blob: c67a2e1b6171da4a53053426a86e3b885c1ddedd [file] [log] [blame]
Tom Warrenb2871032012-12-11 13:34:15 +00001/*
2 * Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17/* Tegra30 Clock control functions */
18
19#include <common.h>
20#include <asm/io.h>
21#include <asm/arch/clock.h>
22#include <asm/arch/tegra.h>
23#include <asm/arch-tegra/clk_rst.h>
24#include <asm/arch-tegra/timer.h>
25#include <div64.h>
26#include <fdtdec.h>
27
28/*
29 * This is our record of the current clock rate of each clock. We don't
30 * fill all of these in since we are only really interested in clocks which
31 * we use as parents.
32 */
33static unsigned pll_rate[CLOCK_ID_COUNT];
34
35/*
36 * The oscillator frequency is fixed to one of four set values. Based on this
37 * the other clocks are set up appropriately.
38 */
39static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
40 13000000,
41 19200000,
42 12000000,
43 26000000,
44};
45
46/*
47 * Clock types that we can use as a source. The Tegra3 has muxes for the
48 * peripheral clocks, and in most cases there are four options for the clock
49 * source. This gives us a clock 'type' and exploits what commonality exists
50 * in the device.
51 *
52 * Letters are obvious, except for T which means CLK_M, and S which means the
53 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
54 * datasheet) and PLL_M are different things. The former is the basic
55 * clock supplied to the SOC from an external oscillator. The latter is the
56 * memory clock PLL.
57 *
58 * See definitions in clock_id in the header file.
59 */
60enum clock_type_id {
61 CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
62 CLOCK_TYPE_MCPA, /* and so on */
63 CLOCK_TYPE_MCPT,
64 CLOCK_TYPE_PCM,
65 CLOCK_TYPE_PCMT,
Tom Warren619bd992012-12-21 15:02:45 -070066 CLOCK_TYPE_PCMT16,
Tom Warrenb2871032012-12-11 13:34:15 +000067 CLOCK_TYPE_PDCT,
68 CLOCK_TYPE_ACPT,
69 CLOCK_TYPE_ASPTE,
70 CLOCK_TYPE_PMDACD2T,
71 CLOCK_TYPE_PCST,
72
73 CLOCK_TYPE_COUNT,
74 CLOCK_TYPE_NONE = -1, /* invalid clock type */
75};
76
77/* return 1 if a peripheral ID is in range */
78#define clock_type_id_isvalid(id) ((id) >= 0 && \
79 (id) < CLOCK_TYPE_COUNT)
80
81char pllp_valid = 1; /* PLLP is set up correctly */
82
83enum {
84 CLOCK_MAX_MUX = 8 /* number of source options for each clock */
85};
86
87enum {
88 MASK_BITS_31_30 = 2, /* num of bits used to specify clock source */
89 MASK_BITS_31_29,
90 MASK_BITS_29_28,
91};
92
93/*
94 * Clock source mux for each clock type. This just converts our enum into
95 * a list of mux sources for use by the code.
96 *
97 * Note:
98 * The extra column in each clock source array is used to store the mask
99 * bits in its register for the source.
