mtd, ubi, ubifs: resync with Linux-3.14

resync ubi subsystem with linux:

commit 455c6fdbd219161bd09b1165f11699d6d73de11c
Author: Linus Torvalds <torvalds@linux-foundation.org>
Date:   Sun Mar 30 20:40:15 2014 -0700

    Linux 3.14

A nice side effect of this, is we introduce UBI Fastmap support
to U-Boot.

Signed-off-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Tom Rini <trini@ti.com>
Cc: Marek Vasut <marex@denx.de>
Cc: Sergey Lapin <slapin@ossfans.org>
Cc: Scott Wood <scottwood@freescale.com>
Cc: Joerg Krause <jkrause@posteo.de>
diff --git a/drivers/mtd/ubi/ubi-media.h b/drivers/mtd/ubi/ubi-media.h
index 9012326..2809805 100644
--- a/drivers/mtd/ubi/ubi-media.h
+++ b/drivers/mtd/ubi/ubi-media.h
@@ -86,10 +86,11 @@
  * Compatibility constants used by internal volumes.
  *
  * @UBI_COMPAT_DELETE: delete this internal volume before anything is written
- * to the flash
+ *                     to the flash
  * @UBI_COMPAT_RO: attach this device in read-only mode
  * @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its
- * physical eraseblocks, don't allow the wear-leveling unit to move them
+ *                       physical eraseblocks, don't allow the wear-leveling
+ *                       sub-system to move them
  * @UBI_COMPAT_REJECT: reject this UBI image
  */
 enum {
@@ -111,18 +112,19 @@
  * struct ubi_ec_hdr - UBI erase counter header.
  * @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC)
  * @version: version of UBI implementation which is supposed to accept this
- * UBI image
+ *           UBI image
  * @padding1: reserved for future, zeroes
  * @ec: the erase counter
  * @vid_hdr_offset: where the VID header starts
  * @data_offset: where the user data start
+ * @image_seq: image sequence number
  * @padding2: reserved for future, zeroes
  * @hdr_crc: erase counter header CRC checksum
  *
  * The erase counter header takes 64 bytes and has a plenty of unused space for
  * future usage. The unused fields are zeroed. The @version field is used to
  * indicate the version of UBI implementation which is supposed to be able to
- * work with this UBI image. If @version is greater then the current UBI
+ * work with this UBI image. If @version is greater than the current UBI
  * version, the image is rejected. This may be useful in future if something
  * is changed radically. This field is duplicated in the volume identifier
  * header.
@@ -131,6 +133,14 @@
  * volume identifier header and user data, relative to the beginning of the
  * physical eraseblock. These values have to be the same for all physical
  * eraseblocks.
+ *
+ * The @image_seq field is used to validate a UBI image that has been prepared
+ * for a UBI device. The @image_seq value can be any value, but it must be the
+ * same on all eraseblocks. UBI will ensure that all new erase counter headers
+ * also contain this value, and will check the value when attaching the flash.
+ * One way to make use of @image_seq is to increase its value by one every time
+ * an image is flashed over an existing image, then, if the flashing does not
+ * complete, UBI will detect the error when attaching the media.
  */
 struct ubi_ec_hdr {
 	__be32  magic;
@@ -139,32 +149,32 @@
 	__be64  ec; /* Warning: the current limit is 31-bit anyway! */
 	__be32  vid_hdr_offset;
 	__be32  data_offset;
-	__u8    padding2[36];
+	__be32  image_seq;
+	__u8    padding2[32];
 	__be32  hdr_crc;
-} __attribute__ ((packed));
+} __packed;
 
