blob: d523c94b129df74a30ae32744847540320c83362 [file] [log] [blame]
Kyungmin Park961df832008-11-19 16:25:44 +01001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
22 * The UBI Eraseblock Association (EBA) unit.
23 *
24 * This unit is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA unit implements per-logical eraseblock locking. Before accessing a
31 * logical eraseblock it is locked for reading or writing. The per-logical
32 * eraseblock locking is implemented by means of the lock tree. The lock tree
33 * is an RB-tree which refers all the currently locked logical eraseblocks. The
34 * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
35 * (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44#ifdef UBI_LINUX
45#include <linux/slab.h>
46#include <linux/crc32.h>
47#include <linux/err.h>
48#endif
49
50#include <ubi_uboot.h>
51#include "ubi.h"
52
53/* Number of physical eraseblocks reserved for atomic LEB change operation */
54#define EBA_RESERVED_PEBS 1
55
56/**
57 * next_sqnum - get next sequence number.
58 * @ubi: UBI device description object
59 *
60 * This function returns next sequence number to use, which is just the current
61 * global sequence counter value. It also increases the global sequence
62 * counter.
63 */
64static unsigned long long next_sqnum(struct ubi_device *ubi)
65{
66 unsigned long long sqnum;
67
68 spin_lock(&ubi->ltree_lock);
69 sqnum = ubi->global_sqnum++;
70 spin_unlock(&ubi->ltree_lock);
71
72 return sqnum;
73}
74
75/**
76 * ubi_get_compat - get compatibility flags of a volume.
77 * @ubi: UBI device description object
78 * @vol_id: volume ID
79 *
80 * This function returns compatibility flags for an internal volume. User
81 * volumes have no compatibility flags, so %0 is returned.
82 */
83static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
84{
85 if (vol_id == UBI_LAYOUT_VOLUME_ID)
86 return UBI_LAYOUT_VOLUME_COMPAT;
87 return 0;
88}
89
90/**
91 * ltree_lookup - look up the lock tree.
92 * @ubi: UBI device description object
93 * @vol_id: volume ID
94 * @lnum: logical eraseblock number
95 *
96 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
97 * object if the logical eraseblock is locked and %NULL if it is not.
98 * @ubi->ltree_lock has to be locked.
99 */
100static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
101 int lnum)
102{
103 struct rb_node *p;
104
105 p = ubi->ltree.rb_node;
106 while (p) {
107 struct ubi_ltree_entry *le;
108
109 le = rb_entry(p, struct ubi_ltree_entry, rb);
110
111 if (vol_id < le->vol_id)
112 p = p->rb_left;
113 else if (vol_id > le->vol_id)
114 p = p->rb_right;
115 else {
116 if (lnum < le->lnum)
117 p = p->rb_left;
118 else if (lnum > le->lnum)
119 p = p->rb_right;
120 else
121 return le;
122 }
123 }
124
125 return NULL;
126}
127
128/**
129 * ltree_add_entry - add new entry to the lock tree.
130 * @ubi: UBI device description object
131 * @vol_id: volume ID
132 * @lnum: logical eraseblock number
133 *
134 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
135 * lock tree. If such entry is already there, its usage counter is increased.
136 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
137 * failed.
138 */
139static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
140 int vol_id, int lnum)
141{
142 struct ubi_ltree_entry *le, *le1, *le_free;
143
144 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
145 if (!le)
146 return ERR_PTR(-ENOMEM);
147
148 le->users = 0;
149 init_rwsem(&le->mutex);
150 le->vol_id = vol_id;
151 le->lnum = lnum;
152
153 spin_lock(&ubi->ltree_lock);
154 le1 = ltree_lookup(ubi, vol_id, lnum);
155
156 if (le1) {
157 /*
158 * This logical eraseblock is already locked. The newly
159 * allocated lock entry is not needed.
160 */
161 le_free = le;
162 le = le1;
163 } else {
164 struct rb_node **p, *parent = NULL;
165
166 /*
167 * No lock entry, add the newly allocated one to the
168 * @ubi->ltree RB-tree.
169 */
170 le_free = NULL;
171
172 p = &ubi->ltree.rb_node;
173 while (*p) {
174 parent = *p;
175 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
176
177 if (vol_id < le1->vol_id)
178 p = &(*p)->rb_left;
179 else if (vol_id > le1->vol_id)
180 p = &(*p)->rb_right;
181 else {
182 ubi_assert(lnum != le1->lnum);
183 if (lnum < le1->lnum)
184 p = &(*p)->rb_left;
185 else
186 p = &(*p)->rb_right;
187 }
188 }
189
190 rb_link_node(&le->rb, parent, p);
191 rb_insert_color(&le->rb, &ubi->ltree);
192 }
193 le->users += 1;
194 spin_unlock(&ubi->ltree_lock);
195
196 if (le_free)
197 kfree(le_free);
198
199 return le;
200}
201
202/**
203 * leb_read_lock - lock logical eraseblock for reading.
