret;
+}
+
+static inline int is_buf_blank(uint8_t *buf, size_t len)
+{
+	for (; len > 0; len--)
+		if (*buf++ != 0xff)
+			return 0;
+	return 1;
+}
+
+static void set_command_address(struct pxa3xx_nand_info *info,
+		unsigned int page_size, uint16_t column, int page_addr)
+{
+	/* small page addr setting */
+	if (page_size < info->chunk_size) {
+		info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
+				| (column & 0xFF);
+
+		info->ndcb2 = 0;
+	} else {
+		info->ndcb1 = ((page_addr & 0xFFFF) << 16)
+				| (column & 0xFFFF);
+
+		if (page_addr & 0xFF0000)
+			info->ndcb2 = (page_addr & 0xFF0000) >> 16;
+		else
+			info->ndcb2 = 0;
+	}
+}
+
+static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
+{
+	struct pxa3xx_nand_host *host = info->host[info->cs];
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+
+	/* reset data and oob column point to handle data */
+	info->buf_start		= 0;
+	info->buf_count		= 0;
+	info->data_buff_pos	= 0;
+	info->oob_buff_pos	= 0;
+	info->step_chunk_size   = 0;
+	info->step_spare_size   = 0;
+	info->cur_chunk         = 0;
+	info->use_ecc		= 0;
+	info->use_spare		= 1;
+	info->retcode		= ERR_NONE;
+	info->ecc_err_cnt	= 0;
+	info->ndcb3		= 0;
+	info->need_wait		= 0;
+
+	switch (command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+	case NAND_CMD_PAGEPROG:
+		info->use_ecc = 1;
+		break;
+	case NAND_CMD_PARAM:
+		info->use_spare = 0;
+		break;
+	default:
+		info->ndcb1 = 0;
+		info->ndcb2 = 0;
+		break;
+	}
+
+	/*
+	 * If we are about to issue a read command, or about to set
+	 * the write address, then clean the data buffer.
+	 */
+	if (command == NAND_CMD_READ0 ||
+	    command == NAND_CMD_READOOB ||
+	    command == NAND_CMD_SEQIN) {
+		info->buf_count = mtd->writesize + mtd->oobsize;
+		memset(info->data_buff, 0xFF, info->buf_count);
+	}
+}
+
+static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
+		int ext_cmd_type, uint16_t column, int page_addr)
+{
+	int addr_cycle, exec_cmd;
+	struct pxa3xx_nand_host *host;
+	struct mtd_info *mtd;
+
+	host = info->host[info->cs];
+	mtd = nand_to_mtd(&host->chip);
+	addr_cycle = 0;
+	exec_cmd = 1;
+
+	if (info->cs != 0)
+		info->ndcb0 = NDCB0_CSEL;
+	else
+		info->ndcb0 = 0;
+
+	if (command == NAND_CMD_SEQIN)
+		exec_cmd = 0;
+
+	addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
+				    + host->col_addr_cycles);
+
+	switch (command) {
+	case NAND_CMD_READOOB:
+	case NAND_CMD_READ0:
+		info->buf_start = column;
+		info->ndcb0 |= NDCB0_CMD_TYPE(0)
+				| addr_cycle
+				| NAND_CMD_READ0;
+
+		if (command == NAND_CMD_READOOB)
+			info->buf_start += mtd->writesize;
+
+		if (info->cur_chunk < info->nfullchunks) {
+			info->step_chunk_size = info->chunk_size;
+			info->step_spare_size = info->spare_size;
+		} else {
+			info->step_chunk_size = info->last_chunk_size;
+			info->step_spare_size = info->last_spare_size;
+		}
+
+		/*
+		 * Multiple page read needs an 'extended command type' field,
+		 * which is either naked-read or last-read according to the
+		 * state.
+		 */
+		if (mtd->writesize == info->chunk_size) {
+			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
+		} else if (mtd->writesize > info->chunk_size) {
+			info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
+					| NDCB0_LEN_OVRD
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
+			info->ndcb3 = info->step_chunk_size +
+				info->step_spare_size;
+		}
+
+		set_command_address(info, mtd->writesize, column, page_addr);
+		break;
+
+	case NAND_CMD_SEQIN:
+
+		info->buf_start = column;
+		set_command_address(info, mtd->writesize, 0, page_addr);
+
+		/*
+		 * Multiple page programming needs to execute the initial
+		 * SEQIN command that sets the page address.
+		 */
+		if (mtd->writesize > info->chunk_size) {
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+				| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
+				| addr_cycle
+				| command;
+			exec_cmd = 1;
+		}
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		if (is_buf_blank(info->data_buff,
+				 (mtd->writesize + mtd->oobsize))) {
+			exec_cmd = 0;
+			break;
+		}
+
+		if (info->cur_chunk < info->nfullchunks) {
+			info->step_chunk_size = info->chunk_size;
+			info->step_spare_size = info->spare_size;
+		} else {
+			info->step_chunk_size = info->last_chunk_size;
+			info->step_spare_size = info->last_spare_size;
+		}
+
+		/* Second command setting for large pages */
+		if (mtd->writesize > info->chunk_size) {
+			/*
+			 * Multiple page write uses the 'extended command'
+			 * field. This can be used to issue a command dispatch
+			 * or a naked-write depending on the current stage.
+			 */
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+					| NDCB0_LEN_OVRD
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type);
+			info->ndcb3 = info->step_chunk_size +
+				      info->step_spare_size;
+
+			/*
+			 * This is the command dispatch that completes a chunked
+			 * page program operation.
+			 */
+			if (info->cur_chunk == info->ntotalchunks) {
+				info->ndcb0 = NDCB0_CMD_TYPE(0x1)
+					| NDCB0_EXT_CMD_TYPE(ext_cmd_type)
+					| command;
+				info->ndcb1 = 0;
+				info->ndcb2 = 0;
+				info->ndcb3 = 0;
+			}
+		} else {
+			info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
+					| NDCB0_AUTO_RS
+					| NDCB0_ST_ROW_EN
+					| NDCB0_DBC
+					| (NAND_CMD_PAGEPROG << 8)
+					| NAND_CMD_SEQIN
+					| addr_cycle;
+		}
+		break;
+
+	case NAND_CMD_PARAM:
+		info->buf_count = INIT_BUFFER_SIZE;
+		info->ndcb0 |= NDCB0_CMD_TYPE(0)
+				| NDCB0_ADDR_CYC(1)
+				| NDCB0_LEN_OVRD
+				| command;
+		info->ndcb1 = (column & 0xFF);
+		info->ndcb3 = INIT_BUFFER_SIZE;
+		info->step_chunk_size = INIT_BUFFER_SIZE;
+		break;
+
+	case NAND_CMD_READID:
+		info->buf_count = READ_ID_BYTES;
+		info->ndcb0 |= NDCB0_CMD_TYPE(3)
+				| NDCB0_ADDR_CYC(1)
+				| command;
+		info->ndcb1 = (column & 0xFF);
+
+		info->step_chunk_size = 8;
+		break;
+	case NAND_CMD_STATUS:
+		info->buf_count = 1;
+		info->ndcb0 |= NDCB0_CMD_TYPE(4)
+				| NDCB0_ADDR_CYC(1)
+				| command;
+
+		info->step_chunk_size = 8;
+		break;
+
+	case NAND_CMD_ERASE1:
+		info->ndcb0 |= NDCB0_CMD_TYPE(2)
+				| NDCB0_AUTO_RS
+				| NDCB0_ADDR_CYC(3)
+				| NDCB0_DBC
+				| (NAND_CMD_ERASE2 << 8)
+				| NAND_CMD_ERASE1;
+		info->ndcb1 = page_addr;
+		info->ndcb2 = 0;
+
+		break;
+	case NAND_CMD_RESET:
+		info->ndcb0 |= NDCB0_CMD_TYPE(5)
+				| command;
+
+		break;
+
+	case NAND_CMD_ERASE2:
+		exec_cmd = 0;
+		break;
+
+	default:
+		exec_cmd = 0;
+		dev_err(&info->pdev->dev, "non-supported command %x\n",
+			command);
+		break;
+	}
+
+	return exec_cmd;
+}
+
+static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
+			 int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int exec_cmd;
+
+	/*
+	 * if this is a x16 device ,then convert the input
+	 * "byte" address into a "word" address appropriate
+	 * for indexing a word-oriented device
+	 */
+	if (info->reg_ndcr & NDCR_DWIDTH_M)
+		column /= 2;
+
+	/*
+	 * There may be different NAND chip hooked to
+	 * different chip select, so check whether
+	 * chip select has been changed, if yes, reset the timing
+	 */
+	if (info->cs != host->cs) {
+		info->cs = host->cs;
+		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
+		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
+	}
+
+	prepare_start_command(info, command);
+
+	info->state = STATE_PREPARED;
+	exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
+
+	if (exec_cmd) {
+		u32 ts;
+
+		info->cmd_complete = 0;
+		info->dev_ready = 0;
+		info->need_wait = 1;
+		pxa3xx_nand_start(info);
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->cmd_complete)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
+				return;
+			}
+		}
+	}
+	info->state = STATE_IDLE;
+}
+
+static void nand_cmdfunc_extended(struct mtd_info *mtd,
+				  const unsigned command,
+				  int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int exec_cmd, ext_cmd_type;
+
+	/*
+	 * if this is a x16 device then convert the input
+	 * "byte" address into a "word" address appropriate
+	 * for indexing a word-oriented device
+	 */
+	if (info->reg_ndcr & NDCR_DWIDTH_M)
+		column /= 2;
+
+	/*
+	 * There may be different NAND chip hooked to
+	 * different chip select, so check whether
+	 * chip select has been changed, if yes, reset the timing
+	 */
+	if (info->cs != host->cs) {
+		info->cs = host->cs;
+		nand_writel(info, NDTR0CS0, info->ndtr0cs0);
+		nand_writel(info, NDTR1CS0, info->ndtr1cs0);
+	}
+
+	/* Select the extended command for the first command */
+	switch (command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+		ext_cmd_type = EXT_CMD_TYPE_MONO;
+		break;
+	case NAND_CMD_SEQIN:
+		ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
+		break;
+	case NAND_CMD_PAGEPROG:
+		ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
+		break;
+	default:
+		ext_cmd_type = 0;
+		break;
+	}
+
+	prepare_start_command(info, command);
+
+	/*
+	 * Prepare the "is ready" completion before starting a command
+	 * transaction sequence. If the command is not executed the
+	 * completion will be completed, see below.
+	 *
+	 * We can do that inside the loop because the command variable
+	 * is invariant and thus so is the exec_cmd.
+	 */
+	info->need_wait = 1;
+	info->dev_ready = 0;
+
+	do {
+		u32 ts;
+
+		info->state = STATE_PREPARED;
+		exec_cmd = prepare_set_command(info, command, ext_cmd_type,
+					       column, page_addr);
+		if (!exec_cmd) {
+			info->need_wait = 0;
+			info->dev_ready = 1;
+			break;
+		}
+
+		info->cmd_complete = 0;
+		pxa3xx_nand_start(info);
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->cmd_complete)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Wait timeout!!!\n");
+				return;
+			}
+		}
+
+		/* Only a few commands need several steps */
+		if (command != NAND_CMD_PAGEPROG &&
+		    command != NAND_CMD_READ0    &&
+		    command != NAND_CMD_READOOB)
+			break;
+
+		info->cur_chunk++;
+
+		/* Check if the sequence is complete */
+		if (info->cur_chunk == info->ntotalchunks &&
+		    command != NAND_CMD_PAGEPROG)
+			break;
+
+		/*
+		 * After a splitted program command sequence has issued
+		 * the command dispatch, the command sequence is complete.
+		 */
+		if (info->cur_chunk == (info->ntotalchunks + 1) &&
+		    command == NAND_CMD_PAGEPROG &&
+		    ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
+			break;
+
+		if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
+			/* Last read: issue a 'last naked read' */
+			if (info->cur_chunk == info->ntotalchunks - 1)
+				ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
+			else
+				ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
+
+		/*
+		 * If a splitted program command has no more data to transfer,
+		 * the command dispatch must be issued to complete.
+		 */
+		} else if (command == NAND_CMD_PAGEPROG &&
+			   info->cur_chunk == info->ntotalchunks) {
+				ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
+		}
+	} while (1);
+
+	info->state = STATE_IDLE;
+}
+
+static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, const uint8_t *buf, int oob_required,
+		int page)
+{
+	chip->write_buf(mtd, buf, mtd->writesize);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, uint8_t *buf, int oob_required,
+		int page)
+{
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (info->retcode == ERR_CORERR && info->use_ecc) {
+		mtd->ecc_stats.corrected += info->ecc_err_cnt;
+
+	} else if (info->retcode == ERR_UNCORERR) {
+		/*
+		 * for blank page (all 0xff), HW will calculate its ECC as
+		 * 0, which is different from the ECC information within
+		 * OOB, ignore such uncorrectable errors
+		 */
+		if (is_buf_blank(buf, mtd->writesize))
+			info->retcode = ERR_NONE;
+		else
+			mtd->ecc_stats.failed++;
+	}
+
+	return info->max_bitflips;
+}
+
+static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	char retval = 0xFF;
+
+	if (info->buf_start < info->buf_count)
+		/* Has just send a new command? */
+		retval = info->data_buff[info->buf_start++];
+
+	return retval;
+}
+
+static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	u16 retval = 0xFFFF;
+
+	if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
+		retval = *((u16 *)(info->data_buff+info->buf_start));
+		info->buf_start += 2;
+	}
+	return retval;
+}
+
+static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
+
+	memcpy(buf, info->data_buff + info->buf_start, real_len);
+	info->buf_start += real_len;
+}
+
+static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
+		const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
+
+	memcpy(info->data_buff + info->buf_start, buf, real_len);
+	info->buf_start += real_len;
+}
+
+static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	return;
+}
+
+static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+
+	if (info->need_wait) {
+		u32 ts;
+
+		info->need_wait = 0;
+
+		ts = get_timer(0);
+		while (1) {
+			u32 status;
+
+			status = nand_readl(info, NDSR);
+			if (status)
+				pxa3xx_nand_irq(info);
+
+			if (info->dev_ready)
+				break;
+
+			if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
+				dev_err(&info->pdev->dev, "Ready timeout!!!\n");
+				return NAND_STATUS_FAIL;
+			}
+		}
+	}
+
+	/* pxa3xx_nand_send_command has waited for command complete */
+	if (this->state == FL_WRITING || this->state == FL_ERASING) {
+		if (info->retcode == ERR_NONE)
+			return 0;
+		else
+			return NAND_STATUS_FAIL;
+	}
+
+	return NAND_STATUS_READY;
+}
+
+static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+
+	/* Configure default flash values */
+	info->reg_ndcr = 0x0; /* enable all interrupts */
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
+	info->reg_ndcr |= NDCR_SPARE_EN;
+
+	return 0;
+}
+
+static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_host *host = info->host[info->cs];
+	struct mtd_info *mtd = nand_to_mtd(&info->host[info->cs]->chip);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
+	info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
+	info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
+}
+
+static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	uint32_t ndcr = nand_readl(info, NDCR);
+
+	/* Set an initial chunk size */
+	info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
+	info->reg_ndcr = ndcr &
+		~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
+	info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
+}
+
+static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
+{
+	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
+	if (info->data_buff == NULL)
+		return -ENOMEM;
+	return 0;
+}
+
+static int pxa3xx_nand_sensing(struct pxa3xx_nand_host *host)
+{
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	const struct nand_sdr_timings *timings;
+	int ret;
+
+	mtd = nand_to_mtd(&info->host[info->cs]->chip);
+	chip = mtd_to_nand(mtd);
+
+	/* configure default flash values */
+	info->reg_ndcr = 0x0; /* enable all interrupts */
+	info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
+	info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
+	info->reg_ndcr |= NDCR_SPARE_EN; /* enable spare by default */
+
+	/* use the common timing to make a try */
+	timings = onfi_async_timing_mode_to_sdr_timings(0);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	pxa3xx_nand_set_sdr_timing(host, timings);
+
+	chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
+	ret = chip->waitfunc(mtd, chip);
+	if (ret & NAND_STATUS_FAIL)
+		return -ENODEV;
+
+	return 0;
+}
+
+static int pxa_ecc_init(struct pxa3xx_nand_info *info,
+			struct nand_ecc_ctrl *ecc,
+			int strength, int ecc_stepsize, int page_size)
+{
+	if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 2048;
+		info->spare_size = 40;
+		info->ecc_size = 24;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = 512;
+		ecc->strength = 1;
+
+	} else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 512;
+		info->spare_size = 8;
+		info->ecc_size = 8;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = 512;
+		ecc->strength = 1;
+
+	/*
+	 * Required ECC: 4-bit correction per 512 bytes
+	 * Select: 16-bit correction per 2048 bytes
+	 */
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 1;
+		info->ntotalchunks = 1;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_2KB_bch4bit;
+		ecc->strength = 16;
+
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 2;
+		info->ntotalchunks = 2;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_4KB_bch4bit;
+		ecc->strength = 16;
+
+	} else if (strength == 4 && ecc_stepsize == 512 && page_size == 8192) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 4;
+		info->ntotalchunks = 4;
+		info->chunk_size = 2048;
+		info->spare_size = 32;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_8KB_bch4bit;
+		ecc->strength = 16;
+
+	/*
+	 * Required ECC: 8-bit correction per 512 bytes
+	 * Select: 16-bit correction per 1024 bytes
+	 */
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 2048) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 1;
+		info->ntotalchunks = 2;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 1024;
+		info->last_spare_size = 64;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_2KB_bch8bit;
+		ecc->strength = 16;
+
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 4;
+		info->ntotalchunks = 5;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 0;
+		info->last_spare_size = 64;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_4KB_bch8bit;
+		ecc->strength = 16;
+
+	} else if (strength == 8 && ecc_stepsize == 512 && page_size == 8192) {
+		info->ecc_bch = 1;
+		info->nfullchunks = 8;
+		info->ntotalchunks = 9;
+		info->chunk_size = 1024;
+		info->spare_size = 0;
+		info->last_chunk_size = 0;
+		info->last_spare_size = 160;
+		info->ecc_size = 32;
+		ecc->mode = NAND_ECC_HW;
+		ecc->size = info->chunk_size;
+		ecc->layout = &ecc_layout_8KB_bch8bit;
+		ecc->strength = 16;
+
+	} else {
+		dev_err(&info->pdev->dev,
+			"ECC strength %d at page size %d is not supported\n",
+			strength, page_size);
+		return -ENODEV;
+	}
+
+	return 0;
+}
+
+static int pxa3xx_nand_scan(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
+	struct pxa3xx_nand_info *info = host->info_data;
+	struct pxa3xx_nand_platform_data *pdata = info->pdata;
+	int ret;
+	uint16_t ecc_strength, ecc_step;
+
+	if (pdata->keep_config) {
+		pxa3xx_nand_detect_config(info);
+	} else {
+		ret = pxa3xx_nand_config_ident(info);
+		if (ret)
+			return ret;
+		ret = pxa3xx_nand_sensing(host);
+		if (ret) {
+			dev_info(&info->pdev->dev,
+				 "There is no chip on cs %d!\n",
+				 info->cs);
+			return ret;
+		}
+	}
+
+	/* Device detection must be done with ECC disabled */
+	if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
+		nand_writel(info, NDECCCTRL, 0x0);
+
+	if (nand_scan_ident(mtd, 1, NULL))
+		return -ENODEV;
+
+	if (!pdata->keep_config) {
+		ret = pxa3xx_nand_init_timings(host);
+		if (ret) {
+			dev_err(&info->pdev->dev,
+				"Failed to set timings: %d\n", ret);
+			return ret;
+		}
+	}
+
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+	/*
+	 * We'll use a bad block table stored in-flash and don't
+	 * allow writing the bad block marker to the flash.
+	 */
+	chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB_BBM;
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+#endif
+
+	if (pdata->ecc_strength && pdata->ecc_step_size) {
+		ecc_strength = pdata->ecc_strength;
+		ecc_step = pdata->ecc_step_size;
+	} else {
+		ecc_strength = chip->ecc_strength_ds;
+		ecc_step = chip->ecc_step_ds;
+	}
+
+	/* Set default ECC strength requirements on non-ONFI devices */
+	if (ecc_strength < 1 && ecc_step < 1) {
+		ecc_strength = 1;
+		ecc_step = 512;
+	}
+
+	ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
+			   ecc_step, mtd->writesize);
+	if (ret)
+		return ret;
+
+	/*
+	 * If the page size is bigger than the FIFO size, let's check
+	 * we are given the right variant and then switch to the extended
+	 * (aka split) command handling,
+	 */
+	if (mtd->writesize > info->chunk_size) {
+		if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
+			chip->cmdfunc = nand_cmdfunc_extended;
+		} else {
+			dev_err(&info->pdev->dev,
+				"unsupported page size on this variant\n");
+			return -ENODEV;
+		}
+	}
+
+	/* calculate addressing information */
+	if (mtd->writesize >= 2048)
+		host->col_addr_cycles = 2;
+	else
+		host->col_addr_cycles = 1;
+
+	/* release the initial buffer */
+	kfree(info->data_buff);
+
+	/* allocate the real data + oob buffer */
+	info->buf_size = mtd->writesize + mtd->oobsize;
+	ret = pxa3xx_nand_init_buff(info);
+	if (ret)
+		return ret;
+	info->oob_buff = info->data_buff + mtd->writesize;
+
+	if ((mtd->size >> chip->page_shift) > 65536)
+		host->row_addr_cycles = 3;
+	else
+		host->row_addr_cycles = 2;
+
+	if (!pdata->keep_config)
+		pxa3xx_nand_config_tail(info);
+
+	return nand_scan_tail(mtd);
+}
+
+static int alloc_nand_resource(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	struct pxa3xx_nand_host *host;
+	struct nand_chip *chip = NULL;
+	struct mtd_info *mtd;
+	int ret, cs;
+
+	pdata = info->pdata;
+	if (pdata->num_cs <= 0)
+		return -ENODEV;
+
+	info->variant = pxa3xx_nand_get_variant();
+	for (cs = 0; cs < pdata->num_cs; cs++) {
+		chip = (struct nand_chip *)
+			((u8 *)&info[1] + sizeof(*host) * cs);
+		mtd = nand_to_mtd(chip);
+		host = (struct pxa3xx_nand_host *)chip;
+		info->host[cs] = host;
+		host->cs = cs;
+		host->info_data = info;
+		mtd->owner = THIS_MODULE;
+
+		nand_set_controller_data(chip, host);
+		chip->ecc.read_page	= pxa3xx_nand_read_page_hwecc;
+		chip->ecc.write_page	= pxa3xx_nand_write_page_hwecc;
+		chip->controller        = &info->controller;
+		chip->waitfunc		= pxa3xx_nand_waitfunc;
+		chip->select_chip	= pxa3xx_nand_select_chip;
+		chip->read_word		= pxa3xx_nand_read_word;
+		chip->read_byte		= pxa3xx_nand_read_byte;
+		chip->read_buf		= pxa3xx_nand_read_buf;
+		chip->write_buf		= pxa3xx_nand_write_buf;
+		chip->options		|= NAND_NO_SUBPAGE_WRITE;
+		chip->cmdfunc		= nand_cmdfunc;
+	}
+
+	/* Allocate a buffer to allow flash detection */
+	info->buf_size = INIT_BUFFER_SIZE;
+	info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
+	if (info->data_buff == NULL) {
+		ret = -ENOMEM;
+		goto fail_disable_clk;
+	}
+
+	/* initialize all interrupts to be disabled */
+	disable_int(info, NDSR_MASK);
+
+	return 0;
+
+	kfree(info->data_buff);
+fail_disable_clk:
+	return ret;
+}
+
+static int pxa3xx_nand_probe_dt(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	const void *blob = gd->fdt_blob;
+	int node = -1;
+
+	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
+	if (!pdata)
+		return -ENOMEM;
+
+	/* Get address decoding nodes from the FDT blob */
+	do {
+		node = fdt_node_offset_by_compatible(blob, node,
+						     "marvell,mvebu-pxa3xx-nand");
+		if (node < 0)
+			break;
+
+		/* Bypass disabeld nodes */
+		if (!fdtdec_get_is_enabled(blob, node))
+			continue;
+
+		/* Get the first enabled NAND controler base address */
+		info->mmio_base =
+			(void __iomem *)fdtdec_get_addr_size_auto_noparent(
+					blob, node, "reg", 0, NULL, true);
+
+		pdata->num_cs = fdtdec_get_int(blob, node, "num-cs", 1);
+		if (pdata->num_cs != 1) {
+			pr_err("pxa3xx driver supports single CS only\n");
+			break;
+		}
+
+		if (fdtdec_get_bool(blob, node, "nand-enable-arbiter"))
+			pdata->enable_arbiter = 1;
+
+		if (fdtdec_get_bool(blob, node, "nand-keep-config"))
+			pdata->keep_config = 1;
+
+		/*
+		 * ECC parameters.