100 */
101#define CLK(x) CLOCK_ID_ ## x
102static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
103 { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
104 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
105 MASK_BITS_31_30},
106 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
107 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
108 MASK_BITS_31_30},
109 { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
110 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
111 MASK_BITS_31_30},
112 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
113 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
114 MASK_BITS_31_30},
115 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
116 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
117 MASK_BITS_31_30},
Tom Warren619bd992012-12-21 15:02:45 -0700118 { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
119 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
120 MASK_BITS_31_30},
Tom Warrenb2871032012-12-11 13:34:15 +0000121 { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
122 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
123 MASK_BITS_31_30},
124 { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
125 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
126 MASK_BITS_31_30},
127 { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
128 CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
129 MASK_BITS_31_29},
130 { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
131 CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
132 MASK_BITS_31_29},
133 { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
134 CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
135 MASK_BITS_29_28}
136};
137
138/* return 1 if a periphc_internal_id is in range */
139#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
140 (id) < PERIPHC_COUNT)
141
142/*
143 * Clock type for each peripheral clock source. We put the name in each
144 * record just so it is easy to match things up
145 */
146#define TYPE(name, type) type
147static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
148 /* 0x00 */
149 TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
150 TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
151 TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
152 TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
Tom Warren619bd992012-12-21 15:02:45 -0700153 TYPE(PERIPHC_PWM, CLOCK_TYPE_PCST), /* only PWM uses b29:28 */
Tom Warrenb2871032012-12-11 13:34:15 +0000154 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
155 TYPE(PERIPHC_SBC2, CLOCK_TYPE_PCMT),
156 TYPE(PERIPHC_SBC3, CLOCK_TYPE_PCMT),
157
158 /* 0x08 */
159 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
Tom Warren619bd992012-12-21 15:02:45 -0700160 TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
161 TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
Tom Warrenb2871032012-12-11 13:34:15 +0000162 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
163 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
164 TYPE(PERIPHC_SBC1, CLOCK_TYPE_PCMT),
165 TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
166 TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
167
168 /* 0x10 */
169 TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
170 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
171 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
172 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
173 TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
174 TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
175 TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
176 TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
177
178 /* 0x18 */
179 TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
180 TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
181 TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
182 TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
183 TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
Tom Warren619bd992012-12-21 15:02:45 -0700184 TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), /* MIPI base-band HSI */
Tom Warrenb2871032012-12-11 13:34:15 +0000185 TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
186 TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
187
188 /* 0x20 */
189 TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
190 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
191 TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
192 TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
193 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
194 TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
Tom Warren619bd992012-12-21 15:02:45 -0700195 TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
Tom Warrenb2871032012-12-11 13:34:15 +0000196 TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
197
198 /* 0x28 */
199 TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
200 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
201 TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
202 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
203 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
204 TYPE(PERIPHC_SBC4, CLOCK_TYPE_PCMT),
Tom Warren619bd992012-12-21 15:02:45 -0700205 TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
