wdenk | dc7c9a1 | 2003-03-26 06:55:25 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Driver for NAND support, Rick Bronson |
| 3 | * borrowed heavily from: |
| 4 | * (c) 1999 Machine Vision Holdings, Inc. |
| 5 | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include <common.h> |
wdenk | dc7c9a1 | 2003-03-26 06:55:25 +0000 | [diff] [blame] | 10 | #include <command.h> |
| 11 | #include <malloc.h> |
| 12 | #include <asm/io.h> |
| 13 | |
| 14 | #ifdef CONFIG_SHOW_BOOT_PROGRESS |
| 15 | # include <status_led.h> |
| 16 | # define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg) |
| 17 | #else |
| 18 | # define SHOW_BOOT_PROGRESS(arg) |
| 19 | #endif |
| 20 | |
| 21 | #if (CONFIG_COMMANDS & CFG_CMD_NAND) |
| 22 | |
| 23 | #include <linux/mtd/nftl.h> |
| 24 | #include <linux/mtd/nand.h> |
| 25 | #include <linux/mtd/nand_ids.h> |
| 26 | |
| 27 | /* |
| 28 | * Definition of the out of band configuration structure |
| 29 | */ |
| 30 | struct nand_oob_config { |
| 31 | int ecc_pos[6]; /* position of ECC bytes inside oob */ |
| 32 | int badblock_pos; /* position of bad block flag inside oob -1 = inactive */ |
| 33 | int eccvalid_pos; /* position of ECC valid flag inside oob -1 = inactive */ |
| 34 | } oob_config = { {0}, 0, 0}; |
| 35 | |
| 36 | #define NAND_DEBUG |
| 37 | #undef ECC_DEBUG |
| 38 | #undef PSYCHO_DEBUG |
| 39 | #undef NFTL_DEBUG |
| 40 | |
| 41 | #define CONFIG_MTD_NAND_ECC /* enable ECC */ |
| 42 | /* #define CONFIG_MTD_NAND_ECC_JFFS2 */ |
| 43 | |
| 44 | /* |
| 45 | * Function Prototypes |
| 46 | */ |
| 47 | static void nand_print(struct nand_chip *nand); |
| 48 | static int nand_rw (struct nand_chip* nand, int cmd, |
| 49 | size_t start, size_t len, |
| 50 | size_t * retlen, u_char * buf); |
| 51 | static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len); |
| 52 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| 53 | size_t * retlen, u_char *buf, u_char *ecc_code); |
| 54 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| 55 | size_t * retlen, const u_char * buf, u_char * ecc_code); |
| 56 | #ifdef CONFIG_MTD_NAND_ECC |
| 57 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); |
| 58 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); |
| 59 | #endif |
| 60 | |
| 61 | static struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; |
| 62 | |
| 63 | /* Current NAND Device */ |
| 64 | static int curr_device = -1; |
| 65 | |
| 66 | /* ------------------------------------------------------------------------- */ |
| 67 | |
| 68 | int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| 69 | { |
| 70 | int rcode = 0; |
| 71 | |
| 72 | switch (argc) { |
| 73 | case 0: |
| 74 | case 1: |
| 75 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 76 | return 1; |
| 77 | case 2: |
| 78 | if (strcmp(argv[1],"info") == 0) { |
| 79 | int i; |
| 80 | |
| 81 | putc ('\n'); |
| 82 | |
| 83 | for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) { |
| 84 | if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) |
| 85 | continue; /* list only known devices */ |
| 86 | printf ("Device %d: ", i); |
| 87 | nand_print(&nand_dev_desc[i]); |
| 88 | } |
| 89 | return 0; |
| 90 | |
| 91 | } else if (strcmp(argv[1],"device") == 0) { |
| 92 | if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) { |
| 93 | puts ("\nno devices available\n"); |
| 94 | return 1; |
| 95 | } |
| 96 | printf ("\nDevice %d: ", curr_device); |
| 97 | nand_print(&nand_dev_desc[curr_device]); |
| 98 | return 0; |
| 99 | } |
| 100 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 101 | return 1; |
| 102 | case 3: |
| 103 | if (strcmp(argv[1],"device") == 0) { |
| 104 | int dev = (int)simple_strtoul(argv[2], NULL, 10); |
| 105 | |
| 106 | printf ("\nDevice %d: ", dev); |
| 107 | if (dev >= CFG_MAX_NAND_DEVICE) { |
| 108 | puts ("unknown device\n"); |
| 109 | return 1; |
| 110 | } |
| 111 | nand_print(&nand_dev_desc[dev]); |
| 112 | /*nand_print (dev);*/ |
| 113 | |
| 114 | if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { |
| 115 | return 1; |
| 116 | } |
| 117 | |
| 118 | curr_device = dev; |
| 119 | |
| 120 | puts ("... is now current device\n"); |
| 121 | |
| 122 | return 0; |
| 123 | } |
| 124 | |
| 125 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 126 | return 1; |
| 127 | default: |
| 128 | /* at least 4 args */ |
| 129 | |
| 130 | if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { |
| 131 | ulong addr = simple_strtoul(argv[2], NULL, 16); |
| 132 | ulong off = simple_strtoul(argv[3], NULL, 16); |
| 133 | ulong size = simple_strtoul(argv[4], NULL, 16); |
| 134 | int cmd = (strcmp(argv[1],"read") == 0); |
| 135 | int ret, total; |
| 136 | |
| 137 | printf ("\nNAND %s: device %d offset %ld, size %ld ... ", |
| 138 | cmd ? "read" : "write", curr_device, off, size); |
| 139 | |
| 140 | ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size, |
| 141 | &total, (u_char*)addr); |
| 142 | |
| 143 | printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", |
| 144 | ret ? "ERROR" : "OK"); |
| 145 | |
| 146 | return ret; |
| 147 | } else if (strcmp(argv[1],"erase") == 0) { |
| 148 | ulong off = simple_strtoul(argv[2], NULL, 16); |
| 149 | ulong size = simple_strtoul(argv[3], NULL, 16); |
| 150 | int ret; |
| 151 | |
| 152 | printf ("\nNAND erase: device %d offset %ld, size %ld ... ", |
| 153 | curr_device, off, size); |
| 154 | |
| 155 | ret = nand_erase (nand_dev_desc + curr_device, off, size); |
| 156 | |
| 157 | printf("%s\n", ret ? "ERROR" : "OK"); |
| 158 | |
| 159 | return ret; |
| 160 | } else { |
| 161 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 162 | rcode = 1; |
| 163 | } |
| 164 | |
| 165 | return rcode; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| 170 | { |
| 171 | char *boot_device = NULL; |
| 172 | char *ep; |
| 173 | int dev; |
| 174 | ulong cnt; |
| 175 | ulong addr; |
| 176 | ulong offset = 0; |
| 177 | image_header_t *hdr; |
| 178 | int rcode = 0; |
| 179 | switch (argc) { |
| 180 | case 1: |
| 181 | addr = CFG_LOAD_ADDR; |
| 182 | boot_device = getenv ("bootdevice"); |
| 183 | break; |
| 184 | case 2: |
| 185 | addr = simple_strtoul(argv[1], NULL, 16); |
| 186 | boot_device = getenv ("bootdevice"); |
| 187 | break; |
| 188 | case 3: |
| 189 | addr = simple_strtoul(argv[1], NULL, 16); |
| 190 | boot_device = argv[2]; |
| 191 | break; |
| 192 | case 4: |
| 193 | addr = simple_strtoul(argv[1], NULL, 16); |
| 194 | boot_device = argv[2]; |
| 195 | offset = simple_strtoul(argv[3], NULL, 16); |
| 196 | break; |
| 197 | default: |
| 198 | printf ("Usage:\n%s\n", cmdtp->usage); |
| 199 | SHOW_BOOT_PROGRESS (-1); |
| 200 | return 1; |
| 201 | } |
| 202 | |
| 203 | if (!boot_device) { |
| 204 | puts ("\n** No boot device **\n"); |
