blob: 14be212e891d29467a06e7c338c6cffc2405b5ab [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Philipp Tomsich297bb9e2016-10-28 18:21:28 +08002/*
3 * sun9i dram controller initialisation
4 *
5 * (C) Copyright 2007-2015
6 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
7 * Jerry Wang <wangflord@allwinnertech.com>
8 *
9 * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
10 * Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Philipp Tomsich297bb9e2016-10-28 18:21:28 +080011 */
12
13#include <common.h>
14#include <dm.h>
15#include <errno.h>
Simon Glass691d7192020-05-10 11:40:02 -060016#include <init.h>
Simon Glassf7ae49f2020-05-10 11:40:05 -060017#include <log.h>
Philipp Tomsich297bb9e2016-10-28 18:21:28 +080018#include <ram.h>
19#include <asm/io.h>
20#include <asm/arch/clock.h>
21#include <asm/arch/dram.h>
22#include <asm/arch/sys_proto.h>
23
Philipp Tomsich297bb9e2016-10-28 18:21:28 +080024#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000)
25
26/*
27 * The following amounts to an extensive rewrite of the code received from
28 * Allwinner as part of the open-source bootloader release (refer to
29 * https://github.com/allwinner-zh/bootloader.git) and augments the upstream
30 * sources (which act as the primary reference point for the inner workings
31 * of the 'underdocumented' DRAM controller in the A80) using the following
32 * documentation for other memory controllers based on the (Synopsys)
33 * Designware IP (DDR memory protocol controller and DDR PHY)
34 * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide
35 * Document 'SPRUHN7C', Oct 2013 (revised March 2015)
36 * * Xilinx Zynq UltraScale+ MPSoC Register Reference
37 * document ug1087 (v1.0)
38 * Note that the Zynq-documentation provides a very close match for the DDR
39 * memory protocol controller (and provides a very good guide to the rounding
40 * rules for various timings), whereas the TI Keystone II document should be
41 * referred to for DDR PHY specifics only.
42 *
43 * The DRAM controller in the A80 runs at half the frequency of the DDR PHY
44 * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply).
45 *
46 * Known limitations
47 * =================
48 * In the current state, the following features are not fully supported and
49 * a number of simplifying assumptions have been made:
50 * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7
51 * module) is designed to accomodate DDR3/DDR3L.
52 * 2) Only 2T-mode has been implemented and tested.
53 * 3) The controller supports two different clocking strategies (PLL6 can
54 * either be 2*CK or CK/2)... we only support the 2*CK clock at this
55 * time and haven't verified whether the alternative clocking strategy
56 * works. If you are interested in porting this over/testing this,
57 * please refer to cases where bit 0 of 'dram_tpr8' is tested in the
58 * original code from Allwinner.
59 * 4) Support for 2 ranks per controller is not implemented (as we don't
60 * the hardware to test it).
61 *
62 * Future directions
63 * =================
64 * The driver should be driven from a device-tree based configuration that
65 * can dynamically provide the necessary timing parameters (i.e. target
66 * frequency and speed-bin information)---the data structures used in the
67 * calculation of the timing parameters are already designed to capture
68 * similar information as the device tree would provide.
69 *
70 * To enable a device-tree based configuration of the sun9i platform, we
71 * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially
72 * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the
73 * stage to initialise the platform via the device-tree---before having
74 * the full U-Boot run from DDR.
75 */
76
77/*
78 * A number of DDR3 timings are given as "the greater of a fixed number of
79 * clock cycles (CK) or nanoseconds. We express these using a structure
80 * that holds a cycle count and a duration in picoseconds (so we can model
81 * sub-ns timings, such as 7.5ns without losing precision or resorting to
82 * rounding up early.
