blob: 6835f86fec738ead9e737492b827565b35b1fbec [file] [log] [blame]
Tom Rini83d290c2018-05-06 17:58:06 -04001// SPDX-License-Identifier: GPL-2.0+
Stefan Roese9eefe2a2009-03-19 15:35:05 +01002/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
Stefan Roese9eefe2a2009-03-19 15:35:05 +01007 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
Alexey Brodkinf8c987f2018-06-05 17:17:57 +030018#include <hexdump.h>
Simon Glass61b29b82020-02-03 07:36:15 -070019#include <dm/devres.h>
Alexey Brodkinf8c987f2018-06-05 17:17:57 +030020
Heiko Schocherff94bc42014-06-24 10:10:04 +020021#ifndef __UBOOT__
22#include <linux/module.h>
23#include <linux/debugfs.h>
24#include <linux/math64.h>
25#include <linux/uaccess.h>
26#include <linux/random.h>
27#else
28#include <linux/compat.h>
29#include <linux/err.h>
30#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010031#include "ubifs.h"
32
Heiko Schocherff94bc42014-06-24 10:10:04 +020033#ifndef __UBOOT__
34static DEFINE_SPINLOCK(dbg_lock);
35#endif
Stefan Roese9eefe2a2009-03-19 15:35:05 +010036
Heiko Schocherff94bc42014-06-24 10:10:04 +020037static const char *get_key_fmt(int fmt)
38{
39 switch (fmt) {
40 case UBIFS_SIMPLE_KEY_FMT:
41 return "simple";
42 default:
43 return "unknown/invalid format";
44 }
45}
Stefan Roese9eefe2a2009-03-19 15:35:05 +010046
Heiko Schocherff94bc42014-06-24 10:10:04 +020047static const char *get_key_hash(int hash)
48{
49 switch (hash) {
50 case UBIFS_KEY_HASH_R5:
51 return "R5";
52 case UBIFS_KEY_HASH_TEST:
53 return "test";
54 default:
55 return "unknown/invalid name hash";
56 }
57}
Stefan Roese9eefe2a2009-03-19 15:35:05 +010058
59static const char *get_key_type(int type)
60{
61 switch (type) {
62 case UBIFS_INO_KEY:
63 return "inode";
64 case UBIFS_DENT_KEY:
65 return "direntry";
66 case UBIFS_XENT_KEY:
67 return "xentry";
68 case UBIFS_DATA_KEY:
69 return "data";
70 case UBIFS_TRUN_KEY:
71 return "truncate";
72 default:
73 return "unknown/invalid key";
74 }
75}
76
Heiko Schocherff94bc42014-06-24 10:10:04 +020077#ifndef __UBOOT__
78static const char *get_dent_type(int type)
79{
80 switch (type) {
81 case UBIFS_ITYPE_REG:
82 return "file";
83 case UBIFS_ITYPE_DIR:
84 return "dir";
85 case UBIFS_ITYPE_LNK:
86 return "symlink";
87 case UBIFS_ITYPE_BLK:
88 return "blkdev";
89 case UBIFS_ITYPE_CHR:
90 return "char dev";
91 case UBIFS_ITYPE_FIFO:
92 return "fifo";
93 case UBIFS_ITYPE_SOCK:
94 return "socket";
95 default:
96 return "unknown/invalid type";
97 }
98}
99#endif
100
101const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100103{
104 char *p = buffer;
105 int type = key_type(c, key);
106
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100119 break;
120 case UBIFS_DATA_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100124 break;
125 case UBIFS_TRUN_KEY:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100129 break;
130 default:
Heiko Schocherff94bc42014-06-24 10:10:04 +0200131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100133 }
134 } else
Heiko Schocherff94bc42014-06-24 10:10:04 +0200135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100138}
139
Heiko Schocherff94bc42014-06-24 10:10:04 +0200140const char *dbg_ntype(int type)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100141{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
169 }
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100170}
171
Heiko Schocherff94bc42014-06-24 10:10:04 +0200172static const char *dbg_gtype(int type)
Stefan Roese9eefe2a2009-03-19 15:35:05 +0100173{
Heiko Schocherff94bc42014-06-24 10:10:04 +0200174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
183 }
184}
185
186const char *dbg_cstate(int cmt_state)
187{
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
203 }
204}
205
206const char *dbg_jhead(int jhead)
207{
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
217 }
218}
219
220static void dump_ch(const struct ubifs_ch *ch)
221{
222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
224 pr_err("\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 pr_err("\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
231}
232
233void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234{
235#ifndef __UBOOT__
236 const struct ubifs_inode *ui = ubifs_inode(inode);
237 struct qstr nm = { .name = NULL };
238 union ubifs_key key;
239 struct ubifs_dent_node *dent, *pdent = NULL;
240 int count = 2;
241
242 pr_err("Dump in-memory inode:");
243 pr_err("\tinode %lu\n", inode->i_ino);
244 pr_err("\tsize %llu\n",
245 (unsigned long long)i_size_read(inode));
246 pr_err("\tnlink %u\n", inode->i_nlink);
247 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
248 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
249 pr_err("\tatime %u.%u\n",
250 (unsigned int)inode->i_atime.tv_sec,
251 (unsigned int)inode->i_atime.tv_nsec);
252 pr_err("\tmtime %u.%u\n",
253 (unsigned int)inode->i_mtime.tv_sec,
254 (unsigned int)inode->i_mtime.tv_nsec);
255 pr_err("\tctime %u.%u\n",
256 (unsigned int)inode->i_ctime.tv_sec,
257 (unsigned int)inode->i_ctime.tv_nsec);
258 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
259 pr_err("\txattr_size %u\n", ui->xattr_size);
260 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
261 pr_err("\txattr_names %u\n", ui->xattr_names);
262 pr_err("\tdirty %u\n", ui->dirty);
263 pr_err("\txattr %u\n", ui->xattr);
264 pr_err("\tbulk_read %u\n", ui->xattr);
265 pr_err("\tsynced_i_size %llu\n",
266 (unsigned long long)ui->synced_i_size);
267 pr_err("\tui_size %llu\n",
268 (unsigned long long)ui->ui_size);
269 pr_err("\tflags %d\n", ui->flags);
270 pr_err("\tcompr_type %d\n", ui->compr_type);
271 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
273 pr_err("\tdata_len %d\n", ui->data_len);
274
275 if (!S_ISDIR(inode->i_mode))
276 return;
277
278 pr_err("List of directory entries:\n");
279 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280
281 lowest_dent_key(c, &key, inode->i_ino);
282 while (1) {
283 dent = ubifs_tnc_next_ent(c, &key, &nm);
284 if (IS_ERR(dent)) {
285 if (PTR_ERR(dent) != -ENOENT)
286 pr_err("error %ld\n", PTR_ERR(dent));
287 break;
288 }
289
290 pr_err("\t%d: %s (%s)\n",
291 count++, dent->name, get_dent_type(dent->type));
292
293 nm.name = dent->name;
294 nm.len = le16_to_cpu(dent->nlen);
295 kfree(pdent);
296 pdent = dent;
297 key_read(c, &dent->key, &key);
298 }
299 kfree(pdent);
300#endif
301}
302
303void ubifs_dump_node(const struct ubifs_info *c, const void *node)
304{
305 int i, n;
306 union ubifs_key key;
307 const struct ubifs_ch *ch = node;
308 char key_buf[DBG_KEY_BUF_LEN];
309
310 /* If the magic is incorrect, just hexdump the first bytes */
311 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
312 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
Alexey Brodkinf8c987f2018-06-05 17:17:57 +0300313 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200314 (void *)node, UBIFS_CH_SZ, 1);
315 return;
316 }
317
318 spin_lock(&dbg_lock);
319 dump_ch(node);
320
321 switch (ch->node_type) {
322 case UBIFS_PAD_NODE:
323 {
324 const struct ubifs_pad_node *pad = node;
325
326 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
327 break;
328 }
329 case UBIFS_SB_NODE:
330 {
331 const struct ubifs_sb_node *sup = node;
332 unsigned int sup_flags = le32_to_cpu(sup->flags);
333
334 pr_err("\tkey_hash %d (%s)\n",
335 (int)sup->key_hash, get_key_hash(sup->key_hash));
336 pr_err("\tkey_fmt %d (%s)\n",
337 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
338 pr_err("\tflags %#x\n", sup_flags);
Heiko Schocher0195a7b2015-10-22 06:19:21 +0200339 pr_err("\tbig_lpt %u\n",
Heiko Schocherff94bc42014-06-24 10:10:04 +0200340 !!(sup_flags & UBIFS_FLG_BIGLPT));
Heiko Schocher0195a7b2015-10-22 06:19:21 +0200341 pr_err("\tspace_fixup %u\n",
Heiko Schocherff94bc42014-06-24 10:10:04 +0200342 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
343 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
344 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
345 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
346 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
347 pr_err("\tmax_bud_bytes %llu\n",
348 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
349 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
350 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
351 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
352 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
353 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
354 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
355 pr_err("\tdefault_compr %u\n",
356 (int)le16_to_cpu(sup->default_compr));
357 pr_err("\trp_size %llu\n",
358 (unsigned long long)le64_to_cpu(sup->rp_size));
359 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
360 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
361 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
362 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
363 pr_err("\tUUID %pUB\n", sup->uuid);
364 break;
365 }
366 case UBIFS_MST_NODE:
367 {
368 const struct ubifs_mst_node *mst = node;
369
370 pr_err("\thighest_inum %llu\n",
371 (unsigned long long)le64_to_cpu(mst->highest_inum));
372 pr_err("\tcommit number %llu\n",
373 (unsigned long long)le64_to_cpu(mst->cmt_no));
374 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
375 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
376 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
377 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
378 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
379 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
380 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
381 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
382 pr_err("\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst->index_size));
384 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
385 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
386 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
387 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
388 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
389 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
390 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
391 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
392 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
393 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
394 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
395 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
396 pr_err("\ttotal_free %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_free));
398 pr_err("\ttotal_dirty %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_dirty));
400 pr_err("\ttotal_used %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_used));
402 pr_err("\ttotal_dead %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dead));
404 pr_err("\ttotal_dark %llu\n",
405 (unsigned long long)le64_to_cpu(mst->total_dark));
406 break;
407 }
408 case UBIFS_REF_NODE:
409 {
410 const struct ubifs_ref_node *ref = node;
411
412 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
413 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
414 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
415 break;
416 }
417 case UBIFS_INO_NODE:
418 {
419 const struct ubifs_ino_node *ino = node;
420
421 key_read(c, &ino->key, &key);
422 pr_err("\tkey %s\n",
423 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
424 pr_err("\tcreat_sqnum %llu\n",
425 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
426 pr_err("\tsize %llu\n",
427 (unsigned long long)le64_to_cpu(ino->size));
428 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
429 pr_err("\tatime %lld.%u\n",
430 (long long)le64_to_cpu(ino->atime_sec),
431 le32_to_cpu(ino->atime_nsec));
432 pr_err("\tmtime %lld.%u\n",
433 (long long)le64_to_cpu(ino->mtime_sec),
434 le32_to_cpu(ino->mtime_nsec));
435 pr_err("\tctime %lld.%u\n",
436 (long long)le64_to_cpu(ino->ctime_sec),
437 le32_to_cpu(ino->ctime_nsec));
438 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
439 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
440 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
441 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
442 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
443 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
444 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
445 pr_err("\tcompr_type %#x\n",
446 (int)le16_to_cpu(ino->compr_type));
447 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
448 break;
449 }
450 case UBIFS_DENT_NODE:
451 case UBIFS_XENT_NODE:
452 {
453 const struct ubifs_dent_node *dent = node;
454 int nlen = le16_to_cpu(dent->nlen);
455
456 key_read(c, &dent->key, &key);
457 pr_err("\tkey %s\n",
458 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
459 pr_err("\tinum %llu\n",
460 (unsigned long long)le64_to_cpu(dent->inum));
461 pr_err("\ttype %d\n", (int)dent->type);
462 pr_err("\tnlen %d\n", nlen);
463 pr_err("\tname ");
464
465 if (nlen > UBIFS_MAX_NLEN)
466 pr_err("(bad name length, not printing, bad or corrupted node)");
467 else {
468 for (i = 0; i < nlen && dent->name[i]; i++)
469 pr_cont("%c", dent->name[i]);
470 }
471 pr_cont("\n");
472
473 break;
474 }
475 case UBIFS_DATA_NODE:
476 {
477 const struct ubifs_data_node *dn = node;
478 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
479
480 key_read(c, &dn->key, &key);
481 pr_err("\tkey %s\n",
482 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
483 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
484 pr_err("\tcompr_typ %d\n",
485 (int)le16_to_cpu(dn->compr_type));
486 pr_err("\tdata size %d\n", dlen);
487 pr_err("\tdata:\n");
Alexey Brodkinf8c987f2018-06-05 17:17:57 +0300488 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
Heiko Schocherff94bc42014-06-24 10:10:04 +0200489 (void *)&dn->data, dlen, 0);
490 break;
491 }
492 case UBIFS_TRUN_NODE:
493 {
494 const struct ubifs_trun_node *trun = node;
495
496 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
497 pr_err("\told_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->old_size));
499 pr_err("\tnew_size %llu\n",
500 (unsigned long long)le64_to_cpu(trun->new_size));
501 break;