| 205 | SHOW_BOOT_PROGRESS (-1); |
| 206 | return 1; |
| 207 | } |
| 208 | |
| 209 | dev = simple_strtoul(boot_device, &ep, 16); |
| 210 | |
| 211 | if ((dev >= CFG_MAX_NAND_DEVICE) || |
| 212 | (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { |
| 213 | printf ("\n** Device %d not available\n", dev); |
| 214 | SHOW_BOOT_PROGRESS (-1); |
| 215 | return 1; |
| 216 | } |
| 217 | |
| 218 | printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", |
| 219 | dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, |
| 220 | offset); |
| 221 | |
| 222 | if (nand_rw (nand_dev_desc + dev, 1, offset, |
| 223 | SECTORSIZE, NULL, (u_char *)addr)) { |
| 224 | printf ("** Read error on %d\n", dev); |
| 225 | SHOW_BOOT_PROGRESS (-1); |
| 226 | return 1; |
| 227 | } |
| 228 | |
| 229 | hdr = (image_header_t *)addr; |
| 230 | |
| 231 | if (ntohl(hdr->ih_magic) == IH_MAGIC) { |
| 232 | |
| 233 | print_image_hdr (hdr); |
| 234 | |
| 235 | cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t)); |
| 236 | cnt -= SECTORSIZE; |
| 237 | } else { |
| 238 | printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic); |
| 239 | SHOW_BOOT_PROGRESS (-1); |
| 240 | return 1; |
| 241 | } |
| 242 | |
| 243 | if (nand_rw (nand_dev_desc + dev, 1, offset + SECTORSIZE, cnt, |
| 244 | NULL, (u_char *)(addr+SECTORSIZE))) { |
| 245 | printf ("** Read error on %d\n", dev); |
| 246 | SHOW_BOOT_PROGRESS (-1); |
| 247 | return 1; |
| 248 | } |
| 249 | |
| 250 | /* Loading ok, update default load address */ |
| 251 | |
| 252 | load_addr = addr; |
| 253 | |
| 254 | /* Check if we should attempt an auto-start */ |
| 255 | if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { |
| 256 | char *local_args[2]; |
| 257 | extern int do_bootm (cmd_tbl_t *, int, int, char *[]); |
| 258 | |
| 259 | local_args[0] = argv[0]; |
| 260 | local_args[1] = NULL; |
| 261 | |
| 262 | printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); |
| 263 | |
| 264 | do_bootm (cmdtp, 0, 1, local_args); |
| 265 | rcode = 1; |
| 266 | } |
| 267 | return rcode; |
| 268 | } |
| 269 | |
| 270 | static int nand_rw (struct nand_chip* nand, int cmd, |
| 271 | size_t start, size_t len, |
| 272 | size_t * retlen, u_char * buf) |
| 273 | { |
| 274 | int noecc, ret = 0, n, total = 0; |
| 275 | char eccbuf[6]; |
| 276 | |
| 277 | while(len) { |
| 278 | /* The ECC will not be calculated correctly if |
| 279 | less than 512 is written or read */ |
| 280 | noecc = (start != (start | 0x1ff) + 1) || (len < 0x200); |
| 281 | if (cmd) |
| 282 | ret = nand_read_ecc(nand, start, len, |
| 283 | &n, (u_char*)buf, |
| 284 | noecc ? NULL : eccbuf); |
| 285 | else |
| 286 | ret = nand_write_ecc(nand, start, len, |
| 287 | &n, (u_char*)buf, |
| 288 | noecc ? NULL : eccbuf); |
| 289 | |
| 290 | if (ret) |
| 291 | break; |
| 292 | |
| 293 | start += n; |
| 294 | buf += n; |
| 295 | total += n; |
| 296 | len -= n; |
| 297 | } |
| 298 | if (retlen) |
| 299 | *retlen = total; |
| 300 | |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | static void nand_print(struct nand_chip *nand) |
| 305 | { |
| 306 | printf("%s at 0x%lX,\n" |
| 307 | "\t %d chip%s %s, size %d MB, \n" |
| 308 | "\t total size %ld MB, sector size %ld kB\n", |
| 309 | nand->name, nand->IO_ADDR, nand->numchips, |
| 310 | nand->numchips>1 ? "s" : "", nand->chips_name, |
| 311 | 1 << (nand->chipshift - 20), |
| 312 | nand->totlen >> 20, nand->erasesize >> 10); |
| 313 | |
| 314 | if (nand->nftl_found) { |
| 315 | struct NFTLrecord *nftl = &nand->nftl; |
| 316 | unsigned long bin_size, flash_size; |
| 317 | |
| 318 | bin_size = nftl->nb_boot_blocks * nand->erasesize; |
| 319 | flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * nand->erasesize; |
| 320 | |
| 321 | printf("\t NFTL boot record:\n" |
| 322 | "\t Binary partition: size %ld%s\n" |
| 323 | "\t Flash disk partition: size %ld%s, offset 0x%lx\n", |
| 324 | bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, |
| 325 | bin_size > (1 << 20) ? "MB" : "kB", |
| 326 | flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, |
| 327 | flash_size > (1 << 20) ? "MB" : "kB", bin_size); |
| 328 | } else { |
| 329 | puts ("\t No NFTL boot record found.\n"); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | /* ------------------------------------------------------------------------- */ |
| 334 | |
| 335 | /* This function is needed to avoid calls of the __ashrdi3 function. */ |
| 336 | static int shr(int val, int shift) |
| 337 | { |
| 338 | return val >> shift; |
| 339 | } |
| 340 | |
| 341 | static int NanD_WaitReady(struct nand_chip *nand) |
| 342 | { |
| 343 | /* This is inline, to optimise the common case, where it's ready instantly */ |
| 344 | int ret = 0; |
| 345 | NAND_WAIT_READY(nand); |
| 346 | |
| 347 | return ret; |
| 348 | } |
| 349 | |
| 350 | /* NanD_Command: Send a flash command to the flash chip */ |
| 351 | |
| 352 | static inline int NanD_Command(struct nand_chip *nand, unsigned char command) |
| 353 | { |
| 354 | unsigned long nandptr = nand->IO_ADDR; |
| 355 | |
| 356 | /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| 357 | NAND_CTL_SETCLE(nandptr); |
| 358 | |
| 359 | /* Send the command */ |
| 360 | WRITE_NAND_COMMAND(command, nandptr); |
| 361 | |
| 362 | /* Lower the CLE line */ |
| 363 | NAND_CTL_CLRCLE(nandptr); |
| 364 | |
| 365 | return NanD_WaitReady(nand); |
| 366 | } |
| 367 | |
| 368 | /* NanD_Address: Set the current address for the flash chip */ |
| 369 | |
| 370 | static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) |
| 371 | { |
| 372 | unsigned long nandptr; |
| 373 | int i; |
| 374 | |
| 375 | nandptr = nand->IO_ADDR; |
| 376 | |
| 377 | /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| 378 | NAND_CTL_SETALE(nandptr); |
| 379 | |
| 380 | /* Send the address */ |
| 381 | /* Devices with 256-byte page are addressed as: |
| 382 | Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| 383 | * there is no device on the market with page256 |
| 384 | and more than 24 bits. |
| 385 | Devices with 512-byte page are addressed as: |
| 386 | Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| 387 | * 25-31 is sent only if the chip support it. |
| 388 | * bit 8 changes the read command to be sent |
| 389 | (NAND_CMD_READ0 or NAND_CMD_READ1). |
| 390 | */ |
| 391 | |
| 392 | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) |
| 393 | WRITE_NAND_ADDRESS(ofs, nandptr); |
| 394 | |
| 395 | ofs = ofs >> nand->page_shift; |
| 396 | |
| 397 | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) |
| 398 | for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) |
| 399 | WRITE_NAND_ADDRESS(ofs, nandptr); |
| 400 | |
| 401 | /* Lower the ALE line */ |
| 402 | NAND_CTL_CLRALE(nandptr); |
| 403 | |