Tom Warrenb2871032012-12-11 13:34:15 +0000206 TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
207
208 /* 0x30 */
209 TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
210 TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
211 TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
212 TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
213 TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
214 TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
215 TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
216 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
217
Tom Warren619bd992012-12-21 15:02:45 -0700218 /* 0x38h */ /* Jumps to reg offset 0x3B0h - new for T30 */
Tom Warrenb2871032012-12-11 13:34:15 +0000219 TYPE(PERIPHC_G3D2, CLOCK_TYPE_MCPA),
220 TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PCMT),
Tom Warren619bd992012-12-21 15:02:45 -0700221 TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PCST), /* s/b PCTS */
Tom Warrenb2871032012-12-11 13:34:15 +0000222 TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
223 TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
Tom Warren619bd992012-12-21 15:02:45 -0700224 TYPE(PERIPHC_I2C4, CLOCK_TYPE_PCMT16),
Tom Warrenb2871032012-12-11 13:34:15 +0000225 TYPE(PERIPHC_SBC5, CLOCK_TYPE_PCMT),
226 TYPE(PERIPHC_SBC6, CLOCK_TYPE_PCMT),
227
228 /* 0x40 */
229 TYPE(PERIPHC_AUDIO, CLOCK_TYPE_ACPT),
230 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
231 TYPE(PERIPHC_DAM0, CLOCK_TYPE_ACPT),
232 TYPE(PERIPHC_DAM1, CLOCK_TYPE_ACPT),
233 TYPE(PERIPHC_DAM2, CLOCK_TYPE_ACPT),
234 TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PCMT),
Tom Warren619bd992012-12-21 15:02:45 -0700235 TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PCST), /* MASK 31:30 */
Tom Warrenb2871032012-12-11 13:34:15 +0000236 TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
237
238 /* 0x48 */
239 TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
240 TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
241 TYPE(PERIPHC_NANDSPEED, CLOCK_TYPE_PCMT),
Tom Warren619bd992012-12-21 15:02:45 -0700242 TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PCST), /* MASK 31:30 */
Tom Warrenb2871032012-12-11 13:34:15 +0000243 TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
244 TYPE(PERIPHC_SPEEDO, CLOCK_TYPE_PCMT),
245 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
246 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
247
248 /* 0x50 */
Tom Warren619bd992012-12-21 15:02:45 -0700249 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
250 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
251 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
252 TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
253 TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT), /* offset 0x420h */
Tom Warrenb2871032012-12-11 13:34:15 +0000254 TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
255 TYPE(PERIPHC_HDA, CLOCK_TYPE_PCMT),
256};
257
258/*
259 * This array translates a periph_id to a periphc_internal_id
260 *
261 * Not present/matched up:
262 * uint vi_sensor; _VI_SENSOR_0, 0x1A8
263 * SPDIF - which is both 0x08 and 0x0c
264 *
265 */
266#define NONE(name) (-1)
267#define OFFSET(name, value) PERIPHC_ ## name
268static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
269 /* Low word: 31:0 */
270 NONE(CPU),
271 NONE(COP),
272 NONE(TRIGSYS),
273 NONE(RESERVED3),
274 NONE(RESERVED4),
275 NONE(TMR),
276 PERIPHC_UART1,
277 PERIPHC_UART2, /* and vfir 0x68 */
278
279 /* 8 */
280 NONE(GPIO),
281 PERIPHC_SDMMC2,
282 NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
283 PERIPHC_I2S1,
284 PERIPHC_I2C1,
285 PERIPHC_NDFLASH,
286 PERIPHC_SDMMC1,
287 PERIPHC_SDMMC4,
288
289 /* 16 */
290 NONE(RESERVED16),
291 PERIPHC_PWM,
292 PERIPHC_I2S2,
293 PERIPHC_EPP,
294 PERIPHC_VI,
295 PERIPHC_G2D,
296 NONE(USBD),
297 NONE(ISP),
298
299 /* 24 */
300 PERIPHC_G3D,
301 NONE(RESERVED25),
302 PERIPHC_DISP2,
303 PERIPHC_DISP1,
304 PERIPHC_HOST1X,
305 NONE(VCP),
306 PERIPHC_I2S0,
307 NONE(CACHE2),
308
309 /* Middle word: 63:32 */
310 NONE(MEM),
311 NONE(AHBDMA),
312 NONE(APBDMA),
313 NONE(RESERVED35),
314 NONE(RESERVED36),
315 NONE(STAT_MON),
316 NONE(RESERVED38),
317 NONE(RESERVED39),
318
319 /* 40 */
320 NONE(KFUSE),
321 NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
322 PERIPHC_NOR,
323 NONE(RESERVED43),
324 PERIPHC_SBC2,
325 NONE(RESERVED45),
326 PERIPHC_SBC3,
327 PERIPHC_DVC_I2C,
328
329 /* 48 */
330 NONE(DSI),
331 PERIPHC_TVO, /* also CVE 0x40 */
332 PERIPHC_MIPI,
333 PERIPHC_HDMI,
334 NONE(CSI),
335 PERIPHC_TVDAC,
336 PERIPHC_I2C2,
337 PERIPHC_UART3,
338
339 /* 56 */
340 NONE(RESERVED56),
341 PERIPHC_EMC,
342 NONE(USB2),
343 NONE(USB3),
344 PERIPHC_MPE,
345 PERIPHC_VDE,
346 NONE(BSEA),
347 NONE(BSEV),
348
349 /* Upper word 95:64 */
350 PERIPHC_SPEEDO,
351 PERIPHC_UART4,
352 PERIPHC_UART5,
353 PERIPHC_I2C3,
354 PERIPHC_SBC4,
355 PERIPHC_SDMMC3,
356 NONE(PCIE),
357 PERIPHC_OWR,
358
359 /* 72 */
360 NONE(AFI),
361 PERIPHC_CSITE,
362 NONE(PCIEXCLK),
363 NONE(AVPUCQ),
364 NONE(RESERVED76),
365 NONE(RESERVED77),
366 NONE(RESERVED78),
367 NONE(DTV),
368
369 /* 80 */
370 PERIPHC_NANDSPEED,
371 PERIPHC_I2CSLOW,
372 NONE(DSIB),
373 NONE(RESERVED83),
374 NONE(IRAMA),
375 NONE(IRAMB),
376 NONE(IRAMC),
377 NONE(IRAMD),
378
379 /* 88 */
380 NONE(CRAM2),
381 NONE(RESERVED89),
382 NONE(MDOUBLER),
383 NONE(RESERVED91),
384 NONE(SUSOUT),
385 NONE(RESERVED93),