+		 * If these are not set, they will be selected according
+		 * to the detected flash type.
+		 */
+		/* ECC strength */
+		pdata->ecc_strength = fdtdec_get_int(blob, node,
+						     "nand-ecc-strength", 0);
+
+		/* ECC step size */
+		pdata->ecc_step_size = fdtdec_get_int(blob, node,
+						      "nand-ecc-step-size", 0);
+
+		info->pdata = pdata;
+
+		/* Currently support only a single NAND controller */
+		return 0;
+
+	} while (node >= 0);
+
+	return -EINVAL;
+}
+
+static int pxa3xx_nand_probe(struct pxa3xx_nand_info *info)
+{
+	struct pxa3xx_nand_platform_data *pdata;
+	int ret, cs, probe_success;
+
+	ret = pxa3xx_nand_probe_dt(info);
+	if (ret)
+		return ret;
+
+	pdata = info->pdata;
+
+	ret = alloc_nand_resource(info);
+	if (ret) {
+		dev_err(&pdev->dev, "alloc nand resource failed\n");
+		return ret;
+	}
+
+	probe_success = 0;
+	for (cs = 0; cs < pdata->num_cs; cs++) {
+		struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
+
+		/*
+		 * The mtd name matches the one used in 'mtdparts' kernel
+		 * parameter. This name cannot be changed or otherwise
+		 * user's mtd partitions configuration would get broken.
+		 */
+		mtd->name = "pxa3xx_nand-0";
+		info->cs = cs;
+		ret = pxa3xx_nand_scan(mtd);
+		if (ret) {
+			dev_info(&pdev->dev, "failed to scan nand at cs %d\n",
+				 cs);
+			continue;
+		}
+
+		if (nand_register(cs, mtd))
+			continue;
+
+		probe_success = 1;
+	}
+
+	if (!probe_success)
+		return -ENODEV;
+
+	return 0;
+}
+
+/*
+ * Main initialization routine
+ */
+void board_nand_init(void)
+{
+	struct pxa3xx_nand_info *info;
+	struct pxa3xx_nand_host *host;
+	int ret;
+
+	info = kzalloc(sizeof(*info) +
+		       sizeof(*host) * CONFIG_SYS_MAX_NAND_DEVICE,
+		       GFP_KERNEL);
+	if (!info)
+		return;
+
+	ret = pxa3xx_nand_probe(info);
+	if (ret)
+		return;
+}
diff --git a/drivers/mtd/nand/raw/pxa3xx_nand.h b/drivers/mtd/nand/raw/pxa3xx_nand.h
new file mode 100644
index 0000000..8f24ae6
--- /dev/null
+++ b/drivers/mtd/nand/raw/pxa3xx_nand.h
@@ -0,0 +1,64 @@
+#ifndef __ASM_ARCH_PXA3XX_NAND_H
+#define __ASM_ARCH_PXA3XX_NAND_H
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/partitions.h>
+
+struct pxa3xx_nand_timing {
+	unsigned int	tCH;  /* Enable signal hold time */
+	unsigned int	tCS;  /* Enable signal setup time */
+	unsigned int	tWH;  /* ND_nWE high duration */
+	unsigned int	tWP;  /* ND_nWE pulse time */
+	unsigned int	tRH;  /* ND_nRE high duration */
+	unsigned int	tRP;  /* ND_nRE pulse width */
+	unsigned int	tR;   /* ND_nWE high to ND_nRE low for read */
+	unsigned int	tWHR; /* ND_nWE high to ND_nRE low for status read */
+	unsigned int	tAR;  /* ND_ALE low to ND_nRE low delay */
+};
+
+struct pxa3xx_nand_flash {
+	uint32_t	chip_id;
+	unsigned int	flash_width;    /* Width of Flash memory (DWIDTH_M) */
+	unsigned int	dfc_width;      /* Width of flash controller(DWIDTH_C) */
+	struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
+};
+
+/*
+ * Current pxa3xx_nand controller has two chip select which
+ * both be workable.
+ *
+ * Notice should be taken that:
+ * When you want to use this feature, you should not enable the
+ * keep configuration feature, for two chip select could be
+ * attached with different nand chip. The different page size
+ * and timing requirement make the keep configuration impossible.
+ */
+
+/* The max num of chip select current support */
+#define NUM_CHIP_SELECT		(2)
+struct pxa3xx_nand_platform_data {
+	/* the data flash bus is shared between the Static Memory
+	 * Controller and the Data Flash Controller,  the arbiter
+	 * controls the ownership of the bus
+	 */
+	int	enable_arbiter;
+
+	/* allow platform code to keep OBM/bootloader defined NFC config */
+	int	keep_config;
+
+	/* indicate how many chip selects will be used */
+	int	num_cs;
+
+	/* use an flash-based bad block table */
+	bool	flash_bbt;
+
+	/* requested ECC strength and ECC step size */
+	int ecc_strength, ecc_step_size;
+
+	const struct mtd_partition		*parts[NUM_CHIP_SELECT];
+	unsigned int				nr_parts[NUM_CHIP_SELECT];
+
+	const struct pxa3xx_nand_flash		*flash;
+	size_t					num_flash;
+};
+#endif /* __ASM_ARCH_PXA3XX_NAND_H */
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
new file mode 100644
index 0000000..3ccb168
--- /dev/null
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -0,0 +1,1850 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
+ * Copyright (C) 2015 Roy Spliet <r.spliet@ultimaker.com>
+ *
+ * Derived from:
+ *	https://github.com/yuq/sunxi-nfc-mtd
+ *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
+ *
+ *	https://github.com/hno/Allwinner-Info
+ *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
+ *
+ *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
+ *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <common.h>
+#include <fdtdec.h>
+#include <memalign.h>
+#include <nand.h>
+
+#include <linux/kernel.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+#include <asm/gpio.h>
+#include <asm/arch/clock.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define NFC_REG_CTL		0x0000
+#define NFC_REG_ST		0x0004
+#define NFC_REG_INT		0x0008
+#define NFC_REG_TIMING_CTL	0x000C
+#define NFC_REG_TIMING_CFG	0x0010
+#define NFC_REG_ADDR_LOW	0x0014
+#define NFC_REG_ADDR_HIGH	0x0018
+#define NFC_REG_SECTOR_NUM	0x001C
+#define NFC_REG_CNT		0x0020
+#define NFC_REG_CMD		0x0024
+#define NFC_REG_RCMD_SET	0x0028
+#define NFC_REG_WCMD_SET	0x002C
+#define NFC_REG_IO_DATA		0x0030
+#define NFC_REG_ECC_CTL		0x0034
+#define NFC_REG_ECC_ST		0x0038
+#define NFC_REG_DEBUG		0x003C
+#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
+#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
+#define NFC_REG_SPARE_AREA	0x00A0
+#define NFC_REG_PAT_ID		0x00A4
+#define NFC_RAM0_BASE		0x0400
+#define NFC_RAM1_BASE		0x0800
+
+/* define bit use in NFC_CTL */
+#define NFC_EN			BIT(0)
+#define NFC_RESET		BIT(1)
+#define NFC_BUS_WIDTH_MSK	BIT(2)
+#define NFC_BUS_WIDTH_8		(0 << 2)
+#define NFC_BUS_WIDTH_16	(1 << 2)
+#define NFC_RB_SEL_MSK		BIT(3)
+#define NFC_RB_SEL(x)		((x) << 3)
+#define NFC_CE_SEL_MSK		(0x7 << 24)
+#define NFC_CE_SEL(x)		((x) << 24)
+#define NFC_CE_CTL		BIT(6)
+#define NFC_PAGE_SHIFT_MSK	(0xf << 8)
+#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
+#define NFC_SAM			BIT(12)
+#define NFC_RAM_METHOD		BIT(14)
+#define NFC_DEBUG_CTL		BIT(31)
+
+/* define bit use in NFC_ST */
+#define NFC_RB_B2R		BIT(0)
+#define NFC_CMD_INT_FLAG	BIT(1)
+#define NFC_DMA_INT_FLAG	BIT(2)
+#define NFC_CMD_FIFO_STATUS	BIT(3)
+#define NFC_STA			BIT(4)
+#define NFC_NATCH_INT_FLAG	BIT(5)
+#define NFC_RB_STATE(x)		BIT(x + 8)
+
+/* define bit use in NFC_INT */
+#define NFC_B2R_INT_ENABLE	BIT(0)
+#define NFC_CMD_INT_ENABLE	BIT(1)
+#define NFC_DMA_INT_ENABLE	BIT(2)
+#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
+				 NFC_CMD_INT_ENABLE | \
+				 NFC_DMA_INT_ENABLE)
+
+/* define bit use in NFC_TIMING_CTL */
+#define NFC_TIMING_CTL_EDO	BIT(8)
+
+/* define NFC_TIMING_CFG register layout */
+#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
+	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
+	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
+	(((tCAD) & 0x7) << 8))
+
+/* define bit use in NFC_CMD */
+#define NFC_CMD_LOW_BYTE_MSK	0xff
+#define NFC_CMD_HIGH_BYTE_MSK	(0xff << 8)
+#define NFC_CMD(x)		(x)
+#define NFC_ADR_NUM_MSK		(0x7 << 16)
+#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
+#define NFC_SEND_ADR		BIT(19)
+#define NFC_ACCESS_DIR		BIT(20)
+#define NFC_DATA_TRANS		BIT(21)
+#define NFC_SEND_CMD1		BIT(22)
+#define NFC_WAIT_FLAG		BIT(23)
+#define NFC_SEND_CMD2		BIT(24)
+#define NFC_SEQ			BIT(25)
+#define NFC_DATA_SWAP_METHOD	BIT(26)
+#define NFC_ROW_AUTO_INC	BIT(27)
+#define NFC_SEND_CMD3		BIT(28)
+#define NFC_SEND_CMD4		BIT(29)
+#define NFC_CMD_TYPE_MSK	(0x3 << 30)
+#define NFC_NORMAL_OP		(0 << 30)
+#define NFC_ECC_OP		(1 << 30)
+#define NFC_PAGE_OP		(2 << 30)
+
+/* define bit use in NFC_RCMD_SET */
+#define NFC_READ_CMD_MSK	0xff
+#define NFC_RND_READ_CMD0_MSK	(0xff << 8)
+#define NFC_RND_READ_CMD1_MSK	(0xff << 16)
+
+/* define bit use in NFC_WCMD_SET */
+#define NFC_PROGRAM_CMD_MSK	0xff
+#define NFC_RND_WRITE_CMD_MSK	(0xff << 8)
+#define NFC_READ_CMD0_MSK	(0xff << 16)
+#define NFC_READ_CMD1_MSK	(0xff << 24)
+
+/* define bit use in NFC_ECC_CTL */
+#define NFC_ECC_EN		BIT(0)
+#define NFC_ECC_PIPELINE	BIT(3)
+#define NFC_ECC_EXCEPTION	BIT(4)
+#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
+#define NFC_ECC_BLOCK_512	(1 << 5)
+#define NFC_RANDOM_EN		BIT(9)
+#define NFC_RANDOM_DIRECTION	BIT(10)
+#define NFC_ECC_MODE_MSK	(0xf << 12)
+#define NFC_ECC_MODE(x)		((x) << 12)
+#define NFC_RANDOM_SEED_MSK	(0x7fff << 16)
+#define NFC_RANDOM_SEED(x)	((x) << 16)
+
+/* define bit use in NFC_ECC_ST */
+#define NFC_ECC_ERR(x)		BIT(x)
+#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
+#define NFC_ECC_ERR_CNT(b, x)	(((x) >> ((b) * 8)) & 0xff)
+
+#define NFC_DEFAULT_TIMEOUT_MS	1000
+
+#define NFC_SRAM_SIZE		1024
+
+#define NFC_MAX_CS		7
+
+/*
+ * Ready/Busy detection type: describes the Ready/Busy detection modes
+ *
+ * @RB_NONE:	no external detection available, rely on STATUS command
+ *		and software timeouts
+ * @RB_NATIVE:	use sunxi NAND controller Ready/Busy support. The Ready/Busy
+ *		pin of the NAND flash chip must be connected to one of the
+ *		native NAND R/B pins (those which can be muxed to the NAND
+ *		Controller)
+ * @RB_GPIO:	use a simple GPIO to handle Ready/Busy status. The Ready/Busy
+ *		pin of the NAND flash chip must be connected to a GPIO capable
+ *		pin.
+ */
+enum sunxi_nand_rb_type {
+	RB_NONE,
+	RB_NATIVE,
+	RB_GPIO,
+};
+
+/*
+ * Ready/Busy structure: stores information related to Ready/Busy detection
+ *
+ * @type:	the Ready/Busy detection mode
+ * @info:	information related to the R/B detection mode. Either a gpio
+ *		id or a native R/B id (those supported by the NAND controller).
+ */
+struct sunxi_nand_rb {
+	enum sunxi_nand_rb_type type;
+	union {
+		struct gpio_desc gpio;
+		int nativeid;
+	} info;
+};
+
+/*
+ * Chip Select structure: stores information related to NAND Chip Select
+ *
+ * @cs:		the NAND CS id used to communicate with a NAND Chip
+ * @rb:		the Ready/Busy description
+ */
+struct sunxi_nand_chip_sel {
+	u8 cs;
+	struct sunxi_nand_rb rb;
+};
+
+/*
+ * sunxi HW ECC infos: stores information related to HW ECC support
+ *
+ * @mode:	the sunxi ECC mode field deduced from ECC requirements
+ * @layout:	the OOB layout depending on the ECC requirements and the
+ *		selected ECC mode
+ */
+struct sunxi_nand_hw_ecc {
+	int mode;
+	struct nand_ecclayout layout;
+};
+
+/*
+ * NAND chip structure: stores NAND chip device related information
+ *
+ * @node:		used to store NAND chips into a list
+ * @nand:		base NAND chip structure
+ * @mtd:		base MTD structure
+ * @clk_rate:		clk_rate required for this NAND chip
+ * @timing_cfg		TIMING_CFG register value for this NAND chip
+ * @selected:		current active CS
+ * @nsels:		number of CS lines required by the NAND chip
+ * @sels:		array of CS lines descriptions
+ */
+struct sunxi_nand_chip {
+	struct list_head node;
+	struct nand_chip nand;
+	unsigned long clk_rate;
+	u32 timing_cfg;
+	u32 timing_ctl;
+	int selected;
+	int addr_cycles;
+	u32 addr[2];
+	int cmd_cycles;
+	u8 cmd[2];
+	int nsels;
+	struct sunxi_nand_chip_sel sels[0];
+};
+
+static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
+{
+	return container_of(nand, struct sunxi_nand_chip, nand);
+}
+
+/*
+ * NAND Controller structure: stores sunxi NAND controller information
+ *
+ * @controller:		base controller structure
+ * @dev:		parent device (used to print error messages)
+ * @regs:		NAND controller registers
+ * @ahb_clk:		NAND Controller AHB clock
+ * @mod_clk:		NAND Controller mod clock
+ * @assigned_cs:	bitmask describing already assigned CS lines
+ * @clk_rate:		NAND controller current clock rate
+ * @chips:		a list containing all the NAND chips attached to
+ *			this NAND controller
+ * @complete:		a completion object used to wait for NAND
+ *			controller events
+ */
+struct sunxi_nfc {
+	struct nand_hw_control controller;
+	struct device *dev;
+	void __iomem *regs;
+	struct clk *ahb_clk;
+	struct clk *mod_clk;
+	unsigned long assigned_cs;
+	unsigned long clk_rate;
+	struct list_head chips;
+};
+
+static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
+{
+	return container_of(ctrl, struct sunxi_nfc, controller);
+}
+
+static void sunxi_nfc_set_clk_rate(unsigned long hz)
+{
+	struct sunxi_ccm_reg *const ccm =
+	(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
+	int div_m, div_n;
+
+	div_m = (clock_get_pll6() + hz - 1) / hz;
+	for (div_n = 0; div_n < 3 && div_m > 16; div_n++) {
+		if (div_m % 2)
+			div_m++;
+		div_m >>= 1;
+	}
+	if (div_m > 16)
+		div_m = 16;
+
+	/* config mod clock */
+	writel(CCM_NAND_CTRL_ENABLE | CCM_NAND_CTRL_PLL6 |
+	       CCM_NAND_CTRL_N(div_n) | CCM_NAND_CTRL_M(div_m),
+	       &ccm->nand0_clk_cfg);
+
+	/* gate on nand clock */
+	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_NAND0));
+#ifdef CONFIG_MACH_SUN9I
+	setbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
+#else
+	setbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
+#endif
+}
+
+static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
+			      unsigned int timeout_ms)
+{
+	unsigned int timeout_ticks;
+	u32 time_start, status;
+	int ret = -ETIMEDOUT;
+
+	if (!timeout_ms)
+		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
+
+	timeout_ticks = (timeout_ms * CONFIG_SYS_HZ) / 1000;
+
+	time_start = get_timer(0);
+
+	do {
+		status = readl(nfc->regs + NFC_REG_ST);
+		if ((status & flags) == flags) {
+			ret = 0;
+			break;
+		}
+
+		udelay(1);
+	} while (get_timer(time_start) < timeout_ticks);
+
+	writel(status & flags, nfc->regs + NFC_REG_ST);
+
+	return ret;
+}
+
+static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
+{
+	unsigned long timeout = (CONFIG_SYS_HZ *
+				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
+	u32 time_start;
+
+	time_start = get_timer(0);
+	do {
+		if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
+			return 0;
+	} while (get_timer(time_start) < timeout);
+
+	dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
+	return -ETIMEDOUT;
+}
+
+static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
+{
+	unsigned long timeout = (CONFIG_SYS_HZ *
+				 NFC_DEFAULT_TIMEOUT_MS) / 1000;
+	u32 time_start;
+
+	writel(0, nfc->regs + NFC_REG_ECC_CTL);
+	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
+
+	time_start = get_timer(0);
+	do {
+		if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
+			return 0;
+	} while (get_timer(time_start) < timeout);
+
+	dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
+	return -ETIMEDOUT;
+}
+
+static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nand_rb *rb;
+	unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
+	int ret;
+
+	if (sunxi_nand->selected < 0)
+		return 0;
+
+	rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
+
+	switch (rb->type) {
+	case RB_NATIVE:
+		ret = !!(readl(nfc->regs + NFC_REG_ST) &
+			 NFC_RB_STATE(rb->info.nativeid));
+		if (ret)
+			break;
+
+		sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
+		ret = !!(readl(nfc->regs + NFC_REG_ST) &
+			 NFC_RB_STATE(rb->info.nativeid));
+		break;
+	case RB_GPIO:
+		ret = dm_gpio_get_value(&rb->info.gpio);
+		break;
+	case RB_NONE:
+	default:
+		ret = 0;
+		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
+		break;
+	}
+
+	return ret;
+}
+
+static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nand_chip_sel *sel;
+	u32 ctl;
+
+	if (chip > 0 && chip >= sunxi_nand->nsels)
+		return;
+
+	if (chip == sunxi_nand->selected)
+		return;
+
+	ctl = readl(nfc->regs + NFC_REG_CTL) &
+	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
+
+	if (chip >= 0) {
+		sel = &sunxi_nand->sels[chip];
+
+		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
+		       NFC_PAGE_SHIFT(nand->page_shift - 10);
+		if (sel->rb.type == RB_NONE) {
+			nand->dev_ready = NULL;
+		} else {
+			nand->dev_ready = sunxi_nfc_dev_ready;
+			if (sel->rb.type == RB_NATIVE)
+				ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
+		}
+
+		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
+
+		if (nfc->clk_rate != sunxi_nand->clk_rate) {
+			sunxi_nfc_set_clk_rate(sunxi_nand->clk_rate);
+			nfc->clk_rate = sunxi_nand->clk_rate;
+		}
+	}
+
+	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
+	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
+	writel(ctl, nfc->regs + NFC_REG_CTL);
+
+	sunxi_nand->selected = chip;
+}
+
+static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+	int cnt;
+	int offs = 0;
+	u32 tmp;
+
+	while (len > offs) {
+		cnt = min(len - offs, NFC_SRAM_SIZE);
+
+		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+		if (ret)
+			break;
+
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
+		writel(tmp, nfc->regs + NFC_REG_CMD);
+
+		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
+		if (ret)
+			break;
+
+		if (buf)
+			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
+				      cnt);
+		offs += cnt;
+	}
+}
+
+static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+	int cnt;
+	int offs = 0;
+	u32 tmp;
+
+	while (len > offs) {
+		cnt = min(len - offs, NFC_SRAM_SIZE);
+
+		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+		if (ret)
+			break;
+
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
+		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
+		      NFC_ACCESS_DIR;
+		writel(tmp, nfc->regs + NFC_REG_CMD);
+
+		ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
+		if (ret)
+			break;
+
+		offs += cnt;
+	}
+}
+
+static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
+{
+	uint8_t ret;
+
+	sunxi_nfc_read_buf(mtd, &ret, 1);
+
+	return ret;
+}
+
+static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
+			       unsigned int ctrl)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+	u32 tmp;
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		tmp = readl(nfc->regs + NFC_REG_CTL);
+		if (ctrl & NAND_NCE)
+			tmp |= NFC_CE_CTL;
+		else
+			tmp &= ~NFC_CE_CTL;
+		writel(tmp, nfc->regs + NFC_REG_CTL);
+	}
+
+	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
+	    !(ctrl & (NAND_CLE | NAND_ALE))) {
+		u32 cmd = 0;
+
+		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
+			return;
+
+		if (sunxi_nand->cmd_cycles--)
+			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
+
+		if (sunxi_nand->cmd_cycles--) {
+			cmd |= NFC_SEND_CMD2;
+			writel(sunxi_nand->cmd[1],
+			       nfc->regs + NFC_REG_RCMD_SET);
+		}
+
+		sunxi_nand->cmd_cycles = 0;
+
+		if (sunxi_nand->addr_cycles) {
+			cmd |= NFC_SEND_ADR |
+			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
+			writel(sunxi_nand->addr[0],
+			       nfc->regs + NFC_REG_ADDR_LOW);
+		}
+
+		if (sunxi_nand->addr_cycles > 4)
+			writel(sunxi_nand->addr[1],
+			       nfc->regs + NFC_REG_ADDR_HIGH);
+
+		writel(cmd, nfc->regs + NFC_REG_CMD);
+		sunxi_nand->addr[0] = 0;
+		sunxi_nand->addr[1] = 0;
+		sunxi_nand->addr_cycles = 0;
+		sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
+	}
+
+	if (ctrl & NAND_CLE) {
+		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
+	} else if (ctrl & NAND_ALE) {
+		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
+				dat << ((sunxi_nand->addr_cycles % 4) * 8);
+		sunxi_nand->addr_cycles++;
+	}
+}
+
+/* These seed values have been extracted from Allwinner's BSP */
+static const u16 sunxi_nfc_randomizer_page_seeds[] = {
+	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
+	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
+	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
+	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
+	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
+	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
+	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
+	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
+	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
+	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
+	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
+	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
+	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
+	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
+	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
+	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+
+/*
+ * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
+ * have been generated using
+ * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
+ * the randomizer engine does internally before de/scrambling OOB data.