83 */
84struct dram_sun9i_timing {
85 u32 ck;
86 u32 ps;
87};
88
89/* */
90struct dram_sun9i_cl_cwl_timing {
91 u32 CL;
92 u32 CWL;
93 u32 tCKmin; /* in ps */
94 u32 tCKmax; /* in ps */
95};
96
97struct dram_sun9i_para {
98 u32 dram_type;
99
100 u8 bus_width;
101 u8 chan;
102 u8 rank;
103 u8 rows;
104 u16 page_size;
105
106 /* Timing information for each speed-bin */
107 struct dram_sun9i_cl_cwl_timing *cl_cwl_table;
108 u32 cl_cwl_numentries;
109
110 /*
111 * For the timings, we try to keep the order and grouping used in
112 * JEDEC Standard No. 79-3F
113 */
114
115 /* timings */
116 u32 tREFI; /* in ns */
117 u32 tRFC; /* in ns */
118
119 u32 tRAS; /* in ps */
120
121 /* command and address timing */
122 u32 tDLLK; /* in nCK */
123 struct dram_sun9i_timing tRTP;
124 struct dram_sun9i_timing tWTR;
125 u32 tWR; /* in nCK */
126 u32 tMRD; /* in nCK */
127 struct dram_sun9i_timing tMOD;
128 u32 tRCD; /* in ps */
129 u32 tRP; /* in ps */
130 u32 tRC; /* in ps */
131 u32 tCCD; /* in nCK */
132 struct dram_sun9i_timing tRRD;
133 u32 tFAW; /* in ps */
134
135 /* calibration timing */
136 /* struct dram_sun9i_timing tZQinit; */
137 struct dram_sun9i_timing tZQoper;
138 struct dram_sun9i_timing tZQCS;
139
140 /* reset timing */
141 /* struct dram_sun9i_timing tXPR; */
142
143 /* self-refresh timings */
144 struct dram_sun9i_timing tXS;
145 u32 tXSDLL; /* in nCK */
146 /* struct dram_sun9i_timing tCKESR; */
147 struct dram_sun9i_timing tCKSRE;
148 struct dram_sun9i_timing tCKSRX;
149
150 /* power-down timings */
151 struct dram_sun9i_timing tXP;
152 struct dram_sun9i_timing tXPDLL;
153 struct dram_sun9i_timing tCKE;
154
155 /* write leveling timings */
156 u32 tWLMRD; /* min, in nCK */
157 /* u32 tWLDQSEN; min, in nCK */
158 u32 tWLO; /* max, in ns */
159 /* u32 tWLOE; max, in ns */
160
161 /* u32 tCKDPX; in nCK */
162 /* u32 tCKCSX; in nCK */
163};
164
165static void mctl_sys_init(void);
166
167#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24)
168#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16)
169#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8)
170#define SCHED_PAGECLOSE (1 << 2)
171#define SCHED_PREFER_WRITE (1 << 1)
172#define SCHED_FORCE_LOW_PRI_N (1 << 0)
173
174#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \
175 SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \
176 SCHED_LPR_NUM_ENTRIES(0x20) | \
177 SCHED_FORCE_LOW_PRI_N)
178#define PERFHPR0_CONFIG 0x0000001f
179#define PERFHPR1_CONFIG 0x1f00001f
180#define PERFLPR0_CONFIG 0x000000ff
181#define PERFLPR1_CONFIG 0x0f0000ff
182#define PERFWR0_CONFIG 0x000000ff
183#define PERFWR1_CONFIG 0x0f0001ff
184
185static void mctl_ctl_sched_init(unsigned long base)
186{
187 struct sunxi_mctl_ctl_reg *mctl_ctl =
188 (struct sunxi_mctl_ctl_reg *)base;
189
190 /* Needs to be done before the global clk enable... */
191 writel(SCHED_CONFIG, &mctl_ctl->sched);
192 writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0);
193 writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1);
194 writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0);
195 writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1);
196 writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0);
197 writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1);
198}
199
200static void mctl_sys_init(void)
201{
202 struct sunxi_ccm_reg * const ccm =
203 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
204 struct sunxi_mctl_com_reg * const mctl_com =
205 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
206
207 debug("Setting PLL6 to %d\n", DRAM_CLK * 2);
208 clock_set_pll6(DRAM_CLK * 2);
209
210 /* Original dram init code which may come in handy later
211 ********************************************************
212 clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) :
213 (DRAM_CLK / 2), false);
214
215 if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) {
216 * PLL6 should be 2*CK *
217 * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); *
218 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0);
219 } else {
220 * PLL6 should be CK/2 *
221 ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1);
222 }
223
224 if (para->dram_tpr13 & (0xf<<18)) {
225 *
226 * bit21:bit18=0001:pll swing 0.4
227 * bit21:bit18=0010:pll swing 0.3
228 * bit21:bit18=0100:pll swing 0.2
229 * bit21:bit18=1000:pll swing 0.1
230 *
231 dram_dbg("DRAM fre extend open !\n");
232 reg_val=mctl_read_w(CCM_PLL6_DDR_REG);
233 reg_val&=(0x1<<16);
234 reg_val=reg_val>>16;
235
236 if(para->dram_tpr13 & (0x1<<18))