| 404 | /* Wait for the chip to respond */ |
| 405 | return NanD_WaitReady(nand); |
| 406 | } |
| 407 | |
| 408 | /* NanD_SelectChip: Select a given flash chip within the current floor */ |
| 409 | |
| 410 | static inline int NanD_SelectChip(struct nand_chip *nand, int chip) |
| 411 | { |
| 412 | /* Wait for it to be ready */ |
| 413 | return NanD_WaitReady(nand); |
| 414 | } |
| 415 | |
| 416 | /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| 417 | |
| 418 | static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) |
| 419 | { |
| 420 | int mfr, id, i; |
| 421 | |
| 422 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 423 | /* Reset the chip */ |
| 424 | if (NanD_Command(nand, NAND_CMD_RESET)) { |
| 425 | #ifdef NAND_DEBUG |
| 426 | printf("NanD_Command (reset) for %d,%d returned true\n", |
| 427 | floor, chip); |
| 428 | #endif |
| 429 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | /* Read the NAND chip ID: 1. Send ReadID command */ |
| 434 | if (NanD_Command(nand, NAND_CMD_READID)) { |
| 435 | #ifdef NAND_DEBUG |
| 436 | printf("NanD_Command (ReadID) for %d,%d returned true\n", |
| 437 | floor, chip); |
| 438 | #endif |
| 439 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | /* Read the NAND chip ID: 2. Send address byte zero */ |
| 444 | NanD_Address(nand, ADDR_COLUMN, 0); |
| 445 | |
| 446 | /* Read the manufacturer and device id codes from the device */ |
| 447 | |
| 448 | mfr = READ_NAND(nand->IO_ADDR); |
| 449 | |
| 450 | id = READ_NAND(nand->IO_ADDR); |
| 451 | |
| 452 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 453 | /* No response - return failure */ |
| 454 | if (mfr == 0xff || mfr == 0) |
| 455 | { |
| 456 | printf("NanD_Command (ReadID) got %d %d\n", mfr, id); |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | /* Check it's the same as the first chip we identified. |
| 461 | * M-Systems say that any given nand_chip device should only |
| 462 | * contain _one_ type of flash part, although that's not a |
| 463 | * hardware restriction. */ |
| 464 | if (nand->mfr) { |
| 465 | if (nand->mfr == mfr && nand->id == id) |
| 466 | return 1; /* This is another the same the first */ |
| 467 | else |
| 468 | printf("Flash chip at floor %d, chip %d is different:\n", |
| 469 | floor, chip); |
| 470 | } |
| 471 | |
| 472 | /* Print and store the manufacturer and ID codes. */ |
| 473 | for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| 474 | if (mfr == nand_flash_ids[i].manufacture_id && |
| 475 | id == nand_flash_ids[i].model_id) { |
| 476 | #ifdef NAND_DEBUG |
| 477 | printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " |
| 478 | "Chip ID: 0x%2.2X (%s)\n", mfr, id, |
| 479 | nand_flash_ids[i].name); |
| 480 | #endif |
| 481 | if (!nand->mfr) { |
| 482 | nand->mfr = mfr; |
| 483 | nand->id = id; |
| 484 | nand->chipshift = |
| 485 | nand_flash_ids[i].chipshift; |
| 486 | nand->page256 = nand_flash_ids[i].page256; |
| 487 | if (nand->page256) { |
| 488 | nand->oobblock = 256; |
| 489 | nand->oobsize = 8; |
| 490 | nand->page_shift = 8; |
| 491 | } else { |
| 492 | nand->oobblock = 512; |
| 493 | nand->oobsize = 16; |
| 494 | nand->page_shift = 9; |
| 495 | } |
| 496 | nand->pageadrlen = |
| 497 | nand_flash_ids[i].pageadrlen; |
| 498 | nand->erasesize = |
| 499 | nand_flash_ids[i].erasesize; |
| 500 | nand->chips_name = |
| 501 | nand_flash_ids[i].name; |
| 502 | return 1; |
| 503 | } |
| 504 | return 0; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | |
| 509 | #ifdef NAND_DEBUG |
| 510 | /* We haven't fully identified the chip. Print as much as we know. */ |
| 511 | printf("Unknown flash chip found: %2.2X %2.2X\n", |
| 512 | id, mfr); |
| 513 | #endif |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ |
| 519 | |
| 520 | static void NanD_ScanChips(struct nand_chip *nand) |
| 521 | { |
| 522 | int floor, chip; |
| 523 | int numchips[NAND_MAX_FLOORS]; |
| 524 | int maxchips = NAND_MAX_CHIPS; |
| 525 | int ret = 1; |
| 526 | |
| 527 | nand->numchips = 0; |
| 528 | nand->mfr = 0; |
| 529 | nand->id = 0; |
| 530 | |
| 531 | |
| 532 | /* For each floor, find the number of valid chips it contains */ |
| 533 | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| 534 | ret = 1; |
| 535 | numchips[floor] = 0; |
| 536 | for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| 537 | |
| 538 | ret = NanD_IdentChip(nand, floor, chip); |
| 539 | if (ret) { |
| 540 | numchips[floor]++; |
| 541 | nand->numchips++; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | /* If there are none at all that we recognise, bail */ |
| 547 | if (!nand->numchips) { |
| 548 | puts ("No flash chips recognised.\n"); |
| 549 | return; |
| 550 | } |
| 551 | |
| 552 | /* Allocate an array to hold the information for each chip */ |
| 553 | nand->chips = malloc(sizeof(struct Nand) * nand->numchips); |
| 554 | if (!nand->chips) { |
| 555 | puts ("No memory for allocating chip info structures\n"); |
| 556 | return; |
| 557 | } |
| 558 | |
| 559 | ret = 0; |
| 560 | |
| 561 | /* Fill out the chip array with {floor, chipno} for each |
| 562 | * detected chip in the device. */ |
| 563 | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { |
| 564 | for (chip = 0; chip < numchips[floor]; chip++) { |
| 565 | nand->chips[ret].floor = floor; |
| 566 | nand->chips[ret].chip = chip; |
| 567 | nand->chips[ret].curadr = 0; |
| 568 | nand->chips[ret].curmode = 0x50; |
| 569 | ret++; |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | /* Calculate and print the total size of the device */ |
| 574 | nand->totlen = nand->numchips * (1 << nand->chipshift); |
| 575 | |
| 576 | #ifdef NAND_DEBUG |
| 577 | printf("%d flash chips found. Total nand_chip size: %ld MB\n", |
| 578 | nand->numchips, nand->totlen >> 20); |
| 579 | #endif |
| 580 | } |
| 581 | #ifdef CONFIG_MTD_NAND_ECC |
| 582 | /* we need to be fast here, 1 us per read translates to 1 second per meg */ |
| 583 | static void nand_fast_copy (unsigned char *source, unsigned char *dest, long cntr) |
| 584 | { |
| 585 | while (cntr > 16) |
| 586 | { |
| 587 | *dest++ = *source++; |
| 588 | *dest++ = *source++; |
| 589 | *dest++ = *source++; |
| 590 | *dest++ = *source++; |
| 591 | *dest++ = *source++; |
| 592 | *dest++ = *source++; |
| 593 | *dest++ = *source++; |
| 594 | *dest++ = *source++; |
| 595 | *dest++ = *source++; |
| 596 | *dest++ = *source++; |
| 597 | *dest++ = *source++; |
| 598 | *dest++ = *source++; |
| 599 | *dest++ = *source++; |
| 600 | *dest++ = *source++; |
| 601 | *dest++ = *source++; |
| 602 | *dest++ = *source++; |
| 603 | cntr -= 16; |
| 604 | } |
| 605 | while (cntr > 0) |
| 606 | { |
| 607 | *dest++ = *source++; |
| 608 | cntr--; |
| 609 | } |
| 610 | } |
| 611 | #endif |