386 NONE(RESERVED94),
387 NONE(RESERVED95),
388
389 /* V word: 31:0 */
390 NONE(CPUG),
391 NONE(CPULP),
392 PERIPHC_G3D2,
393 PERIPHC_MSELECT,
394 PERIPHC_TSENSOR,
395 PERIPHC_I2S3,
396 PERIPHC_I2S4,
397 PERIPHC_I2C4,
398
399 /* 08 */
400 PERIPHC_SBC5,
401 PERIPHC_SBC6,
402 PERIPHC_AUDIO,
403 NONE(APBIF),
404 PERIPHC_DAM0,
405 PERIPHC_DAM1,
406 PERIPHC_DAM2,
407 PERIPHC_HDA2CODEC2X,
408
409 /* 16 */
410 NONE(ATOMICS),
411 NONE(RESERVED17),
412 NONE(RESERVED18),
413 NONE(RESERVED19),
414 NONE(RESERVED20),
415 NONE(RESERVED21),
416 NONE(RESERVED22),
417 PERIPHC_ACTMON,
418
419 /* 24 */
420 NONE(RESERVED24),
421 NONE(RESERVED25),
422 NONE(RESERVED26),
423 NONE(RESERVED27),
424 PERIPHC_SATA,
425 PERIPHC_HDA,
426 NONE(RESERVED30),
427 NONE(RESERVED31),
428
429 /* W word: 31:0 */
430 NONE(HDA2HDMICODEC),
431 NONE(SATACOLD),
432 NONE(RESERVED0_PCIERX0),
433 NONE(RESERVED1_PCIERX1),
434 NONE(RESERVED2_PCIERX2),
435 NONE(RESERVED3_PCIERX3),
436 NONE(RESERVED4_PCIERX4),
437 NONE(RESERVED5_PCIERX5),
438
439 /* 40 */
440 NONE(CEC),
441 NONE(RESERVED6_PCIE2),
442 NONE(RESERVED7_EMC),
443 NONE(RESERVED8_HDMI),
444 NONE(RESERVED9_SATA),
445 NONE(RESERVED10_MIPI),
446 NONE(EX_RESERVED46),
447 NONE(EX_RESERVED47),
448};
449
450/*
451 * Get the oscillator frequency, from the corresponding hardware configuration
452 * field.
453 */
454enum clock_osc_freq clock_get_osc_freq(void)
455{
456 struct clk_rst_ctlr *clkrst =
457 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
458 u32 reg;
459
460 reg = readl(&clkrst->crc_osc_ctrl);
461 return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
462}
463
464int clock_get_osc_bypass(void)
465{
466 struct clk_rst_ctlr *clkrst =
467 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
468 u32 reg;
469
470 reg = readl(&clkrst->crc_osc_ctrl);
471 return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
472}
473
474/* Returns a pointer to the registers of the given pll */
475static struct clk_pll *get_pll(enum clock_id clkid)
476{
477 struct clk_rst_ctlr *clkrst =
478 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
479
480 assert(clock_id_is_pll(clkid));
481 return &clkrst->crc_pll[clkid];
482}
483
484int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
485 u32 *divp, u32 *cpcon, u32 *lfcon)
486{
487 struct clk_pll *pll = get_pll(clkid);
488 u32 data;
489
490 assert(clkid != CLOCK_ID_USB);
491
492 /* Safety check, adds to code size but is small */
493 if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
494 return -1;
495 data = readl(&pll->pll_base);
496 *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
497 *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
498 *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
499 data = readl(&pll->pll_misc);
500 *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
501 *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
502 return 0;
503}
504
505unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
506 u32 divp, u32 cpcon, u32 lfcon)
507{
508 struct clk_pll *pll = get_pll(clkid);
509 u32 data;
510
511 /*
512 * We cheat by treating all PLL (except PLLU) in the same fashion.
513 * This works only because:
514 * - same fields are always mapped at same offsets, except DCCON
515 * - DCCON is always 0, doesn't conflict
516 * - M,N, P of PLLP values are ignored for PLLP
517 */
518 data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
519 writel(data, &pll->pll_misc);
520
521 data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
522 (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
523
524 if (clkid == CLOCK_ID_USB)
525 data |= divp << PLLU_VCO_FREQ_SHIFT;
526 else
527 data |= divp << PLL_DIVP_SHIFT;
528 writel(data, &pll->pll_base);
529
530 /* calculate the stable time */
531 return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
532}
533
534/* Returns a pointer to the clock source register for a peripheral */
535static u32 *get_periph_source_reg(enum periph_id periph_id)
536{
537 struct clk_rst_ctlr *clkrst =
538 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
539 enum periphc_internal_id internal_id;
540
541 /* Coresight is a special case */
542 if (periph_id == PERIPH_ID_CSI)
543 return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
544
545 assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
546 internal_id = periph_id_to_internal_id[periph_id];
547 assert(internal_id != -1);
548 if (internal_id >= PERIPHC_VW_FIRST) {
549 internal_id -= PERIPHC_VW_FIRST;
550 return &clkrst->crc_clk_src_vw[internal_id];
551 } else
552 return &clkrst->crc_clk_src[internal_id];
553}
554
555void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
556 unsigned divisor)
557{
558 u32 *reg = get_periph_source_reg(periph_id);
559 u32 value;
560
561 value = readl(reg);
562
563 value &= ~OUT_CLK_SOURCE_MASK;
564 value |= source << OUT_CLK_SOURCE_SHIFT;
565
566 value &= ~OUT_CLK_DIVISOR_MASK;
567 value |= divisor << OUT_CLK_DIVISOR_SHIFT;
568
569 writel(value, reg);
570}
571
572void clock_ll_set_source(enum periph_id periph_id, unsigned source)
573{
574 u32 *reg = get_periph_source_reg(periph_id);
575
576 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
577 source << OUT_CLK_SOURCE_SHIFT);
578}
579
580/**
581 * Given the parent's rate and the required rate for the children, this works
582 * out the peripheral clock divider to use, in 7.1 binary format.