237 {
238 mctl_write_w(CCM_PLL_BASE + 0x114,
239 (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)|
240 (0x2U<<29)|(0x1U<<31)));
241 }
242 else if(para->dram_tpr13 & (0x1<<19))
243 {
244 mctl_write_w(CCM_PLL_BASE + 0x114,
245 (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)|
246 (0x2U<<29)|(0x1U<<31)));
247 }
248 else if(para->dram_tpr13 & (0x1<<20))
249 {
250 mctl_write_w(CCM_PLL_BASE + 0x114,
251 (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)|
252 (0x2U<<29)|(0x1U<<31)));
253 }
254 else if(para->dram_tpr13 & (0x1<<21))
255 {
256 mctl_write_w(CCM_PLL_BASE + 0x114,
257 (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)|
258 (0x2U<<29)|(0x1U<<31)));
259 }
260
261 //frequency extend open
262 reg_val = mctl_read_w(CCM_PLL6_DDR_REG);
263 reg_val |= ((0x1<<24)|(0x1<<30));
264 mctl_write_w(CCM_PLL6_DDR_REG, reg_val);
265
266
267 while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30));
268 }
269
270 aw_delay(0x20000); //make some delay
271 ********************************************************
272 */
273
274 /* assert mctl reset */
275 clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
276 /* stop mctl clock */
277 clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
278
279 sdelay(2000);
280
281 /* deassert mctl reset */
282 setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL);
283 /* enable mctl clock */
284 setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL);
285
286 /* set up the transactions scheduling before enabling the global clk */
287 mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE);
288 mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE);
289 sdelay(1000);
290
291 debug("2\n");
292
293 /* (3 << 12): PLL_DDR */
294 writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg);
295 do {
296 debug("Waiting for DRAM_CLK_CFG\n");
297 sdelay(10000);
298 } while (readl(&ccm->dram_clk_cfg) & (1 << 16));
299 setbits_le32(&ccm->dram_clk_cfg, (1 << 31));
300
301 /* TODO: we only support the common case ... i.e. 2*CK */
302 setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30));
303 writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */
304
305 sdelay(2000);
306
307 /* Original dram init code which may come in handy later
308 ********************************************************
309 if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) {
310 * PLL6 should be 2*CK *
311 * gating 2 channel pll *
312 reg_val = mctl_read_w(MC_CCR);
313 reg_val |= ((0x1 << 14) | (0x1U << 30));
314 mctl_write_w(MC_CCR, reg_val);
315 mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 *
316 } else {
317 * enable 2 channel pll *
318 reg_val = mctl_read_w(MC_CCR);
319 reg_val &= ~((0x1 << 14) | (0x1U << 30));
320 mctl_write_w(MC_CCR, reg_val);
321 mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 *
322 }
323
324 reg_val = mctl_read_w(MC_CCR);
325 reg_val &= ~((0x1<<15)|(0x1U<<31));
326 mctl_write_w(MC_CCR, reg_val);
327 aw_delay(20);
328 //aw_delay(0x10);
329 ********************************************************
330 */
331
332 clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN);
333 sdelay(1000);
334
335 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN);
336 /* TODO if (para->chan == 2) */
337 setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN);
338}
339
340static void mctl_com_init(struct dram_sun9i_para *para)
341{
342 struct sunxi_mctl_com_reg * const mctl_com =
343 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
344
345 /* TODO: hard-wired for DDR3 now */
346 writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL :
347 MCTL_CR_CHANNEL_SINGLE)
348 | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1)
349 | MCTL_CR_ROW(para->rows)
350 | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16)
351 | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank),
352 &mctl_com->cr);
353
354 debug("CR: %d\n", readl(&mctl_com->cr));
355}
356
357static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para)
358{
359 struct sunxi_mctl_ctl_reg *mctl_ctl;
360 struct sunxi_mctl_phy_reg *mctl_phy;
361
362 u32 CL = 0;
363 u32 CWL = 0;
364 u16 mr[4] = { 0, };
365
366#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000)
367#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000)
368#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000)
369#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000)
370#define MAX(a, b) ((a) > (b) ? (a) : (b))
371
372 /*
373 * Convert the values to cycle counts (nCK) from what is provided
374 * by the definition of each speed bin.