204 * @ubi: UBI device description object
205 * @vol_id: volume ID
206 * @lnum: logical eraseblock number
207 *
208 * This function locks a logical eraseblock for reading. Returns zero in case
209 * of success and a negative error code in case of failure.
210 */
211static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
212{
213 struct ubi_ltree_entry *le;
214
215 le = ltree_add_entry(ubi, vol_id, lnum);
216 if (IS_ERR(le))
217 return PTR_ERR(le);
218 down_read(&le->mutex);
219 return 0;
220}
221
222/**
223 * leb_read_unlock - unlock logical eraseblock.
224 * @ubi: UBI device description object
225 * @vol_id: volume ID
226 * @lnum: logical eraseblock number
227 */
228static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
229{
230 int _free = 0;
231 struct ubi_ltree_entry *le;
232
233 spin_lock(&ubi->ltree_lock);
234 le = ltree_lookup(ubi, vol_id, lnum);
235 le->users -= 1;
236 ubi_assert(le->users >= 0);
237 if (le->users == 0) {
238 rb_erase(&le->rb, &ubi->ltree);
239 _free = 1;
240 }
241 spin_unlock(&ubi->ltree_lock);
242
243 up_read(&le->mutex);
244 if (_free)
245 kfree(le);
246}
247
248/**
249 * leb_write_lock - lock logical eraseblock for writing.
250 * @ubi: UBI device description object
251 * @vol_id: volume ID
252 * @lnum: logical eraseblock number
253 *
254 * This function locks a logical eraseblock for writing. Returns zero in case
255 * of success and a negative error code in case of failure.
256 */
257static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
258{
259 struct ubi_ltree_entry *le;
260
261 le = ltree_add_entry(ubi, vol_id, lnum);
262 if (IS_ERR(le))
263 return PTR_ERR(le);
264 down_write(&le->mutex);
265 return 0;
266}
267
268/**
269 * leb_write_lock - lock logical eraseblock for writing.
270 * @ubi: UBI device description object
271 * @vol_id: volume ID
272 * @lnum: logical eraseblock number
273 *
274 * This function locks a logical eraseblock for writing if there is no
275 * contention and does nothing if there is contention. Returns %0 in case of
276 * success, %1 in case of contention, and and a negative error code in case of
277 * failure.
278 */
279static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
280{
281 int _free;
282 struct ubi_ltree_entry *le;
283
284 le = ltree_add_entry(ubi, vol_id, lnum);
285 if (IS_ERR(le))
286 return PTR_ERR(le);
287 if (down_write_trylock(&le->mutex))
288 return 0;
289
290 /* Contention, cancel */
291 spin_lock(&ubi->ltree_lock);
292 le->users -= 1;
293 ubi_assert(le->users >= 0);
294 if (le->users == 0) {
295 rb_erase(&le->rb, &ubi->ltree);
296 _free = 1;
297 } else
298 _free = 0;
299 spin_unlock(&ubi->ltree_lock);
300 if (_free)
301 kfree(le);
302
303 return 1;
304}
305
306/**
307 * leb_write_unlock - unlock logical eraseblock.
308 * @ubi: UBI device description object
309 * @vol_id: volume ID
310 * @lnum: logical eraseblock number
311 */
312static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
313{
314 int _free;
315 struct ubi_ltree_entry *le;
316
317 spin_lock(&ubi->ltree_lock);
318 le = ltree_lookup(ubi, vol_id, lnum);
319 le->users -= 1;
320 ubi_assert(le->users >= 0);
321 if (le->users == 0) {
322 rb_erase(&le->rb, &ubi->ltree);
323 _free = 1;
324 } else
325 _free = 0;
326 spin_unlock(&ubi->ltree_lock);
327
328 up_write(&le->mutex);
329 if (_free)
330 kfree(le);
331}
332
333/**
334 * ubi_eba_unmap_leb - un-map logical eraseblock.
335 * @ubi: UBI device description object
336 * @vol: volume description object
337 * @lnum: logical eraseblock number
338 *
339 * This function un-maps logical eraseblock @lnum and schedules corresponding
340 * physical eraseblock for erasure. Returns zero in case of success and a
341 * negative error code in case of failure.