583 *
584 * @param divider_bits number of divider bits (8 or 16)
585 * @param parent_rate clock rate of parent clock in Hz
586 * @param rate required clock rate for this clock
587 * @return divider which should be used
588 */
589static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
590 unsigned long rate)
591{
592 u64 divider = parent_rate * 2;
593 unsigned max_divider = 1 << divider_bits;
594
595 divider += rate - 1;
596 do_div(divider, rate);
597
598 if ((s64)divider - 2 < 0)
599 return 0;
600
601 if ((s64)divider - 2 >= max_divider)
602 return -1;
603
604 return divider - 2;
605}
606
607/**
608 * Given the parent's rate and the divider in 7.1 format, this works out the
609 * resulting peripheral clock rate.
610 *
611 * @param parent_rate clock rate of parent clock in Hz
612 * @param divider which should be used in 7.1 format
613 * @return effective clock rate of peripheral
614 */
615static unsigned long get_rate_from_divider(unsigned long parent_rate,
616 int divider)
617{
618 u64 rate;
619
620 rate = (u64)parent_rate * 2;
621 do_div(rate, divider + 2);
622 return rate;
623}
624
625unsigned long clock_get_periph_rate(enum periph_id periph_id,
626 enum clock_id parent)
627{
628 u32 *reg = get_periph_source_reg(periph_id);
629
630 return get_rate_from_divider(pll_rate[parent],
631 (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
632}
633
634/**
635 * Find the best available 7.1 format divisor given a parent clock rate and
636 * required child clock rate. This function assumes that a second-stage
637 * divisor is available which can divide by powers of 2 from 1 to 256.
638 *
639 * @param divider_bits number of divider bits (8 or 16)
640 * @param parent_rate clock rate of parent clock in Hz
641 * @param rate required clock rate for this clock
642 * @param extra_div value for the second-stage divisor (not set if this
643 * function returns -1.
644 * @return divider which should be used, or -1 if nothing is valid
645 *
646 */
647static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
648 unsigned long rate, int *extra_div)
649{
650 int shift;
651 int best_divider = -1;
652 int best_error = rate;
653
654 /* try dividers from 1 to 256 and find closest match */
655 for (shift = 0; shift <= 8 && best_error > 0; shift++) {
656 unsigned divided_parent = parent_rate >> shift;
657 int divider = clk_get_divider(divider_bits, divided_parent,
658 rate);
659 unsigned effective_rate = get_rate_from_divider(divided_parent,
660 divider);
661 int error = rate - effective_rate;
662
663 /* Given a valid divider, look for the lowest error */
664 if (divider != -1 && error < best_error) {
665 best_error = error;
666 *extra_div = 1 << shift;
667 best_divider = divider;
668 }
669 }
670
671 /* return what we found - *extra_div will already be set */
672 return best_divider;
673}
674
675/**
676 * Given a peripheral ID and the required source clock, this returns which
677 * value should be programmed into the source mux for that peripheral.
678 *
679 * There is special code here to handle the one source type with 5 sources.