+ *
+ * Those tables are statically defined to avoid calculating randomizer state
+ * at runtime.
+ */
+static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
+	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
+	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
+	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
+	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
+	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
+	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
+	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
+	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
+	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
+	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
+	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
+	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
+	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
+	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
+	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
+	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
+};
+
+static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
+	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
+	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
+	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
+	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
+	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
+	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
+	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
+	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
+	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
+	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
+	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
+	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
+	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
+	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
+	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
+	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
+};
+
+static u16 sunxi_nfc_randomizer_step(u16 state, int count)
+{
+	state &= 0x7fff;
+
+	/*
+	 * This loop is just a simple implementation of a Fibonacci LFSR using
+	 * the x16 + x15 + 1 polynomial.
+	 */
+	while (count--)
+		state = ((state >> 1) |
+			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
+
+	return state;
+}
+
+static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
+{
+	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
+	int mod = mtd->erasesize / mtd->writesize;
+
+	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
+		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
+
+	if (ecc) {
+		if (mtd->ecc_step_size == 512)
+			seeds = sunxi_nfc_randomizer_ecc512_seeds;
+		else
+			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
+	}
+
+	return seeds[page % mod];
+}
+
+static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
+					int page, bool ecc)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	u16 state;
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
+	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
+{
+	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
+
+	bbm[0] ^= state;
+	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
+}
+
+static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
+					   const uint8_t *buf, int len,
+					   bool ecc, int page)
+{
+	sunxi_nfc_randomizer_config(mtd, page, ecc);
+	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_write_buf(mtd, buf, len);
+	sunxi_nfc_randomizer_disable(mtd);
+}
+
+static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
+					  int len, bool ecc, int page)
+{
+	sunxi_nfc_randomizer_config(mtd, page, ecc);
+	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_read_buf(mtd, buf, len);
+	sunxi_nfc_randomizer_disable(mtd);
+}
+
+static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
+	u32 ecc_ctl;
+
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
+		     NFC_ECC_BLOCK_SIZE_MSK);
+	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
+
+	if (nand->ecc.size == 512)
+		ecc_ctl |= NFC_ECC_BLOCK_512;
+
+	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
+{
+	buf[0] = user_data;
+	buf[1] = user_data >> 8;
+	buf[2] = user_data >> 16;
+	buf[3] = user_data >> 24;
+}
+
+static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
+				       u8 *data, int data_off,
+				       u8 *oob, int oob_off,
+				       int *cur_off,
+				       unsigned int *max_bitflips,
+				       bool bbm, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int raw_mode = 0;
+	u32 status;
+	int ret;
+
+	if (*cur_off != data_off)
+		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
+
+	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
+
+	if (data_off + ecc->size != oob_off)
+		nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	sunxi_nfc_randomizer_enable(mtd);
+	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
+	sunxi_nfc_randomizer_disable(mtd);
+	if (ret)
+		return ret;
+
+	*cur_off = oob_off + ecc->bytes + 4;
+
+	status = readl(nfc->regs + NFC_REG_ECC_ST);
+	if (status & NFC_ECC_PAT_FOUND(0)) {
+		u8 pattern = 0xff;
+
+		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1)))
+			pattern = 0x0;
+
+		memset(data, pattern, ecc->size);
+		memset(oob, pattern, ecc->bytes + 4);
+
+		return 1;
+	}
+
+	ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
+
+	memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
+
+	nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
+	sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, true, page);
+
+	if (status & NFC_ECC_ERR(0)) {
+		/*
+		 * Re-read the data with the randomizer disabled to identify
+		 * bitflips in erased pages.
+		 */
+		if (nand->options & NAND_NEED_SCRAMBLING) {
+			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
+			nand->read_buf(mtd, data, ecc->size);
+			nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
+			nand->read_buf(mtd, oob, ecc->bytes + 4);
+		}
+
+		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
+						  oob, ecc->bytes + 4,
+						  NULL, 0, ecc->strength);
+		if (ret >= 0)
+			raw_mode = 1;
+	} else {
+		/*
+		 * The engine protects 4 bytes of OOB data per chunk.
+		 * Retrieve the corrected OOB bytes.
+		 */
+		sunxi_nfc_user_data_to_buf(readl(nfc->regs +
+						 NFC_REG_USER_DATA(0)),
+					   oob);
+
+		/* De-randomize the Bad Block Marker. */
+		if (bbm && nand->options & NAND_NEED_SCRAMBLING)
+			sunxi_nfc_randomize_bbm(mtd, page, oob);
+	}
+
+	if (ret < 0) {
+		mtd->ecc_stats.failed++;
+	} else {
+		mtd->ecc_stats.corrected += ret;
+		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
+	}
+
+	return raw_mode;
+}
+
+static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
+					    u8 *oob, int *cur_off,
+					    bool randomize, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int offset = ((ecc->bytes + 4) * ecc->steps);
+	int len = mtd->oobsize - offset;
+
+	if (len <= 0)
+		return;
+
+	if (*cur_off != offset)
+		nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
+			      offset + mtd->writesize, -1);
+
+	if (!randomize)
+		sunxi_nfc_read_buf(mtd, oob + offset, len);
+	else
+		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
+					      false, page);
+
+	*cur_off = mtd->oobsize + mtd->writesize;
+}
+
+static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
+{
+	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
+}
+
+static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
+					const u8 *data, int data_off,
+					const u8 *oob, int oob_off,
+					int *cur_off, bool bbm,
+					int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int ret;
+
+	if (data_off != *cur_off)
+		nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
+
+	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
+
+	/* Fill OOB data in */
+	if ((nand->options & NAND_NEED_SCRAMBLING) && bbm) {
+		u8 user_data[4];
+
+		memcpy(user_data, oob, 4);
+		sunxi_nfc_randomize_bbm(mtd, page, user_data);
+		writel(sunxi_nfc_buf_to_user_data(user_data),
+		       nfc->regs + NFC_REG_USER_DATA(0));
+	} else {
+		writel(sunxi_nfc_buf_to_user_data(oob),
+		       nfc->regs + NFC_REG_USER_DATA(0));
+	}
+
+	if (data_off + ecc->size != oob_off)
+		nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	sunxi_nfc_randomizer_enable(mtd);
+	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
+	       NFC_ACCESS_DIR | NFC_ECC_OP,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
+	sunxi_nfc_randomizer_disable(mtd);
+	if (ret)
+		return ret;
+
+	*cur_off = oob_off + ecc->bytes + 4;
+
+	return 0;
+}
+
+static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
+					     u8 *oob, int *cur_off,
+					     int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int offset = ((ecc->bytes + 4) * ecc->steps);
+	int len = mtd->oobsize - offset;
+
+	if (len <= 0)
+		return;
+
+	if (*cur_off != offset)
+		nand->cmdfunc(mtd, NAND_CMD_RNDIN,
+			      offset + mtd->writesize, -1);
+
+	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
+
+	*cur_off = mtd->oobsize + mtd->writesize;
+}
+
+static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
+				      struct nand_chip *chip, uint8_t *buf,
+				      int oob_required, int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	unsigned int max_bitflips = 0;
+	int ret, i, cur_off = 0;
+	bool raw_mode = false;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		u8 *data = buf + data_off;
+		u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
+						  oob_off + mtd->writesize,
+						  &cur_off, &max_bitflips,
+						  !i, page);
+		if (ret < 0)
+			return ret;
+		else if (ret)
+			raw_mode = true;
+	}
+
+	if (oob_required)
+		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
+						!raw_mode, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
+					 struct nand_chip *chip,
+					 uint32_t data_offs, uint32_t readlen,
+					 uint8_t *bufpoi, int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+	unsigned int max_bitflips = 0;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+	for (i = data_offs / ecc->size;
+	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		u8 *data = bufpoi + data_off;
+		u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
+			oob, oob_off + mtd->writesize,
+			&cur_off, &max_bitflips, !i, page);
+		if (ret < 0)
+			return ret;
+	}
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
+				       struct nand_chip *chip,
+				       const uint8_t *buf, int oob_required,
+				       int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		const u8 *data = buf + data_off;
+		const u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+						   oob_off + mtd->writesize,
+						   &cur_off, !i, page);
+		if (ret)
+			return ret;
+	}
+
+	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+						 &cur_off, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return 0;
+}
+
+static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
+					  struct nand_chip *chip,
+					  u32 data_offs, u32 data_len,
+					  const u8 *buf, int oob_required,
+					  int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = data_offs / ecc->size;
+	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		const u8 *data = buf + data_off;
+		const u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+						   oob_off + mtd->writesize,
+						   &cur_off, !i, page);
+		if (ret)
+			return ret;
+	}
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return 0;
+}
+
+static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
+					       struct nand_chip *chip,
+					       uint8_t *buf, int oob_required,
+					       int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	unsigned int max_bitflips = 0;
+	int ret, i, cur_off = 0;
+	bool raw_mode = false;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * (ecc->size + ecc->bytes + 4);
+		int oob_off = data_off + ecc->size;
+		u8 *data = buf + (i * ecc->size);
+		u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
+
+		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
+						  oob_off, &cur_off,
+						  &max_bitflips, !i, page);
+		if (ret < 0)
+			return ret;
+		else if (ret)
+			raw_mode = true;
+	}
+
+	if (oob_required)
+		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
+						!raw_mode, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
+						struct nand_chip *chip,
+						const uint8_t *buf,
+						int oob_required, int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * (ecc->size + ecc->bytes + 4);
+		int oob_off = data_off + ecc->size;
+		const u8 *data = buf + (i * ecc->size);
+		const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
+
+		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
+						   oob, oob_off, &cur_off,
+						   false, page);
+		if (ret)
+			return ret;
+	}
+
+	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+						 &cur_off, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return 0;
+}
+
+static const s32 tWB_lut[] = {6, 12, 16, 20};
+static const s32 tRHW_lut[] = {4, 8, 12, 20};
+
+static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
+		u32 clk_period)
+{
+	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
+	int i;
+
+	for (i = 0; i < lut_size; i++) {
+		if (clk_cycles <= lut[i])
+			return i;
+	}
+
+	/* Doesn't fit */
+	return -EINVAL;
+}
+
+#define sunxi_nand_lookup_timing(l, p, c) \
+			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
+
+static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
+				       const struct nand_sdr_timings *timings)
+{
+	u32 min_clk_period = 0;
+	s32 tWB, tADL, tWHR, tRHW, tCAD;
+
+	/* T1 <=> tCLS */
+	if (timings->tCLS_min > min_clk_period)
+		min_clk_period = timings->tCLS_min;
+
+	/* T2 <=> tCLH */
+	if (timings->tCLH_min > min_clk_period)
+		min_clk_period = timings->tCLH_min;
+
+	/* T3 <=> tCS */
+	if (timings->tCS_min > min_clk_period)
+		min_clk_period = timings->tCS_min;
+
+	/* T4 <=> tCH */
+	if (timings->tCH_min > min_clk_period)
+		min_clk_period = timings->tCH_min;
+
+	/* T5 <=> tWP */
+	if (timings->tWP_min > min_clk_period)
+		min_clk_period = timings->tWP_min;
+
+	/* T6 <=> tWH */
+	if (timings->tWH_min > min_clk_period)
+		min_clk_period = timings->tWH_min;
+
+	/* T7 <=> tALS */
+	if (timings->tALS_min > min_clk_period)
+		min_clk_period = timings->tALS_min;
+
+	/* T8 <=> tDS */
+	if (timings->tDS_min > min_clk_period)
+		min_clk_period = timings->tDS_min;
+
+	/* T9 <=> tDH */
+	if (timings->tDH_min > min_clk_period)
+		min_clk_period = timings->tDH_min;
+
+	/* T10 <=> tRR */
+	if (timings->tRR_min > (min_clk_period * 3))
+		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
+
+	/* T11 <=> tALH */
+	if (timings->tALH_min > min_clk_period)
+		min_clk_period = timings->tALH_min;
+
+	/* T12 <=> tRP */
+	if (timings->tRP_min > min_clk_period)
+		min_clk_period = timings->tRP_min;
+
+	/* T13 <=> tREH */
+	if (timings->tREH_min > min_clk_period)
+		min_clk_period = timings->tREH_min;
+
+	/* T14 <=> tRC */
+	if (timings->tRC_min > (min_clk_period * 2))
+		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
+
+	/* T15 <=> tWC */
+	if (timings->tWC_min > (min_clk_period * 2))
+		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
+
+	/* T16 - T19 + tCAD */
+	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
+					min_clk_period);
+	if (tWB < 0) {
+		dev_err(nfc->dev, "unsupported tWB\n");
+		return tWB;
+	}
+
+	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
+	if (tADL > 3) {
+		dev_err(nfc->dev, "unsupported tADL\n");
+		return -EINVAL;
+	}
+
+	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
+	if (tWHR > 3) {
+		dev_err(nfc->dev, "unsupported tWHR\n");
+		return -EINVAL;
+	}
+
+	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
+					min_clk_period);
+	if (tRHW < 0) {
+		dev_err(nfc->dev, "unsupported tRHW\n");
+		return tRHW;
+	}
+
+	/*
+	 * TODO: according to ONFI specs this value only applies for DDR NAND,
+	 * but Allwinner seems to set this to 0x7. Mimic them for now.
+	 */
+	tCAD = 0x7;
+
+	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
+	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
+
+	/*
+	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
+	 * output cycle timings shall be used if the host drives tRC less than
+	 * 30 ns.
+	 */
+	chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
+
+	/* Convert min_clk_period from picoseconds to nanoseconds */
+	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
+
+	/*
+	 * Convert min_clk_period into a clk frequency, then get the
+	 * appropriate rate for the NAND controller IP given this formula
+	 * (specified in the datasheet):
+	 * nand clk_rate = min_clk_rate
+	 */
+	chip->clk_rate = 1000000000L / min_clk_period;
+
+	return 0;
+}
+
+static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(&chip->nand);
+	const struct nand_sdr_timings *timings;
+	int ret;
+	int mode;
+
+	mode = onfi_get_async_timing_mode(&chip->nand);
+	if (mode == ONFI_TIMING_MODE_UNKNOWN) {
+		mode = chip->nand.onfi_timing_mode_default;
+	} else {
+		uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
+		int i;
+
+		mode = fls(mode) - 1;
+		if (mode < 0)
+			mode = 0;
+
+		feature[0] = mode;
+		for (i = 0; i < chip->nsels; i++) {
+			chip->nand.select_chip(mtd, i);
+			ret = chip->nand.onfi_set_features(mtd,
+						&chip->nand,
+						ONFI_FEATURE_ADDR_TIMING_MODE,
+						feature);
+			chip->nand.select_chip(mtd, -1);
+			if (ret && ret != -ENOTSUPP)
+				return ret;
+		}
+	}
+
+	timings = onfi_async_timing_mode_to_sdr_timings(mode);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	return sunxi_nand_chip_set_timings(chip, timings);
+}
+
+static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
+					      struct nand_ecc_ctrl *ecc)
+{
+	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
+	struct sunxi_nand_hw_ecc *data;
+	struct nand_ecclayout *layout;
+	int nsectors;
+	int ret;
+	int i;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	if (ecc->size != 512 && ecc->size != 1024)
+		return -EINVAL;
+
+	/* Prefer 1k ECC chunk over 512 ones */
+	if (ecc->size == 512 && mtd->writesize > 512) {
+		ecc->size = 1024;
+		ecc->strength *= 2;
+	}
+
+	/* Add ECC info retrieval from DT */
+	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
+		if (ecc->strength <= strengths[i]) {
+			/*
+			 * Update ecc->strength value with the actual strength
+			 * that will be used by the ECC engine.
+			 */
+			ecc->strength = strengths[i];
+			break;
+		}
+	}
+
+	if (i >= ARRAY_SIZE(strengths)) {
+		dev_err(nfc->dev, "unsupported strength\n");
+		ret = -ENOTSUPP;
+		goto err;
+	}
+
+	data->mode = i;
+
+	/* HW ECC always request ECC bytes for 1024 bytes blocks */
+	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
+
+	/* HW ECC always work with even numbers of ECC bytes */
+	ecc->bytes = ALIGN(ecc->bytes, 2);
+
+	layout = &data->layout;
+	nsectors = mtd->writesize / ecc->size;
+
+	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
+		ret = -EINVAL;
+		goto err;
+	}
+
+	layout->eccbytes = (ecc->bytes * nsectors);
+
+	ecc->layout = layout;
+	ecc->priv = data;
+
+	return 0;
+
+err:
+	kfree(data);
+
+	return ret;
+}
+
+#ifndef __UBOOT__
+static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
+{
+	kfree(ecc->priv);
+}
+#endif /* __UBOOT__ */
+
+static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+				       struct nand_ecc_ctrl *ecc)
+{
+	struct nand_ecclayout *layout;
+	int nsectors;
+	int i, j;
+	int ret;
+
+	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
+	if (ret)
+		return ret;
+
+	ecc->read_page = sunxi_nfc_hw_ecc_read_page;
+	ecc->write_page = sunxi_nfc_hw_ecc_write_page;
+	ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
+	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
+	layout = ecc->layout;
+	nsectors = mtd->writesize / ecc->size;
+
+	for (i = 0; i < nsectors; i++) {
+		if (i) {
+			layout->oobfree[i].offset =
+				layout->oobfree[i - 1].offset +
+				layout->oobfree[i - 1].length +
+				ecc->bytes;
+			layout->oobfree[i].length = 4;
+		} else {
+			/*
+			 * The first 2 bytes are used for BB markers, hence we
+			 * only have 2 bytes available in the first user data
+			 * section.
+			 */
+			layout->oobfree[i].length = 2;
+			layout->oobfree[i].offset = 2;
+		}
+
+		for (j = 0; j < ecc->bytes; j++)
+			layout->eccpos[(ecc->bytes * i) + j] =
+					layout->oobfree[i].offset +
+					layout->oobfree[i].length + j;
+	}
+
+	if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
+		layout->oobfree[nsectors].offset =
+				layout->oobfree[nsectors - 1].offset +
+				layout->oobfree[nsectors - 1].length +
+				ecc->bytes;
+		layout->oobfree[nsectors].length = mtd->oobsize -
+				((ecc->bytes + 4) * nsectors);
+	}
+
+	return 0;
+}
+
+static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
+						struct nand_ecc_ctrl *ecc)
+{
+	struct nand_ecclayout *layout;
+	int nsectors;
+	int i;
+	int ret;
+
+	ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc);
+	if (ret)
+		return ret;
+
+	ecc->prepad = 4;
+	ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
+	ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
+
+	layout = ecc->layout;
+	nsectors = mtd->writesize / ecc->size;
+
+	for (i = 0; i < (ecc->bytes * nsectors); i++)
+		layout->eccpos[i] = i;
+
+	layout->oobfree[0].length = mtd->oobsize - i;
+	layout->oobfree[0].offset = i;
+
+	return 0;
+}
+
+#ifndef __UBOOT__
+static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
+{
+	switch (ecc->mode) {
+	case NAND_ECC_HW:
+	case NAND_ECC_HW_SYNDROME:
+		sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
+		break;
+	case NAND_ECC_NONE:
+		kfree(ecc->layout);
+	default:
+		break;
+	}
+}
+#endif /* __UBOOT__ */
+
+static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	int ret;
+
+	if (!ecc->size) {
+		ecc->size = nand->ecc_step_ds;
+		ecc->strength = nand->ecc_strength_ds;
+	}
+
+	if (!ecc->size || !ecc->strength)
+		return -EINVAL;
+
+	switch (ecc->mode) {
+	case NAND_ECC_SOFT_BCH:
+		break;
+	case NAND_ECC_HW:
+		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc);
+		if (ret)
+			return ret;
+		break;
+	case NAND_ECC_HW_SYNDROME:
+		ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc);
+		if (ret)
+			return ret;
+		break;
+	case NAND_ECC_NONE:
+		ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
+		if (!ecc->layout)
+			return -ENOMEM;
+		ecc->layout->oobfree[0].length = mtd->oobsize;
+	case NAND_ECC_SOFT:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int sunxi_nand_chip_init(int node, struct sunxi_nfc *nfc, int devnum)
+{
+	const struct nand_sdr_timings *timings;
+	const void *blob = gd->fdt_blob;
+	struct sunxi_nand_chip *chip;
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	int nsels;
+	int ret;
+	int i;
+	u32 cs[8], rb[8];
+
+	if (!fdt_getprop(blob, node, "reg", &nsels))
+		return -EINVAL;
+
+	nsels /= sizeof(u32);
+	if (!nsels || nsels > 8) {
+		dev_err(dev, "invalid reg property size\n");
+		return -EINVAL;
+	}
+
+	chip = kzalloc(sizeof(*chip) +
+		       (nsels * sizeof(struct sunxi_nand_chip_sel)),
+		       GFP_KERNEL);
+	if (!chip) {
+		dev_err(dev, "could not allocate chip\n");
+		return -ENOMEM;
+	}
+
+	chip->nsels = nsels;
+	chip->selected = -1;
+
+	for (i = 0; i < nsels; i++) {
+		cs[i] = -1;
+		rb[i] = -1;
+	}
+
+	ret = fdtdec_get_int_array(gd->fdt_blob, node, "reg", cs, nsels);
+	if (ret) {
+		dev_err(dev, "could not retrieve reg property: %d\n", ret);
+		return ret;
+	}
+
+	ret = fdtdec_get_int_array(gd->fdt_blob, node, "allwinner,rb", rb,
+				   nsels);
+	if (ret) {
+		dev_err(dev, "could not retrieve reg property: %d\n", ret);
+		return ret;
+	}
+
+	for (i = 0; i < nsels; i++) {
+		int tmp = cs[i];
+
+		if (tmp > NFC_MAX_CS) {
+			dev_err(dev,
+				"invalid reg value: %u (max CS = 7)\n",
+				tmp);
+			return -EINVAL;
+		}
+
+		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %d already assigned\n", tmp);
+			return -EINVAL;
+		}
+
+		chip->sels[i].cs = tmp;
+
+		tmp = rb[i];
+		if (tmp >= 0 && tmp < 2) {
+			chip->sels[i].rb.type = RB_NATIVE;
+			chip->sels[i].rb.info.nativeid = tmp;
+		} else {
+			ret = gpio_request_by_name_nodev(offset_to_ofnode(node),
+						"rb-gpios", i,
+						&chip->sels[i].rb.info.gpio,
+						GPIOD_IS_IN);
+			if (ret)
+				chip->sels[i].rb.type = RB_GPIO;
+			else
+				chip->sels[i].rb.type = RB_NONE;
+		}
+	}
+
+	timings = onfi_async_timing_mode_to_sdr_timings(0);
+	if (IS_ERR(timings)) {
+		ret = PTR_ERR(timings);
+		dev_err(dev,
+			"could not retrieve timings for ONFI mode 0: %d\n",
+			ret);
+		return ret;
+	}
+
+	ret = sunxi_nand_chip_set_timings(chip, timings);
+	if (ret) {
+		dev_err(dev, "could not configure chip timings: %d\n", ret);
+		return ret;
+	}
+
+	nand = &chip->nand;
+	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
+	nand->chip_delay = 200;
+	nand->controller = &nfc->controller;
+	/*
+	 * Set the ECC mode to the default value in case nothing is specified
+	 * in the DT.