| 612 | /* we need to be fast here, 1 us per read translates to 1 second per meg */ |
| 613 | static void nand_fast_read(unsigned char *data_buf, int cntr, unsigned long nandptr) |
| 614 | { |
| 615 | while (cntr > 16) |
| 616 | { |
| 617 | *data_buf++ = READ_NAND(nandptr); |
| 618 | *data_buf++ = READ_NAND(nandptr); |
| 619 | *data_buf++ = READ_NAND(nandptr); |
| 620 | *data_buf++ = READ_NAND(nandptr); |
| 621 | *data_buf++ = READ_NAND(nandptr); |
| 622 | *data_buf++ = READ_NAND(nandptr); |
| 623 | *data_buf++ = READ_NAND(nandptr); |
| 624 | *data_buf++ = READ_NAND(nandptr); |
| 625 | *data_buf++ = READ_NAND(nandptr); |
| 626 | *data_buf++ = READ_NAND(nandptr); |
| 627 | *data_buf++ = READ_NAND(nandptr); |
| 628 | *data_buf++ = READ_NAND(nandptr); |
| 629 | *data_buf++ = READ_NAND(nandptr); |
| 630 | *data_buf++ = READ_NAND(nandptr); |
| 631 | *data_buf++ = READ_NAND(nandptr); |
| 632 | *data_buf++ = READ_NAND(nandptr); |
| 633 | cntr -= 16; |
| 634 | } |
| 635 | while (cntr > 0) |
| 636 | { |
| 637 | *data_buf++ = READ_NAND(nandptr); |
| 638 | cntr--; |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | /* This routine is made available to other mtd code via |
| 643 | * inter_module_register. It must only be accessed through |
| 644 | * inter_module_get which will bump the use count of this module. The |
| 645 | * addresses passed back in mtd are valid as long as the use count of |
| 646 | * this module is non-zero, i.e. between inter_module_get and |
| 647 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. |
| 648 | */ |
| 649 | |
| 650 | /* |
| 651 | * NAND read with ECC |
| 652 | */ |
| 653 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, |
| 654 | size_t * retlen, u_char *buf, u_char *ecc_code) |
| 655 | { |
| 656 | int col, page; |
| 657 | int ecc_status = 0; |
| 658 | #ifdef CONFIG_MTD_NAND_ECC |
| 659 | int j; |
| 660 | int ecc_failed = 0; |
| 661 | u_char *data_poi; |
| 662 | u_char ecc_calc[6]; |
| 663 | #endif |
| 664 | unsigned long nandptr = nand->IO_ADDR; |
| 665 | |
| 666 | /* Do not allow reads past end of device */ |
| 667 | if ((start + len) > nand->totlen) { |
| 668 | printf ("nand_read_ecc: Attempt read beyond end of device %x %x %x\n", (uint) start, (uint) len, (uint) nand->totlen); |
| 669 | *retlen = 0; |
| 670 | return -1; |
| 671 | } |
| 672 | |
| 673 | /* First we calculate the starting page */ |
| 674 | page = shr(start, nand->page_shift); |
| 675 | |
| 676 | /* Get raw starting column */ |
| 677 | col = start & (nand->oobblock - 1); |
| 678 | |
| 679 | /* Initialize return value */ |
| 680 | *retlen = 0; |
| 681 | |
| 682 | /* Select the NAND device */ |
| 683 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 684 | |
| 685 | /* Loop until all data read */ |
| 686 | while (*retlen < len) { |
| 687 | |
| 688 | |
| 689 | #ifdef CONFIG_MTD_NAND_ECC |
| 690 | |
| 691 | /* Do we have this page in cache ? */ |
| 692 | if (nand->cache_page == page) |
| 693 | goto readdata; |
| 694 | /* Send the read command */ |
| 695 | NanD_Command(nand, NAND_CMD_READ0); |
| 696 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 697 | /* Read in a page + oob data */ |
| 698 | nand_fast_read(nand->data_buf, nand->oobblock + nand->oobsize, nandptr); |
| 699 | |
| 700 | /* copy data into cache, for read out of cache and if ecc fails */ |
| 701 | if (nand->data_cache) |
| 702 | memcpy (nand->data_cache, nand->data_buf, nand->oobblock + nand->oobsize); |
| 703 | |
| 704 | /* Pick the ECC bytes out of the oob data */ |
| 705 | for (j = 0; j < 6; j++) |
| 706 | ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; |
| 707 | |
| 708 | /* Calculate the ECC and verify it */ |
| 709 | /* If block was not written with ECC, skip ECC */ |
| 710 | if (oob_config.eccvalid_pos != -1 && |
| 711 | (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { |
| 712 | |
| 713 | nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); |
| 714 | switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { |
| 715 | case -1: |
| 716 | printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); |
| 717 | ecc_failed++; |
| 718 | break; |
| 719 | case 1: |
| 720 | case 2: /* transfer ECC corrected data to cache */ |
| 721 | memcpy (nand->data_cache, nand->data_buf, 256); |
| 722 | break; |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | if (oob_config.eccvalid_pos != -1 && |
| 727 | nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { |
| 728 | |
| 729 | nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); |
| 730 | switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { |
| 731 | case -1: |
| 732 | printf ("nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); |
| 733 | ecc_failed++; |
| 734 | break; |
| 735 | case 1: |
| 736 | case 2: /* transfer ECC corrected data to cache */ |
| 737 | if (nand->data_cache) |
| 738 | memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); |
| 739 | break; |
| 740 | } |
| 741 | } |
| 742 | readdata: |
| 743 | /* Read the data from ECC data buffer into return buffer */ |
| 744 | data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; |
| 745 | data_poi += col; |
| 746 | if ((*retlen + (nand->oobblock - col)) >= len) { |
| 747 | nand_fast_copy (data_poi, buf + *retlen, len - *retlen); |
| 748 | *retlen = len; |
| 749 | } else { |
| 750 | nand_fast_copy (data_poi, buf + *retlen, nand->oobblock - col); |
| 751 | *retlen += nand->oobblock - col; |
| 752 | } |
| 753 | /* Set cache page address, invalidate, if ecc_failed */ |
| 754 | nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; |
| 755 | |
| 756 | ecc_status += ecc_failed; |
| 757 | ecc_failed = 0; |
| 758 | |
| 759 | #else |
| 760 | /* Send the read command */ |
| 761 | NanD_Command(nand, NAND_CMD_READ0); |
| 762 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 763 | /* Read the data directly into the return buffer */ |
| 764 | if ((*retlen + (nand->oobblock - col)) >= len) { |
| 765 | nand_fast_read(buf + *retlen, len - *retlen, nandptr); |
| 766 | *retlen = len; |
| 767 | /* We're done */ |
| 768 | continue; |
| 769 | } else { |
| 770 | nand_fast_read(buf + *retlen, nand->oobblock - col, nandptr); |
| 771 | *retlen += nand->oobblock - col; |
| 772 | } |
| 773 | #endif |
| 774 | /* For subsequent reads align to page boundary. */ |
| 775 | col = 0; |
| 776 | /* Increment page address */ |
| 777 | page++; |
| 778 | } |
| 779 | |
| 780 | /* De-select the NAND device */ |
| 781 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 782 | |
| 783 | /* |
| 784 | * Return success, if no ECC failures, else -EIO |
| 785 | * fs driver will take care of that, because |
| 786 | * retlen == desired len and result == -EIO |
| 787 | */ |
| 788 | return ecc_status ? -1 : 0; |
| 789 | } |
| 790 | |
| 791 | |
