Initial revision
diff --git a/cpu/ppc4xx/i2c.c b/cpu/ppc4xx/i2c.c
new file mode 100644
index 0000000..68af057
--- /dev/null
+++ b/cpu/ppc4xx/i2c.c
@@ -0,0 +1,417 @@
+/*****************************************************************************/
+/* I2C Bus interface initialisation and I2C Commands                         */
+/* for PPC405GP		                                                     */
+/* Author : AS HARNOIS                                                       */
+/* Date   : 13.Dec.00                                                        */
+/*****************************************************************************/
+
+#include <common.h>
+#include <ppc4xx.h>
+#if defined(CONFIG_440)
+#   include <440_i2c.h>
+#else
+#   include <405gp_i2c.h>
+#endif
+#include <i2c.h>
+
+#ifdef CONFIG_HARD_I2C
+
+#define IIC_OK		0
+#define IIC_NOK		1
+#define IIC_NOK_LA	2		/* Lost arbitration */
+#define IIC_NOK_ICT	3		/* Incomplete transfer */
+#define IIC_NOK_XFRA	4		/* Transfer aborted */
+#define IIC_NOK_DATA	5		/* No data in buffer */
+#define IIC_NOK_TOUT	6		/* Transfer timeout */
+
+#define IIC_TIMEOUT 1			/* 1 seconde */
+
+
+static void _i2c_bus_reset (void)
+{
+	int i, status;
+
+	/* Reset status register */
+	/* write 1 in SCMP and IRQA to clear these fields */
+	out8 (IIC_STS, 0x0A);
+
+	/* write 1 in IRQP IRQD LA ICT XFRA to clear these fields */
+	out8 (IIC_EXTSTS, 0x8F);
+	__asm__ volatile ("eieio");
+
+	/*
+	 * Get current state, reset bus
+	 * only if no transfers are pending.
+	 */
+	i = 10;
+	do {
+		/* Get status */
+		status = in8 (IIC_STS);
+		udelay (500);			/* 500us */
+		i--;
+	} while ((status & IIC_STS_PT) && (i > 0));
+	/* Soft reset controller */
+	status = in8 (IIC_XTCNTLSS);
+	out8 (IIC_XTCNTLSS, (status | IIC_XTCNTLSS_SRST));
+	__asm__ volatile ("eieio");
+
+	/* make sure where in initial state, data hi, clock hi */
+	out8 (IIC_DIRECTCNTL, 0xC);
+	for (i = 0; i < 10; i++) {
+		if ((in8 (IIC_DIRECTCNTL) & 0x3) != 0x3) {
+			/* clock until we get to known state */
+			out8 (IIC_DIRECTCNTL, 0x8);	/* clock lo */
+			udelay (100);		/* 100us */
+			out8 (IIC_DIRECTCNTL, 0xC);	/* clock hi */
+			udelay (100);		/* 100us */
+		} else {
+			break;
+		}
+	}
+	/* send start condition */
+	out8 (IIC_DIRECTCNTL, 0x4);
+	udelay (1000);				/* 1ms */
+	/* send stop condition */
+	out8 (IIC_DIRECTCNTL, 0xC);
+	udelay (1000);				/* 1ms */
+	/* Unreset controller */
+	out8 (IIC_XTCNTLSS, (status & ~IIC_XTCNTLSS_SRST));
+	udelay (1000);				/* 1ms */
+}
+
+void i2c_init (int speed, int slaveadd)
+{
+	sys_info_t sysInfo;
+	unsigned long freqOPB;
+	int val, divisor;
+
+	/* Handle possible failed I2C state */
+	_i2c_bus_reset ();
+
+	/* clear lo master address */
+	out8 (IIC_LMADR, 0);
+
+	/* clear hi master address */
+	out8 (IIC_HMADR, 0);
+
+	/* clear lo slave address */
+	out8 (IIC_LSADR, 0);
+
+	/* clear hi slave address */
+	out8 (IIC_HSADR, 0);
+
+	/* Clock divide Register */
+	/* get OPB frequency */
+	get_sys_info (&sysInfo);
+	freqOPB = sysInfo.freqPLB / sysInfo.pllOpbDiv;
+	/* set divisor according to freqOPB */
+	divisor = (freqOPB - 1) / 10000000;
+	if (divisor == 0)
+		divisor = 1;
+	out8 (IIC_CLKDIV, divisor);
+
+	/* no interrupts */
+	out8 (IIC_INTRMSK, 0);
+
+	/* clear transfer count */
+	out8 (IIC_XFRCNT, 0);
+
+	/* clear extended control & stat */
+	/* write 1 in SRC SRS SWC SWS to clear these fields */
+	out8 (IIC_XTCNTLSS, 0xF0);
+
+	/* Mode Control Register
+	   Flush Slave/Master data buffer */
+	out8 (IIC_MDCNTL, IIC_MDCNTL_FSDB | IIC_MDCNTL_FMDB);
+	__asm__ volatile ("eieio");
+
+
+        val = in8(IIC_MDCNTL);
+        __asm__ volatile ("eieio");
+
+        /* Ignore General Call, slave transfers are ignored,
+           disable interrupts, exit unknown bus state, enable hold
+           SCL
+           100kHz normaly or FastMode for 400kHz and above
+        */
+
+        val |= IIC_MDCNTL_EUBS|IIC_MDCNTL_HSCL;
+        if( speed >= 400000 ){
+                val |= IIC_MDCNTL_FSM;
+        }
+	out8 (IIC_MDCNTL, val);
+
+	/* clear control reg */
+	out8 (IIC_CNTL, 0x00);
+	__asm__ volatile ("eieio");
+
+}
+
+/*
+  This code tries to use the features of the 405GP i2c
+  controller. It will transfer up to 4 bytes in one pass
+  on the loop. It only does out8(lbz) to the buffer when it
+  is possible to do out16(lhz) transfers.