375 */
376 /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */
377 const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI);
378 const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC);
379 const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD);
380 const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP);
381 const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC);
382 const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS);
383
384 /* command and address timing */
385 const u32 tDLLK = para->tDLLK;
386 const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps));
387 const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps));
388 const u32 tWR = NS2CYCLES_FLOOR(para->tWR);
389 const u32 tMRD = para->tMRD;
390 const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps));
391 const u32 tCCD = para->tCCD;
392 const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps));
393 const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW);
394
395 /* calibration timings */
396 /* const u32 tZQinit = MAX(para->tZQinit.ck,
397 PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */
398 const u32 tZQoper = MAX(para->tZQoper.ck,
399 PS2CYCLES_ROUNDUP(para->tZQoper.ps));
400 const u32 tZQCS = MAX(para->tZQCS.ck,
401 PS2CYCLES_ROUNDUP(para->tZQCS.ps));
402
403 /* reset timing */
404 /* const u32 tXPR = MAX(para->tXPR.ck,
405 PS2CYCLES_ROUNDUP(para->tXPR.ps)); */
406
407 /* power-down timings */
408 const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps));
409 const u32 tXPDLL = MAX(para->tXPDLL.ck,
410 PS2CYCLES_ROUNDUP(para->tXPDLL.ps));
411 const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps));
412
413 /*
414 * self-refresh timings (keep below power-down timings, as tCKESR
415 * needs to be calculated based on the nCK value of tCKE)
416 */
417 const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps));
418 const u32 tXSDLL = para->tXSDLL;
419 const u32 tCKSRE = MAX(para->tCKSRE.ck,
420 PS2CYCLES_ROUNDUP(para->tCKSRE.ps));
421 const u32 tCKESR = tCKE + 1;
422 const u32 tCKSRX = MAX(para->tCKSRX.ck,
423 PS2CYCLES_ROUNDUP(para->tCKSRX.ps));
424
425 /* write leveling timings */
426 const u32 tWLMRD = para->tWLMRD;
427 /* const u32 tWLDQSEN = para->tWLDQSEN; */
428 const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO);
429 /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */
430
431 const u32 tRASmax = tREFI * 9;
432 int i;
433
434 for (i = 0; i < para->cl_cwl_numentries; ++i) {
435 const u32 tCK = 1000000 / CONFIG_DRAM_CLK;
436
437 if ((para->cl_cwl_table[i].tCKmin <= tCK) &&
438 (tCK < para->cl_cwl_table[i].tCKmax)) {
439 CL = para->cl_cwl_table[i].CL;
440 CWL = para->cl_cwl_table[i].CWL;
441
442 debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL);
443 break;
444 }
445 }
446
447 if ((CL == 0) && (CWL == 0)) {
448 printf("failed to find valid CL/CWL for operating point %d MHz\n",
449 CONFIG_DRAM_CLK);
450 return 0;
451 }
452
453 if (ch_index == 0) {
454 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
455 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
456 } else {
457 mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE;
458 mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE;
459 }
460
461 if (para->dram_type == DRAM_TYPE_DDR3) {
462 mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) |
463 DDR3_MR0_CL(CL);
464 mr[1] = DDR3_MR1_RTT120OHM;
465 mr[2] = DDR3_MR2_TWL(CWL);
466 mr[3] = 0;
467
468 /*
469 * DRAM3 initialisation requires holding CKE LOW for
470 * at least 500us prior to starting the initialisation
471 * sequence and at least 10ns after driving CKE HIGH
472 * before the initialisation sequence may be started).