| 792 | /* |
| 793 | * Nand_page_program function is used for write and writev ! |
| 794 | */ |
| 795 | static int nand_write_page (struct nand_chip *nand, |
| 796 | int page, int col, int last, u_char * ecc_code) |
| 797 | { |
| 798 | |
| 799 | int i; |
| 800 | #ifdef CONFIG_MTD_NAND_ECC |
| 801 | unsigned long nandptr = nand->IO_ADDR; |
| 802 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| 803 | int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; |
| 804 | #endif |
| 805 | #endif |
| 806 | /* pad oob area */ |
| 807 | for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) |
| 808 | nand->data_buf[i] = 0xff; |
| 809 | |
| 810 | #ifdef CONFIG_MTD_NAND_ECC |
| 811 | /* Zero out the ECC array */ |
| 812 | for (i = 0; i < 6; i++) |
| 813 | ecc_code[i] = 0x00; |
| 814 | |
| 815 | /* Read back previous written data, if col > 0 */ |
| 816 | if (col) { |
| 817 | NanD_Command(nand, NAND_CMD_READ0); |
| 818 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 819 | for (i = 0; i < col; i++) |
| 820 | nand->data_buf[i] = READ_NAND (nandptr); |
| 821 | } |
| 822 | |
| 823 | /* Calculate and write the ECC if we have enough data */ |
| 824 | if ((col < nand->eccsize) && (last >= nand->eccsize)) { |
| 825 | nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); |
| 826 | for (i = 0; i < 3; i++) |
| 827 | nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i]; |
| 828 | if (oob_config.eccvalid_pos != -1) |
| 829 | nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] = 0xf0; |
| 830 | } |
| 831 | |
| 832 | /* Calculate and write the second ECC if we have enough data */ |
| 833 | if ((nand->oobblock == 512) && (last == nand->oobblock)) { |
| 834 | nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); |
| 835 | for (i = 3; i < 6; i++) |
| 836 | nand->data_buf[(nand->oobblock + oob_config.ecc_pos[i])] = ecc_code[i]; |
| 837 | if (oob_config.eccvalid_pos != -1) |
| 838 | nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] &= 0x0f; |
| 839 | } |
| 840 | #endif |
| 841 | /* Prepad for partial page programming !!! */ |
| 842 | for (i = 0; i < col; i++) |
| 843 | nand->data_buf[i] = 0xff; |
| 844 | |
| 845 | /* Postpad for partial page programming !!! oob is already padded */ |
| 846 | for (i = last; i < nand->oobblock; i++) |
| 847 | nand->data_buf[i] = 0xff; |
| 848 | |
| 849 | /* Send command to begin auto page programming */ |
| 850 | NanD_Command(nand, NAND_CMD_SEQIN); |
| 851 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 852 | |
| 853 | /* Write out complete page of data */ |
| 854 | for (i = 0; i < (nand->oobblock + nand->oobsize); i++) |
| 855 | WRITE_NAND(nand->data_buf[i], nand->IO_ADDR); |
| 856 | |
| 857 | /* Send command to actually program the data */ |
| 858 | NanD_Command(nand, NAND_CMD_PAGEPROG); |
| 859 | NanD_Command(nand, NAND_CMD_STATUS); |
| 860 | |
| 861 | /* See if device thinks it succeeded */ |
| 862 | if (READ_NAND(nand->IO_ADDR) & 0x01) { |
| 863 | printf ("nand_write_ecc: " "Failed write, page 0x%08x, ", page); |
| 864 | return -1; |
| 865 | } |
| 866 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE |
| 867 | /* |
| 868 | * The NAND device assumes that it is always writing to |
| 869 | * a cleanly erased page. Hence, it performs its internal |
| 870 | * write verification only on bits that transitioned from |
| 871 | * 1 to 0. The device does NOT verify the whole page on a |
| 872 | * byte by byte basis. It is possible that the page was |
| 873 | * not completely erased or the page is becoming unusable |
| 874 | * due to wear. The read with ECC would catch the error |
| 875 | * later when the ECC page check fails, but we would rather |
| 876 | * catch it early in the page write stage. Better to write |
| 877 | * no data than invalid data. |
| 878 | */ |
| 879 | |
| 880 | /* Send command to read back the page */ |
| 881 | if (col < nand->eccsize) |
| 882 | NanD_Command(nand, NAND_CMD_READ0); |
| 883 | else |
| 884 | NanD_Command(nand, NAND_CMD_READ1); |
| 885 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 886 | |
| 887 | /* Loop through and verify the data */ |
| 888 | for (i = col; i < last; i++) { |
| 889 | if (nand->data_buf[i] != readb (nand->IO_ADDR)) { |
| 890 | printf ("nand_write_ecc: " "Failed write verify, page 0x%08x ", page); |
| 891 | return -1; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | #ifdef CONFIG_MTD_NAND_ECC |
| 896 | /* |
| 897 | * We also want to check that the ECC bytes wrote |
| 898 | * correctly for the same reasons stated above. |
| 899 | */ |
| 900 | NanD_Command(nand, NAND_CMD_READOOB); |
| 901 | NanD_Address(nand, ADDR_COLUMN_PAGE, (page << nand->page_shift) + col); |
| 902 | for (i = 0; i < nand->oobsize; i++) |
| 903 | nand->data_buf[i] = readb (nand->IO_ADDR); |
| 904 | for (i = 0; i < ecc_bytes; i++) { |
| 905 | if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { |
| 906 | printf ("nand_write_ecc: Failed ECC write " |
| 907 | "verify, page 0x%08x, " "%6i bytes were succesful\n", page, i); |
| 908 | return -1; |
| 909 | } |
| 910 | } |
| 911 | #endif |
| 912 | #endif |
| 913 | return 0; |
| 914 | } |
| 915 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, |
| 916 | size_t * retlen, const u_char * buf, u_char * ecc_code) |
| 917 | { |
| 918 | int i, page, col, cnt, ret = 0; |
| 919 | |
| 920 | /* Do not allow write past end of device */ |
| 921 | if ((to + len) > nand->totlen) { |
| 922 | printf ("nand_write_oob: Attempt to write past end of page\n"); |
| 923 | return -1; |
| 924 | } |
| 925 | |
| 926 | /* Shift to get page */ |
| 927 | page = ((int) to) >> nand->page_shift; |
| 928 | |
| 929 | /* Get the starting column */ |
| 930 | col = to & (nand->oobblock - 1); |
| 931 | |
| 932 | /* Initialize return length value */ |
| 933 | *retlen = 0; |
| 934 | |
| 935 | /* Select the NAND device */ |
| 936 | NAND_ENABLE_CE(nand); /* set pin low */ |
| 937 | |
| 938 | /* Check the WP bit */ |
| 939 | NanD_Command(nand, NAND_CMD_STATUS); |
| 940 | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { |
| 941 | printf ("nand_write_ecc: Device is write protected!!!\n"); |
| 942 | ret = -1; |
| 943 | goto out; |
| 944 | } |
| 945 | |
| 946 | /* Loop until all data is written */ |
| 947 | while (*retlen < len) { |
| 948 | /* Invalidate cache, if we write to this page */ |
| 949 | if (nand->cache_page == page) |
| 950 | nand->cache_page = -1; |
| 951 | |
| 952 | /* Write data into buffer */ |
| 953 | if ((col + len) >= nand->oobblock) |
| 954 | for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) |
| 955 | nand->data_buf[i] = buf[(*retlen + cnt)]; |
| 956 | else |
| 957 | for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) |
| 958 | nand->data_buf[i] = buf[(*retlen + cnt)]; |