502 }
503 case UBIFS_IDX_NODE:
504 {
505 const struct ubifs_idx_node *idx = node;
506
507 n = le16_to_cpu(idx->child_cnt);
508 pr_err("\tchild_cnt %d\n", n);
509 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
510 pr_err("\tBranches:\n");
511
512 for (i = 0; i < n && i < c->fanout - 1; i++) {
513 const struct ubifs_branch *br;
514
515 br = ubifs_idx_branch(c, idx, i);
516 key_read(c, &br->key, &key);
517 pr_err("\t%d: LEB %d:%d len %d key %s\n",
518 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
519 le32_to_cpu(br->len),
520 dbg_snprintf_key(c, &key, key_buf,
521 DBG_KEY_BUF_LEN));
522 }
523 break;
524 }
525 case UBIFS_CS_NODE:
526 break;
527 case UBIFS_ORPH_NODE:
528 {
529 const struct ubifs_orph_node *orph = node;
530
531 pr_err("\tcommit number %llu\n",
532 (unsigned long long)
533 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
534 pr_err("\tlast node flag %llu\n",
535 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
536 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
537 pr_err("\t%d orphan inode numbers:\n", n);
538 for (i = 0; i < n; i++)
539 pr_err("\t ino %llu\n",
540 (unsigned long long)le64_to_cpu(orph->inos[i]));
541 break;
542 }
543 default:
544 pr_err("node type %d was not recognized\n",
545 (int)ch->node_type);
546 }
547 spin_unlock(&dbg_lock);
548}
549
550void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
551{
552 spin_lock(&dbg_lock);
553 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
554 req->new_ino, req->dirtied_ino);
555 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
556 req->new_ino_d, req->dirtied_ino_d);
557 pr_err("\tnew_page %d, dirtied_page %d\n",
558 req->new_page, req->dirtied_page);
559 pr_err("\tnew_dent %d, mod_dent %d\n",
560 req->new_dent, req->mod_dent);
561 pr_err("\tidx_growth %d\n", req->idx_growth);
562 pr_err("\tdata_growth %d dd_growth %d\n",
563 req->data_growth, req->dd_growth);
564 spin_unlock(&dbg_lock);
565}
566
567void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
568{
569 spin_lock(&dbg_lock);
570 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
571 current->pid, lst->empty_lebs, lst->idx_lebs);
572 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
573 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
574 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
575 lst->total_used, lst->total_dark, lst->total_dead);
576 spin_unlock(&dbg_lock);
577}
578
579#ifndef __UBOOT__
580void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
581{
582 int i;
583 struct rb_node *rb;
584 struct ubifs_bud *bud;
585 struct ubifs_gced_idx_leb *idx_gc;
586 long long available, outstanding, free;
587
588 spin_lock(&c->space_lock);
589 spin_lock(&dbg_lock);
590 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
591 current->pid, bi->data_growth + bi->dd_growth,
592 bi->data_growth + bi->dd_growth + bi->idx_growth);
593 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
594 bi->data_growth, bi->dd_growth, bi->idx_growth);
595 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
596 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
597 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
598 bi->page_budget, bi->inode_budget, bi->dent_budget);
599 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
600 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
601 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
602
603 if (bi != &c->bi)
604 /*
605 * If we are dumping saved budgeting data, do not print
606 * additional information which is about the current state, not
607 * the old one which corresponded to the saved budgeting data.
608 */
609 goto out_unlock;
610
611 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
612 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
613 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
614 atomic_long_read(&c->dirty_pg_cnt),
615 atomic_long_read(&c->dirty_zn_cnt),
616 atomic_long_read(&c->clean_zn_cnt));
617 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
618
619 /* If we are in R/O mode, journal heads do not exist */
620 if (c->jheads)
621 for (i = 0; i < c->jhead_cnt; i++)
622 pr_err("\tjhead %s\t LEB %d\n",
623 dbg_jhead(c->jheads[i].wbuf.jhead),
624 c->jheads[i].wbuf.lnum);
625 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
626 bud = rb_entry(rb, struct ubifs_bud, rb);
627 pr_err("\tbud LEB %d\n", bud->lnum);
628 }
629 list_for_each_entry(bud, &c->old_buds, list)
630 pr_err("\told bud LEB %d\n", bud->lnum);
631 list_for_each_entry(idx_gc, &c->idx_gc, list)
632 pr_err("\tGC'ed idx LEB %d unmap %d\n",
633 idx_gc->lnum, idx_gc->unmap);
634 pr_err("\tcommit state %d\n", c->cmt_state);
635
636 /* Print budgeting predictions */
637 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
638 outstanding = c->bi.data_growth + c->bi.dd_growth;
639 free = ubifs_get_free_space_nolock(c);
640 pr_err("Budgeting predictions:\n");
641 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
642 available, outstanding, free);
643out_unlock:
644 spin_unlock(&dbg_lock);
645 spin_unlock(&c->space_lock);
646}
647#else
648void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
649{
650}
651#endif
652
653void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
654{
655 int i, spc, dark = 0, dead = 0;
656 struct rb_node *rb;
657 struct ubifs_bud *bud;
658
659 spc = lp->free + lp->dirty;
660 if (spc < c->dead_wm)
661 dead = spc;
662 else
663 dark = ubifs_calc_dark(c, spc);
664
665 if (lp->flags & LPROPS_INDEX)
666 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
667 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668 lp->flags);
669 else
670 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
671 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
672 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
673
674 if (lp->flags & LPROPS_TAKEN) {
675 if (lp->flags & LPROPS_INDEX)
676 pr_cont("index, taken");
677 else
678 pr_cont("taken");
679 } else {
680 const char *s;
681
682 if (lp->flags & LPROPS_INDEX) {
683 switch (lp->flags & LPROPS_CAT_MASK) {
684 case LPROPS_DIRTY_IDX:
685 s = "dirty index";
686 break;
687 case LPROPS_FRDI_IDX:
688 s = "freeable index";
689 break;
690 default:
691 s = "index";
692 }
693 } else {
694 switch (lp->flags & LPROPS_CAT_MASK) {
695 case LPROPS_UNCAT:
696 s = "not categorized";
697 break;
698 case LPROPS_DIRTY:
699 s = "dirty";
700 break;
701 case LPROPS_FREE:
702 s = "free";
703 break;
704 case LPROPS_EMPTY:
705 s = "empty";
706 break;
707 case LPROPS_FREEABLE:
708 s = "freeable";
709 break;
710 default:
711 s = NULL;
712 break;
713 }
714 }
715 pr_cont("%s", s);
716 }
717
718 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
719 bud = rb_entry(rb, struct ubifs_bud, rb);
720 if (bud->lnum == lp->lnum) {
721 int head = 0;
722 for (i = 0; i < c->jhead_cnt; i++) {
723 /*
724 * Note, if we are in R/O mode or in the middle
725 * of mounting/re-mounting, the write-buffers do
726 * not exist.
727 */
728 if (c->jheads &&
729 lp->lnum == c->jheads[i].wbuf.lnum) {
730 pr_cont(", jhead %s", dbg_jhead(i));
731 head = 1;
732 }
733 }
734 if (!head)
735 pr_cont(", bud of jhead %s",
736 dbg_jhead(bud->jhead));
737 }
738 }
739 if (lp->lnum == c->gc_lnum)
740 pr_cont(", GC LEB");
741 pr_cont(")\n");
742}
743
744void ubifs_dump_lprops(struct ubifs_info *c)
745{
746 int lnum, err;
747 struct ubifs_lprops lp;
748 struct ubifs_lp_stats lst;
749
750 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
751 ubifs_get_lp_stats(c, &lst);
752 ubifs_dump_lstats(&lst);
753
754 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
755 err = ubifs_read_one_lp(c, lnum, &lp);
Heiko Schocher0195a7b2015-10-22 06:19:21 +0200756 if (err) {
757 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
758 continue;
759 }
Heiko Schocherff94bc42014-06-24 10:10:04 +0200760
761 ubifs_dump_lprop(c, &lp);
762 }
763 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
764}
765
766void ubifs_dump_lpt_info(struct ubifs_info *c)
767{
768 int i;
769
770 spin_lock(&dbg_lock);
771 pr_err("(pid %d) dumping LPT information\n", current->pid);
772 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
773 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
774 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
775 pr_err("\tltab_sz: %d\n", c->ltab_sz);
776 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
777 pr_err("\tbig_lpt: %d\n", c->big_lpt);
778 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
779 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
780 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
781 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
782 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
783 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
784 pr_err("\tspace_bits: %d\n", c->space_bits);
785 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
786 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
787 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
788 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
789 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
790 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
791 pr_err("\tLPT head is at %d:%d\n",
792 c->nhead_lnum, c->nhead_offs);
793 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
794 if (c->big_lpt)
795 pr_err("\tLPT lsave is at %d:%d\n",
796 c->lsave_lnum, c->lsave_offs);
797 for (i = 0; i < c->lpt_lebs; i++)
798 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
799 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
800 c->ltab[i].tgc, c->ltab[i].cmt);
801 spin_unlock(&dbg_lock);
802}
803
804void ubifs_dump_sleb(const struct ubifs_info *c,
805 const struct ubifs_scan_leb *sleb, int offs)
806{
807 struct ubifs_scan_node *snod;
808
809 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
810 current->pid, sleb->lnum, offs);
811
812 list_for_each_entry(snod, &sleb->nodes, list) {
813 cond_resched();
814 pr_err("Dumping node at LEB %d:%d len %d\n",
815 sleb->lnum, snod->offs, snod->len);
816 ubifs_dump_node(c, snod->node);
817 }
818}
819
820void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
821{
822 struct ubifs_scan_leb *sleb;
823 struct ubifs_scan_node *snod;
824 void *buf;
825
826 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
827
828 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
829 if (!buf) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +0200830 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +0200831 return;
832 }
833
834 sleb = ubifs_scan(c, lnum, 0, buf, 0);
835 if (IS_ERR(sleb)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +0200836 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
Heiko Schocherff94bc42014-06-24 10:10:04 +0200837 goto out;
838 }
839
840 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
841 sleb->nodes_cnt, sleb->endpt);
842
843 list_for_each_entry(snod, &sleb->nodes, list) {
844 cond_resched();
845 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
846 snod->offs, snod->len);
847 ubifs_dump_node(c, snod->node);
848 }
849
850 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
851 ubifs_scan_destroy(sleb);
852
853out:
854 vfree(buf);
855 return;
856}
857
858void ubifs_dump_znode(const struct ubifs_info *c,
859 const struct ubifs_znode *znode)
860{
861 int n;
862 const struct ubifs_zbranch *zbr;
863 char key_buf[DBG_KEY_BUF_LEN];
864
865 spin_lock(&dbg_lock);
866 if (znode->parent)
867 zbr = &znode->parent->zbranch[znode->iip];
868 else
869 zbr = &c->zroot;
870
871 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
872 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
873 znode->level, znode->child_cnt, znode->flags);
874
875 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
876 spin_unlock(&dbg_lock);
877 return;
878 }
879
880 pr_err("zbranches:\n");
881 for (n = 0; n < znode->child_cnt; n++) {
882 zbr = &znode->zbranch[n];
883 if (znode->level > 0)
884 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
885 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
886 dbg_snprintf_key(c, &zbr->key, key_buf,
887 DBG_KEY_BUF_LEN));
888 else
889 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
890 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
891 dbg_snprintf_key(c, &zbr->key, key_buf,
892 DBG_KEY_BUF_LEN));
893 }
894 spin_unlock(&dbg_lock);
895}
896
897void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
898{
899 int i;
900
901 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
902 current->pid, cat, heap->cnt);
903 for (i = 0; i < heap->cnt; i++) {
904 struct ubifs_lprops *lprops = heap->arr[i];
905
906 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
907 i, lprops->lnum, lprops->hpos, lprops->free,
908 lprops->dirty, lprops->flags);
909 }
910 pr_err("(pid %d) finish dumping heap\n", current->pid);
911}
912
913void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
914 struct ubifs_nnode *parent, int iip)
915{
916 int i;
917
918 pr_err("(pid %d) dumping pnode:\n", current->pid);
919 pr_err("\taddress %zx parent %zx cnext %zx\n",
920 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
921 pr_err("\tflags %lu iip %d level %d num %d\n",
922 pnode->flags, iip, pnode->level, pnode->num);
923 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
924 struct ubifs_lprops *lp = &pnode->lprops[i];
925
926 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
927 i, lp->free, lp->dirty, lp->flags, lp->lnum);
928 }
929}
930
931void ubifs_dump_tnc(struct ubifs_info *c)
932{
933 struct ubifs_znode *znode;
934 int level;
935
936 pr_err("\n");
937 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
938 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
939 level = znode->level;
940 pr_err("== Level %d ==\n", level);
941 while (znode) {
942 if (level != znode->level) {
943 level = znode->level;
944 pr_err("== Level %d ==\n", level);
945 }
946 ubifs_dump_znode(c, znode);
947 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
948 }
949 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
950}
951
952static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
953 void *priv)
954{
955 ubifs_dump_znode(c, znode);
956 return 0;
957}
958
959/**
960 * ubifs_dump_index - dump the on-flash index.