+	 */
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->flash_node = node;
+	nand->select_chip = sunxi_nfc_select_chip;
+	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
+	nand->read_buf = sunxi_nfc_read_buf;
+	nand->write_buf = sunxi_nfc_write_buf;
+	nand->read_byte = sunxi_nfc_read_byte;
+
+	mtd = nand_to_mtd(nand);
+	ret = nand_scan_ident(mtd, nsels, NULL);
+	if (ret)
+		return ret;
+
+	if (nand->bbt_options & NAND_BBT_USE_FLASH)
+		nand->bbt_options |= NAND_BBT_NO_OOB;
+
+	if (nand->options & NAND_NEED_SCRAMBLING)
+		nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	nand->options |= NAND_SUBPAGE_READ;
+
+	ret = sunxi_nand_chip_init_timings(chip);
+	if (ret) {
+		dev_err(dev, "could not configure chip timings: %d\n", ret);
+		return ret;
+	}
+
+	ret = sunxi_nand_ecc_init(mtd, &nand->ecc);
+	if (ret) {
+		dev_err(dev, "ECC init failed: %d\n", ret);
+		return ret;
+	}
+
+	ret = nand_scan_tail(mtd);
+	if (ret) {
+		dev_err(dev, "nand_scan_tail failed: %d\n", ret);
+		return ret;
+	}
+
+	ret = nand_register(devnum, mtd);
+	if (ret) {
+		dev_err(dev, "failed to register mtd device: %d\n", ret);
+		return ret;
+	}
+
+	list_add_tail(&chip->node, &nfc->chips);
+
+	return 0;
+}
+
+static int sunxi_nand_chips_init(int node, struct sunxi_nfc *nfc)
+{
+	const void *blob = gd->fdt_blob;
+	int nand_node;
+	int ret, i = 0;
+
+	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
+	     nand_node = fdt_next_subnode(blob, nand_node))
+		i++;
+
+	if (i > 8) {
+		dev_err(dev, "too many NAND chips: %d (max = 8)\n", i);
+		return -EINVAL;
+	}
+
+	i = 0;
+	for (nand_node = fdt_first_subnode(blob, node); nand_node >= 0;
+	     nand_node = fdt_next_subnode(blob, nand_node)) {
+		ret = sunxi_nand_chip_init(nand_node, nfc, i++);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+#ifndef __UBOOT__
+static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
+{
+	struct sunxi_nand_chip *chip;
+
+	while (!list_empty(&nfc->chips)) {
+		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
+					node);
+		nand_release(&chip->mtd);
+		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
+		list_del(&chip->node);
+		kfree(chip);
+	}
+}
+#endif /* __UBOOT__ */
+
+void sunxi_nand_init(void)
+{
+	const void *blob = gd->fdt_blob;
+	struct sunxi_nfc *nfc;
+	fdt_addr_t regs;
+	int node;
+	int ret;
+
+	nfc = kzalloc(sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return;
+
+	spin_lock_init(&nfc->controller.lock);
+	init_waitqueue_head(&nfc->controller.wq);
+	INIT_LIST_HEAD(&nfc->chips);
+
+	node = fdtdec_next_compatible(blob, 0, COMPAT_SUNXI_NAND);
+	if (node < 0) {
+		pr_err("unable to find nfc node in device tree\n");
+		goto err;
+	}
+
+	if (!fdtdec_get_is_enabled(blob, node)) {
+		pr_err("nfc disabled in device tree\n");
+		goto err;
+	}
+
+	regs = fdtdec_get_addr(blob, node, "reg");
+	if (regs == FDT_ADDR_T_NONE) {
+		pr_err("unable to find nfc address in device tree\n");
+		goto err;
+	}
+
+	nfc->regs = (void *)regs;
+
+	ret = sunxi_nfc_rst(nfc);
+	if (ret)
+		goto err;
+
+	ret = sunxi_nand_chips_init(node, nfc);
+	if (ret) {
+		dev_err(dev, "failed to init nand chips\n");
+		goto err;
+	}
+
+	return;
+
+err:
+	kfree(nfc);
+}
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Boris BREZILLON");
+MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
diff --git a/drivers/mtd/nand/raw/sunxi_nand_spl.c b/drivers/mtd/nand/raw/sunxi_nand_spl.c
new file mode 100644
index 0000000..6cde981
--- /dev/null
+++ b/drivers/mtd/nand/raw/sunxi_nand_spl.c
@@ -0,0 +1,548 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com>
+ * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com>
+ */
+
+#include <asm/arch/clock.h>
+#include <asm/io.h>
+#include <common.h>
+#include <config.h>
+#include <nand.h>
+#include <linux/ctype.h>
+
+/* registers */
+#define NFC_CTL                    0x00000000
+#define NFC_ST                     0x00000004
+#define NFC_INT                    0x00000008
+#define NFC_TIMING_CTL             0x0000000C
+#define NFC_TIMING_CFG             0x00000010
+#define NFC_ADDR_LOW               0x00000014
+#define NFC_ADDR_HIGH              0x00000018
+#define NFC_SECTOR_NUM             0x0000001C
+#define NFC_CNT                    0x00000020
+#define NFC_CMD                    0x00000024
+#define NFC_RCMD_SET               0x00000028
+#define NFC_WCMD_SET               0x0000002C
+#define NFC_IO_DATA                0x00000030
+#define NFC_ECC_CTL                0x00000034
+#define NFC_ECC_ST                 0x00000038
+#define NFC_DEBUG                  0x0000003C
+#define NFC_ECC_CNT0               0x00000040
+#define NFC_ECC_CNT1               0x00000044
+#define NFC_ECC_CNT2               0x00000048
+#define NFC_ECC_CNT3               0x0000004C
+#define NFC_USER_DATA_BASE         0x00000050
+#define NFC_EFNAND_STATUS          0x00000090
+#define NFC_SPARE_AREA             0x000000A0
+#define NFC_PATTERN_ID             0x000000A4
+#define NFC_RAM0_BASE              0x00000400
+#define NFC_RAM1_BASE              0x00000800
+
+#define NFC_CTL_EN                 (1 << 0)
+#define NFC_CTL_RESET              (1 << 1)
+#define NFC_CTL_RAM_METHOD         (1 << 14)
+#define NFC_CTL_PAGE_SIZE_MASK     (0xf << 8)
+#define NFC_CTL_PAGE_SIZE(a)       ((fls(a) - 11) << 8)
+
+
+#define NFC_ECC_EN                 (1 << 0)
+#define NFC_ECC_PIPELINE           (1 << 3)
+#define NFC_ECC_EXCEPTION          (1 << 4)
+#define NFC_ECC_BLOCK_SIZE         (1 << 5)
+#define NFC_ECC_RANDOM_EN          (1 << 9)
+#define NFC_ECC_RANDOM_DIRECTION   (1 << 10)
+
+
+#define NFC_ADDR_NUM_OFFSET        16
+#define NFC_SEND_ADDR              (1 << 19)
+#define NFC_ACCESS_DIR             (1 << 20)
+#define NFC_DATA_TRANS             (1 << 21)
+#define NFC_SEND_CMD1              (1 << 22)
+#define NFC_WAIT_FLAG              (1 << 23)
+#define NFC_SEND_CMD2              (1 << 24)
+#define NFC_SEQ                    (1 << 25)
+#define NFC_DATA_SWAP_METHOD       (1 << 26)
+#define NFC_ROW_AUTO_INC           (1 << 27)
+#define NFC_SEND_CMD3              (1 << 28)
+#define NFC_SEND_CMD4              (1 << 29)
+#define NFC_RAW_CMD                (0 << 30)
+#define NFC_ECC_CMD                (1 << 30)
+#define NFC_PAGE_CMD               (2 << 30)
+
+#define NFC_ST_CMD_INT_FLAG        (1 << 1)
+#define NFC_ST_DMA_INT_FLAG        (1 << 2)
+#define NFC_ST_CMD_FIFO_STAT       (1 << 3)
+
+#define NFC_READ_CMD_OFFSET         0
+#define NFC_RANDOM_READ_CMD0_OFFSET 8
+#define NFC_RANDOM_READ_CMD1_OFFSET 16
+
+#define NFC_CMD_RNDOUTSTART        0xE0
+#define NFC_CMD_RNDOUT             0x05
+#define NFC_CMD_READSTART          0x30
+
+struct nfc_config {
+	int page_size;
+	int ecc_strength;
+	int ecc_size;
+	int addr_cycles;
+	int nseeds;
+	bool randomize;
+	bool valid;
+};
+
+/* minimal "boot0" style NAND support for Allwinner A20 */
+
+/* random seed used by linux */
+const uint16_t random_seed[128] = {
+	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
+	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
+	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
+	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
+	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
+	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
+	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
+	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
+	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
+	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
+	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
+	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
+	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
+	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
+	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
+	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+
+#define DEFAULT_TIMEOUT_US	100000
+
+static int check_value_inner(int offset, int expected_bits,
+			     int timeout_us, int negation)
+{
+	do {
+		int val = readl(offset) & expected_bits;
+		if (negation ? !val : val)
+			return 1;
+		udelay(1);
+	} while (--timeout_us);
+
+	return 0;
+}
+
+static inline int check_value(int offset, int expected_bits,
+			      int timeout_us)
+{
+	return check_value_inner(offset, expected_bits, timeout_us, 0);
+}
+
+static inline int check_value_negated(int offset, int unexpected_bits,
+				      int timeout_us)
+{
+	return check_value_inner(offset, unexpected_bits, timeout_us, 1);
+}
+
+static int nand_wait_cmd_fifo_empty(void)
+{
+	if (!check_value_negated(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_FIFO_STAT,
+				 DEFAULT_TIMEOUT_US)) {
+		printf("nand: timeout waiting for empty cmd FIFO\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int nand_wait_int(void)
+{
+	if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
+			 DEFAULT_TIMEOUT_US)) {
+		printf("nand: timeout waiting for interruption\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int nand_exec_cmd(u32 cmd)
+{
+	int ret;
+
+	ret = nand_wait_cmd_fifo_empty();
+	if (ret)
+		return ret;
+
+	writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
+	writel(cmd, SUNXI_NFC_BASE + NFC_CMD);
+
+	return nand_wait_int();
+}
+
+void nand_init(void)
+{
+	uint32_t val;
+
+	board_nand_init();
+
+	val = readl(SUNXI_NFC_BASE + NFC_CTL);
+	/* enable and reset CTL */
+	writel(val | NFC_CTL_EN | NFC_CTL_RESET,
+	       SUNXI_NFC_BASE + NFC_CTL);
+
+	if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
+				 NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) {
+		printf("Couldn't initialize nand\n");
+	}
+
+	/* reset NAND */
+	nand_exec_cmd(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET);
+}
+
+static void nand_apply_config(const struct nfc_config *conf)
+{
+	u32 val;
+
+	nand_wait_cmd_fifo_empty();
+
+	val = readl(SUNXI_NFC_BASE + NFC_CTL);
+	val &= ~NFC_CTL_PAGE_SIZE_MASK;
+	writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size),
+	       SUNXI_NFC_BASE + NFC_CTL);
+	writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
+	writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA);
+}
+
+static int nand_load_page(const struct nfc_config *conf, u32 offs)
+{
+	int page = offs / conf->page_size;
+
+	writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
+	       (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
+	       (NFC_CMD_READSTART << NFC_READ_CMD_OFFSET),
+	       SUNXI_NFC_BASE + NFC_RCMD_SET);
+	writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW);
+	writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
+
+	return nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
+			     NFC_SEND_ADDR | NFC_WAIT_FLAG |
+			     ((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET));
+}
+
+static int nand_change_column(u16 column)
+{
+	int ret;
+
+	writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
+	       (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
+	       (NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET),
+	       SUNXI_NFC_BASE + NFC_RCMD_SET);
+	writel(column, SUNXI_NFC_BASE + NFC_ADDR_LOW);
+
+	ret = nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
+			    (1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADDR |
+			    NFC_CMD_RNDOUT);
+	if (ret)
+		return ret;
+
+	/* Ensure tCCS has passed before reading data */
+	udelay(1);
+
+	return 0;
+}
+
+static const int ecc_bytes[] = {32, 46, 54, 60, 74, 88, 102, 110, 116};
+
+static int nand_read_page(const struct nfc_config *conf, u32 offs,
+			  void *dest, int len)
+{
+	int nsectors = len / conf->ecc_size;
+	u16 rand_seed = 0;
+	int oob_chunk_sz = ecc_bytes[conf->ecc_strength];
+	int page = offs / conf->page_size;
+	u32 ecc_st;
+	int i;
+
+	if (offs % conf->page_size || len % conf->ecc_size ||
+	    len > conf->page_size || len < 0)
+		return -EINVAL;
+
+	/* Choose correct seed if randomized */
+	if (conf->randomize)
+		rand_seed = random_seed[page % conf->nseeds];
+
+	/* Retrieve data from SRAM (PIO) */
+	for (i = 0; i < nsectors; i++) {
+		int data_off = i * conf->ecc_size;
+		int oob_off = conf->page_size + (i * oob_chunk_sz);
+		u8 *data = dest + data_off;
+
+		/* Clear ECC status and restart ECC engine */
+		writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
+		writel((rand_seed << 16) | (conf->ecc_strength << 12) |
+		       (conf->randomize ? NFC_ECC_RANDOM_EN : 0) |
+		       (conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) |
+		       NFC_ECC_EN | NFC_ECC_EXCEPTION,
+		       SUNXI_NFC_BASE + NFC_ECC_CTL);
+
+		/* Move the data in SRAM */
+		nand_change_column(data_off);
+		writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
+		nand_exec_cmd(NFC_DATA_TRANS);
+
+		/*
+		 * Let the ECC engine consume the ECC bytes and possibly correct
+		 * the data.
+		 */
+		nand_change_column(oob_off);
+		nand_exec_cmd(NFC_DATA_TRANS | NFC_ECC_CMD);
+
+		/* Get the ECC status */
+		ecc_st = readl(SUNXI_NFC_BASE + NFC_ECC_ST);
+
+		/* ECC error detected. */
+		if (ecc_st & 0xffff)
+			return -EIO;
+
+		/*
+		 * Return 1 if the first chunk is empty (needed for
+		 * configuration detection).
+		 */
+		if (!i && (ecc_st & 0x10000))
+			return 1;
+
+		/* Retrieve the data from SRAM */
+		memcpy_fromio(data, SUNXI_NFC_BASE + NFC_RAM0_BASE,
+			      conf->ecc_size);
+
+		/* Stop the ECC engine */
+		writel(readl(SUNXI_NFC_BASE + NFC_ECC_CTL) & ~NFC_ECC_EN,
+		       SUNXI_NFC_BASE + NFC_ECC_CTL);
+
+		if (data_off + conf->ecc_size >= len)
+			break;
+	}
+
+	return 0;
+}
+
+static int nand_max_ecc_strength(struct nfc_config *conf)
+{
+	int max_oobsize, max_ecc_bytes;
+	int nsectors = conf->page_size / conf->ecc_size;
+	int i;
+
+	/*
+	 * ECC strength is limited by the size of the OOB area which is
+	 * correlated with the page size.
+	 */
+	switch (conf->page_size) {
+	case 2048:
+		max_oobsize = 64;
+		break;
+	case 4096:
+		max_oobsize = 256;
+		break;
+	case 8192:
+		max_oobsize = 640;
+		break;
+	case 16384:
+		max_oobsize = 1664;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	max_ecc_bytes = max_oobsize / nsectors;
+
+	for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) {
+		if (ecc_bytes[i] > max_ecc_bytes)
+			break;
+	}
+
+	if (!i)
+		return -EINVAL;
+
+	return i - 1;
+}
+
+static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs,
+				  void *dest)
+{
+	/* NAND with pages > 4k will likely require 1k sector size. */
+	int min_ecc_size = conf->page_size > 4096 ? 1024 : 512;
+	int page = offs / conf->page_size;
+	int ret;
+
+	/*
+	 * In most cases, 1k sectors are preferred over 512b ones, start
+	 * testing this config first.
+	 */
+	for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size;
+	     conf->ecc_size >>= 1) {
+		int max_ecc_strength = nand_max_ecc_strength(conf);
+
+		nand_apply_config(conf);
+
+		/*
+		 * We are starting from the maximum ECC strength because
+		 * most of the time NAND vendors provide an OOB area that
+		 * barely meets the ECC requirements.
+		 */
+		for (conf->ecc_strength = max_ecc_strength;
+		     conf->ecc_strength >= 0;
+		     conf->ecc_strength--) {
+			conf->randomize = false;
+			if (nand_change_column(0))
+				return -EIO;
+
+			/*
+			 * Only read the first sector to speedup detection.
+			 */
+			ret = nand_read_page(conf, offs, dest, conf->ecc_size);
+			if (!ret) {
+				return 0;
+			} else if (ret > 0) {
+				/*
+				 * If page is empty we can't deduce anything
+				 * about the ECC config => stop the detection.
+				 */
+				return -EINVAL;
+			}
+
+			conf->randomize = true;
+			conf->nseeds = ARRAY_SIZE(random_seed);
+			do {
+				if (nand_change_column(0))
+					return -EIO;
+
+				if (!nand_read_page(conf, offs, dest,
+						    conf->ecc_size))
+					return 0;
+
+				/*
+				 * Find the next ->nseeds value that would
+				 * change the randomizer seed for the page
+				 * we're trying to read.
+				 */
+				while (conf->nseeds >= 16) {
+					int seed = page % conf->nseeds;
+
+					conf->nseeds >>= 1;
+					if (seed != page % conf->nseeds)
+						break;
+				}
+			} while (conf->nseeds >= 16);
+		}
+	}
+
+	return -EINVAL;
+}
+
+static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest)
+{
+	if (conf->valid)
+		return 0;
+
+	/*
+	 * Modern NANDs are more likely than legacy ones, so we start testing
+	 * with 5 address cycles.
+	 */
+	for (conf->addr_cycles = 5;
+	     conf->addr_cycles >= 4;
+	     conf->addr_cycles--) {
+		int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384;
+
+		/*
+		 * Ignoring 1k pages cause I'm not even sure this case exist
+		 * in the real world.
+		 */
+		for (conf->page_size = 2048; conf->page_size <= max_page_size;
+		     conf->page_size <<= 1) {
+			if (nand_load_page(conf, offs))
+				return -1;
+
+			if (!nand_detect_ecc_config(conf, offs, dest)) {
+				conf->valid = true;
+				return 0;
+			}
+		}
+	}
+
+	return -EINVAL;
+}
+
+static int nand_read_buffer(struct nfc_config *conf, uint32_t offs,
+			    unsigned int size, void *dest)
+{
+	int first_seed = 0, page, ret;
+
+	size = ALIGN(size, conf->page_size);
+	page = offs / conf->page_size;
+	if (conf->randomize)
+		first_seed = page % conf->nseeds;
+
+	for (; size; size -= conf->page_size) {
+		if (nand_load_page(conf, offs))
+			return -1;
+
+		ret = nand_read_page(conf, offs, dest, conf->page_size);
+		/*
+		 * The ->nseeds value should be equal to the number of pages
+		 * in an eraseblock. Since we don't know this information in
+		 * advance we might have picked a wrong value.
+		 */
+		if (ret < 0 && conf->randomize) {
+			int cur_seed = page % conf->nseeds;
+
+			/*
+			 * We already tried all the seed values => we are
+			 * facing a real corruption.
+			 */
+			if (cur_seed < first_seed)
+				return -EIO;
+
+			/* Try to adjust ->nseeds and read the page again... */
+			conf->nseeds = cur_seed;
+
+			if (nand_change_column(0))
+				return -EIO;
+
+			/* ... it still fails => it's a real corruption. */
+			if (nand_read_page(conf, offs, dest, conf->page_size))
+				return -EIO;
+		} else if (ret && conf->randomize) {
+			memset(dest, 0xff, conf->page_size);
+		}
+
+		page++;
+		offs += conf->page_size;
+		dest += conf->page_size;
+	}
+
+	return 0;
+}
+
+int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
+{
+	static struct nfc_config conf = { };
+	int ret;
+
+	ret = nand_detect_config(&conf, offs, dest);
+	if (ret)
+		return ret;
+
+	return nand_read_buffer(&conf, offs, size, dest);
+}
+
+void nand_deselect(void)
+{
+	struct sunxi_ccm_reg *const ccm =
+		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
+
+	clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0));
+#ifdef CONFIG_MACH_SUN9I
+	clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
+#else
+	clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
+#endif
+	clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
+}
diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
new file mode 100644
index 0000000..74acdfb
--- /dev/null
+++ b/drivers/mtd/nand/raw/tegra_nand.c
@@ -0,0 +1,1002 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (c) 2011 The Chromium OS Authors.
+ * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
+ * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
+ * (C) Copyright 2006 DENX Software Engineering
+ */
+
+#include <common.h>
+#include <asm/io.h>
+#include <memalign.h>
+#include <nand.h>
+#include <asm/arch/clock.h>
+#include <asm/arch/funcmux.h>
+#include <asm/arch-tegra/clk_rst.h>
+#include <linux/errno.h>
+#include <asm/gpio.h>
+#include <fdtdec.h>
+#include <bouncebuf.h>
+#include <dm.h>
+#include "tegra_nand.h"
+
+DECLARE_GLOBAL_DATA_PTR;
+
+#define NAND_CMD_TIMEOUT_MS		10
+
+#define SKIPPED_SPARE_BYTES		4
+
+/* ECC bytes to be generated for tag data */
+#define TAG_ECC_BYTES			4
+
+static const struct udevice_id tegra_nand_dt_ids[] = {
+	{
+		.compatible = "nvidia,tegra20-nand",
+	},
+	{ /* sentinel */ }
+};
+
+/* 64 byte oob block info for large page (== 2KB) device
+ *
+ * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
+ *      Skipped bytes(4)
+ *      Main area Ecc(36)
+ *      Tag data(20)
+ *      Tag data Ecc(4)
+ *
+ * Yaffs2 will use 16 tag bytes.