| 959 | /* We use the same function for write and writev !) */ |
| 960 | ret = nand_write_page (nand, page, col, i, ecc_code); |
| 961 | if (ret) |
| 962 | goto out; |
| 963 | |
| 964 | /* Next data start at page boundary */ |
| 965 | col = 0; |
| 966 | |
| 967 | /* Update written bytes count */ |
| 968 | *retlen += cnt; |
| 969 | |
| 970 | /* Increment page address */ |
| 971 | page++; |
| 972 | } |
| 973 | |
| 974 | /* Return happy */ |
| 975 | *retlen = len; |
| 976 | |
| 977 | out: |
| 978 | /* De-select the NAND device */ |
| 979 | NAND_DISABLE_CE(nand); /* set pin high */ |
| 980 | |
| 981 | return ret; |
| 982 | } |
| 983 | |
| 984 | #if 0 /* not used */ |
| 985 | /* Read a buffer from NanD */ |
| 986 | static void NanD_ReadBuf(struct nand_chip *nand, u_char * buf, int len) |
| 987 | { |
| 988 | unsigned long nandptr; |
| 989 | |
| 990 | nandptr = nand->IO_ADDR; |
| 991 | |
| 992 | for (; len > 0; len--) |
| 993 | *buf++ = READ_NAND(nandptr); |
| 994 | |
| 995 | } |
| 996 | /* Write a buffer to NanD */ |
| 997 | static void NanD_WriteBuf(struct nand_chip *nand, const u_char * buf, int len) |
| 998 | { |
| 999 | unsigned long nandptr; |
| 1000 | int i; |
| 1001 | |
| 1002 | nandptr = nand->IO_ADDR; |
| 1003 | |
| 1004 | if (len <= 0) |
| 1005 | return; |
| 1006 | |
| 1007 | for (i = 0; i < len; i++) |
| 1008 | WRITE_NAND(buf[i], nandptr); |
| 1009 | |
| 1010 | } |
| 1011 | |
| 1012 | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the |
| 1013 | * various device information of the NFTL partition and Bad Unit Table. Update |
| 1014 | * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] |
| 1015 | * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c |
| 1016 | */ |
| 1017 | static int find_boot_record(struct NFTLrecord *nftl) |
| 1018 | { |
| 1019 | struct nftl_uci1 h1; |
| 1020 | struct nftl_oob oob; |
| 1021 | unsigned int block, boot_record_count = 0; |
| 1022 | int retlen; |
| 1023 | u8 buf[SECTORSIZE]; |
| 1024 | struct NFTLMediaHeader *mh = &nftl->MediaHdr; |
| 1025 | unsigned int i; |
| 1026 | |
| 1027 | nftl->MediaUnit = BLOCK_NIL; |
| 1028 | nftl->SpareMediaUnit = BLOCK_NIL; |
| 1029 | |
| 1030 | /* search for a valid boot record */ |
| 1031 | for (block = 0; block < nftl->nb_blocks; block++) { |
| 1032 | int ret; |
| 1033 | |
| 1034 | /* Check for ANAND header first. Then can whinge if it's found but later |
| 1035 | checks fail */ |
| 1036 | if ((ret = nand_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, |
| 1037 | &retlen, buf, NULL))) { |
| 1038 | static int warncount = 5; |
| 1039 | |
| 1040 | if (warncount) { |
| 1041 | printf("Block read at 0x%x failed\n", block * nftl->EraseSize); |
| 1042 | if (!--warncount) |
| 1043 | puts ("Further failures for this block will not be printed\n"); |
| 1044 | } |
| 1045 | continue; |
| 1046 | } |
| 1047 | |
| 1048 | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { |
| 1049 | /* ANAND\0 not found. Continue */ |
| 1050 | #ifdef PSYCHO_DEBUG |
| 1051 | printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); |
| 1052 | #endif |
| 1053 | continue; |
| 1054 | } |
| 1055 | |
| 1056 | #ifdef NFTL_DEBUG |
| 1057 | printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); |
| 1058 | #endif |
| 1059 | |
| 1060 | /* To be safer with BIOS, also use erase mark as discriminant */ |
| 1061 | if ((ret = nand_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, |
| 1062 | 8, &retlen, (char *)&h1) < 0)) { |
| 1063 | #ifdef NFTL_DEBUG |
| 1064 | printf("ANAND header found at 0x%x, but OOB data read failed\n", |
| 1065 | block * nftl->EraseSize); |
| 1066 | #endif |
| 1067 | continue; |
| 1068 | } |
| 1069 | |
| 1070 | /* OK, we like it. */ |
| 1071 | |
| 1072 | if (boot_record_count) { |
| 1073 | /* We've already processed one. So we just check if |
| 1074 | this one is the same as the first one we found */ |
| 1075 | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { |
| 1076 | #ifdef NFTL_DEBUG |
| 1077 | printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", |
| 1078 | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); |
| 1079 | #endif |
| 1080 | /* if (debug) Print both side by side */ |
| 1081 | return -1; |
| 1082 | } |
| 1083 | if (boot_record_count == 1) |
| 1084 | nftl->SpareMediaUnit = block; |
| 1085 | |
| 1086 | boot_record_count++; |
| 1087 | continue; |
| 1088 | } |
| 1089 | |
| 1090 | /* This is the first we've seen. Copy the media header structure into place */ |
| 1091 | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); |
| 1092 | |
| 1093 | /* Do some sanity checks on it */ |
| 1094 | if (mh->UnitSizeFactor != 0xff) { |
| 1095 | puts ("Sorry, we don't support UnitSizeFactor " |
| 1096 | "of != 1 yet.\n"); |
| 1097 | return -1; |
| 1098 | } |
| 1099 | |
| 1100 | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); |
| 1101 | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { |
| 1102 | printf ("NFTL Media Header sanity check failed:\n" |
| 1103 | "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", |
| 1104 | nftl->nb_boot_blocks, nftl->nb_blocks); |
| 1105 | return -1; |
| 1106 | } |
| 1107 | |
| 1108 | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; |
| 1109 | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { |
| 1110 | printf ("NFTL Media Header sanity check failed:\n" |
| 1111 | "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", |
| 1112 | nftl->numvunits, |
| 1113 | nftl->nb_blocks, |
| 1114 | nftl->nb_boot_blocks); |
| 1115 | return -1; |
| 1116 | } |
| 1117 | |
| 1118 | nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); |
| 1119 | |
| 1120 | /* If we're not using the last sectors in the device for some reason, |
| 1121 | reduce nb_blocks accordingly so we forget they're there */ |
| 1122 | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); |
| 1123 | |
| 1124 | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ |
| 1125 | for (i = 0; i < nftl->nb_blocks; i++) { |
| 1126 | if ((i & (SECTORSIZE - 1)) == 0) { |
| 1127 | /* read one sector for every SECTORSIZE of blocks */ |
| 1128 | if ((ret = nand_read_ecc(nftl->mtd, block * nftl->EraseSize + |
| 1129 | i + SECTORSIZE, SECTORSIZE, |
| 1130 | &retlen, buf, (char *)&oob)) < 0) { |
| 1131 | puts ("Read of bad sector table failed\n"); |
| 1132 | return -1; |
| 1133 | } |
| 1134 | } |
| 1135 | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ |
| 1136 | if (buf[i & (SECTORSIZE - 1)] != 0xff) |
| 1137 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| 1138 | } |
| 1139 | |
| 1140 | nftl->MediaUnit = block; |
| 1141 | boot_record_count++; |
| 1142 | |
| 1143 | } /* foreach (block) */ |
| 1144 | |
| 1145 | return boot_record_count?0:-1; |
| 1146 | } |
| 1147 | static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 1148 | size_t * retlen, u_char * buf) |