680 *
681 * @param periph_id peripheral to start
682 * @param source PLL id of required parent clock
683 * @param mux_bits Set to number of bits in mux register: 2 or 4
684 * @param divider_bits Set to number of divider bits (8 or 16)
685 * @return mux value (0-4, or -1 if not found)
686 */
687static int get_periph_clock_source(enum periph_id periph_id,
688 enum clock_id parent, int *mux_bits, int *divider_bits)
689{
690 enum clock_type_id type;
691 enum periphc_internal_id internal_id;
692 int mux;
693
694 assert(clock_periph_id_isvalid(periph_id));
695
696 internal_id = periph_id_to_internal_id[periph_id];
697 assert(periphc_internal_id_isvalid(internal_id));
698
699 type = clock_periph_type[internal_id];
700 assert(clock_type_id_isvalid(type));
701
702 *mux_bits = clock_source[type][CLOCK_MAX_MUX];
703
Tom Warren619bd992012-12-21 15:02:45 -0700704 if (type == CLOCK_TYPE_PCMT16)
705 *divider_bits = 16;
706 else
707 *divider_bits = 8;
708
Tom Warrenb2871032012-12-11 13:34:15 +0000709 for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
710 if (clock_source[type][mux] == parent)
711 return mux;
712
713 /* if we get here, either us or the caller has made a mistake */
714 printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
715 parent);
716 return -1;
717}
718
719/**
720 * Adjust peripheral PLL to use the given divider and source.
721 *
722 * @param periph_id peripheral to adjust
723 * @param source Source number (0-3 or 0-7)
724 * @param mux_bits Number of mux bits (2 or 4)
725 * @param divider Required divider in 7.1 or 15.1 format
726 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
727 * for this peripheral)
728 */
729static int adjust_periph_pll(enum periph_id periph_id, int source,
730 int mux_bits, unsigned divider)
731{
732 u32 *reg = get_periph_source_reg(periph_id);
733
734 clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
735 divider << OUT_CLK_DIVISOR_SHIFT);
736 udelay(1);
737
738 /* work out the source clock and set it */
739 if (source < 0)
740 return -1;
741 if (mux_bits == 4) {
742 clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK,
743 source << OUT_CLK_SOURCE4_SHIFT);
744 } else {
745 clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK,
746 source << OUT_CLK_SOURCE_SHIFT);
747 }
748 udelay(2);
749 return 0;
750}
751
752unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
753 enum clock_id parent, unsigned rate, int *extra_div)
754{
755 unsigned effective_rate;
756 int mux_bits, source;
757 int divider, divider_bits = 0;
758
759 /* work out the source clock and set it */
760 source = get_periph_clock_source(periph_id, parent, &mux_bits,
761 &divider_bits);
762
763 if (extra_div)
764 divider = find_best_divider(divider_bits, pll_rate[parent],
765 rate, extra_div);
766 else
767 divider = clk_get_divider(divider_bits, pll_rate[parent],
768 rate);
769 assert(divider >= 0);
770 if (adjust_periph_pll(periph_id, source, mux_bits, divider))
771 return -1U;
772 debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
773 get_periph_source_reg(periph_id),
774 readl(get_periph_source_reg(periph_id)));
775
776 /* Check what we ended up with. This shouldn't matter though */
777 effective_rate = clock_get_periph_rate(periph_id, parent);
778 if (extra_div)
779 effective_rate /= *extra_div;
780 if (rate != effective_rate)
781 debug("Requested clock rate %u not honored (got %u)\n",
782 rate, effective_rate);
783 return effective_rate;
784}
785
786unsigned clock_start_periph_pll(enum periph_id periph_id,
787 enum clock_id parent, unsigned rate)
788{
789 unsigned effective_rate;
790
791 reset_set_enable(periph_id, 1);
792 clock_enable(periph_id);
793
794 effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
795 NULL);
796
797 reset_set_enable(periph_id, 0);
798 return effective_rate;
799}
800
801void clock_set_enable(enum periph_id periph_id, int enable)
802{
803 struct clk_rst_ctlr *clkrst =
804 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
805 u32 *clk;
806 u32 reg;
807