+ */
+static struct nand_ecclayout eccoob = {
+	.eccbytes = 36,
+	.eccpos = {
+		4,  5,  6,  7,  8,  9,  10, 11, 12,
+		13, 14, 15, 16, 17, 18, 19, 20, 21,
+		22, 23, 24, 25, 26, 27, 28, 29, 30,
+		31, 32, 33, 34, 35, 36, 37, 38, 39,
+	},
+	.oobavail = 20,
+	.oobfree = {
+			{
+			.offset = 40,
+			.length = 20,
+			},
+	}
+};
+
+enum {
+	ECC_OK,
+	ECC_TAG_ERROR = 1 << 0,
+	ECC_DATA_ERROR = 1 << 1
+};
+
+/* Timing parameters */
+enum {
+	FDT_NAND_MAX_TRP_TREA,
+	FDT_NAND_TWB,
+	FDT_NAND_MAX_TCR_TAR_TRR,
+	FDT_NAND_TWHR,
+	FDT_NAND_MAX_TCS_TCH_TALS_TALH,
+	FDT_NAND_TWH,
+	FDT_NAND_TWP,
+	FDT_NAND_TRH,
+	FDT_NAND_TADL,
+
+	FDT_NAND_TIMING_COUNT
+};
+
+/* Information about an attached NAND chip */
+struct fdt_nand {
+	struct nand_ctlr *reg;
+	int enabled;		/* 1 to enable, 0 to disable */
+	struct gpio_desc wp_gpio;	/* write-protect GPIO */
+	s32 width;		/* bit width, normally 8 */
+	u32 timing[FDT_NAND_TIMING_COUNT];
+};
+
+struct nand_drv {
+	struct nand_ctlr *reg;
+	struct fdt_nand config;
+};
+
+struct tegra_nand_info {
+	struct udevice *dev;
+	struct nand_drv nand_ctrl;
+	struct nand_chip nand_chip;
+};
+
+/**
+ * Wait for command completion
+ *
+ * @param reg	nand_ctlr structure
+ * @return
+ *	1 - Command completed
+ *	0 - Timeout
+ */
+static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
+{
+	u32 reg_val;
+	int running;
+	int i;
+
+	for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
+		if ((readl(&reg->command) & CMD_GO) ||
+				!(readl(&reg->status) & STATUS_RBSY0) ||
+				!(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
+			udelay(1);
+			continue;
+		}
+		reg_val = readl(&reg->dma_mst_ctrl);
+		/*
+		 * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
+		 * is set, that means DMA engine is running.
+		 *
+		 * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
+		 * is cleared, indicating DMA transfer completion.
+		 */
+		running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
+				DMA_MST_CTRL_EN_B_ENABLE);
+		if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
+			return 1;
+		udelay(1);
+	}
+	return 0;
+}
+
+/**
+ * Read one byte from the chip
+ *
+ * @param mtd	MTD device structure
+ * @return	data byte
+ *
+ * Read function for 8bit bus-width
+ */
+static uint8_t read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_drv *info;
+
+	info = (struct nand_drv *)nand_get_controller_data(chip);
+
+	writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
+	       &info->reg->command);
+	if (!nand_waitfor_cmd_completion(info->reg))
+		printf("Command timeout\n");
+
+	return (uint8_t)readl(&info->reg->resp);
+}
+
+/**
+ * Read len bytes from the chip into a buffer
+ *
+ * @param mtd	MTD device structure
+ * @param buf	buffer to store data to
+ * @param len	number of bytes to read
+ *
+ * Read function for 8bit bus-width
+ */
+static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int i, s;
+	unsigned int reg;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_drv *info = (struct nand_drv *)nand_get_controller_data(chip);
+
+	for (i = 0; i < len; i += 4) {
+		s = (len - i) > 4 ? 4 : len - i;
+		writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
+			((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
+			&info->reg->command);
+		if (!nand_waitfor_cmd_completion(info->reg))
+			puts("Command timeout during read_buf\n");
+		reg = readl(&info->reg->resp);
+		memcpy(buf + i, &reg, s);
+	}
+}
+
+/**
+ * Check NAND status to see if it is ready or not
+ *
+ * @param mtd	MTD device structure
+ * @return
+ *	1 - ready
+ *	0 - not ready
+ */
+static int nand_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int reg_val;
+	struct nand_drv *info;
+
+	info = (struct nand_drv *)nand_get_controller_data(chip);
+
+	reg_val = readl(&info->reg->status);
+	if (reg_val & STATUS_RBSY0)
+		return 1;
+	else
+		return 0;
+}
+
+/* Dummy implementation: we don't support multiple chips */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	switch (chipnr) {
+	case -1:
+	case 0:
+		break;
+
+	default:
+		BUG();
+	}
+}
+
+/**
+ * Clear all interrupt status bits
+ *
+ * @param reg	nand_ctlr structure
+ */
+static void nand_clear_interrupt_status(struct nand_ctlr *reg)
+{
+	u32 reg_val;
+
+	/* Clear interrupt status */
+	reg_val = readl(&reg->isr);
+	writel(reg_val, &reg->isr);
+}
+
+/**
+ * Send command to NAND device
+ *
+ * @param mtd		MTD device structure
+ * @param command	the command to be sent
+ * @param column	the column address for this command, -1 if none
+ * @param page_addr	the page address for this command, -1 if none
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+	int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_drv *info;
+
+	info = (struct nand_drv *)nand_get_controller_data(chip);
+
+	/*
+	 * Write out the command to the device.
+	 *
+	 * Only command NAND_CMD_RESET or NAND_CMD_READID will come
+	 * here before mtd->writesize is initialized.
+	 */
+
+	/* Emulate NAND_CMD_READOOB */
+	if (command == NAND_CMD_READOOB) {
+		assert(mtd->writesize != 0);
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Adjust columns for 16 bit bus-width */
+	if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
+		column >>= 1;
+
+	nand_clear_interrupt_status(info->reg);
+
+	/* Stop DMA engine, clear DMA completion status */
+	writel(DMA_MST_CTRL_EN_A_DISABLE
+		| DMA_MST_CTRL_EN_B_DISABLE
+		| DMA_MST_CTRL_IS_DMA_DONE,
+		&info->reg->dma_mst_ctrl);
+
+	/*
+	 * Program and erase have their own busy handlers
+	 * status and sequential in needs no delay
+	 */
+	switch (command) {
+	case NAND_CMD_READID:
+		writel(NAND_CMD_READID, &info->reg->cmd_reg1);
+		writel(column & 0xFF, &info->reg->addr_reg1);
+		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
+		       &info->reg->command);
+		break;
+	case NAND_CMD_PARAM:
+		writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
+		writel(column & 0xFF, &info->reg->addr_reg1);
+		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
+			&info->reg->command);
+		break;
+	case NAND_CMD_READ0:
+		writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
+		writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
+		writel((page_addr << 16) | (column & 0xFFFF),
+			&info->reg->addr_reg1);
+		writel(page_addr >> 16, &info->reg->addr_reg2);
+		return;
+	case NAND_CMD_SEQIN:
+		writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
+		writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
+		writel((page_addr << 16) | (column & 0xFFFF),
+			&info->reg->addr_reg1);
+		writel(page_addr >> 16,
+			&info->reg->addr_reg2);
+		return;
+	case NAND_CMD_PAGEPROG:
+		return;
+	case NAND_CMD_ERASE1:
+		writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
+		writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
+		writel(page_addr, &info->reg->addr_reg1);
+		writel(CMD_GO | CMD_CLE | CMD_ALE |
+			CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
+			&info->reg->command);
+		break;
+	case NAND_CMD_ERASE2:
+		return;
+	case NAND_CMD_STATUS:
+		writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
+		writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
+			| ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
+			| CMD_CE0,
+			&info->reg->command);
+		break;
+	case NAND_CMD_RESET:
+		writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
+		writel(CMD_GO | CMD_CLE | CMD_CE0,
+			&info->reg->command);
+		break;
+	case NAND_CMD_RNDOUT:
+	default:
+		printf("%s: Unsupported command %d\n", __func__, command);
+		return;
+	}
+	if (!nand_waitfor_cmd_completion(info->reg))
+		printf("Command 0x%02X timeout\n", command);
+}
+
+/**
+ * Check whether the pointed buffer are all 0xff (blank).
+ *
+ * @param buf	data buffer for blank check
+ * @param len	length of the buffer in byte
+ * @return
+ *	1 - blank
+ *	0 - non-blank
+ */
+static int blank_check(u8 *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		if (buf[i] != 0xFF)
+			return 0;
+	return 1;
+}
+
+/**
+ * After a DMA transfer for read, we call this function to see whether there
+ * is any uncorrectable error on the pointed data buffer or oob buffer.
+ *
+ * @param reg		nand_ctlr structure
+ * @param databuf	data buffer
+ * @param a_len		data buffer length
+ * @param oobbuf	oob buffer
+ * @param b_len		oob buffer length
+ * @return
+ *	ECC_OK - no ECC error or correctable ECC error
+ *	ECC_TAG_ERROR - uncorrectable tag ECC error
+ *	ECC_DATA_ERROR - uncorrectable data ECC error
+ *	ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
+ */
+static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
+	int a_len, u8 *oobbuf, int b_len)
+{
+	int return_val = ECC_OK;
+	u32 reg_val;
+
+	if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
+		return ECC_OK;
+
+	/*
+	 * Area A is used for the data block (databuf). Area B is used for
+	 * the spare block (oobbuf)
+	 */
+	reg_val = readl(&reg->dec_status);
+	if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
+		reg_val = readl(&reg->bch_dec_status_buf);
+		/*
+		 * If uncorrectable error occurs on data area, then see whether
+		 * they are all FF. If all are FF, it's a blank page.
+		 * Not error.
+		 */
+		if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
+				!blank_check(databuf, a_len))
+			return_val |= ECC_DATA_ERROR;
+	}
+
+	if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
+		reg_val = readl(&reg->bch_dec_status_buf);
+		/*
+		 * If uncorrectable error occurs on tag area, then see whether
+		 * they are all FF. If all are FF, it's a blank page.
+		 * Not error.
+		 */
+		if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
+				!blank_check(oobbuf, b_len))
+			return_val |= ECC_TAG_ERROR;
+	}
+
+	return return_val;
+}
+
+/**
+ * Set GO bit to send command to device
+ *
+ * @param reg	nand_ctlr structure
+ */
+static void start_command(struct nand_ctlr *reg)
+{
+	u32 reg_val;
+
+	reg_val = readl(&reg->command);
+	reg_val |= CMD_GO;
+	writel(reg_val, &reg->command);
+}
+
+/**
+ * Clear command GO bit, DMA GO bit, and DMA completion status
+ *
+ * @param reg	nand_ctlr structure
+ */
+static void stop_command(struct nand_ctlr *reg)
+{
+	/* Stop command */
+	writel(0, &reg->command);
+
+	/* Stop DMA engine and clear DMA completion status */
+	writel(DMA_MST_CTRL_GO_DISABLE
+		| DMA_MST_CTRL_IS_DMA_DONE,
+		&reg->dma_mst_ctrl);
+}
+
+/**
+ * Set up NAND bus width and page size
+ *
+ * @param info		nand_info structure
+ * @param *reg_val	address of reg_val
+ * @return 0 if ok, -1 on error
+ */
+static int set_bus_width_page_size(struct mtd_info *our_mtd,
+				   struct fdt_nand *config, u32 *reg_val)
+{
+	if (config->width == 8)
+		*reg_val = CFG_BUS_WIDTH_8BIT;
+	else if (config->width == 16)
+		*reg_val = CFG_BUS_WIDTH_16BIT;
+	else {
+		debug("%s: Unsupported bus width %d\n", __func__,
+		      config->width);
+		return -1;
+	}
+
+	if (our_mtd->writesize == 512)
+		*reg_val |= CFG_PAGE_SIZE_512;
+	else if (our_mtd->writesize == 2048)
+		*reg_val |= CFG_PAGE_SIZE_2048;
+	else if (our_mtd->writesize == 4096)
+		*reg_val |= CFG_PAGE_SIZE_4096;
+	else {
+		debug("%s: Unsupported page size %d\n", __func__,
+		      our_mtd->writesize);
+		return -1;
+	}
+
+	return 0;
+}
+
+/**
+ * Page read/write function
+ *
+ * @param mtd		mtd info structure
+ * @param chip		nand chip info structure
+ * @param buf		data buffer
+ * @param page		page number
+ * @param with_ecc	1 to enable ECC, 0 to disable ECC
+ * @param is_writing	0 for read, 1 for write
+ * @return	0 when successfully completed
+ *		-EIO when command timeout
+ */
+static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
+	uint8_t *buf, int page, int with_ecc, int is_writing)
+{
+	u32 reg_val;
+	int tag_size;
+	struct nand_oobfree *free = chip->ecc.layout->oobfree;
+	/* 4*128=512 (byte) is the value that our HW can support. */
+	ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
+	char *tag_ptr;
+	struct nand_drv *info;
+	struct fdt_nand *config;
+	unsigned int bbflags;
+	struct bounce_buffer bbstate, bbstate_oob;
+
+	if ((uintptr_t)buf & 0x03) {
+		printf("buf %p has to be 4-byte aligned\n", buf);
+		return -EINVAL;
+	}
+
+	info = (struct nand_drv *)nand_get_controller_data(chip);
+	config = &info->config;
+	if (set_bus_width_page_size(mtd, config, &reg_val))
+		return -EINVAL;
+
+	/* Need to be 4-byte aligned */
+	tag_ptr = (char *)tag_buf;
+
+	stop_command(info->reg);
+
+	if (is_writing)
+		bbflags = GEN_BB_READ;
+	else
+		bbflags = GEN_BB_WRITE;
+
+	bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
+			    bbflags);
+	writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
+	writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
+
+	/* Set ECC selection, configure ECC settings */
+	if (with_ecc) {
+		if (is_writing)
+			memcpy(tag_ptr, chip->oob_poi + free->offset,
+			       chip->ecc.layout->oobavail + TAG_ECC_BYTES);
+		tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
+		reg_val |= (CFG_SKIP_SPARE_SEL_4
+			| CFG_SKIP_SPARE_ENABLE
+			| CFG_HW_ECC_CORRECTION_ENABLE
+			| CFG_ECC_EN_TAG_DISABLE
+			| CFG_HW_ECC_SEL_RS
+			| CFG_HW_ECC_ENABLE
+			| CFG_TVAL4
+			| (tag_size - 1));
+
+		if (!is_writing)
+			tag_size += SKIPPED_SPARE_BYTES;
+		bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
+				    bbflags);
+	} else {
+		tag_size = mtd->oobsize;
+		reg_val |= (CFG_SKIP_SPARE_DISABLE
+			| CFG_HW_ECC_CORRECTION_DISABLE
+			| CFG_ECC_EN_TAG_DISABLE
+			| CFG_HW_ECC_DISABLE
+			| (tag_size - 1));
+		bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
+				    tag_size, bbflags);
+	}
+	writel(reg_val, &info->reg->config);
+	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
+	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
+	writel(tag_size - 1, &info->reg->dma_cfg_b);
+
+	nand_clear_interrupt_status(info->reg);
+
+	reg_val = CMD_CLE | CMD_ALE
+		| CMD_SEC_CMD
+		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
+		| CMD_A_VALID
+		| CMD_B_VALID
+		| (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
+		| CMD_CE0;
+	if (!is_writing)
+		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
+	else
+		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
+	writel(reg_val, &info->reg->command);
+
+	/* Setup DMA engine */
+	reg_val = DMA_MST_CTRL_GO_ENABLE
+		| DMA_MST_CTRL_BURST_8WORDS
+		| DMA_MST_CTRL_EN_A_ENABLE
+		| DMA_MST_CTRL_EN_B_ENABLE;
+
+	if (!is_writing)
+		reg_val |= DMA_MST_CTRL_DIR_READ;
+	else
+		reg_val |= DMA_MST_CTRL_DIR_WRITE;
+
+	writel(reg_val, &info->reg->dma_mst_ctrl);
+
+	start_command(info->reg);
+
+	if (!nand_waitfor_cmd_completion(info->reg)) {
+		if (!is_writing)
+			printf("Read Page 0x%X timeout ", page);
+		else
+			printf("Write Page 0x%X timeout ", page);
+		if (with_ecc)
+			printf("with ECC");
+		else
+			printf("without ECC");
+		printf("\n");
+		return -EIO;
+	}
+
+	bounce_buffer_stop(&bbstate_oob);
+	bounce_buffer_stop(&bbstate);
+
+	if (with_ecc && !is_writing) {
+		memcpy(chip->oob_poi, tag_ptr,
+			SKIPPED_SPARE_BYTES);
+		memcpy(chip->oob_poi + free->offset,
+			tag_ptr + SKIPPED_SPARE_BYTES,
+			chip->ecc.layout->oobavail);
+		reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
+			1 << chip->page_shift,
+			(u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
+			chip->ecc.layout->oobavail);
+		if (reg_val & ECC_TAG_ERROR)
+			printf("Read Page 0x%X tag ECC error\n", page);
+		if (reg_val & ECC_DATA_ERROR)
+			printf("Read Page 0x%X data ECC error\n",
+				page);
+		if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
+			return -EIO;
+	}
+	return 0;
+}
+
+/**
+ * Hardware ecc based page read function
+ *
+ * @param mtd	mtd info structure
+ * @param chip	nand chip info structure
+ * @param buf	buffer to store read data
+ * @param page	page number to read
+ * @return	0 when successfully completed
+ *		-EIO when command timeout
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	return nand_rw_page(mtd, chip, buf, page, 1, 0);
+}
+
+/**
+ * Hardware ecc based page write function
+ *
+ * @param mtd	mtd info structure
+ * @param chip	nand chip info structure
+ * @param buf	data buffer
+ */
+static int nand_write_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const uint8_t *buf, int oob_required,
+	int page)
+{
+	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
+	return 0;
+}
+
+
+/**
+ * Read raw page data without ecc
+ *
+ * @param mtd	mtd info structure
+ * @param chip	nand chip info structure
+ * @param buf	buffer to store read data
+ * @param page	page number to read
+ * @return	0 when successfully completed
+ *		-EINVAL when chip->oob_poi is not double-word aligned
+ *		-EIO when command timeout
+ */
+static int nand_read_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	return nand_rw_page(mtd, chip, buf, page, 0, 0);
+}
+
+/**
+ * Raw page write function
+ *
+ * @param mtd	mtd info structure
+ * @param chip	nand chip info structure
+ * @param buf	data buffer
+ */
+static int nand_write_page_raw(struct mtd_info *mtd,
+		struct nand_chip *chip,	const uint8_t *buf,
+		int oob_required, int page)
+{
+	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
+	return 0;
+}
+
+/**
+ * OOB data read/write function
+ *
+ * @param mtd		mtd info structure
+ * @param chip		nand chip info structure
+ * @param page		page number to read
+ * @param with_ecc	1 to enable ECC, 0 to disable ECC
+ * @param is_writing	0 for read, 1 for write
+ * @return	0 when successfully completed
+ *		-EINVAL when chip->oob_poi is not double-word aligned
+ *		-EIO when command timeout
+ */
+static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
+	int page, int with_ecc, int is_writing)
+{
+	u32 reg_val;
+	int tag_size;
+	struct nand_oobfree *free = chip->ecc.layout->oobfree;
+	struct nand_drv *info;
+	unsigned int bbflags;
+	struct bounce_buffer bbstate_oob;
+
+	if (((int)chip->oob_poi) & 0x03)
+		return -EINVAL;
+	info = (struct nand_drv *)nand_get_controller_data(chip);
+	if (set_bus_width_page_size(mtd, &info->config, &reg_val))
+		return -EINVAL;
+
+	stop_command(info->reg);
+
+	/* Set ECC selection */
+	tag_size = mtd->oobsize;
+	if (with_ecc)
+		reg_val |= CFG_ECC_EN_TAG_ENABLE;
+	else
+		reg_val |= (CFG_ECC_EN_TAG_DISABLE);
+
+	reg_val |= ((tag_size - 1) |
+		CFG_SKIP_SPARE_DISABLE |
+		CFG_HW_ECC_CORRECTION_DISABLE |
+		CFG_HW_ECC_DISABLE);
+	writel(reg_val, &info->reg->config);
+
+	if (is_writing && with_ecc)
+		tag_size -= TAG_ECC_BYTES;
+
+	if (is_writing)
+		bbflags = GEN_BB_READ;
+	else
+		bbflags = GEN_BB_WRITE;
+
+	bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
+			    bbflags);
+	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
+
+	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
+
+	writel(tag_size - 1, &info->reg->dma_cfg_b);
+
+	nand_clear_interrupt_status(info->reg);
+
+	reg_val = CMD_CLE | CMD_ALE
+		| CMD_SEC_CMD
+		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
+		| CMD_B_VALID
+		| CMD_CE0;
+	if (!is_writing)
+		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
+	else
+		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
+	writel(reg_val, &info->reg->command);
+
+	/* Setup DMA engine */
+	reg_val = DMA_MST_CTRL_GO_ENABLE
+		| DMA_MST_CTRL_BURST_8WORDS
+		| DMA_MST_CTRL_EN_B_ENABLE;
+	if (!is_writing)
+		reg_val |= DMA_MST_CTRL_DIR_READ;
+	else
+		reg_val |= DMA_MST_CTRL_DIR_WRITE;
+
+	writel(reg_val, &info->reg->dma_mst_ctrl);
+
+	start_command(info->reg);
+
+	if (!nand_waitfor_cmd_completion(info->reg)) {
+		if (!is_writing)
+			printf("Read OOB of Page 0x%X timeout\n", page);
+		else
+			printf("Write OOB of Page 0x%X timeout\n", page);
+		return -EIO;
+	}
+
+	bounce_buffer_stop(&bbstate_oob);
+
+	if (with_ecc && !is_writing) {
+		reg_val = (u32)check_ecc_error(info->reg, 0, 0,
+			(u8 *)(chip->oob_poi + free->offset),
+			chip->ecc.layout->oobavail);
+		if (reg_val & ECC_TAG_ERROR)
+			printf("Read OOB of Page 0x%X tag ECC error\n", page);
+	}
+	return 0;
+}
+
+/**
+ * OOB data read function
+ *
+ * @param mtd		mtd info structure
+ * @param chip		nand chip info structure
+ * @param page		page number to read
+ */
+static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+	int page)
+{
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	nand_rw_oob(mtd, chip, page, 0, 0);
+	return 0;
+}
+
+/**
+ * OOB data write function
+ *
+ * @param mtd	mtd info structure
+ * @param chip	nand chip info structure
+ * @param page	page number to write
+ * @return	0 when successfully completed
+ *		-EINVAL when chip->oob_poi is not double-word aligned
+ *		-EIO when command timeout
+ */
+static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+	int page)
+{
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+	return nand_rw_oob(mtd, chip, page, 0, 1);
+}
+
+/**
+ * Set up NAND memory timings according to the provided parameters
+ *
+ * @param timing	Timing parameters
+ * @param reg		NAND controller register address
+ */
+static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
+			 struct nand_ctlr *reg)
+{
+	u32 reg_val, clk_rate, clk_period, time_val;
+
+	clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
+		CLOCK_ID_PERIPH) / 1000000;
+	clk_period = 1000 / clk_rate;
+	reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
+		TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
+		TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
+	time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
+	if (time_val > 2)
+		reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
+			TIMING_TCR_TAR_TRR_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
+		TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
+	time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
+	if (time_val > 1)
+		reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
+			TIMING_TCS_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
+		TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
+		TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
+		TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
+	reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
+		TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
+	writel(reg_val, &reg->timing);
+
+	reg_val = 0;
+	time_val = timing[FDT_NAND_TADL] / clk_period;
+	if (time_val > 2)
+		reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
+	writel(reg_val, &reg->timing2);
+}
+
+/**
+ * Decode NAND parameters from the device tree
+ *
+ * @param dev		Driver model device
+ * @param config	Device tree NAND configuration
+ * @return 0 if ok, -ve on error (FDT_ERR_...)
