blob: 6a0268919de60586d6aa1d926c25429bfa7d4bb6 [file] [log] [blame]
Simon Glass19c402a2013-06-13 15:10:02 -07001/*
2 * Copyright (c) 2013, Google Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation; either version 2 of
7 * the License, or (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
17 * MA 02111-1307 USA
18 */
19
20#include <common.h>
21#include <fdtdec.h>
22#include <rsa.h>
23#include <sha1.h>
24#include <asm/byteorder.h>
25#include <asm/errno.h>
26#include <asm/unaligned.h>
27
28/**
29 * struct rsa_public_key - holder for a public key
30 *
31 * An RSA public key consists of a modulus (typically called N), the inverse
32 * and R^2, where R is 2^(# key bits).
33 */
34struct rsa_public_key {
35 uint len; /* Length of modulus[] in number of uint32_t */
36 uint32_t n0inv; /* -1 / modulus[0] mod 2^32 */
37 uint32_t *modulus; /* modulus as little endian array */
38 uint32_t *rr; /* R^2 as little endian array */
39};
40
41#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
42
43#define RSA2048_BYTES (2048 / 8)
44
45/* This is the minimum/maximum key size we support, in bits */
46#define RSA_MIN_KEY_BITS 2048
47#define RSA_MAX_KEY_BITS 2048
48
49/* This is the maximum signature length that we support, in bits */
50#define RSA_MAX_SIG_BITS 2048
51
52static const uint8_t padding_sha1_rsa2048[RSA2048_BYTES - SHA1_SUM_LEN] = {
53 0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
63 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
64 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
66 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
67 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
68 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
76 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
77 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80 0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x21, 0x30,
81 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a,
82 0x05, 0x00, 0x04, 0x14
83};
84
85/**
86 * subtract_modulus() - subtract modulus from the given value
87 *
88 * @key: Key containing modulus to subtract
89 * @num: Number to subtract modulus from, as little endian word array
90 */
91static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
92{
93 int64_t acc = 0;
94 uint i;
95
96 for (i = 0; i < key->len; i++) {
97 acc += (uint64_t)num[i] - key->modulus[i];
98 num[i] = (uint32_t)acc;
99 acc >>= 32;
100 }
101}
102
103/**
104 * greater_equal_modulus() - check if a value is >= modulus
105 *
106 * @key: Key containing modulus to check
107 * @num: Number to check against modulus, as little endian word array
108 * @return 0 if num < modulus, 1 if num >= modulus
109 */
110static int greater_equal_modulus(const struct rsa_public_key *key,
111 uint32_t num[])
112{
113 uint32_t i;
114
115 for (i = key->len - 1; i >= 0; i--) {
116 if (num[i] < key->modulus[i])
117 return 0;
118 if (num[i] > key->modulus[i])
119 return 1;
120 }
121
122 return 1; /* equal */
123}
124
125/**
126 * montgomery_mul_add_step() - Perform montgomery multiply-add step
127 *
128 * Operation: montgomery result[] += a * b[] / n0inv % modulus
129 *
130 * @key: RSA key
131 * @result: Place to put result, as little endian word array
132 * @a: Multiplier
133 * @b: Multiplicand, as little endian word array
134 */
135static void montgomery_mul_add_step(const struct rsa_public_key *key,
136 uint32_t result[], const uint32_t a, const uint32_t b[])
137{
138 uint64_t acc_a, acc_b;
139 uint32_t d0;
140 uint i;
141
142 acc_a = (uint64_t)a * b[0] + result[0];
143 d0 = (uint32_t)acc_a * key->n0inv;
144 acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
145 for (i = 1; i < key->len; i++) {
146 acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
147 acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
148 (uint32_t)acc_a;
149 result[i - 1] = (uint32_t)acc_b;
150 }
151
152 acc_a = (acc_a >> 32) + (acc_b >> 32);
153
154 result[i - 1] = (uint32_t)acc_a;
155
156 if (acc_a >> 32)
157 subtract_modulus(key, result);
158}
159
160/**
161 * montgomery_mul() - Perform montgomery mutitply
162 *
163 * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
164 *
165 * @key: RSA key
166 * @result: Place to put result, as little endian word array
167 * @a: Multiplier, as little endian word array
168 * @b: Multiplicand, as little endian word array
169 */
170static void montgomery_mul(const struct rsa_public_key *key,
171 uint32_t result[], uint32_t a[], const uint32_t b[])
172{
173 uint i;
174
175 for (i = 0; i < key->len; ++i)
176 result[i] = 0;
177 for (i = 0; i < key->len; ++i)
178 montgomery_mul_add_step(key, result, a[i], b);
179}
180
181/**
182 * pow_mod() - in-place public exponentiation
183 *
184 * @key: RSA key
185 * @inout: Big-endian word array containing value and result
186 */
187static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
188{
189 uint32_t *result, *ptr;
190 uint i;
191
192 /* Sanity check for stack size - key->len is in 32-bit words */
193 if (key->len > RSA_MAX_KEY_BITS / 32) {
194 debug("RSA key words %u exceeds maximum %d\n", key->len,
195 RSA_MAX_KEY_BITS / 32);
196 return -EINVAL;
197 }
198
199 uint32_t val[key->len], acc[key->len], tmp[key->len];
200 result = tmp; /* Re-use location. */
201
202 /* Convert from big endian byte array to little endian word array. */