808 /* Enable/disable the clock to this peripheral */
809 assert(clock_periph_id_isvalid(periph_id));
810 if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
811 clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
812 else
813 clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
814 reg = readl(clk);
815 if (enable)
816 reg |= PERIPH_MASK(periph_id);
817 else
818 reg &= ~PERIPH_MASK(periph_id);
819 writel(reg, clk);
820}
821
822void clock_enable(enum periph_id clkid)
823{
824 clock_set_enable(clkid, 1);
825}
826
827void clock_disable(enum periph_id clkid)
828{
829 clock_set_enable(clkid, 0);
830}
831
832void reset_set_enable(enum periph_id periph_id, int enable)
833{
834 struct clk_rst_ctlr *clkrst =
835 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
836 u32 *reset;
837 u32 reg;
838
839 /* Enable/disable reset to the peripheral */
840 assert(clock_periph_id_isvalid(periph_id));
841 if (periph_id < PERIPH_ID_VW_FIRST)
842 reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
843 else
844 reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
845 reg = readl(reset);
846 if (enable)
847 reg |= PERIPH_MASK(periph_id);
848 else
849 reg &= ~PERIPH_MASK(periph_id);
850 writel(reg, reset);
851}
852
853void reset_periph(enum periph_id periph_id, int us_delay)
854{
855 /* Put peripheral into reset */
856 reset_set_enable(periph_id, 1);
857 udelay(us_delay);
858
859 /* Remove reset */
860 reset_set_enable(periph_id, 0);
861
862 udelay(us_delay);
863}
864
865void reset_cmplx_set_enable(int cpu, int which, int reset)
866{
867 struct clk_rst_ctlr *clkrst =
868 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
869 u32 mask;
870
871 /* Form the mask, which depends on the cpu chosen. Tegra3 has 4 */
872 assert(cpu >= 0 && cpu < 4);
873 mask = which << cpu;
874
875 /* either enable or disable those reset for that CPU */
876 if (reset)
877 writel(mask, &clkrst->crc_cpu_cmplx_set);
878 else
879 writel(mask, &clkrst->crc_cpu_cmplx_clr);
880}
881
882unsigned clock_get_rate(enum clock_id clkid)
883{
884 struct clk_pll *pll;
885 u32 base;
886 u32 divm;
887 u64 parent_rate;
888 u64 rate;
889
890 parent_rate = osc_freq[clock_get_osc_freq()];
891 if (clkid == CLOCK_ID_OSC)
892 return parent_rate;
893
894 pll = get_pll(clkid);
895 base = readl(&pll->pll_base);
896
897 /* Oh for bf_unpack()... */
898 rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
899 divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
900 if (clkid == CLOCK_ID_USB)
901 divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
902 else
903 divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
904 do_div(rate, divm);
905 return rate;
906}
907
908/**
909 * Set the output frequency you want for each PLL clock.
910 * PLL output frequencies are programmed by setting their N, M and P values.
911 * The governing equations are:
912 * VCO = (Fi / m) * n, Fo = VCO / (2^p)
913 * where Fo is the output frequency from the PLL.
914 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
915 * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
916 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
917 *
918 * @param n PLL feedback divider(DIVN)
919 * @param m PLL input divider(DIVN)
920 * @param p post divider(DIVP)
921 * @param cpcon base PLL charge pump(CPCON)
922 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
923 * be overriden), 1 if PLL is already correct
924 */
925static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
926{
927 u32 base_reg;
928 u32 misc_reg;
929 struct clk_pll *pll;
930
931 pll = get_pll(clkid);
932
933 base_reg = readl(&pll->pll_base);
934
935 /* Set BYPASS, m, n and p to PLL_BASE */
936 base_reg &= ~PLL_DIVM_MASK;
937 base_reg |= m << PLL_DIVM_SHIFT;
938
939 base_reg &= ~PLL_DIVN_MASK;
940 base_reg |= n << PLL_DIVN_SHIFT;
941
942 base_reg &= ~PLL_DIVP_MASK;
943 base_reg |= p << PLL_DIVP_SHIFT;
944
945 if (clkid == CLOCK_ID_PERIPH) {
946 /*
947 * If the PLL is already set up, check that it is correct
948 * and record this info for clock_verify() to check.