+ */
+static int fdt_decode_nand(struct udevice *dev, struct fdt_nand *config)
+{
+	int err;
+
+	config->reg = (struct nand_ctlr *)dev_read_addr(dev);
+	config->enabled = dev_read_enabled(dev);
+	config->width = dev_read_u32_default(dev, "nvidia,nand-width", 8);
+	err = gpio_request_by_name(dev, "nvidia,wp-gpios", 0, &config->wp_gpio,
+				   GPIOD_IS_OUT);
+	if (err)
+		return err;
+	err = dev_read_u32_array(dev, "nvidia,timing", config->timing,
+				 FDT_NAND_TIMING_COUNT);
+	if (err < 0)
+		return err;
+
+	return 0;
+}
+
+static int tegra_probe(struct udevice *dev)
+{
+	struct tegra_nand_info *tegra = dev_get_priv(dev);
+	struct nand_chip *nand = &tegra->nand_chip;
+	struct nand_drv *info = &tegra->nand_ctrl;
+	struct fdt_nand *config = &info->config;
+	struct mtd_info *our_mtd;
+	int ret;
+
+	if (fdt_decode_nand(dev, config)) {
+		printf("Could not decode nand-flash in device tree\n");
+		return -1;
+	}
+	if (!config->enabled)
+		return -1;
+	info->reg = config->reg;
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.layout = &eccoob;
+
+	nand->options = LP_OPTIONS;
+	nand->cmdfunc = nand_command;
+	nand->read_byte = read_byte;
+	nand->read_buf = read_buf;
+	nand->ecc.read_page = nand_read_page_hwecc;
+	nand->ecc.write_page = nand_write_page_hwecc;
+	nand->ecc.read_page_raw = nand_read_page_raw;
+	nand->ecc.write_page_raw = nand_write_page_raw;
+	nand->ecc.read_oob = nand_read_oob;
+	nand->ecc.write_oob = nand_write_oob;
+	nand->ecc.strength = 1;
+	nand->select_chip = nand_select_chip;
+	nand->dev_ready  = nand_dev_ready;
+	nand_set_controller_data(nand, &tegra->nand_ctrl);
+
+	/* Disable subpage writes as we do not provide ecc->hwctl */
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	/* Adjust controller clock rate */
+	clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
+
+	/* Adjust timing for NAND device */
+	setup_timing(config->timing, info->reg);
+
+	dm_gpio_set_value(&config->wp_gpio, 1);
+
+	our_mtd = nand_to_mtd(nand);
+	ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
+	if (ret)
+		return ret;
+
+	nand->ecc.size = our_mtd->writesize;
+	nand->ecc.bytes = our_mtd->oobsize;
+
+	ret = nand_scan_tail(our_mtd);
+	if (ret)
+		return ret;
+
+	ret = nand_register(0, our_mtd);
+	if (ret) {
+		dev_err(dev, "Failed to register MTD: %d\n", ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+U_BOOT_DRIVER(tegra_nand) = {
+	.name = "tegra-nand",
+	.id = UCLASS_MTD,
+	.of_match = tegra_nand_dt_ids,
+	.probe = tegra_probe,
+	.priv_auto_alloc_size = sizeof(struct tegra_nand_info),
+};
+
+void board_nand_init(void)
+{
+	struct udevice *dev;
+	int ret;
+
+	ret = uclass_get_device_by_driver(UCLASS_MTD,
+					  DM_GET_DRIVER(tegra_nand), &dev);
+	if (ret && ret != -ENODEV)
+		pr_err("Failed to initialize %s. (error %d)\n", dev->name,
+		       ret);
+}
diff --git a/drivers/mtd/nand/raw/tegra_nand.h b/drivers/mtd/nand/raw/tegra_nand.h
new file mode 100644
index 0000000..7740160
--- /dev/null
+++ b/drivers/mtd/nand/raw/tegra_nand.h
@@ -0,0 +1,240 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
+ */
+
+/* register offset */
+#define COMMAND_0		0x00
+#define CMD_GO			(1 << 31)
+#define CMD_CLE			(1 << 30)
+#define CMD_ALE			(1 << 29)
+#define CMD_PIO			(1 << 28)
+#define CMD_TX			(1 << 27)
+#define CMD_RX			(1 << 26)
+#define CMD_SEC_CMD		(1 << 25)
+#define CMD_AFT_DAT_MASK	(1 << 24)
+#define CMD_AFT_DAT_DISABLE	0
+#define CMD_AFT_DAT_ENABLE	(1 << 24)
+#define CMD_TRANS_SIZE_SHIFT	20
+#define CMD_TRANS_SIZE_PAGE	8
+#define CMD_A_VALID		(1 << 19)
+#define CMD_B_VALID		(1 << 18)
+#define CMD_RD_STATUS_CHK	(1 << 17)
+#define CMD_R_BSY_CHK		(1 << 16)
+#define CMD_CE7			(1 << 15)
+#define CMD_CE6			(1 << 14)
+#define CMD_CE5			(1 << 13)
+#define CMD_CE4			(1 << 12)
+#define CMD_CE3			(1 << 11)
+#define CMD_CE2			(1 << 10)
+#define CMD_CE1			(1 << 9)
+#define CMD_CE0			(1 << 8)
+#define CMD_CLE_BYTE_SIZE_SHIFT	4
+enum {
+	CMD_CLE_BYTES1 = 0,
+	CMD_CLE_BYTES2,
+	CMD_CLE_BYTES3,
+	CMD_CLE_BYTES4,
+};
+#define CMD_ALE_BYTE_SIZE_SHIFT	0
+enum {
+	CMD_ALE_BYTES1 = 0,
+	CMD_ALE_BYTES2,
+	CMD_ALE_BYTES3,
+	CMD_ALE_BYTES4,
+	CMD_ALE_BYTES5,
+	CMD_ALE_BYTES6,
+	CMD_ALE_BYTES7,
+	CMD_ALE_BYTES8
+};
+
+#define STATUS_0			0x04
+#define STATUS_RBSY0			(1 << 8)
+
+#define ISR_0				0x08
+#define ISR_IS_CMD_DONE			(1 << 5)
+#define ISR_IS_ECC_ERR			(1 << 4)
+
+#define IER_0				0x0C
+
+#define CFG_0				0x10
+#define CFG_HW_ECC_MASK			(1 << 31)
+#define CFG_HW_ECC_DISABLE		0
+#define CFG_HW_ECC_ENABLE		(1 << 31)
+#define CFG_HW_ECC_SEL_MASK		(1 << 30)
+#define CFG_HW_ECC_SEL_HAMMING		0
+#define CFG_HW_ECC_SEL_RS		(1 << 30)
+#define CFG_HW_ECC_CORRECTION_MASK	(1 << 29)
+#define CFG_HW_ECC_CORRECTION_DISABLE	0
+#define CFG_HW_ECC_CORRECTION_ENABLE	(1 << 29)
+#define CFG_PIPELINE_EN_MASK		(1 << 28)
+#define CFG_PIPELINE_EN_DISABLE		0
+#define CFG_PIPELINE_EN_ENABLE		(1 << 28)
+#define CFG_ECC_EN_TAG_MASK		(1 << 27)
+#define CFG_ECC_EN_TAG_DISABLE		0
+#define CFG_ECC_EN_TAG_ENABLE		(1 << 27)
+#define CFG_TVALUE_MASK			(3 << 24)
+enum {
+	CFG_TVAL4 = 0 << 24,
+	CFG_TVAL6 = 1 << 24,
+	CFG_TVAL8 = 2 << 24
+};
+#define CFG_SKIP_SPARE_MASK		(1 << 23)
+#define CFG_SKIP_SPARE_DISABLE		0
+#define CFG_SKIP_SPARE_ENABLE		(1 << 23)
+#define CFG_COM_BSY_MASK		(1 << 22)
+#define CFG_COM_BSY_DISABLE		0
+#define CFG_COM_BSY_ENABLE		(1 << 22)
+#define CFG_BUS_WIDTH_MASK		(1 << 21)
+#define CFG_BUS_WIDTH_8BIT		0
+#define CFG_BUS_WIDTH_16BIT		(1 << 21)
+#define CFG_LPDDR1_MODE_MASK		(1 << 20)
+#define CFG_LPDDR1_MODE_DISABLE		0
+#define CFG_LPDDR1_MODE_ENABLE		(1 << 20)
+#define CFG_EDO_MODE_MASK		(1 << 19)
+#define CFG_EDO_MODE_DISABLE		0
+#define CFG_EDO_MODE_ENABLE		(1 << 19)
+#define CFG_PAGE_SIZE_SEL_MASK		(7 << 16)
+enum {
+	CFG_PAGE_SIZE_256	= 0 << 16,
+	CFG_PAGE_SIZE_512	= 1 << 16,
+	CFG_PAGE_SIZE_1024	= 2 << 16,
+	CFG_PAGE_SIZE_2048	= 3 << 16,
+	CFG_PAGE_SIZE_4096	= 4 << 16
+};
+#define CFG_SKIP_SPARE_SEL_MASK		(3 << 14)
+enum {
+	CFG_SKIP_SPARE_SEL_4	= 0 << 14,
+	CFG_SKIP_SPARE_SEL_8	= 1 << 14,
+	CFG_SKIP_SPARE_SEL_12	= 2 << 14,
+	CFG_SKIP_SPARE_SEL_16	= 3 << 14
+};
+#define CFG_TAG_BYTE_SIZE_MASK	0x1FF
+
+#define TIMING_0			0x14
+#define TIMING_TRP_RESP_CNT_SHIFT	28
+#define TIMING_TRP_RESP_CNT_MASK	(0xf << TIMING_TRP_RESP_CNT_SHIFT)
+#define TIMING_TWB_CNT_SHIFT		24
+#define TIMING_TWB_CNT_MASK		(0xf << TIMING_TWB_CNT_SHIFT)
+#define TIMING_TCR_TAR_TRR_CNT_SHIFT	20
+#define TIMING_TCR_TAR_TRR_CNT_MASK	(0xf << TIMING_TCR_TAR_TRR_CNT_SHIFT)
+#define TIMING_TWHR_CNT_SHIFT		16
+#define TIMING_TWHR_CNT_MASK		(0xf << TIMING_TWHR_CNT_SHIFT)
+#define TIMING_TCS_CNT_SHIFT		14
+#define TIMING_TCS_CNT_MASK		(3 << TIMING_TCS_CNT_SHIFT)
+#define TIMING_TWH_CNT_SHIFT		12
+#define TIMING_TWH_CNT_MASK		(3 << TIMING_TWH_CNT_SHIFT)
+#define TIMING_TWP_CNT_SHIFT		8
+#define TIMING_TWP_CNT_MASK		(0xf << TIMING_TWP_CNT_SHIFT)
+#define TIMING_TRH_CNT_SHIFT		4
+#define TIMING_TRH_CNT_MASK		(3 << TIMING_TRH_CNT_SHIFT)
+#define TIMING_TRP_CNT_SHIFT		0
+#define TIMING_TRP_CNT_MASK		(0xf << TIMING_TRP_CNT_SHIFT)
+
+#define RESP_0				0x18
+
+#define TIMING2_0			0x1C
+#define TIMING2_TADL_CNT_SHIFT		0
+#define TIMING2_TADL_CNT_MASK		(0xf << TIMING2_TADL_CNT_SHIFT)
+
+#define CMD_REG1_0			0x20
+#define CMD_REG2_0			0x24
+#define ADDR_REG1_0			0x28
+#define ADDR_REG2_0			0x2C
+
+#define DMA_MST_CTRL_0			0x30
+#define DMA_MST_CTRL_GO_MASK		(1 << 31)
+#define DMA_MST_CTRL_GO_DISABLE		0
+#define DMA_MST_CTRL_GO_ENABLE		(1 << 31)
+#define DMA_MST_CTRL_DIR_MASK		(1 << 30)
+#define DMA_MST_CTRL_DIR_READ		0
+#define DMA_MST_CTRL_DIR_WRITE		(1 << 30)
+#define DMA_MST_CTRL_PERF_EN_MASK	(1 << 29)
+#define DMA_MST_CTRL_PERF_EN_DISABLE	0
+#define DMA_MST_CTRL_PERF_EN_ENABLE	(1 << 29)
+#define DMA_MST_CTRL_REUSE_BUFFER_MASK	(1 << 27)
+#define DMA_MST_CTRL_REUSE_BUFFER_DISABLE	0
+#define DMA_MST_CTRL_REUSE_BUFFER_ENABLE	(1 << 27)
+#define DMA_MST_CTRL_BURST_SIZE_SHIFT	24
+#define DMA_MST_CTRL_BURST_SIZE_MASK	(7 << DMA_MST_CTRL_BURST_SIZE_SHIFT)
+enum {
+	DMA_MST_CTRL_BURST_1WORDS	= 2 << DMA_MST_CTRL_BURST_SIZE_SHIFT,
+	DMA_MST_CTRL_BURST_4WORDS	= 3 << DMA_MST_CTRL_BURST_SIZE_SHIFT,
+	DMA_MST_CTRL_BURST_8WORDS	= 4 << DMA_MST_CTRL_BURST_SIZE_SHIFT,
+	DMA_MST_CTRL_BURST_16WORDS	= 5 << DMA_MST_CTRL_BURST_SIZE_SHIFT
+};
+#define DMA_MST_CTRL_IS_DMA_DONE	(1 << 20)
+#define DMA_MST_CTRL_EN_A_MASK		(1 << 2)
+#define DMA_MST_CTRL_EN_A_DISABLE	0
+#define DMA_MST_CTRL_EN_A_ENABLE	(1 << 2)
+#define DMA_MST_CTRL_EN_B_MASK		(1 << 1)
+#define DMA_MST_CTRL_EN_B_DISABLE	0
+#define DMA_MST_CTRL_EN_B_ENABLE	(1 << 1)
+
+#define DMA_CFG_A_0			0x34
+#define DMA_CFG_B_0			0x38
+#define FIFO_CTRL_0			0x3C
+#define DATA_BLOCK_PTR_0		0x40
+#define TAG_PTR_0			0x44
+#define ECC_PTR_0			0x48
+
+#define DEC_STATUS_0			0x4C
+#define DEC_STATUS_A_ECC_FAIL		(1 << 1)
+#define DEC_STATUS_B_ECC_FAIL		(1 << 0)
+
+#define BCH_CONFIG_0			0xCC
+#define BCH_CONFIG_BCH_TVALUE_SHIFT	4
+#define BCH_CONFIG_BCH_TVALUE_MASK	(3 << BCH_CONFIG_BCH_TVALUE_SHIFT)
+enum {
+	BCH_CONFIG_BCH_TVAL4	= 0 << BCH_CONFIG_BCH_TVALUE_SHIFT,
+	BCH_CONFIG_BCH_TVAL8	= 1 << BCH_CONFIG_BCH_TVALUE_SHIFT,
+	BCH_CONFIG_BCH_TVAL14	= 2 << BCH_CONFIG_BCH_TVALUE_SHIFT,
+	BCH_CONFIG_BCH_TVAL16	= 3 << BCH_CONFIG_BCH_TVALUE_SHIFT
+};
+#define BCH_CONFIG_BCH_ECC_MASK		(1 << 0)
+#define BCH_CONFIG_BCH_ECC_DISABLE	0
+#define BCH_CONFIG_BCH_ECC_ENABLE	(1 << 0)
+
+#define BCH_DEC_RESULT_0			0xD0
+#define BCH_DEC_RESULT_CORRFAIL_ERR_MASK	(1 << 8)
+#define BCH_DEC_RESULT_PAGE_COUNT_MASK		0xFF
+
+#define BCH_DEC_STATUS_BUF_0			0xD4
+#define BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK	0xFF000000
+#define BCH_DEC_STATUS_CORR_SEC_FLAG_MASK	0x00FF0000
+#define BCH_DEC_STATUS_FAIL_TAG_MASK		(1 << 14)
+#define BCH_DEC_STATUS_CORR_TAG_MASK		(1 << 13)
+#define BCH_DEC_STATUS_MAX_CORR_CNT_MASK	(0x1f << 8)
+#define BCH_DEC_STATUS_PAGE_NUMBER_MASK		0xFF
+
+#define LP_OPTIONS	0
+
+struct nand_ctlr {
+	u32	command;	/* offset 00h */
+	u32	status;		/* offset 04h */
+	u32	isr;		/* offset 08h */
+	u32	ier;		/* offset 0Ch */
+	u32	config;		/* offset 10h */
+	u32	timing;		/* offset 14h */
+	u32	resp;		/* offset 18h */
+	u32	timing2;	/* offset 1Ch */
+	u32	cmd_reg1;	/* offset 20h */
+	u32	cmd_reg2;	/* offset 24h */
+	u32	addr_reg1;	/* offset 28h */
+	u32	addr_reg2;	/* offset 2Ch */
+	u32	dma_mst_ctrl;	/* offset 30h */
+	u32	dma_cfg_a;	/* offset 34h */
+	u32	dma_cfg_b;	/* offset 38h */
+	u32	fifo_ctrl;	/* offset 3Ch */
+	u32	data_block_ptr;	/* offset 40h */
+	u32	tag_ptr;	/* offset 44h */
+	u32	resv1;		/* offset 48h */
+	u32	dec_status;	/* offset 4Ch */
+	u32	hwstatus_cmd;	/* offset 50h */
+	u32	hwstatus_mask;	/* offset 54h */
+	u32	resv2[29];
+	u32	bch_config;	/* offset CCh */
+	u32	bch_dec_result;	/* offset D0h */
+	u32	bch_dec_status_buf;
+				/* offset D4h */
+};
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
new file mode 100644
index 0000000..619d040
--- /dev/null
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -0,0 +1,768 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Ported to U-Boot by Stefan Agner
+ * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
+ * Jason ported to M54418TWR and MVFA5.
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ *          Bill Pringlemeir <bpringlemeir@nbsps.com>
+ *          Shaohui Xie <b21989@freescale.com>
+ *          Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <common.h>
+#include <malloc.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#include <nand.h>
+#include <errno.h>
+#include <asm/io.h>
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1			0x3F00
+#define NFC_FLASH_CMD2			0x3F04
+#define NFC_COL_ADDR			0x3F08
+#define NFC_ROW_ADDR			0x3F0c
+#define NFC_ROW_ADDR_INC		0x3F14
+#define NFC_FLASH_STATUS1		0x3F18
+#define NFC_FLASH_STATUS2		0x3F1c
+#define NFC_CACHE_SWAP			0x3F28
+#define NFC_SECTOR_SIZE			0x3F2c
+#define NFC_FLASH_CONFIG		0x3F30
+#define NFC_IRQ_STATUS			0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n)		((n) *  0x1000)
+
+#define PAGE_2K				0x0800
+#define OOB_64				0x0040
+#define OOB_MAX				0x0100
+
+/*
+ * NFC_CMD2[CODE] values. See section:
+ *  - 31.4.7 Flash Command Code Description, Vybrid manual
+ *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
+ *
+ * Briefly these are bitmasks of controller cycles.
+ */
+#define READ_PAGE_CMD_CODE		0x7EE0
+#define READ_ONFI_PARAM_CMD_CODE	0x4860
+#define PROGRAM_PAGE_CMD_CODE		0x7FC0
+#define ERASE_CMD_CODE			0x4EC0
+#define READ_ID_CMD_CODE		0x4804
+#define RESET_CMD_CODE			0x4040
+#define STATUS_READ_CMD_CODE		0x4068
+
+/* NFC ECC mode define */
+#define ECC_BYPASS			0
+#define ECC_45_BYTE			6
+#define ECC_60_BYTE			7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK				0xFF000000
+#define CMD_BYTE2_SHIFT				24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK				0xFF000000
+#define CMD_BYTE1_SHIFT				24
+#define CMD_CODE_MASK				0x00FFFF00
+#define CMD_CODE_SHIFT				8
+#define BUFNO_MASK				0x00000006
+#define BUFNO_SHIFT				1
+#define START_BIT				(1<<0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK				0x0000FFFF
+#define COL_ADDR_SHIFT				0
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK				0x00FFFFFF
+#define ROW_ADDR_SHIFT				0
+#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
+#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT			24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK			0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
+#define CONFIG_ECC_SRAM_REQ_BIT			(1<<21)
+#define CONFIG_DMA_REQ_BIT			(1<<20)
+#define CONFIG_ECC_MODE_MASK			0x000E0000
+#define CONFIG_ECC_MODE_SHIFT			17
+#define CONFIG_FAST_FLASH_BIT			(1<<16)
+#define CONFIG_16BIT				(1<<7)
+#define CONFIG_BOOT_MODE_BIT			(1<<6)
+#define CONFIG_ADDR_AUTO_INCR_BIT		(1<<5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT		(1<<4)
+#define CONFIG_PAGE_CNT_MASK			0xF
+#define CONFIG_PAGE_CNT_SHIFT			0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT				(1<<29)
+#define IDLE_EN_BIT				(1<<20)
+#define CMD_DONE_CLEAR_BIT			(1<<18)
+#define IDLE_CLEAR_BIT				(1<<17)
+
+#define NFC_TIMEOUT	(1000)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS		0x4
+#define ECC_STATUS_MASK		0x80
+#define ECC_STATUS_ERR_COUNT	0x3F
+
+enum vf610_nfc_alt_buf {
+	ALT_BUF_DATA = 0,
+	ALT_BUF_ID = 1,
+	ALT_BUF_STAT = 2,
+	ALT_BUF_ONFI = 3,
+};
+
+struct vf610_nfc {
+	struct nand_chip chip;
+	void __iomem *regs;
+	uint buf_offset;
+	int write_sz;
+	/* Status and ID are in alternate locations. */
+	enum vf610_nfc_alt_buf alt_buf;
+};
+
+#define mtd_to_nfc(_mtd) nand_get_controller_data(mtd_to_nand(_mtd))
+
+#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
+#define ECC_HW_MODE ECC_45_BYTE
+
+static struct nand_ecclayout vf610_nfc_ecc = {
+	.eccbytes = 45,
+	.eccpos = {19, 20, 21, 22, 23,
+		   24, 25, 26, 27, 28, 29, 30, 31,
+		   32, 33, 34, 35, 36, 37, 38, 39,
+		   40, 41, 42, 43, 44, 45, 46, 47,
+		   48, 49, 50, 51, 52, 53, 54, 55,
+		   56, 57, 58, 59, 60, 61, 62, 63},
+	.oobfree = {
+		{.offset = 2,
+		 .length = 17} }
+};
+#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
+#define ECC_HW_MODE ECC_60_BYTE
+
+static struct nand_ecclayout vf610_nfc_ecc = {
+	.eccbytes = 60,
+	.eccpos = { 4,  5,  6,  7,  8,  9, 10, 11,
+		   12, 13, 14, 15, 16, 17, 18, 19,
+		   20, 21, 22, 23, 24, 25, 26, 27,
+		   28, 29, 30, 31, 32, 33, 34, 35,
+		   36, 37, 38, 39, 40, 41, 42, 43,
+		   44, 45, 46, 47, 48, 49, 50, 51,
+		   52, 53, 54, 55, 56, 57, 58, 59,
+		   60, 61, 62, 63 },
+	.oobfree = {
+		{.offset = 2,
+		 .length = 2} }
+};
+#endif
+
+static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
+{
+	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
+{
+	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
+				       u32 mask, u32 shift, u32 val)
+{
+	vf610_nfc_write(mtd, reg,
+			(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
+}
+
+static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
+{
+	/*
+	 * Use this accessor for the internal SRAM buffers. On the ARM
+	 * Freescale Vybrid SoC it's known that the driver can treat
+	 * the SRAM buffer as if it's memory. Other platform might need
+	 * to treat the buffers differently.