342 */
343int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
344 int lnum)
345{
346 int err, pnum, vol_id = vol->vol_id;
347
348 if (ubi->ro_mode)
349 return -EROFS;
350
351 err = leb_write_lock(ubi, vol_id, lnum);
352 if (err)
353 return err;
354
355 pnum = vol->eba_tbl[lnum];
356 if (pnum < 0)
357 /* This logical eraseblock is already unmapped */
358 goto out_unlock;
359
360 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
361
362 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
363 err = ubi_wl_put_peb(ubi, pnum, 0);
364
365out_unlock:
366 leb_write_unlock(ubi, vol_id, lnum);
367 return err;
368}
369
370/**
371 * ubi_eba_read_leb - read data.
372 * @ubi: UBI device description object
373 * @vol: volume description object
374 * @lnum: logical eraseblock number
375 * @buf: buffer to store the read data
376 * @offset: offset from where to read
377 * @len: how many bytes to read
378 * @check: data CRC check flag
379 *
380 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
381 * bytes. The @check flag only makes sense for static volumes and forces
382 * eraseblock data CRC checking.
383 *
384 * In case of success this function returns zero. In case of a static volume,
385 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
386 * returned for any volume type if an ECC error was detected by the MTD device
387 * driver. Other negative error cored may be returned in case of other errors.
388 */
389int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
390 void *buf, int offset, int len, int check)
391{
392 int err, pnum, scrub = 0, vol_id = vol->vol_id;
393 struct ubi_vid_hdr *vid_hdr;
394 uint32_t uninitialized_var(crc);
395
396 err = leb_read_lock(ubi, vol_id, lnum);
397 if (err)
398 return err;
399
400 pnum = vol->eba_tbl[lnum];
401 if (pnum < 0) {
402 /*
403 * The logical eraseblock is not mapped, fill the whole buffer
404 * with 0xFF bytes. The exception is static volumes for which
405 * it is an error to read unmapped logical eraseblocks.
406 */
407 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
408 len, offset, vol_id, lnum);
409 leb_read_unlock(ubi, vol_id, lnum);
410 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
411 memset(buf, 0xFF, len);
412 return 0;
413 }
414
415 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
416 len, offset, vol_id, lnum, pnum);
417
418 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
419 check = 0;
420
421retry:
422 if (check) {
423 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
424 if (!vid_hdr) {
425 err = -ENOMEM;
426 goto out_unlock;
427 }
428
429 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
430 if (err && err != UBI_IO_BITFLIPS) {
431 if (err > 0) {
432 /*
433 * The header is either absent or corrupted.
434 * The former case means there is a bug -
435 * switch to read-only mode just in case.
436 * The latter case means a real corruption - we
437 * may try to recover data. FIXME: but this is
438 * not implemented.
439 */
440 if (err == UBI_IO_BAD_VID_HDR) {
441 ubi_warn("bad VID header at PEB %d, LEB"
442 "%d:%d", pnum, vol_id, lnum);
443 err = -EBADMSG;
444 } else
445 ubi_ro_mode(ubi);
446 }
447 goto out_free;
448 } else if (err == UBI_IO_BITFLIPS)
449 scrub = 1;
450
451 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
452 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
453
454 crc = be32_to_cpu(vid_hdr->data_crc);
455 ubi_free_vid_hdr(ubi, vid_hdr);
456 }
457
458 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
459 if (err) {
460 if (err == UBI_IO_BITFLIPS) {
461 scrub = 1;
462 err = 0;
463 } else if (err == -EBADMSG) {
464 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
465 goto out_unlock;
466 scrub = 1;
467 if (!check) {
468 ubi_msg("force data checking");
469 check = 1;
470 goto retry;
471 }
472 } else
473 goto out_unlock;
474 }
475
476 if (check) {
477 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
478 if (crc1 != crc) {
479 ubi_warn("CRC error: calculated %#08x, must be %#08x",
480 crc1, crc);
481 err = -EBADMSG;
482 goto out_unlock;
483 }
484 }
485
486 if (scrub)
487 err = ubi_wl_scrub_peb(ubi, pnum);
488
489 leb_read_unlock(ubi, vol_id, lnum);
490 return err;
491
492out_free:
493 ubi_free_vid_hdr(ubi, vid_hdr);
494out_unlock:
495 leb_read_unlock(ubi, vol_id, lnum);
496 return err;
497}
498
499/**
500 * recover_peb - recover from write failure.
501 * @ubi: UBI device description object
502 * @pnum: the physical eraseblock to recover
503 * @vol_id: volume ID
504 * @lnum: logical eraseblock number
505 * @buf: data which was not written because of the write failure
506 * @offset: offset of the failed write
507 * @len: how many bytes should have been written
508 *
509 * This function is called in case of a write failure and moves all good data
510 * from the potentially bad physical eraseblock to a good physical eraseblock.