| 1149 | { |
| 1150 | int len256 = 0, ret; |
| 1151 | unsigned long nandptr; |
| 1152 | struct Nand *mychip; |
| 1153 | |
| 1154 | nandptr = nand->IO_ADDR; |
| 1155 | |
| 1156 | mychip = &nand->chips[shr(ofs, nand->chipshift)]; |
| 1157 | |
| 1158 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1159 | /* page to maintain compatibility with nand_read_ecc. */ |
| 1160 | if (nand->page256) { |
| 1161 | if (!(ofs & 0x8)) |
| 1162 | ofs += 0x100; |
| 1163 | else |
| 1164 | ofs -= 0x8; |
| 1165 | } |
| 1166 | |
| 1167 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1168 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1169 | |
| 1170 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1171 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1172 | /* next OOB block, but it didn't work here. mf. */ |
| 1173 | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1174 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1175 | NanD_ReadBuf(nand, buf, len256); |
| 1176 | |
| 1177 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1178 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| 1179 | } |
| 1180 | |
| 1181 | NanD_ReadBuf(nand, &buf[len256], len - len256); |
| 1182 | |
| 1183 | *retlen = len; |
| 1184 | /* Reading the full OOB data drops us off of the end of the page, |
| 1185 | * causing the flash device to go into busy mode, so we need |
| 1186 | * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ |
| 1187 | |
| 1188 | ret = NanD_WaitReady(nand); |
| 1189 | |
| 1190 | return ret; |
| 1191 | |
| 1192 | } |
| 1193 | static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, |
| 1194 | size_t * retlen, const u_char * buf) |
| 1195 | { |
| 1196 | int len256 = 0; |
| 1197 | unsigned long nandptr = nand->IO_ADDR; |
| 1198 | |
| 1199 | #ifdef PSYCHO_DEBUG |
| 1200 | printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", |
| 1201 | (long)ofs, len, buf[0], buf[1], buf[2], buf[3], |
| 1202 | buf[8], buf[9], buf[14],buf[15]); |
| 1203 | #endif |
| 1204 | |
| 1205 | /* Reset the chip */ |
| 1206 | NanD_Command(nand, NAND_CMD_RESET); |
| 1207 | |
| 1208 | /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| 1209 | NanD_Command(nand, NAND_CMD_READOOB); |
| 1210 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1211 | |
| 1212 | /* update address for 2M x 8bit devices. OOB starts on the second */ |
| 1213 | /* page to maintain compatibility with nand_read_ecc. */ |
| 1214 | if (nand->page256) { |
| 1215 | if (!(ofs & 0x8)) |
| 1216 | ofs += 0x100; |
| 1217 | else |
| 1218 | ofs -= 0x8; |
| 1219 | } |
| 1220 | |
| 1221 | /* issue the Serial Data In command to initial the Page Program process */ |
| 1222 | NanD_Command(nand, NAND_CMD_SEQIN); |
| 1223 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); |
| 1224 | |
| 1225 | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| 1226 | /* Note: datasheet says it should automaticaly wrap to the */ |
| 1227 | /* next OOB block, but it didn't work here. mf. */ |
| 1228 | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { |
| 1229 | len256 = (ofs | 0x7) + 1 - ofs; |
| 1230 | NanD_WriteBuf(nand, buf, len256); |
| 1231 | |
| 1232 | NanD_Command(nand, NAND_CMD_PAGEPROG); |
| 1233 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1234 | /* NanD_WaitReady() is implicit in NanD_Command */ |
| 1235 | |
| 1236 | if (READ_NAND(nandptr) & 1) { |
| 1237 | puts ("Error programming oob data\n"); |
| 1238 | /* There was an error */ |
| 1239 | *retlen = 0; |
| 1240 | return -1; |
| 1241 | } |
| 1242 | NanD_Command(nand, NAND_CMD_SEQIN); |
| 1243 | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); |
| 1244 | } |
| 1245 | |
| 1246 | NanD_WriteBuf(nand, &buf[len256], len - len256); |
| 1247 | |
| 1248 | NanD_Command(nand, NAND_CMD_PAGEPROG); |
| 1249 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1250 | /* NanD_WaitReady() is implicit in NanD_Command */ |
| 1251 | |
| 1252 | if (READ_NAND(nandptr) & 1) { |
| 1253 | puts ("Error programming oob data\n"); |
| 1254 | /* There was an error */ |
| 1255 | *retlen = 0; |
| 1256 | return -1; |
| 1257 | } |
| 1258 | |
| 1259 | *retlen = len; |
| 1260 | return 0; |
| 1261 | |
| 1262 | } |
| 1263 | #endif |
| 1264 | |
| 1265 | static int nand_erase(struct nand_chip* nand, size_t ofs, size_t len) |
| 1266 | { |
| 1267 | unsigned long nandptr; |
| 1268 | struct Nand *mychip; |
| 1269 | |
| 1270 | if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { |
| 1271 | printf ("Offset and size must be sector aligned, erasesize = %d\n", |
| 1272 | (int) nand->erasesize); |
| 1273 | return -1; |
| 1274 | } |
| 1275 | |
| 1276 | nandptr = nand->IO_ADDR; |
| 1277 | |
| 1278 | /* FIXME: Do nand in the background. Use timers or schedule_task() */ |
| 1279 | while(len) { |
| 1280 | mychip = &nand->chips[shr(ofs, nand->chipshift)]; |
| 1281 | |
| 1282 | NanD_Command(nand, NAND_CMD_ERASE1); |
| 1283 | NanD_Address(nand, ADDR_PAGE, ofs); |
| 1284 | NanD_Command(nand, NAND_CMD_ERASE2); |
| 1285 | |
| 1286 | NanD_Command(nand, NAND_CMD_STATUS); |
| 1287 | |
| 1288 | if (READ_NAND(nandptr) & 1) { |
| 1289 | printf("Error erasing at 0x%lx\n", (long)ofs); |
| 1290 | /* There was an error */ |
| 1291 | goto callback; |
| 1292 | } |
| 1293 | ofs += nand->erasesize; |
| 1294 | len -= nand->erasesize; |
| 1295 | } |
| 1296 | |
| 1297 | callback: |
| 1298 | return 0; |
| 1299 | } |
| 1300 | |
| 1301 | static inline int nandcheck(unsigned long potential, unsigned long physadr) |
| 1302 | { |
| 1303 | |
| 1304 | |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | void nand_probe(unsigned long physadr) |
| 1309 | { |
| 1310 | struct nand_chip *nand = NULL; |
| 1311 | int i = 0, ChipID = 1; |
| 1312 | |
| 1313 | #ifdef CONFIG_MTD_NAND_ECC_JFFS2 |
| 1314 | oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; |
| 1315 | oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; |
| 1316 | oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; |
| 1317 | oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; |
| 1318 | oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; |
| 1319 | oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; |
| 1320 | oob_config.badblock_pos = 5; |
| 1321 | oob_config.eccvalid_pos = 4; |
| 1322 | #else |
| 1323 | oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; |
| 1324 | oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; |
| 1325 | oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; |
| 1326 | oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; |
| 1327 | oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; |
| 1328 | oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; |