473 *
474 * Refer to Micron document "TN-41-07: DDR3 Power-Up,
475 * Initialization, and Reset DDR3 Initialization
476 * Routine" for details).
477 */
478 writel(MCTL_INIT0_POST_CKE_x1024(1) |
479 MCTL_INIT0_PRE_CKE_x1024(
480 (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */
481 &mctl_ctl->init[0]);
482 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
483 &mctl_ctl->init[1]);
484 /* INIT2 is not used for DDR3 */
485 writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]),
486 &mctl_ctl->init[3]);
487 writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]),
488 &mctl_ctl->init[4]);
489 writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */
490 &mctl_ctl->init[5]);
491 } else {
492 /* !!! UNTESTED !!! */
493 /*
494 * LPDDR2 and/or LPDDR3 require a 200us minimum delay
495 * after driving CKE HIGH in the initialisation sequence.
496 */
497 writel(MCTL_INIT0_POST_CKE_x1024(
498 (200 * CONFIG_DRAM_CLK + 1023) / 1024),
499 &mctl_ctl->init[0]);
500 writel(MCTL_INIT1_DRAM_RSTN_x1024(1),
501 &mctl_ctl->init[1]);
502 writel(MCTL_INIT2_IDLE_AFTER_RESET_x32(
503 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
504 | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */
505 &mctl_ctl->init[2]);
506 writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]),
507 &mctl_ctl->init[3]);
508 writel(MCTL_INIT4_EMR2(mr[3]),
509 &mctl_ctl->init[4]);
510 writel(MCTL_INIT5_DEV_ZQINIT_x32(
511 (CONFIG_DRAM_CLK + 31) / 32) /* 1us */
512 | MCTL_INIT5_MAX_AUTO_INIT_x1024(
513 (10 * CONFIG_DRAM_CLK + 1023) / 1024),
514 &mctl_ctl->init[5]);
515 }
516
517 /* (DDR3) We always use a burst-length of 8. */
518#define MCTL_BL 8
519 /* wr2pre: WL + BL/2 + tWR */
520#define WR2PRE (MCTL_BL/2 + CWL + tWTR)
521 /* wr2rd = CWL + BL/2 + tWTR */
522#define WR2RD (MCTL_BL/2 + CWL + tWTR)
523 /*
524 * rd2wr = RL + BL/2 + 2 - WL (for DDR3)
525 * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3)
526 */
527#define RD2WR (CL + MCTL_BL/2 + 2 - CWL)
528#define MCTL_PHY_TRTW 0
529#define MCTL_PHY_TRTODT 0
530
531#define MCTL_DIV2(n) ((n + 1)/2)
532#define MCTL_DIV32(n) (n/32)
533#define MCTL_DIV1024(n) (n/1024)
534
535 writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) |
536 (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0),
537 &mctl_ctl->dramtmg[0]);
538 writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) |
539 (MCTL_DIV2(tRC) << 0),
540 &mctl_ctl->dramtmg[1]);
541 writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) |
542 (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0),
543 &mctl_ctl->dramtmg[2]);
544 /*
545 * Note: tMRW is located at bit 16 (and up) in DRAMTMG3...
546 * this is only relevant for LPDDR2/LPDDR3
547 */
548 writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0),
549 &mctl_ctl->dramtmg[3]);
550 writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) |
551 (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0),
552 &mctl_ctl->dramtmg[4]);
553 writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) |
554 (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0),
555 &mctl_ctl->dramtmg[5]);
556
557 /* These timings are relevant for LPDDR2/LPDDR3 only */
558 /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) |
559 (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */
560
561 /* printf("DRAMTMG7 reset value: 0x%x\n",
562 readl(&mctl_ctl->dramtmg[7])); */
563 /* DRAMTMG7 reset value: 0x202 */
564 /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */
565 /* printf("DRAMTMG8 reset value: 0x%x\n",
566 readl(&mctl_ctl->dramtmg[8])); */
567 /* DRAMTMG8 reset value: 0x44 */
568
569 writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]);
570
571 writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0),
572 &mctl_ctl->rfshtmg);
573
574 if (para->dram_type == DRAM_TYPE_DDR3) {
575 writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) |
576 (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0),
577 &mctl_ctl->dfitmg[0]);
578 } else {
579 /* TODO */
580 }
581
582 /* TODO: handle the case of the write latency domain going to 0 ... */
583
584 /*
585 * Disable dfi_init_complete_en (the triggering of the SDRAM
586 * initialisation when the PHY initialisation completes).