511 * This function also writes the data which was not written due to the failure.
512 * Returns new physical eraseblock number in case of success, and a negative
513 * error code in case of failure.
514 */
515static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
516 const void *buf, int offset, int len)
517{
518 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
519 struct ubi_volume *vol = ubi->volumes[idx];
520 struct ubi_vid_hdr *vid_hdr;
521
522 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
523 if (!vid_hdr) {
524 return -ENOMEM;
525 }
526
527 mutex_lock(&ubi->buf_mutex);
528
529retry:
530 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
531 if (new_pnum < 0) {
532 mutex_unlock(&ubi->buf_mutex);
533 ubi_free_vid_hdr(ubi, vid_hdr);
534 return new_pnum;
535 }
536
537 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
538
539 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
540 if (err && err != UBI_IO_BITFLIPS) {
541 if (err > 0)
542 err = -EIO;
543 goto out_put;
544 }
545
546 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
547 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
548 if (err)
549 goto write_error;
550
551 data_size = offset + len;
552 memset(ubi->peb_buf1 + offset, 0xFF, len);
553
554 /* Read everything before the area where the write failure happened */
555 if (offset > 0) {
556 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
557 if (err && err != UBI_IO_BITFLIPS)
558 goto out_put;
559 }
560
561 memcpy(ubi->peb_buf1 + offset, buf, len);
562
563 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
564 if (err)
565 goto write_error;
566
567 mutex_unlock(&ubi->buf_mutex);
568 ubi_free_vid_hdr(ubi, vid_hdr);
569
570 vol->eba_tbl[lnum] = new_pnum;
571 ubi_wl_put_peb(ubi, pnum, 1);
572
573 ubi_msg("data was successfully recovered");
574 return 0;
575
576out_put:
577 mutex_unlock(&ubi->buf_mutex);
578 ubi_wl_put_peb(ubi, new_pnum, 1);
579 ubi_free_vid_hdr(ubi, vid_hdr);
580 return err;
581
582write_error:
583 /*
584 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
585 * get another one.
586 */
587 ubi_warn("failed to write to PEB %d", new_pnum);
588 ubi_wl_put_peb(ubi, new_pnum, 1);
589 if (++tries > UBI_IO_RETRIES) {
590 mutex_unlock(&ubi->buf_mutex);
591 ubi_free_vid_hdr(ubi, vid_hdr);
592 return err;
593 }
594 ubi_msg("try again");
595 goto retry;
596}
597
598/**
599 * ubi_eba_write_leb - write data to dynamic volume.
600 * @ubi: UBI device description object
601 * @vol: volume description object
602 * @lnum: logical eraseblock number
603 * @buf: the data to write
604 * @offset: offset within the logical eraseblock where to write
605 * @len: how many bytes to write
606 * @dtype: data type
607 *
608 * This function writes data to logical eraseblock @lnum of a dynamic volume
609 * @vol. Returns zero in case of success and a negative error code in case
610 * of failure. In case of error, it is possible that something was still
611 * written to the flash media, but may be some garbage.
612 */
613int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
614 const void *buf, int offset, int len, int dtype)
615{
616 int err, pnum, tries = 0, vol_id = vol->vol_id;
617 struct ubi_vid_hdr *vid_hdr;
618
619 if (ubi->ro_mode)
620 return -EROFS;
621
622 err = leb_write_lock(ubi, vol_id, lnum);
623 if (err)
624 return err;
625
626 pnum = vol->eba_tbl[lnum];
627 if (pnum >= 0) {
628 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
629 len, offset, vol_id, lnum, pnum);
630
631 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
632 if (err) {
633 ubi_warn("failed to write data to PEB %d", pnum);
634 if (err == -EIO && ubi->bad_allowed)
635 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
636 offset, len);
637 if (err)
638 ubi_ro_mode(ubi);
639 }
640 leb_write_unlock(ubi, vol_id, lnum);
641 return err;
642 }
643
644 /*
645 * The logical eraseblock is not mapped. We have to get a free physical
646 * eraseblock and write the volume identifier header there first.