+	 *
+	 * For the time being, use memcpy
+	 */
+	memcpy(dst, src, n);
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(void __iomem *regbase)
+{
+	void __iomem *reg = regbase + NFC_IRQ_STATUS;
+	u32 tmp = __raw_readl(reg);
+	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+	__raw_writel(tmp, reg);
+}
+
+/* Wait for complete operation */
+static void vf610_nfc_done(struct mtd_info *mtd)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint start;
+
+	/*
+	 * Barrier is needed after this write. This write need
+	 * to be done before reading the next register the first
+	 * time.
+	 * vf610_nfc_set implicates such a barrier by using writel
+	 * to write to the register.
+	 */
+	vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
+
+	start = get_timer(0);
+
+	while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
+		if (get_timer(start) > NFC_TIMEOUT) {
+			printf("Timeout while waiting for IDLE.\n");
+			return;
+		}
+	}
+	vf610_nfc_clear_status(nfc->regs);
+}
+
+static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
+{
+	u32 flash_id;
+
+	if (col < 4) {
+		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
+		flash_id >>= (3 - col) * 8;
+	} else {
+		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
+		flash_id >>= 24;
+	}
+
+	return flash_id & 0xff;
+}
+
+static u8 vf610_nfc_get_status(struct mtd_info *mtd)
+{
+	return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
+}
+
+/* Single command */
+static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
+				   u32 cmd_code)
+{
+	void __iomem *reg = regbase + NFC_FLASH_CMD2;
+	u32 tmp;
+	vf610_nfc_clear_status(regbase);
+
+	tmp = __raw_readl(reg);
+	tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
+	tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
+	tmp |= cmd_code << CMD_CODE_SHIFT;
+	__raw_writel(tmp, reg);
+}
+
+/* Two commands */
+static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
+			      u32 cmd_byte2, u32 cmd_code)
+{
+	void __iomem *reg = regbase + NFC_FLASH_CMD1;
+	u32 tmp;
+	vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
+
+	tmp = __raw_readl(reg);
+	tmp &= ~CMD_BYTE2_MASK;
+	tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
+	__raw_writel(tmp, reg);
+}
+
+static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
+{
+	if (column != -1) {
+		struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+		if (nfc->chip.options & NAND_BUSWIDTH_16)
+			column = column / 2;
+		vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
+				    COL_ADDR_SHIFT, column);
+	}
+	if (page != -1)
+		vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+				    ROW_ADDR_SHIFT, page);
+}
+
+static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
+{
+	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+			    CONFIG_ECC_MODE_MASK,
+			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
+{
+	__raw_writel(size, regbase + NFC_SECTOR_SIZE);
+}
+
+/* Send command to NAND chip */
+static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
+			      int column, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
+
+	nfc->buf_offset = max(column, 0);
+	nfc->alt_buf = ALT_BUF_DATA;
+
+	switch (command) {
+	case NAND_CMD_SEQIN:
+		/* Use valid column/page from preread... */
+		vf610_nfc_addr_cycle(mtd, column, page);
+		nfc->buf_offset = 0;
+
+		/*
+		 * SEQIN => data => PAGEPROG sequence is done by the controller
+		 * hence we do not need to issue the command here...
+		 */
+		return;
+	case NAND_CMD_PAGEPROG:
+		trfr_sz += nfc->write_sz;
+		vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
+		vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+		vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
+					command, PROGRAM_PAGE_CMD_CODE);
+		break;
+
+	case NAND_CMD_RESET:
+		vf610_nfc_transfer_size(nfc->regs, 0);
+		vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
+		break;
+
+	case NAND_CMD_READOOB:
+		trfr_sz += mtd->oobsize;
+		column = mtd->writesize;
+		vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+		vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
+					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
+		break;
+
+	case NAND_CMD_READ0:
+		trfr_sz += mtd->writesize + mtd->oobsize;
+		vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+		vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
+		vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
+					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		break;
+
+	case NAND_CMD_PARAM:
+		nfc->alt_buf = ALT_BUF_ONFI;
+		trfr_sz = 3 * sizeof(struct nand_onfi_params);
+		vf610_nfc_transfer_size(nfc->regs, trfr_sz);
+		vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
+				       READ_ONFI_PARAM_CMD_CODE);
+		vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+				    ROW_ADDR_SHIFT, column);
+		vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
+		break;
+
+	case NAND_CMD_ERASE1:
+		vf610_nfc_transfer_size(nfc->regs, 0);
+		vf610_nfc_send_commands(nfc->regs, command,
+					NAND_CMD_ERASE2, ERASE_CMD_CODE);
+		vf610_nfc_addr_cycle(mtd, column, page);
+		break;
+
+	case NAND_CMD_READID:
+		nfc->alt_buf = ALT_BUF_ID;
+		nfc->buf_offset = 0;
+		vf610_nfc_transfer_size(nfc->regs, 0);
+		vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
+		vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
+				    ROW_ADDR_SHIFT, column);
+		break;
+
+	case NAND_CMD_STATUS:
+		nfc->alt_buf = ALT_BUF_STAT;
+		vf610_nfc_transfer_size(nfc->regs, 0);
+		vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
+		break;
+	default:
+		return;
+	}
+
+	vf610_nfc_done(mtd);
+
+	nfc->write_sz = 0;
+}
+
+/* Read data from NFC buffers */
+static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint c = nfc->buf_offset;
+
+	/* Alternate buffers are only supported through read_byte */
+	if (nfc->alt_buf)
+		return;
+
+	vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
+
+	nfc->buf_offset += len;
+}
+
+/* Write data to NFC buffers */
+static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int len)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	uint c = nfc->buf_offset;
+	uint l;
+
+	l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
+	vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
+
+	nfc->write_sz += l;
+	nfc->buf_offset += l;
+}
+
+/* Read byte from NFC buffers */
+static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	u8 tmp;
+	uint c = nfc->buf_offset;
+
+	switch (nfc->alt_buf) {
+	case ALT_BUF_ID:
+		tmp = vf610_nfc_get_id(mtd, c);
+		break;
+	case ALT_BUF_STAT:
+		tmp = vf610_nfc_get_status(mtd);
+		break;
+#ifdef __LITTLE_ENDIAN
+	case ALT_BUF_ONFI:
+		/* Reverse byte since the controller uses big endianness */
+		c = nfc->buf_offset ^ 0x3;
+		/* fall-through */
+#endif
+	default:
+		tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
+		break;
+	}
+	nfc->buf_offset++;
+	return tmp;
+}
+
+/* Read word from NFC buffers */
+static u16 vf610_nfc_read_word(struct mtd_info *mtd)
+{
+	u16 tmp;
+
+	vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+	return tmp;
+}
+
+/* If not provided, upper layers apply a fixed delay. */
+static int vf610_nfc_dev_ready(struct mtd_info *mtd)
+{
+	/* NFC handles R/B internally; always ready.  */
+	return 1;
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+#ifdef CONFIG_VF610
+	u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
+	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+
+	if (chip >= 0) {
+		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+		tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
+	}
+
+	vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
+#endif
+}
+
+/* Count the number of 0's in buff upto max_bits */
+static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+	uint32_t *buff32 = (uint32_t *)buff;
+	int k, written_bits = 0;
+
+	for (k = 0; k < (size / 4); k++) {
+		written_bits += hweight32(~buff32[k]);
+		if (written_bits > max_bits)
+			break;
+	}
+
+	return written_bits;
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+					 uint8_t *oob, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+	u8 ecc_status;
+	u8 ecc_count;
+	int flips;
+	int flips_threshold = nfc->chip.ecc.strength / 2;
+
+	ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
+	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+	if (!(ecc_status & ECC_STATUS_MASK))
+		return ecc_count;
+
+	/* Read OOB without ECC unit enabled */
+	vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
+	vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
+
+	/*
+	 * On an erased page, bit count (including OOB) should be zero or
+	 * at least less then half of the ECC strength.
+	 */
+	flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
+	flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
+
+	if (unlikely(flips > flips_threshold))
+		return -EINVAL;
+
+	/* Erased page. */
+	memset(dat, 0xff, nfc->chip.ecc.size);
+	memset(oob, 0xff, mtd->oobsize);
+	return flips;
+}
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int eccsize = chip->ecc.size;
+	int stat;
+
+	vf610_nfc_read_buf(mtd, buf, eccsize);
+	if (oob_required)
+		vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+
+	if (stat < 0) {
+		mtd->ecc_stats.failed++;
+		return 0;
+	} else {
+		mtd->ecc_stats.corrected += stat;
+		return stat;
+	}
+}
+
+/*
+ * ECC will be calculated automatically
+ */
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	vf610_nfc_write_buf(mtd, buf, mtd->writesize);
+	if (oob_required)
+		vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	/* Always write whole page including OOB due to HW ECC */
+	nfc->write_sz = mtd->writesize + mtd->oobsize;
+
+	return 0;
+}
+
+struct vf610_nfc_config {
+	int hardware_ecc;
+	int width;
+	int flash_bbt;
+};
+
+static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
+{
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	struct vf610_nfc *nfc;
+	int err = 0;
+	struct vf610_nfc_config cfg = {
+		.hardware_ecc = 1,
+#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
+		.width = 16,
+#else
+		.width = 8,
+#endif
+		.flash_bbt = 1,
+	};
+
+	nfc = malloc(sizeof(*nfc));
+	if (!nfc) {
+		printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
+		return -ENOMEM;
+	}
+
+	chip = &nfc->chip;
+	nfc->regs = addr;
+
+	mtd = nand_to_mtd(chip);
+	nand_set_controller_data(chip, nfc);
+
+	if (cfg.width == 16)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	chip->dev_ready = vf610_nfc_dev_ready;
+	chip->cmdfunc = vf610_nfc_command;
+	chip->read_byte = vf610_nfc_read_byte;
+	chip->read_word = vf610_nfc_read_word;
+	chip->read_buf = vf610_nfc_read_buf;
+	chip->write_buf = vf610_nfc_write_buf;
+	chip->select_chip = vf610_nfc_select_chip;
+
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	chip->ecc.size = PAGE_2K;
+
+	/* Set configuration register. */
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+	vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+
+	/* Disable virtual pages, only one elementary transfer unit */
+	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+			    CONFIG_PAGE_CNT_SHIFT, 1);
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
+		err = -ENXIO;
+		goto error;
+	}
+
+	if (cfg.width == 16)
+		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+	/* Bad block options. */
+	if (cfg.flash_bbt)
+		chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
+				    NAND_BBT_CREATE;
+
+	/* Single buffer only, max 256 OOB minus ECC status */
+	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+		dev_err(nfc->dev, "Unsupported flash page size\n");
+		err = -ENXIO;
+		goto error;
+	}
+
+	if (cfg.hardware_ecc) {
+		if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+			dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+			err = -ENXIO;
+			goto error;
+		}
+
+		if (chip->ecc.size != mtd->writesize) {
+			dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
+			dev_err(nfc->dev, "Step size needs to be page size\n");
+			err = -ENXIO;
+			goto error;
+		}
+
+		/* Current HW ECC layouts only use 64 bytes of OOB */
+		if (mtd->oobsize > 64)
+			mtd->oobsize = 64;
+
+		/* propagate ecc.layout to mtd_info */
+		mtd->ecclayout = chip->ecc.layout;
+		chip->ecc.read_page = vf610_nfc_read_page;
+		chip->ecc.write_page = vf610_nfc_write_page;
+		chip->ecc.mode = NAND_ECC_HW;
+
+		chip->ecc.size = PAGE_2K;
+		chip->ecc.layout = &vf610_nfc_ecc;
+#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
+		chip->ecc.strength = 24;
+		chip->ecc.bytes = 45;
+#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
+		chip->ecc.strength = 32;
+		chip->ecc.bytes = 60;
+#endif
+
+		/* Set ECC_STATUS offset */
+		vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
+				    CONFIG_ECC_SRAM_ADDR_MASK,
+				    CONFIG_ECC_SRAM_ADDR_SHIFT,
+				    ECC_SRAM_ADDR >> 3);
+
+		/* Enable ECC status in SRAM */
+		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+	}
+
+	/* second phase scan */
+	err = nand_scan_tail(mtd);
+	if (err)
+		return err;
+
+	err = nand_register(devnum, mtd);
+	if (err)
+		return err;
+
+	return 0;
+
+error:
+	return err;
+}
+
+void board_nand_init(void)
+{
+	int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
+	if (err)
+		printf("VF610 NAND init failed (err %d)\n", err);
+}
diff --git a/drivers/mtd/nand/raw/zynq_nand.c b/drivers/mtd/nand/raw/zynq_nand.c
new file mode 100644
index 0000000..e932a58
--- /dev/null
+++ b/drivers/mtd/nand/raw/zynq_nand.c
@@ -0,0 +1,1254 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2016 Xilinx, Inc.
+ *
+ * Xilinx Zynq NAND Flash Controller Driver
+ * This driver is based on plat_nand.c and mxc_nand.c drivers
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/arch/hardware.h>
+#include <asm/arch/sys_proto.h>
+
+/* The NAND flash driver defines */
+#define ZYNQ_NAND_CMD_PHASE		1
+#define ZYNQ_NAND_DATA_PHASE		2
+#define ZYNQ_NAND_ECC_SIZE		512
+#define ZYNQ_NAND_SET_OPMODE_8BIT	(0 << 0)
+#define ZYNQ_NAND_SET_OPMODE_16BIT	(1 << 0)
+#define ZYNQ_NAND_ECC_STATUS		(1 << 6)
+#define ZYNQ_MEMC_CLRCR_INT_CLR1	(1 << 4)
+#define ZYNQ_MEMC_SR_RAW_INT_ST1	(1 << 6)
+#define ZYNQ_MEMC_SR_INT_ST1		(1 << 4)
+#define ZYNQ_MEMC_NAND_ECC_MODE_MASK	0xC
+
+/* Flash memory controller operating parameters */
+#define ZYNQ_NAND_CLR_CONFIG	((0x1 << 1)  |	/* Disable interrupt */ \
+				(0x1 << 4)   |	/* Clear interrupt */ \
+				(0x1 << 6))	/* Disable ECC interrupt */
+
+#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
+
+/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
+#define ZYNQ_NAND_SET_CYCLES	((0x2 << 20) |	/* t_rr from nand_cycles */ \
+				(0x2 << 17)  |	/* t_ar from nand_cycles */ \
+				(0x1 << 14)  |	/* t_clr from nand_cycles */ \
+				(0x3 << 11)  |	/* t_wp from nand_cycles */ \
+				(0x2 << 8)   |	/* t_rea from nand_cycles */ \
+				(0x5 << 4)   |	/* t_wc from nand_cycles */ \
+				(0x5 << 0))	/* t_rc from nand_cycles */
+#endif
+
+
+#define ZYNQ_NAND_DIRECT_CMD	((0x4 << 23) |	/* Chip 0 from interface 1 */ \
+				(0x2 << 21))	/* UpdateRegs operation */
+
+#define ZYNQ_NAND_ECC_CONFIG	((0x1 << 2)  |	/* ECC available on APB */ \
+				(0x1 << 4)   |	/* ECC read at end of page */ \
+				(0x0 << 5))	/* No Jumping */
+
+#define ZYNQ_NAND_ECC_CMD1	((0x80)      |	/* Write command */ \
+				(0x00 << 8)  |	/* Read command */ \
+				(0x30 << 16) |	/* Read End command */ \
+				(0x1 << 24))	/* Read End command calid */
+
+#define ZYNQ_NAND_ECC_CMD2	((0x85)      |	/* Write col change cmd */ \
+				(0x05 << 8)  |	/* Read col change cmd */ \
+				(0xE0 << 16) |	/* Read col change end cmd */ \
+				(0x1 << 24))	/* Read col change
+							end cmd valid */
+/* AXI Address definitions */
+#define START_CMD_SHIFT			3
+#define END_CMD_SHIFT			11
+#define END_CMD_VALID_SHIFT		20
+#define ADDR_CYCLES_SHIFT		21
+#define CLEAR_CS_SHIFT			21
+#define ECC_LAST_SHIFT			10
+#define COMMAND_PHASE			(0 << 19)
+#define DATA_PHASE			(1 << 19)
+#define ONDIE_ECC_FEATURE_ADDR		0x90
+#define ONDIE_ECC_FEATURE_ENABLE	0x08
+
+#define ZYNQ_NAND_ECC_LAST	(1 << ECC_LAST_SHIFT)	/* Set ECC_Last */
+#define ZYNQ_NAND_CLEAR_CS	(1 << CLEAR_CS_SHIFT)	/* Clear chip select */
+
+/* ECC block registers bit position and bit mask */
+#define ZYNQ_NAND_ECC_BUSY	(1 << 6)	/* ECC block is busy */
+#define ZYNQ_NAND_ECC_MASK	0x00FFFFFF	/* ECC value mask */
+
+#define ZYNQ_NAND_ROW_ADDR_CYCL_MASK	0x0F
+#define ZYNQ_NAND_COL_ADDR_CYCL_MASK	0xF0
+
+#define ZYNQ_NAND_MIO_NUM_NAND_8BIT	13
+#define ZYNQ_NAND_MIO_NUM_NAND_16BIT	8
+
+enum zynq_nand_bus_width {
+	NAND_BW_UNKNOWN = -1,
+	NAND_BW_8BIT,
+	NAND_BW_16BIT,
+};
+
+#ifndef NAND_CMD_LOCK_TIGHT
+#define NAND_CMD_LOCK_TIGHT 0x2c
+#endif
+
+#ifndef NAND_CMD_LOCK_STATUS
+#define NAND_CMD_LOCK_STATUS 0x7a
+#endif
+
+/* SMC register set */
+struct zynq_nand_smc_regs {
+	u32 csr;		/* 0x00 */
+	u32 reserved0[2];
+	u32 cfr;		/* 0x0C */
+	u32 dcr;		/* 0x10 */
+	u32 scr;		/* 0x14 */
+	u32 sor;		/* 0x18 */
+	u32 reserved1[249];
+	u32 esr;		/* 0x400 */
+	u32 emcr;		/* 0x404 */
+	u32 emcmd1r;		/* 0x408 */
+	u32 emcmd2r;		/* 0x40C */
+	u32 reserved2[2];
+	u32 eval0r;		/* 0x418 */
+};
+#define zynq_nand_smc_base	((struct zynq_nand_smc_regs __iomem *)\
+				ZYNQ_SMC_BASEADDR)
+
+/*
+ * struct zynq_nand_info - Defines the NAND flash driver instance
+ * @parts:		Pointer to the mtd_partition structure
+ * @nand_base:		Virtual address of the NAND flash device
+ * @end_cmd_pending:	End command is pending
+ * @end_cmd:		End command
+ */
+struct zynq_nand_info {
+	void __iomem	*nand_base;
+	u8		end_cmd_pending;
+	u8		end_cmd;
+};
+
+/*
+ * struct zynq_nand_command_format - Defines NAND flash command format
+ * @start_cmd:		First cycle command (Start command)
+ * @end_cmd:		Second cycle command (Last command)
+ * @addr_cycles:	Number of address cycles required to send the address
+ * @end_cmd_valid:	The second cycle command is valid for cmd or data phase
+ */
+struct zynq_nand_command_format {
+	u8 start_cmd;
+	u8 end_cmd;
+	u8 addr_cycles;
+	u8 end_cmd_valid;
+};
+
+/*  The NAND flash operations command format */
+static const struct zynq_nand_command_format zynq_nand_commands[] = {
+	{NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
+	{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
+	{NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
+	{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
+	{NAND_CMD_LOCK, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_LOCK_TIGHT, NAND_CMD_NONE, 0, 0},
+	{NAND_CMD_UNLOCK1, NAND_CMD_NONE, 3, 0},
+	{NAND_CMD_UNLOCK2, NAND_CMD_NONE, 3, 0},
+	{NAND_CMD_LOCK_STATUS, NAND_CMD_NONE, 3, 0},
+	{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
+	/* Add all the flash commands supported by the flash device */
+};
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_16 = {
+	.eccbytes = 3,
+	.eccpos = {0, 1, 2},
+	.oobfree = {
+		{ .offset = 8, .length = 8 }
+	}
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+	.eccbytes = 12,
+	.eccpos = {
+		   52, 53, 54, 55, 56, 57,
+		   58, 59, 60, 61, 62, 63},
+	.oobfree = {
+		{ .offset = 2, .length = 50 }
+	}
+};
+
+static struct nand_ecclayout ondie_nand_oob_64 = {
+	.eccbytes = 32,
+
+	.eccpos = {
+		8, 9, 10, 11, 12, 13, 14, 15,
+		24, 25, 26, 27, 28, 29, 30, 31,
+		40, 41, 42, 43, 44, 45, 46, 47,
+		56, 57, 58, 59, 60, 61, 62, 63
+	},
+
+	.oobfree = {
+		{ .offset = 4, .length = 4 },
+		{ .offset = 20, .length = 4 },
+		{ .offset = 36, .length = 4 },
+		{ .offset = 52, .length = 4 }
+	}
+};
+
+/* bbt decriptors for chips with on-die ECC and
+   chips with 64-byte OOB */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 4,
+	.len = 4,
+	.veroffs = 20,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+/*
+ * zynq_nand_waitfor_ecc_completion - Wait for ECC completion
+ *
+ * returns: status for command completion, -1 for Timeout
+ */
+static int zynq_nand_waitfor_ecc_completion(void)
+{
+	unsigned long timeout;
+	u32 status;
+
+	/* Wait max 10us */
+	timeout = 10;
+	status = readl(&zynq_nand_smc_base->esr);
+	while (status & ZYNQ_NAND_ECC_BUSY) {
+		status = readl(&zynq_nand_smc_base->esr);
+		if (timeout == 0)
+			return -1;
+		timeout--;
+		udelay(1);
+	}
+
+	return status;
+}
+
+/*
+ * zynq_nand_init_nand_flash - Initialize NAND controller
+ * @option:	Device property flags
+ *
+ * This function initializes the NAND flash interface on the NAND controller.