587 */
588 clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
589 /* Disable the automatic generation of DLL calibration requests */
590 setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD);
591
592 /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */
593 /* TODO: make 2T and BUSWIDTH configurable */
594 writel(MCTL_MSTR_DEVICETYPE(para->dram_type) |
595 MCTL_MSTR_BURSTLENGTH(para->dram_type) |
596 MCTL_MSTR_ACTIVERANKS(para->rank) |
597 MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32,
598 &mctl_ctl->mstr);
599
600 if (para->dram_type == DRAM_TYPE_DDR3) {
601 writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) |
602 (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]);
603 /*
604 * TODO: is the following really necessary as the bottom
605 * half should already be 0x100 and the upper half should
606 * be ignored for a DDR3 device???
607 */
608 writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100),
609 &mctl_ctl->zqctrl[1]);
610 } else {
611 writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40),
612 &mctl_ctl->zqctrl[0]);
613 writel(MCTL_ZQCTRL1_TZQRESET(0x28) |
614 MCTL_ZQCTRL1_TZQSI_x1024(0x100),
615 &mctl_ctl->zqctrl[1]);
616 }
617
618 /* Assert dfi_init_complete signal */
619 setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN);
620 /* Disable auto-refresh */
621 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
622
623 /* PHY initialisation */
624
625 /* TODO: make 2T and 8-bank mode configurable */
626 writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE |
627 MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3,
628 &mctl_phy->dcr);
629
630 /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */
631 if (para->dram_type != DRAM_TYPE_DDR3)
632 clrbits_le32(&mctl_phy->dsgcr, (3 << 6));
633
634 writel(mr[0], &mctl_phy->mr0);
635 writel(mr[1], &mctl_phy->mr1);
636 writel(mr[2], &mctl_phy->mr2);
637 writel(mr[3], &mctl_phy->mr3);
638
639 /*
640 * The DFI PHY is running at full rate. We thus use the actual
641 * timings in clock cycles here.
642 */
643 writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) |
644 (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0),
645 &mctl_phy->dtpr[0]);
646 writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) |
647 (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26),
648 &mctl_phy->dtpr[1]);
649 writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) |
650 (tCKE << 15) | (tDLLK << 19) |
651 (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) |
652 (((tCCD - 4) & 0x1) << 31),
653 &mctl_phy->dtpr[2]);
654
655 /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */
656 /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */
657
658 /*
659 * We use the same values used by Allwinner's Boot0 for the PTR
660 * (PHY timing register) configuration that is tied to the PHY
661 * implementation.
662 */
663 writel(0x42C21590, &mctl_phy->ptr[0]);
664 writel(0xD05612C0, &mctl_phy->ptr[1]);
665 if (para->dram_type == DRAM_TYPE_DDR3) {
666 const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */
667 const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) /
668 1000; /* 360ns */
669 const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */
670 const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */
671
672 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
673 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
674 } else {
675 /* LPDDR2 or LPDDR3 */
676 const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) /
677 1000; /* 100ns */
678 const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */
679 const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */
680 const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */
681
682 writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]);
683 writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]);
684 }
685
686 /* TEST ME */
687 writel(0x00203131, &mctl_phy->acmdlr);
688
689 /* TODO: can we enable this for 2 ranks, even when we don't know yet */
690 writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank),
691 &mctl_phy->dtcr);
692
693 /* TODO: half width */
694 debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0]));