647 */
648 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
649 if (!vid_hdr) {
650 leb_write_unlock(ubi, vol_id, lnum);
651 return -ENOMEM;
652 }
653
654 vid_hdr->vol_type = UBI_VID_DYNAMIC;
655 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
656 vid_hdr->vol_id = cpu_to_be32(vol_id);
657 vid_hdr->lnum = cpu_to_be32(lnum);
658 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
659 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
660
661retry:
662 pnum = ubi_wl_get_peb(ubi, dtype);
663 if (pnum < 0) {
664 ubi_free_vid_hdr(ubi, vid_hdr);
665 leb_write_unlock(ubi, vol_id, lnum);
666 return pnum;
667 }
668
669 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
670 len, offset, vol_id, lnum, pnum);
671
672 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
673 if (err) {
674 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
675 vol_id, lnum, pnum);
676 goto write_error;
677 }
678
679 if (len) {
680 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
681 if (err) {
682 ubi_warn("failed to write %d bytes at offset %d of "
683 "LEB %d:%d, PEB %d", len, offset, vol_id,
684 lnum, pnum);
685 goto write_error;
686 }
687 }
688
689 vol->eba_tbl[lnum] = pnum;
690
691 leb_write_unlock(ubi, vol_id, lnum);
692 ubi_free_vid_hdr(ubi, vid_hdr);
693 return 0;
694
695write_error:
696 if (err != -EIO || !ubi->bad_allowed) {
697 ubi_ro_mode(ubi);
698 leb_write_unlock(ubi, vol_id, lnum);
699 ubi_free_vid_hdr(ubi, vid_hdr);
700 return err;
701 }
702
703 /*
704 * Fortunately, this is the first write operation to this physical
705 * eraseblock, so just put it and request a new one. We assume that if
706 * this physical eraseblock went bad, the erase code will handle that.
707 */
708 err = ubi_wl_put_peb(ubi, pnum, 1);
709 if (err || ++tries > UBI_IO_RETRIES) {
710 ubi_ro_mode(ubi);
711 leb_write_unlock(ubi, vol_id, lnum);
712 ubi_free_vid_hdr(ubi, vid_hdr);
713 return err;
714 }
715
716 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
717 ubi_msg("try another PEB");
718 goto retry;
719}
720
721/**
722 * ubi_eba_write_leb_st - write data to static volume.
723 * @ubi: UBI device description object
724 * @vol: volume description object
725 * @lnum: logical eraseblock number
726 * @buf: data to write
727 * @len: how many bytes to write
728 * @dtype: data type
729 * @used_ebs: how many logical eraseblocks will this volume contain
730 *
731 * This function writes data to logical eraseblock @lnum of static volume
732 * @vol. The @used_ebs argument should contain total number of logical
733 * eraseblock in this static volume.
734 *
735 * When writing to the last logical eraseblock, the @len argument doesn't have
736 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
737 * to the real data size, although the @buf buffer has to contain the
738 * alignment. In all other cases, @len has to be aligned.
739 *
740 * It is prohibited to write more then once to logical eraseblocks of static
741 * volumes. This function returns zero in case of success and a negative error
742 * code in case of failure.
743 */
744int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
745 int lnum, const void *buf, int len, int dtype,
746 int used_ebs)
747{
748 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
749 struct ubi_vid_hdr *vid_hdr;
750 uint32_t crc;
751
752 if (ubi->ro_mode)
753 return -EROFS;
754
755 if (lnum == used_ebs - 1)
756 /* If this is the last LEB @len may be unaligned */
757 len = ALIGN(data_size, ubi->min_io_size);
758 else
759 ubi_assert(!(len & (ubi->min_io_size - 1)));
760
761 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
762 if (!vid_hdr)
763 return -ENOMEM;
764
765 err = leb_write_lock(ubi, vol_id, lnum);
766 if (err) {
767 ubi_free_vid_hdr(ubi, vid_hdr);
768 return err;
769 }
770
771 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
772 vid_hdr->vol_id = cpu_to_be32(vol_id);
773 vid_hdr->lnum = cpu_to_be32(lnum);
774 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
775 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
776
777 crc = crc32(UBI_CRC32_INIT, buf, data_size);
778 vid_hdr->vol_type = UBI_VID_STATIC;
779 vid_hdr->data_size = cpu_to_be32(data_size);
780 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
781 vid_hdr->data_crc = cpu_to_be32(crc);
782
783retry:
784 pnum = ubi_wl_get_peb(ubi, dtype);
785 if (pnum < 0) {
786 ubi_free_vid_hdr(ubi, vid_hdr);
787 leb_write_unlock(ubi, vol_id, lnum);
788 return pnum;
789 }
790
791 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
792 len, vol_id, lnum, pnum, used_ebs);
793
794 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
795 if (err) {
796 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
797 vol_id, lnum, pnum);
798 goto write_error;
799 }
800
801 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
802 if (err) {
803 ubi_warn("failed to write %d bytes of data to PEB %d",
804 len, pnum);
805 goto write_error;
806 }
807
808 ubi_assert(vol->eba_tbl[lnum] < 0);
809 vol->eba_tbl[lnum] = pnum;
810
811 leb_write_unlock(ubi, vol_id, lnum);
812 ubi_free_vid_hdr(ubi, vid_hdr);
813 return 0;
814
815write_error:
816 if (err != -EIO || !ubi->bad_allowed) {
817 /*
818 * This flash device does not admit of bad eraseblocks or
819 * something nasty and unexpected happened. Switch to read-only
820 * mode just in case.
