/** @file | |
Capsule update PEIM for UEFI2.0 | |
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions | |
of the BSD License which accompanies this distribution. The | |
full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include "Capsule.h" | |
#ifdef MDE_CPU_IA32 | |
// | |
// Global Descriptor Table (GDT) | |
// | |
GLOBAL_REMOVE_IF_UNREFERENCED IA32_SEGMENT_DESCRIPTOR mGdtEntries[] = { | |
/* selector { Global Segment Descriptor } */ | |
/* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor | |
/* 0x08 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor | |
/* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor | |
/* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor | |
/* 0x20 */ {{0xffff, 0, 0, 0xb, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor | |
/* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor | |
/* 0x30 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor | |
/* 0x38 */ {{0xffff, 0, 0, 0xb, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor | |
/* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor | |
}; | |
// | |
// IA32 Gdt register | |
// | |
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR mGdt = { | |
sizeof (mGdtEntries) - 1, | |
(UINTN) mGdtEntries | |
}; | |
/** | |
Calculate the total size of page table. | |
@return The size of page table. | |
**/ | |
UINTN | |
CalculatePageTableSize ( | |
VOID | |
) | |
{ | |
UINT32 RegEax; | |
UINT32 RegEdx; | |
UINTN TotalPagesNum; | |
UINT8 PhysicalAddressBits; | |
VOID *Hob; | |
UINT32 NumberOfPml4EntriesNeeded; | |
UINT32 NumberOfPdpEntriesNeeded; | |
BOOLEAN Page1GSupport; | |
Page1GSupport = FALSE; | |
if (PcdGetBool(PcdUse1GPageTable)) { | |
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); | |
if (RegEax >= 0x80000001) { | |
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); | |
if ((RegEdx & BIT26) != 0) { | |
Page1GSupport = TRUE; | |
} | |
} | |
} | |
// | |
// Get physical address bits supported. | |
// | |
Hob = GetFirstHob (EFI_HOB_TYPE_CPU); | |
if (Hob != NULL) { | |
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace; | |
} else { | |
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); | |
if (RegEax >= 0x80000008) { | |
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); | |
PhysicalAddressBits = (UINT8) RegEax; | |
} else { | |
PhysicalAddressBits = 36; | |
} | |
} | |
// | |
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses. | |
// | |
ASSERT (PhysicalAddressBits <= 52); | |
if (PhysicalAddressBits > 48) { | |
PhysicalAddressBits = 48; | |
} | |
// | |
// Calculate the table entries needed. | |
// | |
if (PhysicalAddressBits <= 39 ) { | |
NumberOfPml4EntriesNeeded = 1; | |
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30)); | |
} else { | |
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39)); | |
NumberOfPdpEntriesNeeded = 512; | |
} | |
if (!Page1GSupport) { | |
TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1; | |
} else { | |
TotalPagesNum = NumberOfPml4EntriesNeeded + 1; | |
} | |
return EFI_PAGES_TO_SIZE (TotalPagesNum); | |
} | |
/** | |
Allocates and fills in the Page Directory and Page Table Entries to | |
establish a 1:1 Virtual to Physical mapping. | |
@param[in] PageTablesAddress The base address of page table. | |
**/ | |
VOID | |
CreateIdentityMappingPageTables ( | |
IN EFI_PHYSICAL_ADDRESS PageTablesAddress | |
) | |
{ | |
UINT32 RegEax; | |
UINT32 RegEdx; | |
UINT8 PhysicalAddressBits; | |
EFI_PHYSICAL_ADDRESS PageAddress; | |
UINTN IndexOfPml4Entries; | |
UINTN IndexOfPdpEntries; | |
UINTN IndexOfPageDirectoryEntries; | |
UINT32 NumberOfPml4EntriesNeeded; | |
UINT32 NumberOfPdpEntriesNeeded; | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry; | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap; | |
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry; | |
PAGE_TABLE_ENTRY *PageDirectoryEntry; | |
UINTN BigPageAddress; | |
VOID *Hob; | |
BOOLEAN Page1GSupport; | |