961 * @c: UBIFS file-system description object
962 *
963 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
964 * which dumps only in-memory znodes and does not read znodes which from flash.
965 */
966void ubifs_dump_index(struct ubifs_info *c)
967{
968 dbg_walk_index(c, NULL, dump_znode, NULL);
969}
970
971#ifndef __UBOOT__
972/**
973 * dbg_save_space_info - save information about flash space.
974 * @c: UBIFS file-system description object
975 *
976 * This function saves information about UBIFS free space, dirty space, etc, in
977 * order to check it later.
978 */
979void dbg_save_space_info(struct ubifs_info *c)
980{
981 struct ubifs_debug_info *d = c->dbg;
982 int freeable_cnt;
983
984 spin_lock(&c->space_lock);
985 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
986 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
987 d->saved_idx_gc_cnt = c->idx_gc_cnt;
988
989 /*
990 * We use a dirty hack here and zero out @c->freeable_cnt, because it
991 * affects the free space calculations, and UBIFS might not know about
992 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
993 * only when we read their lprops, and we do this only lazily, upon the
994 * need. So at any given point of time @c->freeable_cnt might be not
995 * exactly accurate.
996 *
997 * Just one example about the issue we hit when we did not zero
998 * @c->freeable_cnt.
999 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1000 * amount of free space in @d->saved_free
1001 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1002 * information from flash, where we cache LEBs from various
1003 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1004 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1005 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1006 * -> 'ubifs_add_to_cat()').
1007 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1008 * becomes %1.
1009 * 4. We calculate the amount of free space when the re-mount is
1010 * finished in 'dbg_check_space_info()' and it does not match
1011 * @d->saved_free.
1012 */
1013 freeable_cnt = c->freeable_cnt;
1014 c->freeable_cnt = 0;
1015 d->saved_free = ubifs_get_free_space_nolock(c);
1016 c->freeable_cnt = freeable_cnt;
1017 spin_unlock(&c->space_lock);
1018}
1019
1020/**
1021 * dbg_check_space_info - check flash space information.
1022 * @c: UBIFS file-system description object
1023 *
1024 * This function compares current flash space information with the information
1025 * which was saved when the 'dbg_save_space_info()' function was called.
1026 * Returns zero if the information has not changed, and %-EINVAL it it has
1027 * changed.
1028 */
1029int dbg_check_space_info(struct ubifs_info *c)
1030{
1031 struct ubifs_debug_info *d = c->dbg;
1032 struct ubifs_lp_stats lst;
1033 long long free;
1034 int freeable_cnt;
1035
1036 spin_lock(&c->space_lock);
1037 freeable_cnt = c->freeable_cnt;
1038 c->freeable_cnt = 0;
1039 free = ubifs_get_free_space_nolock(c);
1040 c->freeable_cnt = freeable_cnt;
1041 spin_unlock(&c->space_lock);
1042
1043 if (free != d->saved_free) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001044 ubifs_err(c, "free space changed from %lld to %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001045 d->saved_free, free);
1046 goto out;
1047 }
1048
1049 return 0;
1050
1051out:
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001052 ubifs_msg(c, "saved lprops statistics dump");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001053 ubifs_dump_lstats(&d->saved_lst);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001054 ubifs_msg(c, "saved budgeting info dump");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001055 ubifs_dump_budg(c, &d->saved_bi);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001056 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1057 ubifs_msg(c, "current lprops statistics dump");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001058 ubifs_get_lp_stats(c, &lst);
1059 ubifs_dump_lstats(&lst);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001060 ubifs_msg(c, "current budgeting info dump");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001061 ubifs_dump_budg(c, &c->bi);
1062 dump_stack();
1063 return -EINVAL;
1064}
1065
1066/**
1067 * dbg_check_synced_i_size - check synchronized inode size.
1068 * @c: UBIFS file-system description object
1069 * @inode: inode to check
1070 *
1071 * If inode is clean, synchronized inode size has to be equivalent to current
1072 * inode size. This function has to be called only for locked inodes (@i_mutex
1073 * has to be locked). Returns %0 if synchronized inode size if correct, and
1074 * %-EINVAL if not.
1075 */
1076int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1077{
1078 int err = 0;
1079 struct ubifs_inode *ui = ubifs_inode(inode);
1080
1081 if (!dbg_is_chk_gen(c))
1082 return 0;
1083 if (!S_ISREG(inode->i_mode))
1084 return 0;
1085
1086 mutex_lock(&ui->ui_mutex);
1087 spin_lock(&ui->ui_lock);
1088 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001089 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001090 ui->ui_size, ui->synced_i_size);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001091 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
Heiko Schocherff94bc42014-06-24 10:10:04 +02001092 inode->i_mode, i_size_read(inode));
1093 dump_stack();
1094 err = -EINVAL;
1095 }
1096 spin_unlock(&ui->ui_lock);
1097 mutex_unlock(&ui->ui_mutex);
1098 return err;
1099}
1100
1101/*
1102 * dbg_check_dir - check directory inode size and link count.
1103 * @c: UBIFS file-system description object
1104 * @dir: the directory to calculate size for
1105 * @size: the result is returned here
1106 *
1107 * This function makes sure that directory size and link count are correct.
1108 * Returns zero in case of success and a negative error code in case of
1109 * failure.
1110 *
1111 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1112 * calling this function.
1113 */
1114int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1115{
1116 unsigned int nlink = 2;
1117 union ubifs_key key;
1118 struct ubifs_dent_node *dent, *pdent = NULL;
1119 struct qstr nm = { .name = NULL };
1120 loff_t size = UBIFS_INO_NODE_SZ;
1121
1122 if (!dbg_is_chk_gen(c))
1123 return 0;
1124
1125 if (!S_ISDIR(dir->i_mode))
1126 return 0;
1127
1128 lowest_dent_key(c, &key, dir->i_ino);
1129 while (1) {
1130 int err;
1131
1132 dent = ubifs_tnc_next_ent(c, &key, &nm);
1133 if (IS_ERR(dent)) {
1134 err = PTR_ERR(dent);
1135 if (err == -ENOENT)
1136 break;
1137 return err;
1138 }
1139
1140 nm.name = dent->name;
1141 nm.len = le16_to_cpu(dent->nlen);
1142 size += CALC_DENT_SIZE(nm.len);
1143 if (dent->type == UBIFS_ITYPE_DIR)
1144 nlink += 1;
1145 kfree(pdent);
1146 pdent = dent;
1147 key_read(c, &dent->key, &key);
1148 }
1149 kfree(pdent);
1150
1151 if (i_size_read(dir) != size) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001152 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001153 dir->i_ino, (unsigned long long)i_size_read(dir),
1154 (unsigned long long)size);
1155 ubifs_dump_inode(c, dir);
1156 dump_stack();
1157 return -EINVAL;
1158 }
1159 if (dir->i_nlink != nlink) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001160 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001161 dir->i_ino, dir->i_nlink, nlink);
1162 ubifs_dump_inode(c, dir);
1163 dump_stack();
1164 return -EINVAL;
1165 }
1166
1167 return 0;
1168}
1169
1170/**
1171 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1172 * @c: UBIFS file-system description object
1173 * @zbr1: first zbranch
1174 * @zbr2: following zbranch
1175 *
1176 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1177 * names of the direntries/xentries which are referred by the keys. This
1178 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1179 * sure the name of direntry/xentry referred by @zbr1 is less than
1180 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1181 * and a negative error code in case of failure.
1182 */
1183static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1184 struct ubifs_zbranch *zbr2)
1185{
1186 int err, nlen1, nlen2, cmp;
1187 struct ubifs_dent_node *dent1, *dent2;
1188 union ubifs_key key;
1189 char key_buf[DBG_KEY_BUF_LEN];
1190
1191 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1192 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1193 if (!dent1)
1194 return -ENOMEM;
1195 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1196 if (!dent2) {
1197 err = -ENOMEM;
1198 goto out_free;
1199 }
1200
1201 err = ubifs_tnc_read_node(c, zbr1, dent1);
1202 if (err)
1203 goto out_free;
1204 err = ubifs_validate_entry(c, dent1);
1205 if (err)
1206 goto out_free;
1207
1208 err = ubifs_tnc_read_node(c, zbr2, dent2);
1209 if (err)
1210 goto out_free;
1211 err = ubifs_validate_entry(c, dent2);
1212 if (err)
1213 goto out_free;
1214
1215 /* Make sure node keys are the same as in zbranch */
1216 err = 1;
1217 key_read(c, &dent1->key, &key);
1218 if (keys_cmp(c, &zbr1->key, &key)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001219 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
Heiko Schocherff94bc42014-06-24 10:10:04 +02001220 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1221 DBG_KEY_BUF_LEN));
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001222 ubifs_err(c, "but it should have key %s according to tnc",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001223 dbg_snprintf_key(c, &zbr1->key, key_buf,
1224 DBG_KEY_BUF_LEN));
1225 ubifs_dump_node(c, dent1);
1226 goto out_free;
1227 }
1228
1229 key_read(c, &dent2->key, &key);
1230 if (keys_cmp(c, &zbr2->key, &key)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001231 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
Heiko Schocherff94bc42014-06-24 10:10:04 +02001232 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1233 DBG_KEY_BUF_LEN));
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001234 ubifs_err(c, "but it should have key %s according to tnc",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001235 dbg_snprintf_key(c, &zbr2->key, key_buf,
1236 DBG_KEY_BUF_LEN));
1237 ubifs_dump_node(c, dent2);
1238 goto out_free;
1239 }
1240
1241 nlen1 = le16_to_cpu(dent1->nlen);
1242 nlen2 = le16_to_cpu(dent2->nlen);
1243
1244 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1245 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1246 err = 0;
1247 goto out_free;
1248 }
1249 if (cmp == 0 && nlen1 == nlen2)
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001250 ubifs_err(c, "2 xent/dent nodes with the same name");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001251 else
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001252 ubifs_err(c, "bad order of colliding key %s",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001253 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1254
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001255 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001256 ubifs_dump_node(c, dent1);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001257 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001258 ubifs_dump_node(c, dent2);
1259
1260out_free:
1261 kfree(dent2);
1262 kfree(dent1);
1263 return err;
1264}
1265
1266/**
1267 * dbg_check_znode - check if znode is all right.
1268 * @c: UBIFS file-system description object
1269 * @zbr: zbranch which points to this znode
1270 *
1271 * This function makes sure that znode referred to by @zbr is all right.
1272 * Returns zero if it is, and %-EINVAL if it is not.
1273 */
1274static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1275{
1276 struct ubifs_znode *znode = zbr->znode;
1277 struct ubifs_znode *zp = znode->parent;
1278 int n, err, cmp;
1279
1280 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1281 err = 1;
1282 goto out;
1283 }
1284 if (znode->level < 0) {
1285 err = 2;
1286 goto out;
1287 }
1288 if (znode->iip < 0 || znode->iip >= c->fanout) {
1289 err = 3;
1290 goto out;
1291 }
1292
1293 if (zbr->len == 0)
1294 /* Only dirty zbranch may have no on-flash nodes */
1295 if (!ubifs_zn_dirty(znode)) {
1296 err = 4;
1297 goto out;
1298 }
1299
1300 if (ubifs_zn_dirty(znode)) {
1301 /*
1302 * If znode is dirty, its parent has to be dirty as well. The
1303 * order of the operation is important, so we have to have
1304 * memory barriers.
1305 */
1306 smp_mb();
1307 if (zp && !ubifs_zn_dirty(zp)) {
1308 /*
1309 * The dirty flag is atomic and is cleared outside the
1310 * TNC mutex, so znode's dirty flag may now have
1311 * been cleared. The child is always cleared before the
1312 * parent, so we just need to check again.
1313 */
1314 smp_mb();
1315 if (ubifs_zn_dirty(znode)) {
1316 err = 5;
1317 goto out;
1318 }
1319 }
1320 }
1321
1322 if (zp) {
1323 const union ubifs_key *min, *max;
1324
1325 if (znode->level != zp->level - 1) {
1326 err = 6;
1327 goto out;
1328 }
1329
1330 /* Make sure the 'parent' pointer in our znode is correct */
1331 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1332 if (!err) {
1333 /* This zbranch does not exist in the parent */
1334 err = 7;
1335 goto out;
1336 }
1337
1338 if (znode->iip >= zp->child_cnt) {
1339 err = 8;
1340 goto out;
1341 }
1342
1343 if (znode->iip != n) {
1344 /* This may happen only in case of collisions */
1345 if (keys_cmp(c, &zp->zbranch[n].key,
1346 &zp->zbranch[znode->iip].key)) {
1347 err = 9;
1348 goto out;
1349 }
1350 n = znode->iip;
1351 }
1352
1353 /*
1354 * Make sure that the first key in our znode is greater than or
1355 * equal to the key in the pointing zbranch.
1356 */
1357 min = &zbr->key;
1358 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1359 if (cmp == 1) {
1360 err = 10;
1361 goto out;
1362 }
1363
1364 if (n + 1 < zp->child_cnt) {
1365 max = &zp->zbranch[n + 1].key;
1366
1367 /*
1368 * Make sure the last key in our znode is less or
1369 * equivalent than the key in the zbranch which goes
1370 * after our pointing zbranch.
1371 */
1372 cmp = keys_cmp(c, max,
1373 &znode->zbranch[znode->child_cnt - 1].key);
1374 if (cmp == -1) {
1375 err = 11;
1376 goto out;
1377 }
1378 }
1379 } else {
1380 /* This may only be root znode */
1381 if (zbr != &c->zroot) {
1382 err = 12;
1383 goto out;
1384 }
1385 }
1386
1387 /*
1388 * Make sure that next key is greater or equivalent then the previous
1389 * one.
1390 */
1391 for (n = 1; n < znode->child_cnt; n++) {
1392 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1393 &znode->zbranch[n].key);
1394 if (cmp > 0) {
1395 err = 13;
1396 goto out;
1397 }
1398 if (cmp == 0) {
1399 /* This can only be keys with colliding hash */
1400 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1401 err = 14;
1402 goto out;
1403 }
1404
1405 if (znode->level != 0 || c->replaying)
1406 continue;
1407
1408 /*
1409 * Colliding keys should follow binary order of
1410 * corresponding xentry/dentry names.
1411 */
1412 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1413 &znode->zbranch[n]);
1414 if (err < 0)
1415 return err;
1416 if (err) {
1417 err = 15;
1418 goto out;
1419 }
1420 }
1421 }
1422
1423 for (n = 0; n < znode->child_cnt; n++) {
1424 if (!znode->zbranch[n].znode &&
1425 (znode->zbranch[n].lnum == 0 ||
1426 znode->zbranch[n].len == 0)) {
1427 err = 16;
1428 goto out;
1429 }
1430
1431 if (znode->zbranch[n].lnum != 0 &&
1432 znode->zbranch[n].len == 0) {
1433 err = 17;
1434 goto out;
1435 }
1436
1437 if (znode->zbranch[n].lnum == 0 &&
1438 znode->zbranch[n].len != 0) {
1439 err = 18;
1440 goto out;
1441 }
1442
1443 if (znode->zbranch[n].lnum == 0 &&
1444 znode->zbranch[n].offs != 0) {
1445 err = 19;
1446 goto out;
1447 }
1448
1449 if (znode->level != 0 && znode->zbranch[n].znode)
1450 if (znode->zbranch[n].znode->parent != znode) {
1451 err = 20;
1452 goto out;
1453 }
1454 }
1455
1456 return 0;
1457
1458out:
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001459 ubifs_err(c, "failed, error %d", err);
1460 ubifs_msg(c, "dump of the znode");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001461 ubifs_dump_znode(c, znode);
1462 if (zp) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001463 ubifs_msg(c, "dump of the parent znode");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001464 ubifs_dump_znode(c, zp);
1465 }
1466 dump_stack();
1467 return -EINVAL;
1468}
1469#else
1470
1471int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1472{
1473 return 0;
1474}
1475
1476void dbg_debugfs_exit_fs(struct ubifs_info *c)
1477{
1478 return;
1479}
1480
1481int ubifs_debugging_init(struct ubifs_info *c)
1482{
1483 return 0;
1484}
1485void ubifs_debugging_exit(struct ubifs_info *c)
1486{
1487}
1488int dbg_check_filesystem(struct ubifs_info *c)
1489{
1490 return 0;
1491}
1492int dbg_debugfs_init_fs(struct ubifs_info *c)
1493{
1494 return 0;
1495}
1496#endif
1497
1498#ifndef __UBOOT__
1499/**
1500 * dbg_check_tnc - check TNC tree.
1501 * @c: UBIFS file-system description object
1502 * @extra: do extra checks that are possible at start commit
1503 *
1504 * This function traverses whole TNC tree and checks every znode. Returns zero
1505 * if everything is all right and %-EINVAL if something is wrong with TNC.
1506 */
1507int dbg_check_tnc(struct ubifs_info *c, int extra)
1508{
1509 struct ubifs_znode *znode;
1510 long clean_cnt = 0, dirty_cnt = 0;
1511 int err, last;
1512
1513 if (!dbg_is_chk_index(c))
1514 return 0;
1515
1516 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1517 if (!c->zroot.znode)
1518 return 0;
1519
1520 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1521 while (1) {
1522 struct ubifs_znode *prev;
1523 struct ubifs_zbranch *zbr;
1524
1525 if (!znode->parent)
1526 zbr = &c->zroot;
1527 else
1528 zbr = &znode->parent->zbranch[znode->iip];
1529
1530 err = dbg_check_znode(c, zbr);
1531 if (err)
1532 return err;
1533
1534 if (extra) {
1535 if (ubifs_zn_dirty(znode))
1536 dirty_cnt += 1;
1537 else
1538 clean_cnt += 1;
1539 }
1540
1541 prev = znode;
1542 znode = ubifs_tnc_postorder_next(znode);
1543 if (!znode)
1544 break;
1545
1546 /*
1547 * If the last key of this znode is equivalent to the first key
1548 * of the next znode (collision), then check order of the keys.
1549 */
1550 last = prev->child_cnt - 1;
1551 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1552 !keys_cmp(c, &prev->zbranch[last].key,
1553 &znode->zbranch[0].key)) {
1554 err = dbg_check_key_order(c, &prev->zbranch[last],
1555 &znode->zbranch[0]);
1556 if (err < 0)
1557 return err;
1558 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001559 ubifs_msg(c, "first znode");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001560 ubifs_dump_znode(c, prev);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001561 ubifs_msg(c, "second znode");
Heiko Schocherff94bc42014-06-24 10:10:04 +02001562 ubifs_dump_znode(c, znode);
1563 return -EINVAL;
1564 }
1565 }
1566 }
1567
1568 if (extra) {
1569 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001570 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001571 atomic_long_read(&c->clean_zn_cnt),
1572 clean_cnt);
1573 return -EINVAL;
1574 }
1575 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001576 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001577 atomic_long_read(&c->dirty_zn_cnt),
1578 dirty_cnt);
1579 return -EINVAL;
1580 }
1581 }
1582
1583 return 0;
1584}
1585#else
1586int dbg_check_tnc(struct ubifs_info *c, int extra)
1587{
1588 return 0;
1589}
1590#endif
1591
1592/**
1593 * dbg_walk_index - walk the on-flash index.
1594 * @c: UBIFS file-system description object
1595 * @leaf_cb: called for each leaf node
1596 * @znode_cb: called for each indexing node
1597 * @priv: private data which is passed to callbacks
1598 *
1599 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1600 * node and @znode_cb for each indexing node. Returns zero in case of success
1601 * and a negative error code in case of failure.
1602 *
1603 * It would be better if this function removed every znode it pulled to into
1604 * the TNC, so that the behavior more closely matched the non-debugging
1605 * behavior.
1606 */
1607int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1608 dbg_znode_callback znode_cb, void *priv)
1609{
1610 int err;
1611 struct ubifs_zbranch *zbr;
1612 struct ubifs_znode *znode, *child;
1613
1614 mutex_lock(&c->tnc_mutex);
1615 /* If the root indexing node is not in TNC - pull it */
1616 if (!c->zroot.znode) {
1617 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1618 if (IS_ERR(c->zroot.znode)) {
1619 err = PTR_ERR(c->zroot.znode);
1620 c->zroot.znode = NULL;
1621 goto out_unlock;
1622 }
1623 }
1624
1625 /*
1626 * We are going to traverse the indexing tree in the postorder manner.
1627 * Go down and find the leftmost indexing node where we are going to
1628 * start from.
1629 */
1630 znode = c->zroot.znode;
1631 while (znode->level > 0) {
1632 zbr = &znode->zbranch[0];
1633 child = zbr->znode;
1634 if (!child) {
1635 child = ubifs_load_znode(c, zbr, znode, 0);
1636 if (IS_ERR(child)) {
1637 err = PTR_ERR(child);
1638 goto out_unlock;
1639 }
1640 zbr->znode = child;
1641 }
1642
1643 znode = child;
1644 }
1645
1646 /* Iterate over all indexing nodes */
1647 while (1) {
1648 int idx;
1649
1650 cond_resched();
1651
1652 if (znode_cb) {
1653 err = znode_cb(c, znode, priv);
1654 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001655 ubifs_err(c, "znode checking function returned error %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001656 err);
1657 ubifs_dump_znode(c, znode);
1658 goto out_dump;
1659 }
1660 }
1661 if (leaf_cb && znode->level == 0) {
1662 for (idx = 0; idx < znode->child_cnt; idx++) {
1663 zbr = &znode->zbranch[idx];
1664 err = leaf_cb(c, zbr, priv);
1665 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001666 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001667 err, zbr->lnum, zbr->offs);
1668 goto out_dump;
1669 }
1670 }
1671 }
1672
1673 if (!znode->parent)
1674 break;
1675
1676 idx = znode->iip + 1;
1677 znode = znode->parent;
1678 if (idx < znode->child_cnt) {
1679 /* Switch to the next index in the parent */
1680 zbr = &znode->zbranch[idx];
1681 child = zbr->znode;
1682 if (!child) {
1683 child = ubifs_load_znode(c, zbr, znode, idx);
1684 if (IS_ERR(child)) {
1685 err = PTR_ERR(child);
1686 goto out_unlock;
1687 }
1688 zbr->znode = child;
1689 }
1690 znode = child;
1691 } else
1692 /*
1693 * This is the last child, switch to the parent and
1694 * continue.
1695 */
1696 continue;
1697
1698 /* Go to the lowest leftmost znode in the new sub-tree */
1699 while (znode->level > 0) {
1700 zbr = &znode->zbranch[0];
1701 child = zbr->znode;
1702 if (!child) {
1703 child = ubifs_load_znode(c, zbr, znode, 0);
1704 if (IS_ERR(child)) {
1705 err = PTR_ERR(child);
1706 goto out_unlock;
1707 }
1708 zbr->znode = child;
1709 }
1710 znode = child;
1711 }
1712 }
1713
1714 mutex_unlock(&c->tnc_mutex);
1715 return 0;
1716
1717out_dump:
1718 if (znode->parent)
1719 zbr = &znode->parent->zbranch[znode->iip];
1720 else
1721 zbr = &c->zroot;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001722 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001723 ubifs_dump_znode(c, znode);
1724out_unlock:
1725 mutex_unlock(&c->tnc_mutex);
1726 return err;
1727}
1728
1729/**
1730 * add_size - add znode size to partially calculated index size.
1731 * @c: UBIFS file-system description object
1732 * @znode: znode to add size for
1733 * @priv: partially calculated index size
1734 *
1735 * This is a helper function for 'dbg_check_idx_size()' which is called for
1736 * every indexing node and adds its size to the 'long long' variable pointed to
1737 * by @priv.
1738 */
1739static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1740{
1741 long long *idx_size = priv;
1742 int add;
1743
1744 add = ubifs_idx_node_sz(c, znode->child_cnt);
1745 add = ALIGN(add, 8);
1746 *idx_size += add;
1747 return 0;
1748}
1749
1750/**
1751 * dbg_check_idx_size - check index size.
1752 * @c: UBIFS file-system description object
1753 * @idx_size: size to check
1754 *
1755 * This function walks the UBIFS index, calculates its size and checks that the
1756 * size is equivalent to @idx_size. Returns zero in case of success and a
1757 * negative error code in case of failure.
1758 */
1759int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1760{
1761 int err;
1762 long long calc = 0;
1763
1764 if (!dbg_is_chk_index(c))
1765 return 0;
1766
1767 err = dbg_walk_index(c, NULL, add_size, &calc);
1768 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001769 ubifs_err(c, "error %d while walking the index", err);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001770 return err;
1771 }
1772
1773 if (calc != idx_size) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001774 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001775 calc, idx_size);
1776 dump_stack();
1777 return -EINVAL;
1778 }
1779
1780 return 0;
1781}
1782
1783#ifndef __UBOOT__
1784/**
1785 * struct fsck_inode - information about an inode used when checking the file-system.
1786 * @rb: link in the RB-tree of inodes
1787 * @inum: inode number
1788 * @mode: inode type, permissions, etc
1789 * @nlink: inode link count
1790 * @xattr_cnt: count of extended attributes
1791 * @references: how many directory/xattr entries refer this inode (calculated
1792 * while walking the index)
1793 * @calc_cnt: for directory inode count of child directories
1794 * @size: inode size (read from on-flash inode)
1795 * @xattr_sz: summary size of all extended attributes (read from on-flash
1796 * inode)
1797 * @calc_sz: for directories calculated directory size
1798 * @calc_xcnt: count of extended attributes
1799 * @calc_xsz: calculated summary size of all extended attributes
1800 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1801 * inode (read from on-flash inode)
1802 * @calc_xnms: calculated sum of lengths of all extended attribute names
1803 */
1804struct fsck_inode {
1805 struct rb_node rb;
1806 ino_t inum;
1807 umode_t mode;
1808 unsigned int nlink;
1809 unsigned int xattr_cnt;
1810 int references;
1811 int calc_cnt;
1812 long long size;
1813 unsigned int xattr_sz;
1814 long long calc_sz;
1815 long long calc_xcnt;
1816 long long calc_xsz;
1817 unsigned int xattr_nms;
1818 long long calc_xnms;
1819};
1820
1821/**
1822 * struct fsck_data - private FS checking information.
1823 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1824 */
1825struct fsck_data {
1826 struct rb_root inodes;
1827};
1828
1829/**
1830 * add_inode - add inode information to RB-tree of inodes.
1831 * @c: UBIFS file-system description object
1832 * @fsckd: FS checking information
1833 * @ino: raw UBIFS inode to add
1834 *
1835 * This is a helper function for 'check_leaf()' which adds information about
1836 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1837 * case of success and a negative error code in case of failure.
1838 */
1839static struct fsck_inode *add_inode(struct ubifs_info *c,
1840 struct fsck_data *fsckd,
1841 struct ubifs_ino_node *ino)
1842{
1843 struct rb_node **p, *parent = NULL;
1844 struct fsck_inode *fscki;
1845 ino_t inum = key_inum_flash(c, &ino->key);
1846 struct inode *inode;
1847 struct ubifs_inode *ui;
1848
1849 p = &fsckd->inodes.rb_node;
1850 while (*p) {
1851 parent = *p;
1852 fscki = rb_entry(parent, struct fsck_inode, rb);
1853 if (inum < fscki->inum)
1854 p = &(*p)->rb_left;
1855 else if (inum > fscki->inum)
1856 p = &(*p)->rb_right;
1857 else
1858 return fscki;
1859 }
1860
1861 if (inum > c->highest_inum) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001862 ubifs_err(c, "too high inode number, max. is %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001863 (unsigned long)c->highest_inum);
1864 return ERR_PTR(-EINVAL);
1865 }
1866
1867 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1868 if (!fscki)
1869 return ERR_PTR(-ENOMEM);
1870
1871 inode = ilookup(c->vfs_sb, inum);
1872
1873 fscki->inum = inum;
1874 /*
1875 * If the inode is present in the VFS inode cache, use it instead of
1876 * the on-flash inode which might be out-of-date. E.g., the size might
1877 * be out-of-date. If we do not do this, the following may happen, for
1878 * example:
1879 * 1. A power cut happens
1880 * 2. We mount the file-system R/O, the replay process fixes up the
1881 * inode size in the VFS cache, but on on-flash.
1882 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1883 * size.
1884 */
1885 if (!inode) {
1886 fscki->nlink = le32_to_cpu(ino->nlink);
1887 fscki->size = le64_to_cpu(ino->size);
1888 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1889 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1890 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1891 fscki->mode = le32_to_cpu(ino->mode);
1892 } else {
1893 ui = ubifs_inode(inode);
1894 fscki->nlink = inode->i_nlink;
1895 fscki->size = inode->i_size;
1896 fscki->xattr_cnt = ui->xattr_cnt;
1897 fscki->xattr_sz = ui->xattr_size;
1898 fscki->xattr_nms = ui->xattr_names;
1899 fscki->mode = inode->i_mode;
1900 iput(inode);
1901 }
1902
1903 if (S_ISDIR(fscki->mode)) {
1904 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1905 fscki->calc_cnt = 2;
1906 }
1907
1908 rb_link_node(&fscki->rb, parent, p);
1909 rb_insert_color(&fscki->rb, &fsckd->inodes);
1910
1911 return fscki;
1912}
1913
1914/**
1915 * search_inode - search inode in the RB-tree of inodes.
1916 * @fsckd: FS checking information
1917 * @inum: inode number to search
1918 *
1919 * This is a helper function for 'check_leaf()' which searches inode @inum in
1920 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1921 * the inode was not found.
1922 */
1923static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1924{
1925 struct rb_node *p;
1926 struct fsck_inode *fscki;
1927
1928 p = fsckd->inodes.rb_node;
1929 while (p) {
1930 fscki = rb_entry(p, struct fsck_inode, rb);
1931 if (inum < fscki->inum)
1932 p = p->rb_left;
1933 else if (inum > fscki->inum)
1934 p = p->rb_right;
1935 else
1936 return fscki;
1937 }
1938 return NULL;
1939}
1940
1941/**
1942 * read_add_inode - read inode node and add it to RB-tree of inodes.
1943 * @c: UBIFS file-system description object
1944 * @fsckd: FS checking information
1945 * @inum: inode number to read
1946 *
1947 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1948 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1949 * information pointer in case of success and a negative error code in case of
1950 * failure.
1951 */
1952static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1953 struct fsck_data *fsckd, ino_t inum)
1954{
1955 int n, err;
1956 union ubifs_key key;
1957 struct ubifs_znode *znode;
1958 struct ubifs_zbranch *zbr;
1959 struct ubifs_ino_node *ino;
1960 struct fsck_inode *fscki;
1961
1962 fscki = search_inode(fsckd, inum);
1963 if (fscki)
1964 return fscki;
1965
1966 ino_key_init(c, &key, inum);
1967 err = ubifs_lookup_level0(c, &key, &znode, &n);
1968 if (!err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001969 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02001970 return ERR_PTR(-ENOENT);
1971 } else if (err < 0) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001972 ubifs_err(c, "error %d while looking up inode %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001973 err, (unsigned long)inum);
1974 return ERR_PTR(err);
1975 }
1976
1977 zbr = &znode->zbranch[n];
1978 if (zbr->len < UBIFS_INO_NODE_SZ) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001979 ubifs_err(c, "bad node %lu node length %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001980 (unsigned long)inum, zbr->len);
1981 return ERR_PTR(-EINVAL);
1982 }
1983
1984 ino = kmalloc(zbr->len, GFP_NOFS);
1985 if (!ino)
1986 return ERR_PTR(-ENOMEM);
1987
1988 err = ubifs_tnc_read_node(c, zbr, ino);
1989 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001990 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02001991 zbr->lnum, zbr->offs, err);
1992 kfree(ino);
1993 return ERR_PTR(err);
1994 }
1995
1996 fscki = add_inode(c, fsckd, ino);
1997 kfree(ino);
1998 if (IS_ERR(fscki)) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02001999 ubifs_err(c, "error %ld while adding inode %lu node",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002000 PTR_ERR(fscki), (unsigned long)inum);
2001 return fscki;
2002 }
2003
2004 return fscki;
2005}
2006
2007/**
2008 * check_leaf - check leaf node.
2009 * @c: UBIFS file-system description object
2010 * @zbr: zbranch of the leaf node to check
2011 * @priv: FS checking information
2012 *
2013 * This is a helper function for 'dbg_check_filesystem()' which is called for
2014 * every single leaf node while walking the indexing tree. It checks that the
2015 * leaf node referred from the indexing tree exists, has correct CRC, and does
2016 * some other basic validation. This function is also responsible for building
2017 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2018 * calculates reference count, size, etc for each inode in order to later
2019 * compare them to the information stored inside the inodes and detect possible
2020 * inconsistencies. Returns zero in case of success and a negative error code
2021 * in case of failure.
2022 */
2023static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2024 void *priv)
2025{
2026 ino_t inum;
2027 void *node;
2028 struct ubifs_ch *ch;
2029 int err, type = key_type(c, &zbr->key);
2030 struct fsck_inode *fscki;
2031
2032 if (zbr->len < UBIFS_CH_SZ) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002033 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002034 zbr->len, zbr->lnum, zbr->offs);
2035 return -EINVAL;
2036 }
2037
2038 node = kmalloc(zbr->len, GFP_NOFS);
2039 if (!node)
2040 return -ENOMEM;
2041
2042 err = ubifs_tnc_read_node(c, zbr, node);
2043 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002044 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002045 zbr->lnum, zbr->offs, err);
2046 goto out_free;
2047 }
2048
2049 /* If this is an inode node, add it to RB-tree of inodes */
2050 if (type == UBIFS_INO_KEY) {
2051 fscki = add_inode(c, priv, node);
2052 if (IS_ERR(fscki)) {
2053 err = PTR_ERR(fscki);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002054 ubifs_err(c, "error %d while adding inode node", err);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002055 goto out_dump;
2056 }
2057 goto out;
2058 }
2059
2060 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2061 type != UBIFS_DATA_KEY) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002062 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002063 type, zbr->lnum, zbr->offs);
2064 err = -EINVAL;
2065 goto out_free;
2066 }
2067
2068 ch = node;
2069 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002070 ubifs_err(c, "too high sequence number, max. is %llu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002071 c->max_sqnum);
2072 err = -EINVAL;
2073 goto out_dump;
2074 }
2075
2076 if (type == UBIFS_DATA_KEY) {
2077 long long blk_offs;
2078 struct ubifs_data_node *dn = node;
2079
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002080 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2081
Heiko Schocherff94bc42014-06-24 10:10:04 +02002082 /*
2083 * Search the inode node this data node belongs to and insert
2084 * it to the RB-tree of inodes.
2085 */
2086 inum = key_inum_flash(c, &dn->key);
2087 fscki = read_add_inode(c, priv, inum);
2088 if (IS_ERR(fscki)) {
2089 err = PTR_ERR(fscki);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002090 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002091 err, (unsigned long)inum);
2092 goto out_dump;
2093 }
2094
2095 /* Make sure the data node is within inode size */
2096 blk_offs = key_block_flash(c, &dn->key);
2097 blk_offs <<= UBIFS_BLOCK_SHIFT;
2098 blk_offs += le32_to_cpu(dn->size);
2099 if (blk_offs > fscki->size) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002100 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002101 zbr->lnum, zbr->offs, fscki->size);
2102 err = -EINVAL;
2103 goto out_dump;
2104 }
2105 } else {
2106 int nlen;
2107 struct ubifs_dent_node *dent = node;
2108 struct fsck_inode *fscki1;
2109
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002110 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2111
Heiko Schocherff94bc42014-06-24 10:10:04 +02002112 err = ubifs_validate_entry(c, dent);
2113 if (err)
2114 goto out_dump;
2115
2116 /*
2117 * Search the inode node this entry refers to and the parent
2118 * inode node and insert them to the RB-tree of inodes.
2119 */
2120 inum = le64_to_cpu(dent->inum);
2121 fscki = read_add_inode(c, priv, inum);
2122 if (IS_ERR(fscki)) {
2123 err = PTR_ERR(fscki);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002124 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002125 err, (unsigned long)inum);
2126 goto out_dump;
2127 }
2128
2129 /* Count how many direntries or xentries refers this inode */
2130 fscki->references += 1;
2131
2132 inum = key_inum_flash(c, &dent->key);
2133 fscki1 = read_add_inode(c, priv, inum);
2134 if (IS_ERR(fscki1)) {
2135 err = PTR_ERR(fscki1);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002136 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002137 err, (unsigned long)inum);
2138 goto out_dump;
2139 }
2140
2141 nlen = le16_to_cpu(dent->nlen);
2142 if (type == UBIFS_XENT_KEY) {
2143 fscki1->calc_xcnt += 1;
2144 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2145 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2146 fscki1->calc_xnms += nlen;
2147 } else {
2148 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2149 if (dent->type == UBIFS_ITYPE_DIR)
2150 fscki1->calc_cnt += 1;
2151 }
2152 }
2153
2154out:
2155 kfree(node);
2156 return 0;
2157
2158out_dump:
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002159 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002160 ubifs_dump_node(c, node);
2161out_free:
2162 kfree(node);
2163 return err;
2164}
2165
2166/**
2167 * free_inodes - free RB-tree of inodes.
2168 * @fsckd: FS checking information
2169 */
2170static void free_inodes(struct fsck_data *fsckd)
2171{
2172 struct fsck_inode *fscki, *n;
2173
2174 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2175 kfree(fscki);
2176}
2177
2178/**
2179 * check_inodes - checks all inodes.
2180 * @c: UBIFS file-system description object
2181 * @fsckd: FS checking information
2182 *
2183 * This is a helper function for 'dbg_check_filesystem()' which walks the
2184 * RB-tree of inodes after the index scan has been finished, and checks that
2185 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2186 * %-EINVAL if not, and a negative error code in case of failure.
2187 */
2188static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2189{
2190 int n, err;
2191 union ubifs_key key;
2192 struct ubifs_znode *znode;
2193 struct ubifs_zbranch *zbr;
2194 struct ubifs_ino_node *ino;
2195 struct fsck_inode *fscki;
2196 struct rb_node *this = rb_first(&fsckd->inodes);
2197
2198 while (this) {
2199 fscki = rb_entry(this, struct fsck_inode, rb);
2200 this = rb_next(this);
2201
2202 if (S_ISDIR(fscki->mode)) {
2203 /*
2204 * Directories have to have exactly one reference (they
2205 * cannot have hardlinks), although root inode is an
2206 * exception.
2207 */
2208 if (fscki->inum != UBIFS_ROOT_INO &&
2209 fscki->references != 1) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002210 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002211 (unsigned long)fscki->inum,
2212 fscki->references);
2213 goto out_dump;
2214 }
2215 if (fscki->inum == UBIFS_ROOT_INO &&
2216 fscki->references != 0) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002217 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002218 (unsigned long)fscki->inum,
2219 fscki->references);
2220 goto out_dump;
2221 }
2222 if (fscki->calc_sz != fscki->size) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002223 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002224 (unsigned long)fscki->inum,
2225 fscki->size, fscki->calc_sz);
2226 goto out_dump;
2227 }
2228 if (fscki->calc_cnt != fscki->nlink) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002229 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002230 (unsigned long)fscki->inum,
2231 fscki->nlink, fscki->calc_cnt);
2232 goto out_dump;
2233 }
2234 } else {
2235 if (fscki->references != fscki->nlink) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002236 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002237 (unsigned long)fscki->inum,
2238 fscki->nlink, fscki->references);
2239 goto out_dump;
2240 }
2241 }
2242 if (fscki->xattr_sz != fscki->calc_xsz) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002243 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002244 (unsigned long)fscki->inum, fscki->xattr_sz,
2245 fscki->calc_xsz);
2246 goto out_dump;
2247 }
2248 if (fscki->xattr_cnt != fscki->calc_xcnt) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002249 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002250 (unsigned long)fscki->inum,
2251 fscki->xattr_cnt, fscki->calc_xcnt);
2252 goto out_dump;
2253 }
2254 if (fscki->xattr_nms != fscki->calc_xnms) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002255 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002256 (unsigned long)fscki->inum, fscki->xattr_nms,
2257 fscki->calc_xnms);
2258 goto out_dump;
2259 }
2260 }
2261
2262 return 0;
2263
2264out_dump:
2265 /* Read the bad inode and dump it */
2266 ino_key_init(c, &key, fscki->inum);
2267 err = ubifs_lookup_level0(c, &key, &znode, &n);
2268 if (!err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002269 ubifs_err(c, "inode %lu not found in index",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002270 (unsigned long)fscki->inum);
2271 return -ENOENT;
2272 } else if (err < 0) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002273 ubifs_err(c, "error %d while looking up inode %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002274 err, (unsigned long)fscki->inum);
2275 return err;
2276 }
2277
2278 zbr = &znode->zbranch[n];
2279 ino = kmalloc(zbr->len, GFP_NOFS);
2280 if (!ino)
2281 return -ENOMEM;
2282
2283 err = ubifs_tnc_read_node(c, zbr, ino);
2284 if (err) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002285 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002286 zbr->lnum, zbr->offs, err);
2287 kfree(ino);
2288 return err;
2289 }
2290
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002291 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002292 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2293 ubifs_dump_node(c, ino);
2294 kfree(ino);
2295 return -EINVAL;
2296}
2297
2298/**
2299 * dbg_check_filesystem - check the file-system.
2300 * @c: UBIFS file-system description object
2301 *
2302 * This function checks the file system, namely:
2303 * o makes sure that all leaf nodes exist and their CRCs are correct;
2304 * o makes sure inode nlink, size, xattr size/count are correct (for all
2305 * inodes).
2306 *
2307 * The function reads whole indexing tree and all nodes, so it is pretty
2308 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2309 * not, and a negative error code in case of failure.
2310 */
2311int dbg_check_filesystem(struct ubifs_info *c)
2312{
2313 int err;
2314 struct fsck_data fsckd;
2315
2316 if (!dbg_is_chk_fs(c))
2317 return 0;
2318
2319 fsckd.inodes = RB_ROOT;
2320 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2321 if (err)
2322 goto out_free;
2323
2324 err = check_inodes(c, &fsckd);
2325 if (err)
2326 goto out_free;
2327
2328 free_inodes(&fsckd);
2329 return 0;
2330
2331out_free:
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002332 ubifs_err(c, "file-system check failed with error %d", err);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002333 dump_stack();
2334 free_inodes(&fsckd);
2335 return err;
2336}
2337
2338/**
2339 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2340 * @c: UBIFS file-system description object
2341 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2342 *
2343 * This function returns zero if the list of data nodes is sorted correctly,
2344 * and %-EINVAL if not.
2345 */
2346int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2347{
2348 struct list_head *cur;
2349 struct ubifs_scan_node *sa, *sb;
2350
2351 if (!dbg_is_chk_gen(c))
2352 return 0;
2353
2354 for (cur = head->next; cur->next != head; cur = cur->next) {
2355 ino_t inuma, inumb;
2356 uint32_t blka, blkb;
2357
2358 cond_resched();
2359 sa = container_of(cur, struct ubifs_scan_node, list);
2360 sb = container_of(cur->next, struct ubifs_scan_node, list);
2361
2362 if (sa->type != UBIFS_DATA_NODE) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002363 ubifs_err(c, "bad node type %d", sa->type);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002364 ubifs_dump_node(c, sa->node);
2365 return -EINVAL;
2366 }
2367 if (sb->type != UBIFS_DATA_NODE) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002368 ubifs_err(c, "bad node type %d", sb->type);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002369 ubifs_dump_node(c, sb->node);
2370 return -EINVAL;
2371 }
2372
2373 inuma = key_inum(c, &sa->key);
2374 inumb = key_inum(c, &sb->key);
2375
2376 if (inuma < inumb)
2377 continue;
2378 if (inuma > inumb) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002379 ubifs_err(c, "larger inum %lu goes before inum %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002380 (unsigned long)inuma, (unsigned long)inumb);
2381 goto error_dump;
2382 }
2383
2384 blka = key_block(c, &sa->key);
2385 blkb = key_block(c, &sb->key);
2386
2387 if (blka > blkb) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002388 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002389 goto error_dump;
2390 }
2391 if (blka == blkb) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002392 ubifs_err(c, "two data nodes for the same block");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002393 goto error_dump;
2394 }
2395 }
2396
2397 return 0;
2398
2399error_dump:
2400 ubifs_dump_node(c, sa->node);
2401 ubifs_dump_node(c, sb->node);
2402 return -EINVAL;
2403}
2404
2405/**
2406 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2407 * @c: UBIFS file-system description object
2408 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2409 *
2410 * This function returns zero if the list of non-data nodes is sorted correctly,
2411 * and %-EINVAL if not.
2412 */
2413int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2414{
2415 struct list_head *cur;
2416 struct ubifs_scan_node *sa, *sb;
2417
2418 if (!dbg_is_chk_gen(c))
2419 return 0;
2420
2421 for (cur = head->next; cur->next != head; cur = cur->next) {
2422 ino_t inuma, inumb;
2423 uint32_t hasha, hashb;
2424
2425 cond_resched();
2426 sa = container_of(cur, struct ubifs_scan_node, list);
2427 sb = container_of(cur->next, struct ubifs_scan_node, list);
2428
2429 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2430 sa->type != UBIFS_XENT_NODE) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002431 ubifs_err(c, "bad node type %d", sa->type);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002432 ubifs_dump_node(c, sa->node);
2433 return -EINVAL;
2434 }
2435 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2436 sa->type != UBIFS_XENT_NODE) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002437 ubifs_err(c, "bad node type %d", sb->type);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002438 ubifs_dump_node(c, sb->node);
2439 return -EINVAL;
2440 }
2441
2442 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002443 ubifs_err(c, "non-inode node goes before inode node");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002444 goto error_dump;
2445 }
2446
2447 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2448 continue;
2449
2450 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2451 /* Inode nodes are sorted in descending size order */
2452 if (sa->len < sb->len) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002453 ubifs_err(c, "smaller inode node goes first");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002454 goto error_dump;
2455 }
2456 continue;
2457 }
2458
2459 /*
2460 * This is either a dentry or xentry, which should be sorted in
2461 * ascending (parent ino, hash) order.
2462 */
2463 inuma = key_inum(c, &sa->key);
2464 inumb = key_inum(c, &sb->key);
2465
2466 if (inuma < inumb)
2467 continue;
2468 if (inuma > inumb) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002469 ubifs_err(c, "larger inum %lu goes before inum %lu",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002470 (unsigned long)inuma, (unsigned long)inumb);
2471 goto error_dump;
2472 }
2473
2474 hasha = key_block(c, &sa->key);
2475 hashb = key_block(c, &sb->key);
2476
2477 if (hasha > hashb) {
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002478 ubifs_err(c, "larger hash %u goes before %u",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002479 hasha, hashb);
2480 goto error_dump;
2481 }
2482 }
2483
2484 return 0;
2485
2486error_dump:
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002487 ubifs_msg(c, "dumping first node");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002488 ubifs_dump_node(c, sa->node);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002489 ubifs_msg(c, "dumping second node");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002490 ubifs_dump_node(c, sb->node);
2491 return -EINVAL;
2492 return 0;
2493}
2494
2495static inline int chance(unsigned int n, unsigned int out_of)
2496{
2497 return !!((prandom_u32() % out_of) + 1 <= n);
2498
2499}
2500
2501static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2502{
2503 struct ubifs_debug_info *d = c->dbg;
2504
2505 ubifs_assert(dbg_is_tst_rcvry(c));
2506
2507 if (!d->pc_cnt) {
2508 /* First call - decide delay to the power cut */
2509 if (chance(1, 2)) {
2510 unsigned long delay;
2511
2512 if (chance(1, 2)) {
2513 d->pc_delay = 1;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002514 /* Fail within 1 minute */
Heiko Schocherff94bc42014-06-24 10:10:04 +02002515 delay = prandom_u32() % 60000;
2516 d->pc_timeout = jiffies;
2517 d->pc_timeout += msecs_to_jiffies(delay);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002518 ubifs_warn(c, "failing after %lums", delay);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002519 } else {
2520 d->pc_delay = 2;
2521 delay = prandom_u32() % 10000;
2522 /* Fail within 10000 operations */
2523 d->pc_cnt_max = delay;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002524 ubifs_warn(c, "failing after %lu calls", delay);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002525 }
2526 }
2527
2528 d->pc_cnt += 1;
2529 }
2530
2531 /* Determine if failure delay has expired */
2532 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2533 return 0;
2534 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2535 return 0;
2536
2537 if (lnum == UBIFS_SB_LNUM) {
2538 if (write && chance(1, 2))
2539 return 0;
2540 if (chance(19, 20))
2541 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002542 ubifs_warn(c, "failing in super block LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002543 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2544 if (chance(19, 20))
2545 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002546 ubifs_warn(c, "failing in master LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002547 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2548 if (write && chance(99, 100))
2549 return 0;
2550 if (chance(399, 400))
2551 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002552 ubifs_warn(c, "failing in log LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002553 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2554 if (write && chance(7, 8))
2555 return 0;
2556 if (chance(19, 20))
2557 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002558 ubifs_warn(c, "failing in LPT LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002559 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2560 if (write && chance(1, 2))
2561 return 0;
2562 if (chance(9, 10))
2563 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002564 ubifs_warn(c, "failing in orphan LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002565 } else if (lnum == c->ihead_lnum) {
2566 if (chance(99, 100))
2567 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002568 ubifs_warn(c, "failing in index head LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002569 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2570 if (chance(9, 10))
2571 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002572 ubifs_warn(c, "failing in GC head LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002573 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2574 !ubifs_search_bud(c, lnum)) {
2575 if (chance(19, 20))
2576 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002577 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002578 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2579 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2580 if (chance(999, 1000))
2581 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002582 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002583 } else {
2584 if (chance(9999, 10000))
2585 return 0;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002586 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
Heiko Schocherff94bc42014-06-24 10:10:04 +02002587 }
2588
2589 d->pc_happened = 1;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002590 ubifs_warn(c, "========== Power cut emulated ==========");
Heiko Schocherff94bc42014-06-24 10:10:04 +02002591 dump_stack();
2592 return 1;
2593}
2594
2595static int corrupt_data(const struct ubifs_info *c, const void *buf,
2596 unsigned int len)
2597{
2598 unsigned int from, to, ffs = chance(1, 2);
2599 unsigned char *p = (void *)buf;
2600
2601 from = prandom_u32() % len;
2602 /* Corruption span max to end of write unit */
2603 to = min(len, ALIGN(from + 1, c->max_write_size));
2604
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002605 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
Heiko Schocherff94bc42014-06-24 10:10:04 +02002606 ffs ? "0xFFs" : "random data");
2607
2608 if (ffs)
2609 memset(p + from, 0xFF, to - from);
2610 else
2611 prandom_bytes(p + from, to - from);
2612
2613 return to;
2614}
2615
2616int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2617 int offs, int len)
2618{
2619 int err, failing;
2620
2621 if (c->dbg->pc_happened)
2622 return -EROFS;
2623
2624 failing = power_cut_emulated(c, lnum, 1);
2625 if (failing) {
2626 len = corrupt_data(c, buf, len);
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002627 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002628 len, lnum, offs);
2629 }
2630 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2631 if (err)
2632 return err;
2633 if (failing)
2634 return -EROFS;
2635 return 0;
2636}
2637
2638int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2639 int len)
2640{
2641 int err;
2642
2643 if (c->dbg->pc_happened)
2644 return -EROFS;
2645 if (power_cut_emulated(c, lnum, 1))
2646 return -EROFS;
2647 err = ubi_leb_change(c->ubi, lnum, buf, len);
2648 if (err)
2649 return err;
2650 if (power_cut_emulated(c, lnum, 1))
2651 return -EROFS;
2652 return 0;
2653}
2654
2655int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2656{
2657 int err;
2658
2659 if (c->dbg->pc_happened)
2660 return -EROFS;
2661 if (power_cut_emulated(c, lnum, 0))
2662 return -EROFS;
2663 err = ubi_leb_unmap(c->ubi, lnum);
2664 if (err)
2665 return err;
2666 if (power_cut_emulated(c, lnum, 0))
2667 return -EROFS;
2668 return 0;
2669}
2670
2671int dbg_leb_map(struct ubifs_info *c, int lnum)
2672{
2673 int err;
2674
2675 if (c->dbg->pc_happened)
2676 return -EROFS;
2677 if (power_cut_emulated(c, lnum, 0))
2678 return -EROFS;
2679 err = ubi_leb_map(c->ubi, lnum);
2680 if (err)
2681 return err;
2682 if (power_cut_emulated(c, lnum, 0))
2683 return -EROFS;
2684 return 0;
2685}
2686
2687/*
2688 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2689 * contain the stuff specific to particular file-system mounts.
2690 */
2691static struct dentry *dfs_rootdir;
2692
2693static int dfs_file_open(struct inode *inode, struct file *file)
2694{
2695 file->private_data = inode->i_private;
2696 return nonseekable_open(inode, file);
2697}
2698
2699/**
2700 * provide_user_output - provide output to the user reading a debugfs file.
2701 * @val: boolean value for the answer
2702 * @u: the buffer to store the answer at
2703 * @count: size of the buffer
2704 * @ppos: position in the @u output buffer
2705 *
2706 * This is a simple helper function which stores @val boolean value in the user
2707 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2708 * bytes written to @u in case of success and a negative error code in case of
2709 * failure.
2710 */
2711static int provide_user_output(int val, char __user *u, size_t count,
2712 loff_t *ppos)
2713{
2714 char buf[3];
2715
2716 if (val)
2717 buf[0] = '1';
2718 else
2719 buf[0] = '0';
2720 buf[1] = '\n';
2721 buf[2] = 0x00;
2722
2723 return simple_read_from_buffer(u, count, ppos, buf, 2);
2724}
2725
2726static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2727 loff_t *ppos)
2728{
2729 struct dentry *dent = file->f_path.dentry;
2730 struct ubifs_info *c = file->private_data;
2731 struct ubifs_debug_info *d = c->dbg;
2732 int val;
2733
2734 if (dent == d->dfs_chk_gen)
2735 val = d->chk_gen;
2736 else if (dent == d->dfs_chk_index)
2737 val = d->chk_index;
2738 else if (dent == d->dfs_chk_orph)
2739 val = d->chk_orph;
2740 else if (dent == d->dfs_chk_lprops)
2741 val = d->chk_lprops;
2742 else if (dent == d->dfs_chk_fs)
2743 val = d->chk_fs;
2744 else if (dent == d->dfs_tst_rcvry)
2745 val = d->tst_rcvry;
2746 else if (dent == d->dfs_ro_error)
2747 val = c->ro_error;
2748 else
2749 return -EINVAL;
2750
2751 return provide_user_output(val, u, count, ppos);
2752}
2753
2754/**
2755 * interpret_user_input - interpret user debugfs file input.
2756 * @u: user-provided buffer with the input
2757 * @count: buffer size
2758 *
2759 * This is a helper function which interpret user input to a boolean UBIFS
2760 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2761 * in case of failure.
2762 */
2763static int interpret_user_input(const char __user *u, size_t count)
2764{
2765 size_t buf_size;
2766 char buf[8];
2767
2768 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2769 if (copy_from_user(buf, u, buf_size))
2770 return -EFAULT;
2771
2772 if (buf[0] == '1')
2773 return 1;
2774 else if (buf[0] == '0')
2775 return 0;
2776
2777 return -EINVAL;
2778}
2779
2780static ssize_t dfs_file_write(struct file *file, const char __user *u,
2781 size_t count, loff_t *ppos)
2782{
2783 struct ubifs_info *c = file->private_data;
2784 struct ubifs_debug_info *d = c->dbg;
2785 struct dentry *dent = file->f_path.dentry;
2786 int val;
2787
2788 /*
2789 * TODO: this is racy - the file-system might have already been
2790 * unmounted and we'd oops in this case. The plan is to fix it with
2791 * help of 'iterate_supers_type()' which we should have in v3.0: when
2792 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2793 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2794 * superblocks and fine the one with the same UUID, and take the
2795 * locking right.