821 */
822 ubi_ro_mode(ubi);
823 leb_write_unlock(ubi, vol_id, lnum);
824 ubi_free_vid_hdr(ubi, vid_hdr);
825 return err;
826 }
827
828 err = ubi_wl_put_peb(ubi, pnum, 1);
829 if (err || ++tries > UBI_IO_RETRIES) {
830 ubi_ro_mode(ubi);
831 leb_write_unlock(ubi, vol_id, lnum);
832 ubi_free_vid_hdr(ubi, vid_hdr);
833 return err;
834 }
835
836 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
837 ubi_msg("try another PEB");
838 goto retry;
839}
840
841/*
842 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
843 * @ubi: UBI device description object
844 * @vol: volume description object
845 * @lnum: logical eraseblock number
846 * @buf: data to write
847 * @len: how many bytes to write
848 * @dtype: data type
849 *
850 * This function changes the contents of a logical eraseblock atomically. @buf
851 * has to contain new logical eraseblock data, and @len - the length of the
852 * data, which has to be aligned. This function guarantees that in case of an
853 * unclean reboot the old contents is preserved. Returns zero in case of
854 * success and a negative error code in case of failure.
855 *
856 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
857 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
858 */
859int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
860 int lnum, const void *buf, int len, int dtype)
861{
862 int err, pnum, tries = 0, vol_id = vol->vol_id;
863 struct ubi_vid_hdr *vid_hdr;
864 uint32_t crc;
865
866 if (ubi->ro_mode)
867 return -EROFS;
868
869 if (len == 0) {
870 /*
871 * Special case when data length is zero. In this case the LEB
872 * has to be unmapped and mapped somewhere else.
873 */
874 err = ubi_eba_unmap_leb(ubi, vol, lnum);
875 if (err)
876 return err;
877 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
878 }
879
880 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
881 if (!vid_hdr)
882 return -ENOMEM;
883
884 mutex_lock(&ubi->alc_mutex);
885 err = leb_write_lock(ubi, vol_id, lnum);
886 if (err)
887 goto out_mutex;
888
889 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
890 vid_hdr->vol_id = cpu_to_be32(vol_id);
891 vid_hdr->lnum = cpu_to_be32(lnum);
892 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
893 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
894
895 crc = crc32(UBI_CRC32_INIT, buf, len);
896 vid_hdr->vol_type = UBI_VID_DYNAMIC;
897 vid_hdr->data_size = cpu_to_be32(len);
898 vid_hdr->copy_flag = 1;
899 vid_hdr->data_crc = cpu_to_be32(crc);
900
901retry:
902 pnum = ubi_wl_get_peb(ubi, dtype);
903 if (pnum < 0) {
904 err = pnum;
905 goto out_leb_unlock;
906 }
907
908 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
909 vol_id, lnum, vol->eba_tbl[lnum], pnum);
910
911 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
912 if (err) {
913 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
914 vol_id, lnum, pnum);
915 goto write_error;
916 }
917
918 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
919 if (err) {
920 ubi_warn("failed to write %d bytes of data to PEB %d",
921 len, pnum);
922 goto write_error;
923 }
924
925 if (vol->eba_tbl[lnum] >= 0) {
926 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
927 if (err)
928 goto out_leb_unlock;
929 }
930
931 vol->eba_tbl[lnum] = pnum;
932
933out_leb_unlock:
934 leb_write_unlock(ubi, vol_id, lnum);
935out_mutex:
936 mutex_unlock(&ubi->alc_mutex);
937 ubi_free_vid_hdr(ubi, vid_hdr);
938 return err;
939
940write_error:
941 if (err != -EIO || !ubi->bad_allowed) {
942 /*
943 * This flash device does not admit of bad eraseblocks or
944 * something nasty and unexpected happened. Switch to read-only
945 * mode just in case.
946 */
947 ubi_ro_mode(ubi);
948 goto out_leb_unlock;
949 }
950
951 err = ubi_wl_put_peb(ubi, pnum, 1);
952 if (err || ++tries > UBI_IO_RETRIES) {
953 ubi_ro_mode(ubi);
954 goto out_leb_unlock;
955 }
956
957 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
958 ubi_msg("try another PEB");
959 goto retry;
960}
961
962/**
963 * ubi_eba_copy_leb - copy logical eraseblock.