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry; | |
Page1GSupport = FALSE; | |
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); | |
if (RegEax >= 0x80000001) { | |
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); | |
if ((RegEdx & BIT26) != 0) { | |
Page1GSupport = TRUE; | |
} | |
} | |
// | |
// Get physical address bits supported. | |
// | |
Hob = GetFirstHob (EFI_HOB_TYPE_CPU); | |
if (Hob != NULL) { | |
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace; | |
} else { | |
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); | |
if (RegEax >= 0x80000008) { | |
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); | |
PhysicalAddressBits = (UINT8) RegEax; | |
} else { | |
PhysicalAddressBits = 36; | |
} | |
} | |
// | |
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses. | |
// | |
ASSERT (PhysicalAddressBits <= 52); | |
if (PhysicalAddressBits > 48) { | |
PhysicalAddressBits = 48; | |
} | |
// | |
// Calculate the table entries needed. | |
// | |
if (PhysicalAddressBits <= 39 ) { | |
NumberOfPml4EntriesNeeded = 1; | |
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30)); | |
} else { | |
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39)); | |
NumberOfPdpEntriesNeeded = 512; | |
} | |
// | |
// Pre-allocate big pages to avoid later allocations. | |
// | |
BigPageAddress = (UINTN) PageTablesAddress; | |
// | |
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it. | |
// | |
PageMap = (VOID *) BigPageAddress; | |
BigPageAddress += SIZE_4KB; | |
PageMapLevel4Entry = PageMap; | |
PageAddress = 0; | |
for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) { | |
// | |
// Each PML4 entry points to a page of Page Directory Pointer entires. | |
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop. | |
// | |
PageDirectoryPointerEntry = (VOID *) BigPageAddress; | |
BigPageAddress += SIZE_4KB; | |
// | |
// Make a PML4 Entry | |
// | |
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry; | |
PageMapLevel4Entry->Bits.ReadWrite = 1; | |
PageMapLevel4Entry->Bits.Present = 1; | |
if (Page1GSupport) { | |
PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry; | |
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) { | |
// | |
// Fill in the Page Directory entries | |
// | |
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress; | |
PageDirectory1GEntry->Bits.ReadWrite = 1; | |
PageDirectory1GEntry->Bits.Present = 1; | |
PageDirectory1GEntry->Bits.MustBe1 = 1; | |
} | |
} else { | |
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { | |
// | |
// Each Directory Pointer entries points to a page of Page Directory entires. | |
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop. | |
// | |
PageDirectoryEntry = (VOID *) BigPageAddress; | |
BigPageAddress += SIZE_4KB; | |
// | |
// Fill in a Page Directory Pointer Entries | |
// | |
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry; | |
PageDirectoryPointerEntry->Bits.ReadWrite = 1; | |
PageDirectoryPointerEntry->Bits.Present = 1; | |
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) { | |
// | |
// Fill in the Page Directory entries | |
// | |
PageDirectoryEntry->Uint64 = (UINT64)PageAddress; | |
PageDirectoryEntry->Bits.ReadWrite = 1; | |
PageDirectoryEntry->Bits.Present = 1; | |
PageDirectoryEntry->Bits.MustBe1 = 1; | |
} | |
} | |
for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { | |
ZeroMem ( | |
PageDirectoryPointerEntry, | |
sizeof(PAGE_MAP_AND_DIRECTORY_POINTER) | |
); | |
} | |
} | |
} | |
// | |
// For the PML4 entries we are not using fill in a null entry. | |
// | |
for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) { | |
ZeroMem ( | |
PageMapLevel4Entry, | |
sizeof (PAGE_MAP_AND_DIRECTORY_POINTER) | |
); | |
} | |
} | |
/** | |
Return function from long mode to 32-bit mode. | |
@param EntrypointContext Context for mode switching | |
@param ReturnContext Context for mode switching | |
**/ | |
VOID | |
ReturnFunction ( | |
SWITCH_32_TO_64_CONTEXT *EntrypointContext, | |