695 writel(0x7C000285, &mctl_phy->dx[2].gcr[0]);
696 writel(0x7C000285, &mctl_phy->dx[3].gcr[0]);
697
698 clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff,
699 (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */
700 clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff,
701 (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */
702 clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff,
703 (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */
704
705 /* TODO: make configurable & implement non-ODT path */
706 if (1) {
707 int lane;
708 for (lane = 0; lane < 4; ++lane) {
709 clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff);
710 clrbits_le32(&mctl_phy->dx[lane].gcr[3],
711 (0x3<<12) | (0x3<<4));
712 }
713 } else {
714 /* TODO: check */
715 int lane;
716 for (lane = 0; lane < 4; ++lane) {
717 clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff,
718 0xaaaa);
719 if (para->dram_type == DRAM_TYPE_DDR3)
720 setbits_le32(&mctl_phy->dx[lane].gcr[3],
721 (0x3<<12) | (0x3<<4));
722 else
723 setbits_le32(&mctl_phy->dx[lane].gcr[3],
724 0x00000012);
725 }
726 }
727
728 writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */
729 writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */
730 writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */
731
732 /* Disable auto-refresh prior to data training */
733 setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
734
735 setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */
736 /* TODO: IODDRM (IO DDR-MODE) for DDR3L */
737 clrsetbits_le32(&mctl_phy->pgcr[1],
738 MCTL_PGCR1_ZCKSEL_MASK,
739 MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN);
740
741 setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */
742 /* TODO: single-channel PLL mode??? missing */
743 setbits_le32(&mctl_phy->pllcr,
744 MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN);
745 /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */
746
747 /* Disable VT compensation */
748 clrbits_le32(&mctl_phy->pgcr[0], 0x3f);
749
750 /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */
751 if (para->dram_type == DRAM_TYPE_DDR3)
752 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3);
753 else
754 clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573);
755
756 sdelay(10000); /* XXX necessary? */
757
758 /* Wait for the INIT bit to clear itself... */
759 while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) {
760 /* not done yet -- keep spinning */
761 debug("MCTL_PIR_INIT not set\n");
762 sdelay(1000);
763 /* TODO: implement timeout */
764 }
765
766 /* TODO: not used --- there's a "2rank debug" section here */
767
768 /* Original dram init code which may come in handy later
769 ********************************************************
770 * LPDDR2 and LPDDR3 *
771 if ((para->dram_type) == 6 || (para->dram_type) == 7) {
772 reg_val = mctl_read_w(P0_DSGCR + ch_offset);
773 reg_val &= (~(0x3<<6)); * set DQSGX to 1 *
774 reg_val |= (0x1<<6); * dqs gate extend *
775 mctl_write_w(P0_DSGCR + ch_offset, reg_val);
776 dram_dbg("DQS Gate Extend Enable!\n", ch_index);
777 }
778
779 * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ *
780 if (para->dram_tpr13 & (0x1<<31)) {
781 reg_val = mctl_read_w(P0_ZQ0CR + ch_offset);
782 reg_val |= (0x7<<11);
783 mctl_write_w(P0_ZQ0CR + ch_offset, reg_val);
784 }
785 ********************************************************
786 */
787
788 /*
789 * TODO: more 2-rank support
790 * (setting the "dqs gate delay to average between 2 rank")
791 */
792
793 /* check if any errors are set */
794 if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) {
795 debug("Channel %d unavailable!\n", ch_index);
796 return 0;
797 } else{
798 /* initial OK */
799 debug("Channel %d OK!\n", ch_index);
800 /* return 1; */
801 }
802
803 while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) {
804 debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n");
805 sdelay(100000);
806 /* init not done */
807 /* TODO: implement time-out */
808 }
809 debug("done\n");
810
811 /* "DDR is controller by contoller" */
812 clrbits_le32(&mctl_phy->pgcr[3], (1 << 25));
813
814 /* TODO: is the following necessary? */