964 * @ubi: UBI device description object
965 * @from: physical eraseblock number from where to copy
966 * @to: physical eraseblock number where to copy
967 * @vid_hdr: VID header of the @from physical eraseblock
968 *
969 * This function copies logical eraseblock from physical eraseblock @from to
970 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
971 * function. Returns:
972 * o %0 in case of success;
973 * o %1 if the operation was canceled and should be tried later (e.g.,
974 * because a bit-flip was detected at the target PEB);
975 * o %2 if the volume is being deleted and this LEB should not be moved.
976 */
977int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
978 struct ubi_vid_hdr *vid_hdr)
979{
980 int err, vol_id, lnum, data_size, aldata_size, idx;
981 struct ubi_volume *vol;
982 uint32_t crc;
983
984 vol_id = be32_to_cpu(vid_hdr->vol_id);
985 lnum = be32_to_cpu(vid_hdr->lnum);
986
987 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
988
989 if (vid_hdr->vol_type == UBI_VID_STATIC) {
990 data_size = be32_to_cpu(vid_hdr->data_size);
991 aldata_size = ALIGN(data_size, ubi->min_io_size);
992 } else
993 data_size = aldata_size =
994 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
995
996 idx = vol_id2idx(ubi, vol_id);
997 spin_lock(&ubi->volumes_lock);
998 /*
999 * Note, we may race with volume deletion, which means that the volume
1000 * this logical eraseblock belongs to might be being deleted. Since the
1001 * volume deletion unmaps all the volume's logical eraseblocks, it will
1002 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1003 */
1004 vol = ubi->volumes[idx];
1005 if (!vol) {
1006 /* No need to do further work, cancel */
1007 dbg_eba("volume %d is being removed, cancel", vol_id);
1008 spin_unlock(&ubi->volumes_lock);
1009 return 2;
1010 }
1011 spin_unlock(&ubi->volumes_lock);
1012
1013 /*
1014 * We do not want anybody to write to this logical eraseblock while we
1015 * are moving it, so lock it.
1016 *
1017 * Note, we are using non-waiting locking here, because we cannot sleep
1018 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1019 * unmapping the LEB which is mapped to the PEB we are going to move
1020 * (@from). This task locks the LEB and goes sleep in the
1021 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1022 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1023 * LEB is already locked, we just do not move it and return %1.
1024 */
1025 err = leb_write_trylock(ubi, vol_id, lnum);
1026 if (err) {
1027 dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1028 return err;
1029 }
1030
1031 /*
1032 * The LEB might have been put meanwhile, and the task which put it is
1033 * probably waiting on @ubi->move_mutex. No need to continue the work,
1034 * cancel it.
1035 */
1036 if (vol->eba_tbl[lnum] != from) {
1037 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1038 "PEB %d, cancel", vol_id, lnum, from,
1039 vol->eba_tbl[lnum]);
1040 err = 1;
1041 goto out_unlock_leb;
1042 }
1043
1044 /*
1045 * OK, now the LEB is locked and we can safely start moving iy. Since
1046 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1047 * with some other functions, so lock the buffer by taking the
1048 * @ubi->buf_mutex.
1049 */
1050 mutex_lock(&ubi->buf_mutex);
1051 dbg_eba("read %d bytes of data", aldata_size);
1052 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1053 if (err && err != UBI_IO_BITFLIPS) {
1054 ubi_warn("error %d while reading data from PEB %d",
1055 err, from);
1056 goto out_unlock_buf;
1057 }
1058
1059 /*
1060 * Now we have got to calculate how much data we have to to copy. In
1061 * case of a static volume it is fairly easy - the VID header contains
1062 * the data size. In case of a dynamic volume it is more difficult - we
1063 * have to read the contents, cut 0xFF bytes from the end and copy only
1064 * the first part. We must do this to avoid writing 0xFF bytes as it
1065 * may have some side-effects. And not only this. It is important not
1066 * to include those 0xFFs to CRC because later the they may be filled
1067 * by data.