SWITCH_64_TO_32_CONTEXT *ReturnContext | |
) | |
{ | |
// | |
// Restore original GDT | |
// | |
AsmWriteGdtr (&ReturnContext->Gdtr); | |
// | |
// return to original caller | |
// | |
LongJump ((BASE_LIBRARY_JUMP_BUFFER *)(UINTN)EntrypointContext->JumpBuffer, 1); | |
// | |
// never be here | |
// | |
ASSERT (FALSE); | |
} | |
/** | |
Thunk function from 32-bit protection mode to long mode. | |
@param PageTableAddress Page table base address | |
@param Context Context for mode switching | |
@param ReturnContext Context for mode switching | |
@retval EFI_SUCCESS Function successfully executed. | |
**/ | |
EFI_STATUS | |
Thunk32To64 ( | |
EFI_PHYSICAL_ADDRESS PageTableAddress, | |
SWITCH_32_TO_64_CONTEXT *Context, | |
SWITCH_64_TO_32_CONTEXT *ReturnContext | |
) | |
{ | |
UINTN SetJumpFlag; | |
EFI_STATUS Status; | |
// | |
// Save return address, LongJump will return here then | |
// | |
SetJumpFlag = SetJump ((BASE_LIBRARY_JUMP_BUFFER *) (UINTN) Context->JumpBuffer); | |
if (SetJumpFlag == 0) { | |
// | |
// Build Page Tables for all physical memory processor supports | |
// | |
CreateIdentityMappingPageTables (PageTableAddress); | |
// | |
// Create 64-bit GDT | |
// | |
AsmWriteGdtr (&mGdt); | |
// | |
// Write CR3 | |
// | |
AsmWriteCr3 ((UINTN) PageTableAddress); | |
// | |
// Disable interrupt of Debug timer, since the IDT table cannot work in long mode | |
// | |
SaveAndSetDebugTimerInterrupt (FALSE); | |
// | |
// Transfer to long mode | |
// | |
AsmEnablePaging64 ( | |
0x38, | |
(UINT64) Context->EntryPoint, | |
(UINT64)(UINTN) Context, | |
(UINT64)(UINTN) ReturnContext, | |
Context->StackBufferBase + Context->StackBufferLength | |
); | |
} | |
// | |
// Convert to 32-bit Status and return | |
// | |
Status = EFI_SUCCESS; | |
if ((UINTN) ReturnContext->ReturnStatus != 0) { | |
Status = ENCODE_ERROR ((UINTN) ReturnContext->ReturnStatus); | |
} | |
return Status; | |
} | |
/** | |
If in 32 bit protection mode, and coalesce image is of X64, switch to long mode. | |
@param LongModeBuffer The context of long mode. | |
@param CoalesceEntry Entry of coalesce image. | |
@param BlockListAddr Address of block list. | |
@param MemoryBase Base of memory range. | |
@param MemorySize Size of memory range. | |
@retval EFI_SUCCESS Successfully switched to long mode and execute coalesce. | |
@retval Others Failed to execute coalesce in long mode. | |
**/ | |
EFI_STATUS | |
ModeSwitch ( | |
IN EFI_CAPSULE_LONG_MODE_BUFFER *LongModeBuffer, | |
IN COALESCE_ENTRY CoalesceEntry, | |
IN EFI_PHYSICAL_ADDRESS BlockListAddr, | |
IN OUT VOID **MemoryBase, | |
IN OUT UINTN *MemorySize | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_PHYSICAL_ADDRESS MemoryBase64; | |
UINT64 MemorySize64; | |
EFI_PHYSICAL_ADDRESS MemoryEnd64; | |
SWITCH_32_TO_64_CONTEXT Context; | |
SWITCH_64_TO_32_CONTEXT ReturnContext; | |
BASE_LIBRARY_JUMP_BUFFER JumpBuffer; | |
EFI_PHYSICAL_ADDRESS ReservedRangeBase; | |
EFI_PHYSICAL_ADDRESS ReservedRangeEnd; | |
ZeroMem (&Context, sizeof (SWITCH_32_TO_64_CONTEXT)); | |
ZeroMem (&ReturnContext, sizeof (SWITCH_64_TO_32_CONTEXT)); | |
MemoryBase64 = (UINT64) (UINTN) *MemoryBase; | |
MemorySize64 = (UINT64) (UINTN) *MemorySize; | |
MemoryEnd64 = MemoryBase64 + MemorySize64; | |
// | |
// Merge memory range reserved for stack and page table | |
// | |
if (LongModeBuffer->StackBaseAddress < LongModeBuffer->PageTableAddress) { | |
ReservedRangeBase = LongModeBuffer->StackBaseAddress; | |
ReservedRangeEnd = LongModeBuffer->PageTableAddress + CalculatePageTableSize (); | |
} else { | |
ReservedRangeBase = LongModeBuffer->PageTableAddress; | |
ReservedRangeEnd = LongModeBuffer->StackBaseAddress + LongModeBuffer->StackSize; | |
} | |
// | |
// Check if memory range reserved is overlap with MemoryBase ~ MemoryBase + MemorySize. | |
// If they are overlapped, get a larger range to process capsule data. | |
// | |
if (ReservedRangeBase <= MemoryBase64) { | |
if (ReservedRangeEnd < MemoryEnd64) { | |