 /**
  * struct ubi_vid_hdr - on-flash UBI volume identifier header.
  * @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC)
  * @version: UBI implementation version which is supposed to accept this UBI
- * image (%UBI_VERSION)
+ *           image (%UBI_VERSION)
  * @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC)
  * @copy_flag: if this logical eraseblock was copied from another physical
- * eraseblock (for wear-leveling reasons)
+ *             eraseblock (for wear-leveling reasons)
  * @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE,
- * %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
+ *          %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
  * @vol_id: ID of this volume
  * @lnum: logical eraseblock number
- * @leb_ver: version of this logical eraseblock (IMPORTANT: obsolete, to be
- * removed, kept only for not breaking older UBI users)
+ * @padding1: reserved for future, zeroes
  * @data_size: how many bytes of data this logical eraseblock contains
  * @used_ebs: total number of used logical eraseblocks in this volume
  * @data_pad: how many bytes at the end of this physical eraseblock are not
- * used
+ *            used
  * @data_crc: CRC checksum of the data stored in this logical eraseblock
- * @padding1: reserved for future, zeroes
- * @sqnum: sequence number
  * @padding2: reserved for future, zeroes
+ * @sqnum: sequence number
+ * @padding3: reserved for future, zeroes
  * @hdr_crc: volume identifier header CRC checksum
  *
  * The @sqnum is the value of the global sequence counter at the time when this
@@ -175,7 +185,7 @@
  * (sequence number) is used to distinguish between older and newer versions of
  * logical eraseblocks.
  *
- * There are 2 situations when there may be more then one physical eraseblock
+ * There are 2 situations when there may be more than one physical eraseblock
  * corresponding to the same logical eraseblock, i.e., having the same @vol_id
  * and @lnum values in the volume identifier header. Suppose we have a logical
  * eraseblock L and it is mapped to the physical eraseblock P.
@@ -212,10 +222,6 @@
  * checksum is correct, this physical eraseblock is selected (P1). Otherwise
  * the older one (P) is selected.
  *
- * Note, there is an obsolete @leb_ver field which was used instead of @sqnum
- * in the past. But it is not used anymore and we keep it in order to be able
- * to deal with old UBI images. It will be removed at some point.
- *
  * There are 2 sorts of volumes in UBI: user volumes and internal volumes.
  * Internal volumes are not seen from outside and are used for various internal
  * UBI purposes. In this implementation there is only one internal volume - the
@@ -236,9 +242,9 @@
  * The @data_crc field contains the CRC checksum of the contents of the logical
  * eraseblock if this is a static volume. In case of dynamic volumes, it does
  * not contain the CRC checksum as a rule. The only exception is when the
- * data of the physical eraseblock was moved by the wear-leveling unit, then
- * the wear-leveling unit calculates the data CRC and stores it in the
- * @data_crc field. And of course, the @copy_flag is %in this case.
+ * data of the physical eraseblock was moved by the wear-leveling sub-system,
+ * then the wear-leveling sub-system calculates the data CRC and stores it in
+ * the @data_crc field. And of course, the @copy_flag is %in this case.
  *
  * The @data_size field is used only for static volumes because UBI has to know
  * how many bytes of data are stored in this eraseblock. For dynamic volumes,
@@ -265,23 +271,23 @@
 	__u8    compat;
 	__be32  vol_id;
 	__be32  lnum;
-	__be32  leb_ver; /* obsolete, to be removed, don't use */
+	__u8    padding1[4];
 	__be32  data_size;
 	__be32  used_ebs;
 	__be32  data_pad;
 	__be32  data_crc;
-	__u8    padding1[4];
+	__u8    padding2[4];
 	__be64  sqnum;
-	__u8    padding2[12];
+	__u8    padding3[12];
 	__be32  hdr_crc;
-} __attribute__ ((packed));
+} __packed;
 
 /* Internal UBI volumes count */
 #define UBI_INT_VOL_COUNT 1
 
 /*
- * Starting ID of internal volumes. There is reserved room for 4096 internal
- * volumes.
+ * Starting ID of internal volumes: 0x7fffefff.
+ * There is reserved room for 4096 internal volumes.
  */
 #define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096)
 
@@ -351,10 +357,151 @@
 	__u8    vol_type;
 	__u8    upd_marker;
 	__be16  name_len;
+#ifndef __UBOOT__
 	__u8    name[UBI_VOL_NAME_MAX+1];
+#else
+	char    name[UBI_VOL_NAME_MAX+1];
+#endif
 	__u8    flags;
 	__u8    padding[23];
 	__be32  crc;
-} __attribute__ ((packed));
+} __packed;
 