815 debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc));
816 writel(0, &mctl_ctl->dfimisc);
817
818 /* Enable auto-refresh */
819 clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH);
820
821 debug("channel_init complete\n");
822 return 1;
823}
824
825signed int DRAMC_get_dram_size(void)
826{
827 struct sunxi_mctl_com_reg * const mctl_com =
828 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
829
830 unsigned int reg_val;
831 unsigned int dram_size;
832 unsigned int temp;
833
834 reg_val = readl(&mctl_com->cr);
835
836 temp = (reg_val >> 8) & 0xf; /* page size code */
837 dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */
838
839 temp = (reg_val >> 4) & 0xf; /* row width code */
840 dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */
841
842 temp = (reg_val >> 2) & 0x3; /* bank number code */
843 dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */
844
845 temp = reg_val & 0x3; /* rank number code */
846 dram_size += temp; /* (1 << dram_size) * 512Bytes */
847
848 temp = (reg_val >> 19) & 0x1; /* channel number code */
849 dram_size += temp; /* (1 << dram_size) * 512Bytes */
850
851 dram_size = dram_size - 11; /* (1 << dram_size) MBytes */
852
853 return 1 << dram_size;
854}
855
856unsigned long sunxi_dram_init(void)
857{
858 struct sunxi_mctl_com_reg * const mctl_com =
859 (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
860
861 struct dram_sun9i_cl_cwl_timing cl_cwl[] = {
862 { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 },
863 { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 },
864 { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 },
865 { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 },
866 { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 }
867 };
868
869 /* Set initial parameters, these get modified by the autodetect code */
870 struct dram_sun9i_para para = {
871 .dram_type = DRAM_TYPE_DDR3,
872 .bus_width = 32,
873 .chan = 2,
874 .rank = 1,
875 /* .rank = 2, */
876 .page_size = 4096,
877 /* .rows = 16, */
878 .rows = 15,
879
880 /* CL/CWL table for the speed bin */
881 .cl_cwl_table = cl_cwl,
882 .cl_cwl_numentries = sizeof(cl_cwl) /
883 sizeof(struct dram_sun9i_cl_cwl_timing),
884
885 /* timings */
886 .tREFI = 7800, /* 7.8us (up to 85 degC) */
887 .tRFC = 260, /* 260ns for 4GBit devices */
888 /* 350ns @ 8GBit */
889
890 .tRCD = 13750,
891 .tRP = 13750,
892 .tRC = 48750,
893 .tRAS = 35000,
894
895 .tDLLK = 512,
896 .tRTP = { .ck = 4, .ps = 7500 },
897 .tWTR = { .ck = 4, .ps = 7500 },
898 .tWR = 15,
899 .tMRD = 4,
900 .tMOD = { .ck = 12, .ps = 15000 },
901 .tCCD = 4,
902 .tRRD = { .ck = 4, .ps = 7500 },
903 .tFAW = 40,
904
905 /* calibration timing */
906 /* .tZQinit = { .ck = 512, .ps = 640000 }, */
907 .tZQoper = { .ck = 256, .ps = 320000 },
908 .tZQCS = { .ck = 64, .ps = 80000 },
909
910 /* reset timing */
911 /* .tXPR = { .ck = 5, .ps = 10000 }, */
912
913 /* self-refresh timings */
914 .tXS = { .ck = 5, .ps = 10000 },
915 .tXSDLL = 512,
916 .tCKSRE = { .ck = 5, .ps = 10000 },
917 .tCKSRX = { .ck = 5, .ps = 10000 },
918
919 /* power-down timings */
920 .tXP = { .ck = 3, .ps = 6000 },
921 .tXPDLL = { .ck = 10, .ps = 24000 },
922 .tCKE = { .ck = 3, .ps = 5000 },
923
924 /* write leveling timings */
925 .tWLMRD = 40,
926 /* .tWLDQSEN = 25, */
927 .tWLO = 7500,
928 /* .tWLOE = 2000, */
929 };
930
931 /*
932 * Disable A80 internal 240 ohm resistor.
933 *
934 * This code sequence is adapated from Allwinner's Boot0 (see
935 * https://github.com/allwinner-zh/bootloader.git), as there
936 * is no documentation for these two registers in the R_PRCM
937 * block.
938 */
939 setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8));
940 writel(0, SUNXI_PRCM_BASE + 0x1e8);
941
942 mctl_sys_init();
943
944 if (!mctl_channel_init(0, &para))
945 return 0;
946
947 /* dual-channel */
948 if (!mctl_channel_init(1, &para)) {
949 /* disable channel 1 */
950 clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK,
951 MCTL_CR_CHANNEL_SINGLE);
952 /* disable channel 1 global clock */
953 clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN);
954 }
955
956 mctl_com_init(&para);
957
958 /* return the proper RAM size */
959 return DRAMC_get_dram_size() << 20;
960}