949 */
950 if (base_reg & PLL_BASE_OVRRIDE_MASK) {
951 base_reg |= PLL_ENABLE_MASK;
952 if (base_reg != readl(&pll->pll_base))
953 pllp_valid = 0;
954 return pllp_valid ? 1 : -1;
955 }
956 base_reg |= PLL_BASE_OVRRIDE_MASK;
957 }
958
959 base_reg |= PLL_BYPASS_MASK;
960 writel(base_reg, &pll->pll_base);
961
962 /* Set cpcon to PLL_MISC */
963 misc_reg = readl(&pll->pll_misc);
964 misc_reg &= ~PLL_CPCON_MASK;
965 misc_reg |= cpcon << PLL_CPCON_SHIFT;
966 writel(misc_reg, &pll->pll_misc);
967
968 /* Enable PLL */
969 base_reg |= PLL_ENABLE_MASK;
970 writel(base_reg, &pll->pll_base);
971
972 /* Disable BYPASS */
973 base_reg &= ~PLL_BYPASS_MASK;
974 writel(base_reg, &pll->pll_base);
975
976 return 0;
977}
978
979void clock_ll_start_uart(enum periph_id periph_id)
980{
981 /* Assert UART reset and enable clock */
982 reset_set_enable(periph_id, 1);
983 clock_enable(periph_id);
984 clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
985
986 /* wait for 2us */
987 udelay(2);
988
989 /* De-assert reset to UART */
990 reset_set_enable(periph_id, 0);
991}
992
993#ifdef CONFIG_OF_CONTROL
994/*
995 * Convert a device tree clock ID to our peripheral ID. They are mostly
996 * the same but we are very cautious so we check that a valid clock ID is
997 * provided.
998 *
Tom Warren619bd992012-12-21 15:02:45 -0700999 * @param clk_id Clock ID according to tegra30 device tree binding
Tom Warrenb2871032012-12-11 13:34:15 +00001000 * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
1001 */
1002static enum periph_id clk_id_to_periph_id(int clk_id)
1003{
Tom Warren619bd992012-12-21 15:02:45 -07001004 if (clk_id > PERIPH_ID_COUNT)
Tom Warrenb2871032012-12-11 13:34:15 +00001005 return PERIPH_ID_NONE;
1006
1007 switch (clk_id) {
Tom Warren619bd992012-12-21 15:02:45 -07001008 case PERIPH_ID_RESERVED3:
1009 case PERIPH_ID_RESERVED4:
1010 case PERIPH_ID_RESERVED16:
1011 case PERIPH_ID_RESERVED24:
1012 case PERIPH_ID_RESERVED35:
1013 case PERIPH_ID_RESERVED43:
1014 case PERIPH_ID_RESERVED45:
1015 case PERIPH_ID_RESERVED56:
1016 case PERIPH_ID_RESERVED76:
1017 case PERIPH_ID_RESERVED77:
1018 case PERIPH_ID_RESERVED78:
1019 case PERIPH_ID_RESERVED83:
1020 case PERIPH_ID_RESERVED89:
1021 case PERIPH_ID_RESERVED91:
1022 case PERIPH_ID_RESERVED93:
1023 case PERIPH_ID_RESERVED94:
1024 case PERIPH_ID_RESERVED95:
Tom Warrenb2871032012-12-11 13:34:15 +00001025 return PERIPH_ID_NONE;
1026 default:
1027 return clk_id;
1028 }
1029}
1030
1031int clock_decode_periph_id(const void *blob, int node)
1032{
1033 enum periph_id id;
1034 u32 cell[2];
1035 int err;
1036
1037 err = fdtdec_get_int_array(blob, node, "clocks", cell,
1038 ARRAY_SIZE(cell));
1039 if (err)
1040 return -1;
1041 id = clk_id_to_periph_id(cell[1]);
1042 assert(clock_periph_id_isvalid(id));
1043 return id;
1044}
1045#endif /* CONFIG_OF_CONTROL */
1046
1047int clock_verify(void)
1048{
1049 struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
1050 u32 reg = readl(&pll->pll_base);
1051
1052 if (!pllp_valid) {
1053 printf("Warning: PLLP %x is not correct\n", reg);
1054 return -1;
1055 }
1056 debug("PLLP %x is correct\n", reg);
1057 return 0;
1058}
1059
1060void clock_early_init(void)
1061{
1062 /*
1063 * PLLP output frequency set to 408Mhz
1064 * PLLC output frequency set to 228Mhz
1065 */
1066 switch (clock_get_osc_freq()) {
1067 case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
1068 clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
1069 clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
1070 break;
1071
1072 case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
1073 clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
1074 clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
1075 break;
1076
1077 case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
1078 clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
1079 clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
1080 break;
1081 case CLOCK_OSC_FREQ_19_2:
1082 default:
1083 /*
1084 * These are not supported. It is too early to print a
1085 * message and the UART likely won't work anyway due to the
1086 * oscillator being wrong.
1087 */
1088 break;
1089 }
1090}
1091
1092void clock_init(void)
1093{
1094 pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
1095 pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
1096 pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
1097 pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
1098 pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
1099 debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
1100 debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
1101 debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
1102}