+/* UBI fastmap on-flash data structures */
+
+#define UBI_FM_SB_VOLUME_ID	(UBI_LAYOUT_VOLUME_ID + 1)
+#define UBI_FM_DATA_VOLUME_ID	(UBI_LAYOUT_VOLUME_ID + 2)
+
+/* fastmap on-flash data structure format version */
+#define UBI_FM_FMT_VERSION	1
+
+#define UBI_FM_SB_MAGIC		0x7B11D69F
+#define UBI_FM_HDR_MAGIC	0xD4B82EF7
+#define UBI_FM_VHDR_MAGIC	0xFA370ED1
+#define UBI_FM_POOL_MAGIC	0x67AF4D08
+#define UBI_FM_EBA_MAGIC	0xf0c040a8
+
+/* A fastmap supber block can be located between PEB 0 and
+ * UBI_FM_MAX_START */
+#define UBI_FM_MAX_START	64
+
+/* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */
+#define UBI_FM_MAX_BLOCKS	32
+
+/* 5% of the total number of PEBs have to be scanned while attaching
+ * from a fastmap.
+ * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and
+ * UBI_FM_MAX_POOL_SIZE */
+#define UBI_FM_MIN_POOL_SIZE	8
+#define UBI_FM_MAX_POOL_SIZE	256
+
+#define UBI_FM_WL_POOL_SIZE	25
+
+/**
+ * struct ubi_fm_sb - UBI fastmap super block
+ * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC)
+ * @version: format version of this fastmap
+ * @data_crc: CRC over the fastmap data
+ * @used_blocks: number of PEBs used by this fastmap
+ * @block_loc: an array containing the location of all PEBs of the fastmap
+ * @block_ec: the erase counter of each used PEB
+ * @sqnum: highest sequence number value at the time while taking the fastmap
+ *
+ */
+struct ubi_fm_sb {
+	__be32 magic;
+	__u8 version;
+	__u8 padding1[3];
+	__be32 data_crc;
+	__be32 used_blocks;
+	__be32 block_loc[UBI_FM_MAX_BLOCKS];
+	__be32 block_ec[UBI_FM_MAX_BLOCKS];
+	__be64 sqnum;
+	__u8 padding2[32];
+} __packed;
+
+/**
+ * struct ubi_fm_hdr - header of the fastmap data set
+ * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC)
+ * @free_peb_count: number of free PEBs known by this fastmap
+ * @used_peb_count: number of used PEBs known by this fastmap
+ * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap
+ * @bad_peb_count: number of bad PEBs known by this fastmap
+ * @erase_peb_count: number of bad PEBs which have to be erased
+ * @vol_count: number of UBI volumes known by this fastmap
+ */
+struct ubi_fm_hdr {
+	__be32 magic;
+	__be32 free_peb_count;
+	__be32 used_peb_count;
+	__be32 scrub_peb_count;
+	__be32 bad_peb_count;
+	__be32 erase_peb_count;
+	__be32 vol_count;
+	__u8 padding[4];
+} __packed;
+
+/* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */
+
+/**
+ * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching
+ * @magic: pool magic numer (%UBI_FM_POOL_MAGIC)
+ * @size: current pool size
+ * @max_size: maximal pool size
+ * @pebs: an array containing the location of all PEBs in this pool
+ */
+struct ubi_fm_scan_pool {
+	__be32 magic;
+	__be16 size;
+	__be16 max_size;
+	__be32 pebs[UBI_FM_MAX_POOL_SIZE];
+	__be32 padding[4];
+} __packed;
+
+/* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */
+
+/**
+ * struct ubi_fm_ec - stores the erase counter of a PEB
+ * @pnum: PEB number
+ * @ec: ec of this PEB
+ */
+struct ubi_fm_ec {
+	__be32 pnum;
+	__be32 ec;
+} __packed;
+
+/**
+ * struct ubi_fm_volhdr - Fastmap volume header
+ * it identifies the start of an eba table
+ * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC)
+ * @vol_id: volume id of the fastmapped volume
+ * @vol_type: type of the fastmapped volume
+ * @data_pad: data_pad value of the fastmapped volume
+ * @used_ebs: number of used LEBs within this volume
+ * @last_eb_bytes: number of bytes used in the last LEB
+ */
+struct ubi_fm_volhdr {
+	__be32 magic;
+	__be32 vol_id;
+	__u8 vol_type;
+	__u8 padding1[3];
+	__be32 data_pad;
+	__be32 used_ebs;
+	__be32 last_eb_bytes;
+	__u8 padding2[8];
+} __packed;
+
+/* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */
+
+/**
+ * struct ubi_fm_eba - denotes an association beween a PEB and LEB
+ * @magic: EBA table magic number
+ * @reserved_pebs: number of table entries
+ * @pnum: PEB number of LEB (LEB is the index)
+ */
+struct ubi_fm_eba {
+	__be32 magic;
+	__be32 reserved_pebs;
+	__be32 pnum[0];
+} __packed;
 #endif /* !__UBI_MEDIA_H__ */