+
+  cmd_type is 0 for write 1 for read.
+
+  addr_len can take any value from 0-255, it is only limited
+  by the char, we could make it larger if needed. If it is
+  0 we skip the address write cycle.
+
+  Typical case is a Write of an addr followd by a Read. The
+  IBM FAQ does not cover this. On the last byte of the write
+  we don't set the creg CHT bit, and on the first bytes of the
+  read we set the RPST bit.
+
+  It does not support address only transfers, there must be
+  a data part. If you want to write the address yourself, put
+  it in the data pointer.
+
+  It does not support transfer to/from address 0.
+
+  It does not check XFRCNT.
+*/
+static
+int i2c_transfer(unsigned char cmd_type,
+                 unsigned char chip,
+                 unsigned char addr[],
+                 unsigned char addr_len,
+                 unsigned char data[],
+		 unsigned short data_len )
+{
+        unsigned char* ptr;
+        int reading;
+        int tran,cnt;
+        int result;
+        int status;
+        int i;
+        uchar creg;
+
+        if( data == 0 || data_len == 0 ){
+                /*Don't support data transfer of no length or to address 0*/
+                printf( "i2c_transfer: bad call\n" );
+                return IIC_NOK;
+        }
+        if( addr && addr_len ){
+                ptr = addr;
+                cnt = addr_len;
+                reading = 0;
+        }else{
+                ptr = data;
+                cnt = data_len;
+                reading = cmd_type;
+        }
+
+        /*Clear Stop Complete Bit*/
+        out8(IIC_STS,IIC_STS_SCMP);
+        /* Check init */
+        i=10;
+        do {
+                /* Get status */
+                status = in8(IIC_STS);
+                __asm__ volatile("eieio");
+                i--;
+        } while ((status & IIC_STS_PT) && (i>0));
+
+        if (status & IIC_STS_PT) {
+                result = IIC_NOK_TOUT;
+                return(result);
+        }
+        /*flush the Master/Slave Databuffers*/
+        out8(IIC_MDCNTL, ((in8(IIC_MDCNTL))|IIC_MDCNTL_FMDB|IIC_MDCNTL_FSDB));
+        /*need to wait 4 OPB clocks? code below should take that long*/
+
+        /* 7-bit adressing */
+        out8(IIC_HMADR,0);
+        out8(IIC_LMADR, chip);
+        __asm__ volatile("eieio");
+
+        tran = 0;
+        result = IIC_OK;
+        creg = 0;
+
+        while ( tran != cnt && (result == IIC_OK)) {
+                int  bc,j;
+
+                /* Control register =
+                   Normal transfer, 7-bits adressing, Transfer up to bc bytes, Normal start,
+                   Transfer is a sequence of transfers
+                */
+                creg |= IIC_CNTL_PT;
+
+                bc = (cnt - tran) > 4 ? 4 :
+                        cnt - tran;
+                creg |= (bc-1)<<4;
+                /* if the real cmd type is write continue trans*/
+                if ( (!cmd_type && (ptr == addr)) || ((tran+bc) != cnt) )
+                        creg |= IIC_CNTL_CHT;
+
+                if (reading)
+                        creg |= IIC_CNTL_READ;
+                else {
+                        for(j=0; j<bc; j++) {
+                                /* Set buffer */
+                                out8(IIC_MDBUF,ptr[tran+j]);
+                                __asm__ volatile("eieio");
+                        }
+                }
+                out8(IIC_CNTL, creg );
+                __asm__ volatile("eieio");
+
+                /* Transfer is in progress
+                   we have to wait for upto 5 bytes of data
+                   1 byte chip address+r/w bit then bc bytes
+                   of data.
+                   udelay(10) is 1 bit time at 100khz
+                   Doubled for slop. 20 is too small.
+		*/
+                i=2*5*8;
+                do {
+                        /* Get status */
+                        status = in8(IIC_STS);
+                        __asm__ volatile("eieio");
+                        udelay (10);
+                        i--;
+                } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR)
+			 && (i>0));
+
+                if (status & IIC_STS_ERR) {
+                        result = IIC_NOK;
+                        status = in8 (IIC_EXTSTS);
+                        /* Lost arbitration? */
+                        if (status & IIC_EXTSTS_LA)
+                                result = IIC_NOK_LA;
+                        /* Incomplete transfer? */
+                        if (status & IIC_EXTSTS_ICT)
+                                result = IIC_NOK_ICT;
+                        /* Transfer aborted? */
+                        if (status & IIC_EXTSTS_XFRA)
+                                result = IIC_NOK_XFRA;
+                } else if ( status & IIC_STS_PT) {
+                        result = IIC_NOK_TOUT;
+                }
+                /* Command is reading => get buffer */
+                if ((reading) && (result == IIC_OK)) {
+                        /* Are there data in buffer */
+                        if (status & IIC_STS_MDBS) {
+                                /*
+                                  even if we have data we have to wait 4OPB clocks
+                                  for it to hit the front of the FIFO, after that
+                                  we can just read. We should check XFCNT here and
+                                  if the FIFO is full there is no need to wait.
+				*/
+                                udelay (1);
+                                for(j=0;j<bc;j++) {
+                                        ptr[tran+j] = in8(IIC_MDBUF);
+                                        __asm__ volatile("eieio");
+                                }
+                        } else
+                                result = IIC_NOK_DATA;
+                }
+                creg = 0;
+                tran+=bc;
+                if( ptr == addr && tran == cnt ) {
+                        ptr = data;
+                        cnt = data_len;
+                        tran = 0;
+                        reading = cmd_type;
+                        if( reading )
+                                creg = IIC_CNTL_RPST;
+                }
+        }
+        return (result);
+}
+
+int i2c_probe (uchar chip)
+{
+	uchar buf[1];
+
+	buf[0] = 0;
+
+        /*
+         * What is needed is to send the chip address and verify that the
+         * address was <ACK>ed (i.e. there was a chip at that address which
+         * drove the data line low).
+         */
+        return(i2c_transfer (1, chip << 1, 0,0, buf, 1) != 0);
+}
+
+
+
+int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len)
+{
+        uchar xaddr[4];
+        int ret;
+
+	if ( alen > 4 ) {
+		printf ("I2C read: addr len %d not supported\n", alen);
+		return 1;
+	}
+
+        if ( alen > 0 ) {
+                xaddr[0] = (addr >> 24) & 0xFF;
+                xaddr[1] = (addr >> 16) & 0xFF;
+                xaddr[2] = (addr >> 8) & 0xFF;
+                xaddr[3] = addr & 0xFF;
+        }
+
+
+#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
+	/*
+         * EEPROM chips that implement "address overflow" are ones
+         * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
+         * address and the extra bits end up in the "chip address"
+         * bit slots. This makes a 24WC08 (1Kbyte) chip look like
+         * four 256 byte chips.
+	 *
+         * Note that we consider the length of the address field to
+         * still be one byte because the extra address bits are
+         * hidden in the chip address.
+	 */
+        if( alen > 0 )
+                chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
+#endif
+        if( (ret = i2c_transfer( 1, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) {
+                printf( "I2c read: failed %d\n", ret);
+                return 1;
+        }
+        return 0;
+}
+
+int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len)
+{
+        uchar xaddr[4];
+
+	if ( alen > 4 ) {
+		printf ("I2C write: addr len %d not supported\n", alen);
+		return 1;
+
+	}
+        if ( alen > 0 ) {
+                xaddr[0] = (addr >> 24) & 0xFF;
+                xaddr[1] = (addr >> 16) & 0xFF;
+                xaddr[2] = (addr >> 8) & 0xFF;
+                xaddr[3] = addr & 0xFF;
+        }
+
+#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW
+	/*
+         * EEPROM chips that implement "address overflow" are ones
+         * like Catalyst 24WC04/08/16 which has 9/10/11 bits of
+         * address and the extra bits end up in the "chip address"
+         * bit slots. This makes a 24WC08 (1Kbyte) chip look like
+         * four 256 byte chips.
+	 *
+         * Note that we consider the length of the address field to
+         * still be one byte because the extra address bits are
+         * hidden in the chip address.
+	 */
+        if( alen > 0 )
+                chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);
+#endif
+
+        return (i2c_transfer( 0, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0);
+}
+
+#endif	/* CONFIG_HARD_I2C */