1068 */
1069 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1070 aldata_size = data_size =
1071 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1072
1073 cond_resched();
1074 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1075 cond_resched();
1076
1077 /*
1078 * It may turn out to me that the whole @from physical eraseblock
1079 * contains only 0xFF bytes. Then we have to only write the VID header
1080 * and do not write any data. This also means we should not set
1081 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1082 */
1083 if (data_size > 0) {
1084 vid_hdr->copy_flag = 1;
1085 vid_hdr->data_size = cpu_to_be32(data_size);
1086 vid_hdr->data_crc = cpu_to_be32(crc);
1087 }
1088 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1089
1090 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1091 if (err)
1092 goto out_unlock_buf;
1093
1094 cond_resched();
1095
1096 /* Read the VID header back and check if it was written correctly */
1097 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1098 if (err) {
1099 if (err != UBI_IO_BITFLIPS)
1100 ubi_warn("cannot read VID header back from PEB %d", to);
1101 else
1102 err = 1;
1103 goto out_unlock_buf;
1104 }
1105
1106 if (data_size > 0) {
1107 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1108 if (err)
1109 goto out_unlock_buf;
1110
1111 cond_resched();
1112
1113 /*
1114 * We've written the data and are going to read it back to make
1115 * sure it was written correctly.
1116 */
1117
1118 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1119 if (err) {
1120 if (err != UBI_IO_BITFLIPS)
1121 ubi_warn("cannot read data back from PEB %d",
1122 to);
1123 else
1124 err = 1;
1125 goto out_unlock_buf;
1126 }
1127
1128 cond_resched();
1129
1130 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1131 ubi_warn("read data back from PEB %d - it is different",
1132 to);
1133 goto out_unlock_buf;
1134 }
1135 }
1136
1137 ubi_assert(vol->eba_tbl[lnum] == from);
1138 vol->eba_tbl[lnum] = to;
1139
1140out_unlock_buf:
1141 mutex_unlock(&ubi->buf_mutex);
1142out_unlock_leb:
1143 leb_write_unlock(ubi, vol_id, lnum);
1144 return err;
1145}
1146
1147/**
1148 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1149 * @ubi: UBI device description object
1150 * @si: scanning information
1151 *
1152 * This function returns zero in case of success and a negative error code in
1153 * case of failure.
1154 */
1155int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1156{
1157 int i, j, err, num_volumes;
1158 struct ubi_scan_volume *sv;
1159 struct ubi_volume *vol;
1160 struct ubi_scan_leb *seb;
1161 struct rb_node *rb;
1162
1163 dbg_eba("initialize EBA unit");
1164
1165 spin_lock_init(&ubi->ltree_lock);
1166 mutex_init(&ubi->alc_mutex);
1167 ubi->ltree = RB_ROOT;
1168
1169 ubi->global_sqnum = si->max_sqnum + 1;
1170 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1171
1172 for (i = 0; i < num_volumes; i++) {
1173 vol = ubi->volumes[i];
1174 if (!vol)
1175 continue;
1176
1177 cond_resched();
1178
1179 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1180 GFP_KERNEL);
1181 if (!vol->eba_tbl) {
1182 err = -ENOMEM;
1183 goto out_free;
1184 }
1185
1186 for (j = 0; j < vol->reserved_pebs; j++)
1187 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1188
1189 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1190 if (!sv)
1191 continue;
1192
1193 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1194 if (seb->lnum >= vol->reserved_pebs)
1195 /*
1196 * This may happen in case of an unclean reboot
1197 * during re-size.
1198 */
1199 ubi_scan_move_to_list(sv, seb, &si->erase);
1200 vol->eba_tbl[seb->lnum] = seb->pnum;
1201 }
1202 }
1203
1204 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1205 ubi_err("no enough physical eraseblocks (%d, need %d)",
1206 ubi->avail_pebs, EBA_RESERVED_PEBS);
1207 err = -ENOSPC;
1208 goto out_free;
1209 }
1210 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1211 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1212
1213 if (ubi->bad_allowed) {
1214 ubi_calculate_reserved(ubi);
1215
1216 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1217 /* No enough free physical eraseblocks */
1218 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1219 ubi_warn("cannot reserve enough PEBs for bad PEB "
1220 "handling, reserved %d, need %d",
1221 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1222 } else
1223 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1224
1225 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1226 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1227 }
1228
1229 dbg_eba("EBA unit is initialized");
1230 return 0;
1231
1232out_free:
1233 for (i = 0; i < num_volumes; i++) {
1234 if (!ubi->volumes[i])
1235 continue;
1236 kfree(ubi->volumes[i]->eba_tbl);
1237 }
1238 return err;
1239}
1240
1241/**
1242 * ubi_eba_close - close EBA unit.
1243 * @ubi: UBI device description object
1244 */
1245void ubi_eba_close(const struct ubi_device *ubi)
1246{
1247 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1248
1249 dbg_eba("close EBA unit");
1250
1251 for (i = 0; i < num_volumes; i++) {
1252 if (!ubi->volumes[i])
1253 continue;
1254 kfree(ubi->volumes[i]->eba_tbl);
1255 }
1256}