| 1329 | oob_config.badblock_pos = NAND_NOOB_BADBPOS; |
| 1330 | oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; |
| 1331 | #endif |
| 1332 | |
| 1333 | for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { |
| 1334 | if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { |
| 1335 | nand = nand_dev_desc + i; |
| 1336 | break; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | if (curr_device == -1) |
| 1341 | curr_device = i; |
| 1342 | |
| 1343 | memset((char *)nand, 0, sizeof(struct nand_chip)); |
| 1344 | |
| 1345 | nand->cache_page = -1; /* init the cache page */ |
| 1346 | nand->IO_ADDR = physadr; |
| 1347 | nand->ChipID = ChipID; |
| 1348 | NanD_ScanChips(nand); |
| 1349 | nand->data_buf = malloc (nand->oobblock + nand->oobsize); |
| 1350 | if (!nand->data_buf) { |
| 1351 | puts ("Cannot allocate memory for data structures.\n"); |
| 1352 | return; |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | #ifdef CONFIG_MTD_NAND_ECC |
| 1357 | /* |
| 1358 | * Pre-calculated 256-way 1 byte column parity |
| 1359 | */ |
| 1360 | static const u_char nand_ecc_precalc_table[] = { |
| 1361 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, |
| 1362 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 1363 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 1364 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 1365 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 1366 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 1367 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 1368 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 1369 | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, |
| 1370 | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, |
| 1371 | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, |
| 1372 | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, |
| 1373 | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, |
| 1374 | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, |
| 1375 | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, |
| 1376 | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 |
| 1377 | }; |
| 1378 | |
| 1379 | |
| 1380 | /* |
| 1381 | * Creates non-inverted ECC code from line parity |
| 1382 | */ |
| 1383 | static void nand_trans_result(u_char reg2, u_char reg3, |
| 1384 | u_char *ecc_code) |
| 1385 | { |
| 1386 | u_char a, b, i, tmp1, tmp2; |
| 1387 | |
| 1388 | /* Initialize variables */ |
| 1389 | a = b = 0x80; |
| 1390 | tmp1 = tmp2 = 0; |
| 1391 | |
| 1392 | /* Calculate first ECC byte */ |
| 1393 | for (i = 0; i < 4; i++) { |
| 1394 | if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ |
| 1395 | tmp1 |= b; |
| 1396 | b >>= 1; |
| 1397 | if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ |
| 1398 | tmp1 |= b; |
| 1399 | b >>= 1; |
| 1400 | a >>= 1; |
| 1401 | } |
| 1402 | |
| 1403 | /* Calculate second ECC byte */ |
| 1404 | b = 0x80; |
| 1405 | for (i = 0; i < 4; i++) { |
| 1406 | if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ |
| 1407 | tmp2 |= b; |
| 1408 | b >>= 1; |
| 1409 | if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ |
| 1410 | tmp2 |= b; |
| 1411 | b >>= 1; |
| 1412 | a >>= 1; |
| 1413 | } |
| 1414 | |
| 1415 | /* Store two of the ECC bytes */ |
| 1416 | ecc_code[0] = tmp1; |
| 1417 | ecc_code[1] = tmp2; |
| 1418 | } |
| 1419 | |
| 1420 | /* |
| 1421 | * Calculate 3 byte ECC code for 256 byte block |
| 1422 | */ |
| 1423 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) |
| 1424 | { |
| 1425 | u_char idx, reg1, reg2, reg3; |
| 1426 | int j; |
| 1427 | |
| 1428 | /* Initialize variables */ |
| 1429 | reg1 = reg2 = reg3 = 0; |
| 1430 | ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; |
| 1431 | |
| 1432 | /* Build up column parity */ |
| 1433 | for(j = 0; j < 256; j++) { |
| 1434 | |
| 1435 | /* Get CP0 - CP5 from table */ |
| 1436 | idx = nand_ecc_precalc_table[dat[j]]; |
| 1437 | reg1 ^= (idx & 0x3f); |
| 1438 | |
| 1439 | /* All bit XOR = 1 ? */ |
| 1440 | if (idx & 0x40) { |
| 1441 | reg3 ^= (u_char) j; |
| 1442 | reg2 ^= ~((u_char) j); |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | /* Create non-inverted ECC code from line parity */ |
| 1447 | nand_trans_result(reg2, reg3, ecc_code); |
| 1448 | |
| 1449 | /* Calculate final ECC code */ |
| 1450 | ecc_code[0] = ~ecc_code[0]; |
| 1451 | ecc_code[1] = ~ecc_code[1]; |
| 1452 | ecc_code[2] = ((~reg1) << 2) | 0x03; |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * Detect and correct a 1 bit error for 256 byte block |
| 1457 | */ |
| 1458 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) |
| 1459 | { |
| 1460 | u_char a, b, c, d1, d2, d3, add, bit, i; |
| 1461 | |
| 1462 | /* Do error detection */ |
| 1463 | d1 = calc_ecc[0] ^ read_ecc[0]; |
| 1464 | d2 = calc_ecc[1] ^ read_ecc[1]; |
| 1465 | d3 = calc_ecc[2] ^ read_ecc[2]; |
| 1466 | |
| 1467 | if ((d1 | d2 | d3) == 0) { |
| 1468 | /* No errors */ |
| 1469 | return 0; |
| 1470 | } |
| 1471 | else { |
| 1472 | a = (d1 ^ (d1 >> 1)) & 0x55; |
| 1473 | b = (d2 ^ (d2 >> 1)) & 0x55; |
| 1474 | c = (d3 ^ (d3 >> 1)) & 0x54; |
| 1475 | |
| 1476 | /* Found and will correct single bit error in the data */ |
| 1477 | if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { |
| 1478 | c = 0x80; |
| 1479 | add = 0; |
| 1480 | a = 0x80; |
| 1481 | for (i=0; i<4; i++) { |
| 1482 | if (d1 & c) |
| 1483 | add |= a; |
| 1484 | c >>= 2; |
| 1485 | a >>= 1; |
| 1486 | } |
| 1487 | c = 0x80; |
| 1488 | for (i=0; i<4; i++) { |
| 1489 | if (d2 & c) |
| 1490 | add |= a; |
| 1491 | c >>= 2; |
| 1492 | a >>= 1; |
| 1493 | } |
| 1494 | bit = 0; |
| 1495 | b = 0x04; |
| 1496 | c = 0x80; |
| 1497 | for (i=0; i<3; i++) { |
| 1498 | if (d3 & c) |
| 1499 | bit |= b; |
| 1500 | c >>= 2; |
| 1501 | b >>= 1; |
| 1502 | } |
| 1503 | b = 0x01; |
| 1504 | a = dat[add]; |
| 1505 | a ^= (b << bit); |
| 1506 | dat[add] = a; |
| 1507 | return 1; |
| 1508 | } |
| 1509 | else { |
| 1510 | i = 0; |
| 1511 | while (d1) { |
| 1512 | if (d1 & 0x01) |
| 1513 | ++i; |
| 1514 | d1 >>= 1; |
| 1515 | } |
| 1516 | while (d2) { |
| 1517 | if (d2 & 0x01) |
| 1518 | ++i; |
| 1519 | d2 >>= 1; |
| 1520 | } |
| 1521 | while (d3) { |
| 1522 | if (d3 & 0x01) |
| 1523 | ++i; |
| 1524 | d3 >>= 1; |
| 1525 | } |
| 1526 | if (i == 1) { |
| 1527 | /* ECC Code Error Correction */ |
| 1528 | read_ecc[0] = calc_ecc[0]; |
| 1529 | read_ecc[1] = calc_ecc[1]; |
| 1530 | read_ecc[2] = calc_ecc[2]; |
| 1531 | return 2; |
| 1532 | } |
| 1533 | else { |
| 1534 | /* Uncorrectable Error */ |
| 1535 | return -1; |
| 1536 | } |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | /* Should never happen */ |
| 1541 | return -1; |
| 1542 | } |
| 1543 | #endif |
| 1544 | #endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */ |