/** @file | |
* | |
* Copyright (c) 2011-2014, ARM Limited. All rights reserved. | |
* | |
* This program and the accompanying materials | |
* are licensed and made available under the terms and conditions of the BSD License | |
* which accompanies this distribution. The full text of the license may be found at | |
* http://opensource.org/licenses/bsd-license.php | |
* | |
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
* | |
**/ | |
#include <Library/ArmSmcLib.h> | |
#include <Library/PcdLib.h> | |
#include <libfdt.h> | |
#include "BdsInternal.h" | |
#include "BdsLinuxLoader.h" | |
#define ALIGN(x, a) (((x) + ((a) - 1)) & ~((a) - 1)) | |
#define PALIGN(p, a) ((void *)(ALIGN((unsigned long)(p), (a)))) | |
#define GET_CELL(p) (p += 4, *((const UINT32 *)(p-4))) | |
STATIC | |
UINTN | |
cpu_to_fdtn (UINTN x) { | |
if (sizeof (UINTN) == sizeof (UINT32)) { | |
return cpu_to_fdt32 (x); | |
} else { | |
return cpu_to_fdt64 (x); | |
} | |
} | |
typedef struct { | |
UINTN Base; | |
UINTN Size; | |
} FdtRegion; | |
STATIC | |
UINTN | |
IsPrintableString ( | |
IN CONST VOID* data, | |
IN UINTN len | |
) | |
{ | |
CONST CHAR8 *s = data; | |
CONST CHAR8 *ss; | |
// Zero length is not | |
if (len == 0) { | |
return 0; | |
} | |
// Must terminate with zero | |
if (s[len - 1] != '\0') { | |
return 0; | |
} | |
ss = s; | |
while (*s/* && isprint(*s)*/) { | |
s++; | |
} | |
// Not zero, or not done yet | |
if (*s != '\0' || (s + 1 - ss) < len) { | |
return 0; | |
} | |
return 1; | |
} | |
STATIC | |
VOID | |
PrintData ( | |
IN CONST CHAR8* data, | |
IN UINTN len | |
) | |
{ | |
UINTN i; | |
CONST CHAR8 *p = data; | |
// No data, don't print | |
if (len == 0) | |
return; | |
if (IsPrintableString (data, len)) { | |
Print(L" = \"%a\"", (const char *)data); | |
} else if ((len % 4) == 0) { | |
Print(L" = <"); | |
for (i = 0; i < len; i += 4) { | |
Print(L"0x%08x%a", fdt32_to_cpu(GET_CELL(p)),i < (len - 4) ? " " : ""); | |
} | |
Print(L">"); | |
} else { | |
Print(L" = ["); | |
for (i = 0; i < len; i++) | |
Print(L"%02x%a", *p++, i < len - 1 ? " " : ""); | |
Print(L"]"); | |
} | |
} | |
VOID | |
DebugDumpFdt ( | |
IN VOID* FdtBlob | |
) | |
{ | |
struct fdt_header *bph; | |
UINT32 off_dt; | |
UINT32 off_str; | |
CONST CHAR8* p_struct; | |
CONST CHAR8* p_strings; | |
CONST CHAR8* p; | |
CONST CHAR8* s; | |
CONST CHAR8* t; | |
UINT32 tag; | |
UINTN sz; | |
UINTN depth; | |
UINTN shift; | |
UINT32 version; | |
{ | |
// Can 'memreserve' be printed by below code? | |
INTN num = fdt_num_mem_rsv(FdtBlob); | |
INTN i, err; | |
UINT64 addr = 0,size = 0; | |
for (i = 0; i < num; i++) { | |
err = fdt_get_mem_rsv(FdtBlob, i, &addr, &size); | |
if (err) { | |
DEBUG((EFI_D_ERROR, "Error (%d) : Cannot get memreserve section (%d)\n", err, i)); | |
} | |
else { | |
Print(L"/memreserve/ \t0x%lx \t0x%lx;\n",addr,size); | |
} | |
} | |
} | |
depth = 0; | |
shift = 4; | |
bph = FdtBlob; | |
off_dt = fdt32_to_cpu(bph->off_dt_struct); | |
off_str = fdt32_to_cpu(bph->off_dt_strings); | |
p_struct = (CONST CHAR8*)FdtBlob + off_dt; | |
p_strings = (CONST CHAR8*)FdtBlob + off_str; | |
version = fdt32_to_cpu(bph->version); | |
p = p_struct; | |
while ((tag = fdt32_to_cpu(GET_CELL(p))) != FDT_END) { | |
if (tag == FDT_BEGIN_NODE) { | |
s = p; | |
p = PALIGN(p + AsciiStrLen (s) + 1, 4); | |
if (*s == '\0') | |
s = "/"; | |
Print(L"%*s%a {\n", depth * shift, L" ", s); | |
depth++; | |
continue; | |
} | |
if (tag == FDT_END_NODE) { | |
depth--; | |
Print(L"%*s};\n", depth * shift, L" "); | |
continue; | |
} | |
if (tag == FDT_NOP) { | |
Print(L"%*s// [NOP]\n", depth * shift, L" "); | |
continue; | |
} | |
if (tag != FDT_PROP) { | |
Print(L"%*s ** Unknown tag 0x%08x\n", depth * shift, L" ", tag); | |
break; | |
} | |
sz = fdt32_to_cpu(GET_CELL(p)); | |
s = p_strings + fdt32_to_cpu(GET_CELL(p)); | |
if (version < 16 && sz >= 8) | |
p = PALIGN(p, 8); | |
t = p; | |
p = PALIGN(p + sz, 4); | |
Print(L"%*s%a", depth * shift, L" ", s); | |
PrintData(t, sz); | |
Print(L";\n"); | |
} | |
} | |
STATIC | |
BOOLEAN | |
IsLinuxReservedRegion ( | |
IN EFI_MEMORY_TYPE MemoryType | |
) | |
{ | |
switch(MemoryType) { | |
case EfiRuntimeServicesCode: | |
case EfiRuntimeServicesData: | |
case EfiUnusableMemory: | |
case EfiACPIReclaimMemory: | |
case EfiACPIMemoryNVS: | |
case EfiReservedMemoryType: | |
return TRUE; | |
default: | |
return FALSE; | |
} | |
} | |
/** | |
** Relocate the FDT blob to a more appropriate location for the Linux kernel. | |
** This function will allocate memory for the relocated FDT blob. | |
** | |
** @retval EFI_SUCCESS on success. | |
** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure. | |
*/ | |
STATIC | |
EFI_STATUS | |
RelocateFdt ( | |
EFI_PHYSICAL_ADDRESS OriginalFdt, | |
UINTN OriginalFdtSize, | |
EFI_PHYSICAL_ADDRESS *RelocatedFdt, | |
UINTN *RelocatedFdtSize, | |
EFI_PHYSICAL_ADDRESS *RelocatedFdtAlloc | |
) | |
{ | |
EFI_STATUS Status; | |
INTN Error; | |
UINT64 FdtAlignment; | |
*RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE; | |
// If FDT load address needs to be aligned, allocate more space. | |
FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment); | |
if (FdtAlignment != 0) { | |
*RelocatedFdtSize += FdtAlignment; | |
} | |
// Try below a watermark address. | |
Status = EFI_NOT_FOUND; | |
if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) { | |
*RelocatedFdt = LINUX_FDT_MAX_OFFSET; | |
Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData, | |
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status)); | |
} | |
} | |
// Try anywhere there is available space. | |
if (EFI_ERROR (Status)) { | |
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData, | |
EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt); | |
if (EFI_ERROR (Status)) { | |
ASSERT_EFI_ERROR (Status); | |
return EFI_OUT_OF_RESOURCES; | |
} else { | |
DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt)); | |
} | |
} | |
*RelocatedFdtAlloc = *RelocatedFdt; | |
if (FdtAlignment != 0) { | |
*RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment); | |
} | |
// Load the Original FDT tree into the new region | |
Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt, | |
(VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize); | |
if (Error) { | |
DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error))); | |
gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize)); | |
return EFI_INVALID_PARAMETER; | |
} | |
DEBUG_CODE_BEGIN(); | |
//DebugDumpFdt (fdt); | |
DEBUG_CODE_END(); | |
return EFI_SUCCESS; | |
} | |
EFI_STATUS | |
PrepareFdt ( | |
IN CONST CHAR8* CommandLineArguments, | |
IN EFI_PHYSICAL_ADDRESS InitrdImage, | |
IN UINTN InitrdImageSize, | |
IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase, | |
IN OUT UINTN *FdtBlobSize | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_PHYSICAL_ADDRESS NewFdtBlobBase; | |
EFI_PHYSICAL_ADDRESS NewFdtBlobAllocation; | |
UINTN NewFdtBlobSize; | |
VOID* fdt; | |
INTN err; | |
INTN node; | |
INTN cpu_node; | |
INT32 lenp; | |
CONST VOID* BootArg; | |
CONST VOID* Method; | |
EFI_PHYSICAL_ADDRESS InitrdImageStart; | |
EFI_PHYSICAL_ADDRESS InitrdImageEnd; | |
FdtRegion Region; | |
UINTN Index; | |
CHAR8 Name[10]; | |
LIST_ENTRY ResourceList; | |
BDS_SYSTEM_MEMORY_RESOURCE *Resource; | |
ARM_PROCESSOR_TABLE *ArmProcessorTable; | |
ARM_CORE_INFO *ArmCoreInfoTable; | |
UINT32 MpId; | |
UINT32 ClusterId; | |
UINT32 CoreId; | |
UINT64 CpuReleaseAddr; | |
UINTN MemoryMapSize; | |
EFI_MEMORY_DESCRIPTOR *MemoryMap; | |
EFI_MEMORY_DESCRIPTOR *MemoryMapPtr; | |
UINTN MapKey; | |
UINTN DescriptorSize; | |
UINT32 DescriptorVersion; | |
UINTN Pages; | |
UINTN OriginalFdtSize; | |
BOOLEAN CpusNodeExist; | |
UINTN CoreMpId; | |
NewFdtBlobAllocation = 0; | |
// | |
// Sanity checks on the original FDT blob. | |
// | |
err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase)); | |
if (err != 0) { | |
Print (L"ERROR: Device Tree header not valid (err:%d)\n", err); | |
return EFI_INVALID_PARAMETER; | |
} | |
// The original FDT blob might have been loaded partially. | |
// Check that it is not the case. | |
OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); | |
if (OriginalFdtSize > *FdtBlobSize) { | |
Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n", | |
*FdtBlobSize, OriginalFdtSize); | |
return EFI_INVALID_PARAMETER; | |
} | |
// | |
// Relocate the FDT to its final location. | |
// | |
Status = RelocateFdt (*FdtBlobBase, OriginalFdtSize, | |
&NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation); | |
if (EFI_ERROR (Status)) { | |
goto FAIL_RELOCATE_FDT; | |
} | |
fdt = (VOID*)(UINTN)NewFdtBlobBase; | |
node = fdt_subnode_offset (fdt, 0, "chosen"); | |
if (node < 0) { | |
// The 'chosen' node does not exist, create it | |
node = fdt_add_subnode(fdt, 0, "chosen"); | |
if (node < 0) { | |
DEBUG((EFI_D_ERROR,"Error on finding 'chosen' node\n")); | |
Status = EFI_INVALID_PARAMETER; | |
goto FAIL_COMPLETE_FDT; | |
} | |
} | |
DEBUG_CODE_BEGIN(); | |
BootArg = fdt_getprop(fdt, node, "bootargs", &lenp); | |
if (BootArg != NULL) { | |
DEBUG((EFI_D_ERROR,"BootArg: %a\n",BootArg)); | |
} | |
DEBUG_CODE_END(); | |
// | |
// Set Linux CmdLine | |
// | |
if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) { | |
err = fdt_setprop(fdt, node, "bootargs", CommandLineArguments, AsciiStrSize(CommandLineArguments)); | |
if (err) { | |
DEBUG((EFI_D_ERROR,"Fail to set new 'bootarg' (err:%d)\n",err)); | |
} | |
} | |
// | |
// Set Linux Initrd | |
// | |
if (InitrdImageSize != 0) { | |
InitrdImageStart = cpu_to_fdt64 (InitrdImage); | |
err = fdt_setprop(fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof(EFI_PHYSICAL_ADDRESS)); | |
if (err) { | |
DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err)); | |
} | |
InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize); | |
err = fdt_setprop(fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof(EFI_PHYSICAL_ADDRESS)); | |
if (err) { | |
DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err)); | |
} | |
} | |
// | |
// Set Physical memory setup if does not exist | |
// | |
node = fdt_subnode_offset(fdt, 0, "memory"); | |
if (node < 0) { | |
// The 'memory' node does not exist, create it | |
node = fdt_add_subnode(fdt, 0, "memory"); | |
if (node >= 0) { | |
fdt_setprop_string(fdt, node, "name", "memory"); | |
fdt_setprop_string(fdt, node, "device_type", "memory"); | |
GetSystemMemoryResources (&ResourceList); | |
Resource = (BDS_SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink; | |
Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart); | |
Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength); | |
err = fdt_setprop(fdt, node, "reg", &Region, sizeof(Region)); | |
if (err) { | |
DEBUG((EFI_D_ERROR,"Fail to set new 'memory region' (err:%d)\n",err)); | |
} | |
} | |
} | |
// | |
// Add the memory regions reserved by the UEFI Firmware | |
// | |
// Retrieve the UEFI Memory Map | |
MemoryMap = NULL; | |
MemoryMapSize = 0; | |
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); | |
if (Status == EFI_BUFFER_TOO_SMALL) { | |
// The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive | |
// calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size. | |
Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1; | |
MemoryMap = AllocatePages (Pages); | |
if (MemoryMap == NULL) { | |
Status = EFI_OUT_OF_RESOURCES; | |
goto FAIL_COMPLETE_FDT; | |
} | |
Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion); | |
} | |
// Go through the list and add the reserved region to the Device Tree | |
if (!EFI_ERROR(Status)) { | |
MemoryMapPtr = MemoryMap; | |
for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) { | |
if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) { | |
DEBUG((DEBUG_VERBOSE, "Reserved region of type %d [0x%lX, 0x%lX]\n", | |
MemoryMapPtr->Type, | |
(UINTN)MemoryMapPtr->PhysicalStart, | |
(UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE))); | |
err = fdt_add_mem_rsv(fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE); | |
if (err != 0) { | |
Print(L"Warning: Fail to add 'memreserve' (err:%d)\n", err); | |
} | |
} | |
MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize); | |
} | |
} | |
// | |
// Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms. | |
// | |
// For 'cpus' and 'cpu' device tree nodes bindings, refer to this file | |
// in the kernel documentation: | |
// Documentation/devicetree/bindings/arm/cpus.txt | |
// | |
for (Index=0; Index < gST->NumberOfTableEntries; Index++) { | |
// Check for correct GUID type | |
if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) { | |
MpId = ArmReadMpidr (); | |
ClusterId = GET_CLUSTER_ID(MpId); | |
CoreId = GET_CORE_ID(MpId); | |
node = fdt_subnode_offset(fdt, 0, "cpus"); | |
if (node < 0) { | |
// Create the /cpus node | |
node = fdt_add_subnode(fdt, 0, "cpus"); | |
fdt_setprop_string(fdt, node, "name", "cpus"); | |
fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4); | |
fdt_setprop_cell(fdt, node, "#size-cells", 0); | |
CpusNodeExist = FALSE; | |
} else { | |
CpusNodeExist = TRUE; | |
} | |
// Get pointer to ARM processor table | |
ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable; | |
ArmCoreInfoTable = ArmProcessorTable->ArmCpus; | |
for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) { | |
CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId, | |
ArmCoreInfoTable[Index].CoreId); | |
AsciiSPrint (Name, 10, "cpu@%x", CoreMpId); | |
// If the 'cpus' node did not exist then create all the 'cpu' nodes. | |
// In case 'cpus' node is provided in the original FDT then we do not add | |
// any 'cpu' node. | |
if (!CpusNodeExist) { | |
cpu_node = fdt_add_subnode (fdt, node, Name); | |
if (cpu_node < 0) { | |
DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name)); | |
Status = EFI_INVALID_PARAMETER; | |
goto FAIL_COMPLETE_FDT; | |
} | |
fdt_setprop_string (fdt, cpu_node, "device_type", "cpu"); | |
CoreMpId = cpu_to_fdtn (CoreMpId); | |
fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId)); | |
} else { | |
cpu_node = fdt_subnode_offset(fdt, node, Name); | |
} | |
if (cpu_node >= 0) { | |
Method = fdt_getprop (fdt, cpu_node, "enable-method", &lenp); | |
// We only care when 'enable-method' == 'spin-table'. If the enable-method is not defined | |
// or defined as 'psci' then we ignore its properties. | |
if ((Method != NULL) && (AsciiStrCmp ((CHAR8 *)Method, "spin-table") == 0)) { | |
// There are two cases; | |
// - UEFI firmware parked the secondary cores and/or UEFI firmware is aware of the CPU | |
// release addresses (PcdArmLinuxSpinTable == TRUE) | |
// - the parking of the secondary cores has been managed before starting UEFI and/or UEFI | |
// does not anything about the CPU release addresses - in this case we do nothing | |
if (FeaturePcdGet (PcdArmLinuxSpinTable)) { | |
CpuReleaseAddr = cpu_to_fdt64 (ArmCoreInfoTable[Index].MailboxSetAddress); | |
fdt_setprop (fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof(CpuReleaseAddr)); | |
// If it is not the primary core than the cpu should be disabled | |
if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) { | |
fdt_setprop_string(fdt, cpu_node, "status", "disabled"); | |
} | |
} | |
} | |
} | |
} | |
break; | |
} | |
} | |
DEBUG_CODE_BEGIN(); | |
//DebugDumpFdt (fdt); | |
DEBUG_CODE_END(); | |
// If we succeeded to generate the new Device Tree then free the old Device Tree | |
gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize)); | |
// Update the real size of the Device Tree | |
fdt_pack ((VOID*)(UINTN)(NewFdtBlobBase)); | |
*FdtBlobBase = NewFdtBlobBase; | |
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase)); | |
return EFI_SUCCESS; | |
FAIL_COMPLETE_FDT: | |
gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize)); | |
FAIL_RELOCATE_FDT: | |
*FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase)); | |
// Return success even if we failed to update the FDT blob. | |
// The original one is still valid. | |
return EFI_SUCCESS; | |
} |