203 for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
204 val[i] = get_unaligned_be32(ptr);
205
206 montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */
207 for (i = 0; i < 16; i += 2) {
208 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
209 montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
210 }
211 montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */
212
213 /* Make sure result < mod; result is at most 1x mod too large. */
214 if (greater_equal_modulus(key, result))
215 subtract_modulus(key, result);
216
217 /* Convert to bigendian byte array */
218 for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
219 put_unaligned_be32(result[i], ptr);
220
221 return 0;
222}
223
224static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
225 const uint32_t sig_len, const uint8_t *hash)
226{
227 const uint8_t *padding;
228 int pad_len;
229 int ret;
230
231 if (!key || !sig || !hash)
232 return -EIO;
233
234 if (sig_len != (key->len * sizeof(uint32_t))) {
235 debug("Signature is of incorrect length %d\n", sig_len);
236 return -EINVAL;
237 }
238
239 /* Sanity check for stack size */
240 if (sig_len > RSA_MAX_SIG_BITS / 8) {
241 debug("Signature length %u exceeds maximum %d\n", sig_len,
242 RSA_MAX_SIG_BITS / 8);
243 return -EINVAL;
244 }
245
246 uint32_t buf[sig_len / sizeof(uint32_t)];
247
248 memcpy(buf, sig, sig_len);
249
250 ret = pow_mod(key, buf);
251 if (ret)
252 return ret;
253
254 /* Determine padding to use depending on the signature type. */
255 padding = padding_sha1_rsa2048;
256 pad_len = RSA2048_BYTES - SHA1_SUM_LEN;
257
258 /* Check pkcs1.5 padding bytes. */
259 if (memcmp(buf, padding, pad_len)) {
260 debug("In RSAVerify(): Padding check failed!\n");
261 return -EINVAL;
262 }
263
264 /* Check hash. */
265 if (memcmp((uint8_t *)buf + pad_len, hash, sig_len - pad_len)) {
266 debug("In RSAVerify(): Hash check failed!\n");
267 return -EACCES;
268 }
269
270 return 0;
271}
272
273static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
274{
275 int i;
276
277 for (i = 0; i < len; i++)
278 dst[i] = fdt32_to_cpu(src[len - 1 - i]);
279}
280
281static int rsa_verify_with_keynode(struct image_sign_info *info,
282 const void *hash, uint8_t *sig, uint sig_len, int node)
283{
284 const void *blob = info->fdt_blob;
285 struct rsa_public_key key;
286 const void *modulus, *rr;
287 int ret;
288
289 if (node < 0) {
290 debug("%s: Skipping invalid node", __func__);
291 return -EBADF;
292 }
293 if (!fdt_getprop(blob, node, "rsa,n0-inverse", NULL)) {
294 debug("%s: Missing rsa,n0-inverse", __func__);
295 return -EFAULT;
296 }
297 key.len = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
298 key.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
299 modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
300 rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
301 if (!key.len || !modulus || !rr) {
302 debug("%s: Missing RSA key info", __func__);
303 return -EFAULT;
304 }
305
306 /* Sanity check for stack size */
307 if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
308 debug("RSA key bits %u outside allowed range %d..%d\n",
309 key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
310 return -EFAULT;
311 }
312 key.len /= sizeof(uint32_t) * 8;
313 uint32_t key1[key.len], key2[key.len];
314
315 key.modulus = key1;
316 key.rr = key2;
317 rsa_convert_big_endian(key.modulus, modulus, key.len);
318 rsa_convert_big_endian(key.rr, rr, key.len);
319 if (!key.modulus || !key.rr) {
320 debug("%s: Out of memory", __func__);
321 return -ENOMEM;
322 }
323
324 debug("key length %d\n", key.len);
325 ret = rsa_verify_key(&key, sig, sig_len, hash);
326 if (ret) {
327 printf("%s: RSA failed to verify: %d\n", __func__, ret);
328 return ret;
329 }
330
331 return 0;
332}
333
334int rsa_verify(struct image_sign_info *info,
335 const struct image_region region[], int region_count,
336 uint8_t *sig, uint sig_len)
337{
338 const void *blob = info->fdt_blob;
339 uint8_t hash[SHA1_SUM_LEN];
340 int ndepth, noffset;
341 int sig_node, node;
342 char name[100];
343 sha1_context ctx;
344 int ret, i;
345
346 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
347 if (sig_node < 0) {
348 debug("%s: No signature node found\n", __func__);
349 return -ENOENT;
350 }
351
352 sha1_starts(&ctx);
353 for (i = 0; i < region_count; i++)
354 sha1_update(&ctx, region[i].data, region[i].size);
355 sha1_finish(&ctx, hash);
356
357 /* See if we must use a particular key */
358 if (info->required_keynode != -1) {
359 ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
360 info->required_keynode);
361 if (!ret)
362 return ret;
363 }
364
365 /* Look for a key that matches our hint */
366 snprintf(name, sizeof(name), "key-%s", info->keyname);
367 node = fdt_subnode_offset(blob, sig_node, name);
368 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node);
369 if (!ret)
370 return ret;
371
372 /* No luck, so try each of the keys in turn */
373 for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth);
374 (noffset >= 0) && (ndepth > 0);
375 noffset = fdt_next_node(info->fit, noffset, &ndepth)) {
376 if (ndepth == 1 && noffset != node) {
377 ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
378 noffset);
379 if (!ret)
380 break;
381 }
382 }
383
384 return ret;
385}