+ *
+ * returns:	0 on success or error value on failure
+ */
+static int zynq_nand_init_nand_flash(int option)
+{
+	u32 status;
+
+	/* disable interrupts */
+	writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr);
+#ifndef CONFIG_NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
+	/* Initialize the NAND interface by setting cycles and operation mode */
+	writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr);
+#endif
+	if (option & NAND_BUSWIDTH_16)
+		writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor);
+	else
+		writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor);
+
+	writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr);
+
+	/* Wait till the ECC operation is complete */
+	status = zynq_nand_waitfor_ecc_completion();
+	if (status < 0) {
+		printf("%s: Timeout\n", __func__);
+		return status;
+	}
+
+	/* Set the command1 and command2 register */
+	writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r);
+	writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:	Pointer to the mtd_info structure
+ * @data:	Pointer to the page data
+ * @ecc_code:	Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * returns:	0 on success or error value on failure
+ */
+static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
+		u8 *ecc_code)
+{
+	u32 ecc_value = 0;
+	u8 ecc_reg, ecc_byte;
+	u32 ecc_status;
+
+	/* Wait till the ECC operation is complete */
+	ecc_status = zynq_nand_waitfor_ecc_completion();
+	if (ecc_status < 0) {
+		printf("%s: Timeout\n", __func__);
+		return ecc_status;
+	}
+
+	for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+		/* Read ECC value for each block */
+		ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg);
+
+		/* Get the ecc status from ecc read value */
+		ecc_status = (ecc_value >> 24) & 0xFF;
+
+		/* ECC value valid */
+		if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
+			for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+				/* Copy ECC bytes to MTD buffer */
+				*ecc_code = ecc_value & 0xFF;
+				ecc_value = ecc_value >> 8;
+				ecc_code++;
+			}
+		} else {
+			debug("%s: ecc status failed\n", __func__);
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * onehot - onehot function
+ * @value:	value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if one bit is set.
+ *
+ * FIXME: Try to move this in common.h
+ */
+static bool onehot(unsigned short value)
+{
+	bool onehot;
+
+	onehot = value && !(value & (value - 1));
+	return onehot;
+}
+
+/*
+ * zynq_nand_correct_data - ECC correction function
+ * @mtd:	Pointer to the mtd_info structure
+ * @buf:	Pointer to the page data
+ * @read_ecc:	Pointer to the ECC value read from spare data area
+ * @calc_ecc:	Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * returns:	0 if no ECC errors found
+ *		1 if single bit error found and corrected.
+ *		-1 if multiple ECC errors found.
+ */
+static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+			unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	unsigned char bit_addr;
+	unsigned int byte_addr;
+	unsigned short ecc_odd, ecc_even;
+	unsigned short read_ecc_lower, read_ecc_upper;
+	unsigned short calc_ecc_lower, calc_ecc_upper;
+
+	read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+	read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+	calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+	calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+	ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+	ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+	if ((ecc_odd == 0) && (ecc_even == 0))
+		return 0;       /* no error */
+
+	if (ecc_odd == (~ecc_even & 0xfff)) {
+		/* bits [11:3] of error code is byte offset */
+		byte_addr = (ecc_odd >> 3) & 0x1ff;
+		/* bits [2:0] of error code is bit offset */
+		bit_addr = ecc_odd & 0x7;
+		/* Toggling error bit */
+		buf[byte_addr] ^= (1 << bit_addr);
+		return 1;
+	}
+
+	if (onehot(ecc_odd | ecc_even))
+		return 1; /* one error in parity */
+
+	return -1; /* Uncorrectable error */
+}
+
+/*
+ * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @page:	page number to read
+ * @sndcmd:	flag whether to issue read command or not
+ */
+static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			int page)
+{
+	unsigned long data_phase_addr = 0;
+	int data_width = 4;
+	u8 *p;
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+
+	p = chip->oob_poi;
+	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+	p += mtd->oobsize - data_width;
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+	chip->read_buf(mtd, p, data_width);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @page:	page number to write
+ */
+static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	int status = 0, data_width = 4;
+	const u8 *buf = chip->oob_poi;
+	unsigned long data_phase_addr = 0;
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+	chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
+	buf += mtd->oobsize - data_width;
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	chip->write_buf(mtd, buf, data_width);
+
+	/* Send command to program the OOB data */
+	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+	status = chip->waitfunc(mtd, chip);
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * zynq_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page:       page number to read
+ */
+static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				   u8 *buf,  int oob_required, int page)
+{
+	unsigned long data_width = 4;
+	unsigned long data_phase_addr = 0;
+	u8 *p;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+
+	p = chip->oob_poi;
+	chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+	p += (mtd->oobsize - data_width);
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	chip->read_buf(mtd, p, data_width);
+	return 0;
+}
+
+static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
+		struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+	chip->read_buf(mtd, buf, mtd->writesize);
+	return 0;
+}
+
+static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
+				    struct nand_chip *chip, u32 data_offs,
+				    u32 readlen, u8 *buf, int page)
+{
+	if (data_offs != 0) {
+		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
+		buf += data_offs;
+	}
+	chip->read_buf(mtd, buf, readlen);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_page_raw - [Intern] raw page write function
+ * @mtd:        mtd info structure
+ * @chip:       nand chip info structure
+ * @buf:        data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_raw(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	unsigned long data_width = 4;
+	unsigned long data_phase_addr = 0;
+	u8 *p;
+
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	p = chip->oob_poi;
+	chip->write_buf(mtd, p, (mtd->oobsize - data_width));
+	p += (mtd->oobsize - data_width);
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+	chip->write_buf(mtd, p, data_width);
+
+	return 0;
+}
+
+/*
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:	Pointer to the mtd info structure
+ * @chip:	Pointer to the NAND chip info structure
+ * @buf:	Pointer to the data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ */
+static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	int i, eccsteps, eccsize = chip->ecc.size;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	const u8 *p = buf;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+	unsigned long data_phase_addr = 0;
+	unsigned long data_width = 4;
+	u8 *oob_ptr;
+
+	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+		chip->write_buf(mtd, p, eccsize);
+		p += eccsize;
+	}
+	chip->write_buf(mtd, p, (eccsize - data_width));
+	p += eccsize - data_width;
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long) chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	chip->write_buf(mtd, p, data_width);
+
+	/* Wait for ECC to be calculated and read the error values */
+	p = buf;
+	chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
+
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+	/* Write the spare area with ECC bytes */
+	oob_ptr = chip->oob_poi;
+	chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+	data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+	chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+	oob_ptr += (mtd->oobsize - data_width);
+	chip->write_buf(mtd, oob_ptr, data_width);
+
+	return 0;
+}
+
+/*
+ * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
+ * write function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
+	struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	const u8 *p = buf;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+
+	/* Software ecc calculation */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+}
+
+/*
+ * nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:	Pointer to the mtd info structure
+ * @chip:	Pointer to the NAND chip info structure
+ * @buf:	Pointer to the buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page:	page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * returns:	0 always and updates ECC operation status in to MTD structure
+ */
+static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+	int i, stat, eccsteps, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	u8 *ecc_code = chip->buffers->ecccode;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+	unsigned long data_phase_addr = 0;
+	unsigned long data_width = 4;
+	u8 *oob_ptr;
+
+	for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+		chip->read_buf(mtd, p, eccsize);
+		p += eccsize;
+	}
+	chip->read_buf(mtd, p, (eccsize - data_width));
+	p += eccsize - data_width;
+
+	/* Set ECC Last bit to 1 */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+	chip->read_buf(mtd, p, data_width);
+
+	/* Read the calculated ECC value */
+	p = buf;
+	chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+	/* Clear ECC last bit */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	/* Read the stored ECC value */
+	oob_ptr = chip->oob_poi;
+	chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+	/* de-assert chip select */
+	data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+	data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+	chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+	oob_ptr += (mtd->oobsize - data_width);
+	chip->read_buf(mtd, oob_ptr, data_width);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	/* Check ECC error for all blocks and correct if it is correctable */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+	return 0;
+}
+
+/*
+ * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
+ * read function
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @page:	page number to read
+ */
+static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
+	struct nand_chip *chip, u8 *buf, int oob_required,  int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->buffers->ecccalc;
+	u8 *ecc_code = chip->buffers->ecccode;
+	u32 *eccpos = chip->ecc.layout->eccpos;
+
+	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	for (i = 0; i < chip->ecc.total; i++)
+		ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+	}
+	return 0;
+}
+
+/*
+ * zynq_nand_select_chip - Select the flash device
+ * @mtd:	Pointer to the mtd_info structure
+ * @chip:	Chip number to be selected
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* Not support multiple chips yet */
+}
+
+/*
+ * zynq_nand_cmd_function - Send command to NAND device
+ * @mtd:	Pointer to the mtd_info structure
+ * @command:	The command to be sent to the flash device
+ * @column:	The column address for this command, -1 if none
+ * @page_addr:	The page address for this command, -1 if none
+ */
+static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
+				 int column, int page_addr)
+{
+	struct nand_chip *chip = mtd->priv;
+	const struct zynq_nand_command_format *curr_cmd = NULL;
+	u8 addr_cycles = 0;
+	struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv;
+	void *cmd_addr;
+	unsigned long cmd_data = 0;
+	unsigned long cmd_phase_addr = 0;
+	unsigned long data_phase_addr = 0;
+	u8 end_cmd = 0;
+	u8 end_cmd_valid = 0;
+	u32 index;
+
+	if (xnand->end_cmd_pending) {
+		/* Check for end command if this command request is same as the
+		 * pending command then return
+		 */
+		if (xnand->end_cmd == command) {
+			xnand->end_cmd = 0;
+			xnand->end_cmd_pending = 0;
+			return;
+		}
+	}
+
+	/* Emulate NAND_CMD_READOOB for large page device */
+	if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
+	    (command == NAND_CMD_READOOB)) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Get the command format */
+	for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
+		if (command == zynq_nand_commands[index].start_cmd)
+			break;
+
+	if (index == ARRAY_SIZE(zynq_nand_commands)) {
+		printf("%s: Unsupported start cmd %02x\n", __func__, command);
+		return;
+	}
+	curr_cmd = &zynq_nand_commands[index];
+
+	/* Clear interrupt */
+	writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr);
+
+	/* Get the command phase address */
+	if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
+		end_cmd_valid = 1;
+
+	if (curr_cmd->end_cmd == NAND_CMD_NONE)
+		end_cmd = 0x0;
+	else
+		end_cmd = curr_cmd->end_cmd;
+
+	if (command == NAND_CMD_READ0 ||
+	    command == NAND_CMD_SEQIN) {
+		addr_cycles = chip->onfi_params.addr_cycles &
+				ZYNQ_NAND_ROW_ADDR_CYCL_MASK;
+		addr_cycles += ((chip->onfi_params.addr_cycles &
+				ZYNQ_NAND_COL_ADDR_CYCL_MASK) >> 4);
+	} else {
+		addr_cycles = curr_cmd->addr_cycles;
+	}
+
+	cmd_phase_addr = (unsigned long)xnand->nand_base	|
+			(addr_cycles << ADDR_CYCLES_SHIFT)	|
+			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
+			(COMMAND_PHASE)					|
+			(end_cmd << END_CMD_SHIFT)			|
+			(curr_cmd->start_cmd << START_CMD_SHIFT);
+
+	cmd_addr = (void __iomem *)cmd_phase_addr;
+
+	/* Get the data phase address */
+	end_cmd_valid = 0;
+
+	data_phase_addr = (unsigned long)xnand->nand_base	|
+			(0x0 << CLEAR_CS_SHIFT)				|
+			(end_cmd_valid << END_CMD_VALID_SHIFT)		|
+			(DATA_PHASE)					|
+			(end_cmd << END_CMD_SHIFT)			|
+			(0x0 << ECC_LAST_SHIFT);
+
+	chip->IO_ADDR_R = (void  __iomem *)data_phase_addr;
+	chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+	/* Command phase AXI Read & Write */
+	if (column != -1 && page_addr != -1) {
+		/* Adjust columns for 16 bit bus width */
+		if (chip->options & NAND_BUSWIDTH_16)
+			column >>= 1;
+		cmd_data = column;
+		if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
+			cmd_data |= page_addr << 16;
+			/* Another address cycle for devices > 128MiB */
+			if (chip->chipsize > (128 << 20)) {
+				writel(cmd_data, cmd_addr);
+				cmd_data = (page_addr >> 16);
+			}
+		} else {
+			cmd_data |= page_addr << 8;
+		}
+	} else if (page_addr != -1)  { /* Erase */
+		cmd_data = page_addr;
+	} else if (column != -1) { /* Change read/write column, read id etc */
+		/* Adjust columns for 16 bit bus width */
+		if ((chip->options & NAND_BUSWIDTH_16) &&
+		    ((command == NAND_CMD_READ0) ||
+		     (command == NAND_CMD_SEQIN) ||
+		     (command == NAND_CMD_RNDOUT) ||
+		     (command == NAND_CMD_RNDIN)))
+			column >>= 1;
+		cmd_data = column;
+	}
+
+	writel(cmd_data, cmd_addr);
+
+	if (curr_cmd->end_cmd_valid) {
+		xnand->end_cmd = curr_cmd->end_cmd;
+		xnand->end_cmd_pending = 1;
+	}
+
+	ndelay(100);
+
+	if ((command == NAND_CMD_READ0) ||
+	    (command == NAND_CMD_RESET) ||
+	    (command == NAND_CMD_PARAM) ||
+	    (command == NAND_CMD_GET_FEATURES))
+		/* wait until command is processed */
+		nand_wait_ready(mtd);
+}
+
+/*
+ * zynq_nand_read_buf - read chip data into buffer
+ * @mtd:        MTD device structure
+ * @buf:        buffer to store date
+ * @len:        number of bytes to read
+ */
+static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((unsigned long)buf & 0x3) != 0) {
+		if (((unsigned long)buf & 0x1) != 0) {
+			if (len) {
+				*buf = readb(chip->IO_ADDR_R);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((unsigned long)buf & 0x3) != 0) {
+			if (len >= 2) {
+				*(u16 *)buf = readw(chip->IO_ADDR_R);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		*(u32 *)buf = readl(chip->IO_ADDR_R);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			*(u16 *)buf = readw(chip->IO_ADDR_R);
+			buf += 2;
+			len -= 2;
+		}
+		if (len)
+			*buf = readb(chip->IO_ADDR_R);
+	}
+}
+
+/*
+ * zynq_nand_write_buf - write buffer to chip
+ * @mtd:        MTD device structure
+ * @buf:        data buffer
+ * @len:        number of bytes to write
+ */
+static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd->priv;
+	const u32 *nand = chip->IO_ADDR_W;
+
+	/* Make sure that buf is 32 bit aligned */
+	if (((unsigned long)buf & 0x3) != 0) {
+		if (((unsigned long)buf & 0x1) != 0) {
+			if (len) {
+				writeb(*buf, nand);
+				buf += 1;
+				len--;
+			}
+		}
+
+		if (((unsigned long)buf & 0x3) != 0) {
+			if (len >= 2) {
+				writew(*(u16 *)buf, nand);
+				buf += 2;
+				len -= 2;
+			}
+		}
+	}
+
+	/* copy aligned data */
+	while (len >= 4) {
+		writel(*(u32 *)buf, nand);
+		buf += 4;
+		len -= 4;
+	}
+
+	/* mop up any remaining bytes */
+	if (len) {
+		if (len >= 2) {
+			writew(*(u16 *)buf, nand);
+			buf += 2;
+			len -= 2;
+		}
+
+		if (len)
+			writeb(*buf, nand);
+	}
+}
+
+/*
+ * zynq_nand_device_ready - Check device ready/busy line
+ * @mtd:	Pointer to the mtd_info structure
+ *
+ * returns:	0 on busy or 1 on ready state
+ */
+static int zynq_nand_device_ready(struct mtd_info *mtd)
+{
+	u32 csr_val;
+
+	csr_val = readl(&zynq_nand_smc_base->csr);
+	/* Check the raw_int_status1 bit */
+	if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
+		/* Clear the interrupt condition */
+		writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr);
+		return 1;
+	}
+
+	return 0;
+}
+
+static int zynq_nand_check_is_16bit_bw_flash(void)
+{
+	int is_16bit_bw = NAND_BW_UNKNOWN;
+	int mio_num_8bit = 0, mio_num_16bit = 0;
+
+	mio_num_8bit = zynq_slcr_get_mio_pin_status("nand8");
+	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT)
+		is_16bit_bw = NAND_BW_8BIT;
+
+	mio_num_16bit = zynq_slcr_get_mio_pin_status("nand16");
+	if (mio_num_8bit == ZYNQ_NAND_MIO_NUM_NAND_8BIT &&
+	    mio_num_16bit == ZYNQ_NAND_MIO_NUM_NAND_16BIT)
+		is_16bit_bw = NAND_BW_16BIT;
+
+	return is_16bit_bw;
+}
+
+static int zynq_nand_init(struct nand_chip *nand_chip, int devnum)
+{
+	struct zynq_nand_info *xnand;
+	struct mtd_info *mtd;
+	unsigned long ecc_page_size;
+	u8 maf_id, dev_id, i;
+	u8 get_feature[4];
+	u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
+	unsigned long ecc_cfg;
+	int ondie_ecc_enabled = 0;
+	int err = -1;
+	int is_16bit_bw;
+
+	xnand = calloc(1, sizeof(struct zynq_nand_info));
+	if (!xnand) {
+		printf("%s: failed to allocate\n", __func__);
+		goto fail;
+	}
+
+	xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR;
+	mtd = nand_to_mtd(nand_chip);
+
+	nand_chip->priv = xnand;
+	mtd->priv = nand_chip;
+
+	/* Set address of NAND IO lines */
+	nand_chip->IO_ADDR_R = xnand->nand_base;
+	nand_chip->IO_ADDR_W = xnand->nand_base;
+
+	/* Set the driver entry points for MTD */
+	nand_chip->cmdfunc = zynq_nand_cmd_function;
+	nand_chip->dev_ready = zynq_nand_device_ready;
+	nand_chip->select_chip = zynq_nand_select_chip;
+
+	/* If we don't set this delay driver sets 20us by default */
+	nand_chip->chip_delay = 30;
+
+	/* Buffer read/write routines */
+	nand_chip->read_buf = zynq_nand_read_buf;
+	nand_chip->write_buf = zynq_nand_write_buf;
+
+	is_16bit_bw = zynq_nand_check_is_16bit_bw_flash();
+	if (is_16bit_bw == NAND_BW_UNKNOWN) {
+		printf("%s: Unable detect NAND based on MIO settings\n",
+		       __func__);
+		goto fail;
+	}
+
+	if (is_16bit_bw == NAND_BW_16BIT)
+		nand_chip->options = NAND_BUSWIDTH_16;
+
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	/* Initialize the NAND flash interface on NAND controller */
+	if (zynq_nand_init_nand_flash(nand_chip->options) < 0) {
+		printf("%s: nand flash init failed\n", __func__);
+		goto fail;
+	}
+
+	/* first scan to find the device and get the page size */
+	if (nand_scan_ident(mtd, 1, NULL)) {
+		printf("%s: nand_scan_ident failed\n", __func__);
+		goto fail;
+	}
+	/* Send the command for reading device ID */
+	nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+	/* Read manufacturer and device IDs */
+	maf_id = nand_chip->read_byte(mtd);
+	dev_id = nand_chip->read_byte(mtd);
+
+	if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
+				 (dev_id == 0xa1) || (dev_id == 0xb1) ||
+				 (dev_id == 0xaa) || (dev_id == 0xba) ||
+				 (dev_id == 0xda) || (dev_id == 0xca) ||
+				 (dev_id == 0xac) || (dev_id == 0xbc) ||
+				 (dev_id == 0xdc) || (dev_id == 0xcc) ||
+				 (dev_id == 0xa3) || (dev_id == 0xb3) ||
+				 (dev_id == 0xd3) || (dev_id == 0xc3))) {
+		nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
+						ONDIE_ECC_FEATURE_ADDR, -1);
+		for (i = 0; i < 4; i++)
+			writeb(set_feature[i], nand_chip->IO_ADDR_W);
+
+		/* Wait for 1us after writing data with SET_FEATURES command */
+		ndelay(1000);
+
+		nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
+						ONDIE_ECC_FEATURE_ADDR, -1);
+		nand_chip->read_buf(mtd, get_feature, 4);
+
+		if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
+			debug("%s: OnDie ECC flash\n", __func__);
+			ondie_ecc_enabled = 1;
+		} else {
+			printf("%s: Unable to detect OnDie ECC\n", __func__);
+		}
+	}
+
+	if (ondie_ecc_enabled) {
+		/* Bypass the controller ECC block */
+		ecc_cfg = readl(&zynq_nand_smc_base->emcr);
+		ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
+		writel(ecc_cfg, &zynq_nand_smc_base->emcr);
+
+		/* The software ECC routines won't work
+		 * with the SMC controller
+		 */
+		nand_chip->ecc.mode = NAND_ECC_HW;
+		nand_chip->ecc.strength = 1;
+		nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
+		nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
+		nand_chip->ecc.write_page = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_oob = zynq_nand_read_oob;
+		nand_chip->ecc.write_oob = zynq_nand_write_oob;
+		nand_chip->ecc.size = mtd->writesize;
+		nand_chip->ecc.bytes = 0;
+
+		/* NAND with on-die ECC supports subpage reads */
+		nand_chip->options |= NAND_SUBPAGE_READ;
+
+		/* On-Die ECC spare bytes offset 8 is used for ECC codes */
+		if (ondie_ecc_enabled) {
+			nand_chip->ecc.layout = &ondie_nand_oob_64;
+			/* Use the BBT pattern descriptors */
+			nand_chip->bbt_td = &bbt_main_descr;
+			nand_chip->bbt_md = &bbt_mirror_descr;
+		}
+	} else {
+		/* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+		nand_chip->ecc.mode = NAND_ECC_HW;
+		nand_chip->ecc.strength = 1;
+		nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
+		nand_chip->ecc.bytes = 3;
+		nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
+		nand_chip->ecc.correct = zynq_nand_correct_data;
+		nand_chip->ecc.hwctl = NULL;
+		nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
+		nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
+		nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+		nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+		nand_chip->ecc.read_oob = zynq_nand_read_oob;
+		nand_chip->ecc.write_oob = zynq_nand_write_oob;
+
+		switch (mtd->writesize) {
+		case 512:
+			ecc_page_size = 0x1;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		case 1024:
+			ecc_page_size = 0x2;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		case 2048:
+			ecc_page_size = 0x3;
+			/* Set the ECC memory config register */
+			writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+			       &zynq_nand_smc_base->emcr);
+			break;
+		default:
+			nand_chip->ecc.mode = NAND_ECC_SOFT;
+			nand_chip->ecc.calculate = nand_calculate_ecc;
+			nand_chip->ecc.correct = nand_correct_data;
+			nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
+			nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
+			nand_chip->ecc.size = 256;
+			break;
+		}
+
+		if (mtd->oobsize == 16)
+			nand_chip->ecc.layout = &nand_oob_16;
+		else if (mtd->oobsize == 64)
+			nand_chip->ecc.layout = &nand_oob_64;
+		else
+			printf("%s: No oob layout found\n", __func__);
+	}
+
+	/* Second phase scan */
+	if (nand_scan_tail(mtd)) {
+		printf("%s: nand_scan_tail failed\n", __func__);
+		goto fail;
+	}
+	if (nand_register(devnum, mtd))
+		goto fail;
+	return 0;
+fail:
+	free(xnand);
+	return err;
+}
+
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+
+void board_nand_init(void)
+{
+	struct nand_chip *nand = &nand_chip[0];
+
+	if (zynq_nand_init(nand, 0))
+		puts("ZYNQ NAND init failed\n");
+}