2796 *
2797 * The other way to go suggested by Al Viro is to create a separate
2798 * 'ubifs-debug' file-system instead.
2799 */
2800 if (file->f_path.dentry == d->dfs_dump_lprops) {
2801 ubifs_dump_lprops(c);
2802 return count;
2803 }
2804 if (file->f_path.dentry == d->dfs_dump_budg) {
2805 ubifs_dump_budg(c, &c->bi);
2806 return count;
2807 }
2808 if (file->f_path.dentry == d->dfs_dump_tnc) {
2809 mutex_lock(&c->tnc_mutex);
2810 ubifs_dump_tnc(c);
2811 mutex_unlock(&c->tnc_mutex);
2812 return count;
2813 }
2814
2815 val = interpret_user_input(u, count);
2816 if (val < 0)
2817 return val;
2818
2819 if (dent == d->dfs_chk_gen)
2820 d->chk_gen = val;
2821 else if (dent == d->dfs_chk_index)
2822 d->chk_index = val;
2823 else if (dent == d->dfs_chk_orph)
2824 d->chk_orph = val;
2825 else if (dent == d->dfs_chk_lprops)
2826 d->chk_lprops = val;
2827 else if (dent == d->dfs_chk_fs)
2828 d->chk_fs = val;
2829 else if (dent == d->dfs_tst_rcvry)
2830 d->tst_rcvry = val;
2831 else if (dent == d->dfs_ro_error)
2832 c->ro_error = !!val;
2833 else
2834 return -EINVAL;
2835
2836 return count;
2837}
2838
2839static const struct file_operations dfs_fops = {
2840 .open = dfs_file_open,
2841 .read = dfs_file_read,
2842 .write = dfs_file_write,
2843 .owner = THIS_MODULE,
2844 .llseek = no_llseek,
2845};
2846
2847/**
2848 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2849 * @c: UBIFS file-system description object
2850 *
2851 * This function creates all debugfs files for this instance of UBIFS. Returns
2852 * zero in case of success and a negative error code in case of failure.
2853 *
2854 * Note, the only reason we have not merged this function with the
2855 * 'ubifs_debugging_init()' function is because it is better to initialize
2856 * debugfs interfaces at the very end of the mount process, and remove them at
2857 * the very beginning of the mount process.
2858 */
2859int dbg_debugfs_init_fs(struct ubifs_info *c)
2860{
2861 int err, n;
2862 const char *fname;
2863 struct dentry *dent;
2864 struct ubifs_debug_info *d = c->dbg;
2865
2866 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2867 return 0;
2868
2869 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2870 c->vi.ubi_num, c->vi.vol_id);
2871 if (n == UBIFS_DFS_DIR_LEN) {
2872 /* The array size is too small */
2873 fname = UBIFS_DFS_DIR_NAME;
2874 dent = ERR_PTR(-EINVAL);
2875 goto out;
2876 }
2877
2878 fname = d->dfs_dir_name;
2879 dent = debugfs_create_dir(fname, dfs_rootdir);
2880 if (IS_ERR_OR_NULL(dent))
2881 goto out;
2882 d->dfs_dir = dent;
2883
2884 fname = "dump_lprops";
2885 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2886 if (IS_ERR_OR_NULL(dent))
2887 goto out_remove;
2888 d->dfs_dump_lprops = dent;
2889
2890 fname = "dump_budg";
2891 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2892 if (IS_ERR_OR_NULL(dent))
2893 goto out_remove;
2894 d->dfs_dump_budg = dent;
2895
2896 fname = "dump_tnc";
2897 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2898 if (IS_ERR_OR_NULL(dent))
2899 goto out_remove;
2900 d->dfs_dump_tnc = dent;
2901
2902 fname = "chk_general";
2903 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2904 &dfs_fops);
2905 if (IS_ERR_OR_NULL(dent))
2906 goto out_remove;
2907 d->dfs_chk_gen = dent;
2908
2909 fname = "chk_index";
2910 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2911 &dfs_fops);
2912 if (IS_ERR_OR_NULL(dent))
2913 goto out_remove;
2914 d->dfs_chk_index = dent;
2915
2916 fname = "chk_orphans";
2917 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2918 &dfs_fops);
2919 if (IS_ERR_OR_NULL(dent))
2920 goto out_remove;
2921 d->dfs_chk_orph = dent;
2922
2923 fname = "chk_lprops";
2924 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2925 &dfs_fops);
2926 if (IS_ERR_OR_NULL(dent))
2927 goto out_remove;
2928 d->dfs_chk_lprops = dent;
2929
2930 fname = "chk_fs";
2931 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2932 &dfs_fops);
2933 if (IS_ERR_OR_NULL(dent))
2934 goto out_remove;
2935 d->dfs_chk_fs = dent;
2936
2937 fname = "tst_recovery";
2938 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2939 &dfs_fops);
2940 if (IS_ERR_OR_NULL(dent))
2941 goto out_remove;
2942 d->dfs_tst_rcvry = dent;
2943
2944 fname = "ro_error";
2945 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2946 &dfs_fops);
2947 if (IS_ERR_OR_NULL(dent))
2948 goto out_remove;
2949 d->dfs_ro_error = dent;
2950
2951 return 0;
2952
2953out_remove:
2954 debugfs_remove_recursive(d->dfs_dir);
2955out:
2956 err = dent ? PTR_ERR(dent) : -ENODEV;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02002957 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
Heiko Schocherff94bc42014-06-24 10:10:04 +02002958 fname, err);
2959 return err;
2960}
2961
2962/**
2963 * dbg_debugfs_exit_fs - remove all debugfs files.
2964 * @c: UBIFS file-system description object
2965 */
2966void dbg_debugfs_exit_fs(struct ubifs_info *c)
2967{
2968 if (IS_ENABLED(CONFIG_DEBUG_FS))
2969 debugfs_remove_recursive(c->dbg->dfs_dir);
2970}
2971
2972struct ubifs_global_debug_info ubifs_dbg;
2973
2974static struct dentry *dfs_chk_gen;
2975static struct dentry *dfs_chk_index;
2976static struct dentry *dfs_chk_orph;
2977static struct dentry *dfs_chk_lprops;
2978static struct dentry *dfs_chk_fs;
2979static struct dentry *dfs_tst_rcvry;
2980
2981static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2982 size_t count, loff_t *ppos)
2983{
2984 struct dentry *dent = file->f_path.dentry;
2985 int val;
2986
2987 if (dent == dfs_chk_gen)
2988 val = ubifs_dbg.chk_gen;
2989 else if (dent == dfs_chk_index)
2990 val = ubifs_dbg.chk_index;
2991 else if (dent == dfs_chk_orph)
2992 val = ubifs_dbg.chk_orph;
2993 else if (dent == dfs_chk_lprops)
2994 val = ubifs_dbg.chk_lprops;
2995 else if (dent == dfs_chk_fs)
2996 val = ubifs_dbg.chk_fs;
2997 else if (dent == dfs_tst_rcvry)
2998 val = ubifs_dbg.tst_rcvry;
2999 else
3000 return -EINVAL;
3001
3002 return provide_user_output(val, u, count, ppos);
3003}
3004
3005static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3006 size_t count, loff_t *ppos)
3007{
3008 struct dentry *dent = file->f_path.dentry;
3009 int val;
3010
3011 val = interpret_user_input(u, count);
3012 if (val < 0)
3013 return val;
3014
3015 if (dent == dfs_chk_gen)
3016 ubifs_dbg.chk_gen = val;
3017 else if (dent == dfs_chk_index)
3018 ubifs_dbg.chk_index = val;
3019 else if (dent == dfs_chk_orph)
3020 ubifs_dbg.chk_orph = val;
3021 else if (dent == dfs_chk_lprops)
3022 ubifs_dbg.chk_lprops = val;
3023 else if (dent == dfs_chk_fs)
3024 ubifs_dbg.chk_fs = val;
3025 else if (dent == dfs_tst_rcvry)
3026 ubifs_dbg.tst_rcvry = val;
3027 else
3028 return -EINVAL;
3029
3030 return count;
3031}
3032
3033static const struct file_operations dfs_global_fops = {
3034 .read = dfs_global_file_read,
3035 .write = dfs_global_file_write,
3036 .owner = THIS_MODULE,
3037 .llseek = no_llseek,
3038};
3039
3040/**
3041 * dbg_debugfs_init - initialize debugfs file-system.
3042 *
3043 * UBIFS uses debugfs file-system to expose various debugging knobs to
3044 * user-space. This function creates "ubifs" directory in the debugfs
3045 * file-system. Returns zero in case of success and a negative error code in
3046 * case of failure.
3047 */
3048int dbg_debugfs_init(void)
3049{
3050 int err;
3051 const char *fname;
3052 struct dentry *dent;
3053
3054 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3055 return 0;
3056
3057 fname = "ubifs";
3058 dent = debugfs_create_dir(fname, NULL);
3059 if (IS_ERR_OR_NULL(dent))
3060 goto out;
3061 dfs_rootdir = dent;
3062
3063 fname = "chk_general";
3064 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3065 &dfs_global_fops);
3066 if (IS_ERR_OR_NULL(dent))
3067 goto out_remove;
3068 dfs_chk_gen = dent;
3069
3070 fname = "chk_index";
3071 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3072 &dfs_global_fops);
3073 if (IS_ERR_OR_NULL(dent))
3074 goto out_remove;
3075 dfs_chk_index = dent;
3076
3077 fname = "chk_orphans";
3078 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3079 &dfs_global_fops);
3080 if (IS_ERR_OR_NULL(dent))
3081 goto out_remove;
3082 dfs_chk_orph = dent;
3083
3084 fname = "chk_lprops";
3085 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3086 &dfs_global_fops);
3087 if (IS_ERR_OR_NULL(dent))
3088 goto out_remove;
3089 dfs_chk_lprops = dent;
3090
3091 fname = "chk_fs";
3092 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3093 &dfs_global_fops);
3094 if (IS_ERR_OR_NULL(dent))
3095 goto out_remove;
3096 dfs_chk_fs = dent;
3097
3098 fname = "tst_recovery";
3099 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3100 &dfs_global_fops);
3101 if (IS_ERR_OR_NULL(dent))
3102 goto out_remove;
3103 dfs_tst_rcvry = dent;
3104
3105 return 0;
3106
3107out_remove:
3108 debugfs_remove_recursive(dfs_rootdir);
3109out:
3110 err = dent ? PTR_ERR(dent) : -ENODEV;
Heiko Schocher0195a7b2015-10-22 06:19:21 +02003111 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3112 current->pid, fname, err);
Heiko Schocherff94bc42014-06-24 10:10:04 +02003113 return err;
3114}
3115
3116/**
3117 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3118 */
3119void dbg_debugfs_exit(void)
3120{
3121 if (IS_ENABLED(CONFIG_DEBUG_FS))
3122 debugfs_remove_recursive(dfs_rootdir);
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003123}
3124
3125/**
3126 * ubifs_debugging_init - initialize UBIFS debugging.
3127 * @c: UBIFS file-system description object
3128 *
3129 * This function initializes debugging-related data for the file system.
3130 * Returns zero in case of success and a negative error code in case of
3131 * failure.
3132 */
3133int ubifs_debugging_init(struct ubifs_info *c)
3134{
3135 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3136 if (!c->dbg)
3137 return -ENOMEM;
3138
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003139 return 0;
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003140}
3141
3142/**
3143 * ubifs_debugging_exit - free debugging data.
3144 * @c: UBIFS file-system description object
3145 */
3146void ubifs_debugging_exit(struct ubifs_info *c)
3147{
Stefan Roese9eefe2a2009-03-19 15:35:05 +01003148 kfree(c->dbg);
3149}
Heiko Schocherff94bc42014-06-24 10:10:04 +02003150#endif