MemoryBase64 = ReservedRangeEnd; | |
} else { | |
DEBUG ((EFI_D_ERROR, "Memory is not enough to process capsule!\n")); | |
return EFI_OUT_OF_RESOURCES; | |
} | |
} else if (ReservedRangeBase < MemoryEnd64) { | |
if (ReservedRangeEnd < MemoryEnd64 && | |
ReservedRangeBase - MemoryBase64 < MemoryEnd64 - ReservedRangeEnd) { | |
MemoryBase64 = ReservedRangeEnd; | |
} else { | |
MemorySize64 = (UINT64)(UINTN)(ReservedRangeBase - MemoryBase64); | |
} | |
} | |
// | |
// Initialize context jumping to 64-bit enviroment | |
// | |
Context.JumpBuffer = (EFI_PHYSICAL_ADDRESS)(UINTN)&JumpBuffer; | |
Context.StackBufferBase = LongModeBuffer->StackBaseAddress; | |
Context.StackBufferLength = LongModeBuffer->StackSize; | |
Context.EntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)CoalesceEntry; | |
Context.BlockListAddr = BlockListAddr; | |
Context.MemoryBase64Ptr = (EFI_PHYSICAL_ADDRESS)(UINTN)&MemoryBase64; | |
Context.MemorySize64Ptr = (EFI_PHYSICAL_ADDRESS)(UINTN)&MemorySize64; | |
// | |
// Prepare data for return back | |
// | |
ReturnContext.ReturnCs = 0x10; | |
ReturnContext.ReturnEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)ReturnFunction; | |
// | |
// Will save the return status of processing capsule | |
// | |
ReturnContext.ReturnStatus = 0; | |
// | |
// Save original GDT | |
// | |
AsmReadGdtr ((IA32_DESCRIPTOR *)&ReturnContext.Gdtr); | |
Status = Thunk32To64 (LongModeBuffer->PageTableAddress, &Context, &ReturnContext); | |
if (!EFI_ERROR (Status)) { | |
*MemoryBase = (VOID *) (UINTN) MemoryBase64; | |
*MemorySize = (UINTN) MemorySize64; | |
} | |
return Status; | |
} | |
/** | |
Locates the coalesce image entry point, and detects its machine type. | |
@param CoalesceImageEntryPoint Pointer to coalesce image entry point for output. | |
@param CoalesceImageMachineType Pointer to machine type of coalesce image. | |
@retval EFI_SUCCESS Coalesce image successfully located. | |
@retval Others Failed to locate the coalesce image. | |
**/ | |
EFI_STATUS | |
FindCapsuleCoalesceImage ( | |
OUT EFI_PHYSICAL_ADDRESS *CoalesceImageEntryPoint, | |
OUT UINT16 *CoalesceImageMachineType | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN Instance; | |
EFI_PEI_LOAD_FILE_PPI *LoadFile; | |
EFI_PEI_FV_HANDLE VolumeHandle; | |
EFI_PEI_FILE_HANDLE FileHandle; | |
EFI_PHYSICAL_ADDRESS CoalesceImageAddress; | |
UINT64 CoalesceImageSize; | |
UINT32 AuthenticationState; | |
Instance = 0; | |
while (TRUE) { | |
Status = PeiServicesFfsFindNextVolume (Instance++, &VolumeHandle); | |
if (EFI_ERROR (Status)) { | |
return Status; | |
} | |
Status = PeiServicesFfsFindFileByName (PcdGetPtr(PcdCapsuleCoalesceFile), VolumeHandle, &FileHandle); | |
if (!EFI_ERROR (Status)) { | |
Status = PeiServicesLocatePpi (&gEfiPeiLoadFilePpiGuid, 0, NULL, (VOID **) &LoadFile); | |
ASSERT_EFI_ERROR (Status); | |
Status = LoadFile->LoadFile ( | |
LoadFile, | |
FileHandle, | |
&CoalesceImageAddress, | |
&CoalesceImageSize, | |
CoalesceImageEntryPoint, | |
&AuthenticationState | |
); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((EFI_D_ERROR, "Unable to find PE32 section in CapsuleRelocate image ffs %r!\n", Status)); | |
return Status; | |
} | |
*CoalesceImageMachineType = PeCoffLoaderGetMachineType ((VOID *) (UINTN) CoalesceImageAddress); | |
break; | |
} else { | |
continue; | |
} | |
} | |
return Status; | |
} | |
#endif | |
/** | |
Checks for the presence of capsule descriptors. | |
Get capsule descriptors from variable CapsuleUpdateData, CapsuleUpdateData1, CapsuleUpdateData2... | |
and save to DescriptorBuffer. | |
@param DescriptorBuffer Pointer to the capsule descriptors | |
@retval EFI_SUCCESS a valid capsule is present | |
@retval EFI_NOT_FOUND if a valid capsule is not present | |
**/ | |
EFI_STATUS | |
GetCapsuleDescriptors ( | |
IN EFI_PHYSICAL_ADDRESS *DescriptorBuffer | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN Size; | |
UINTN Index; | |
UINTN TempIndex; | |
UINTN ValidIndex; | |
BOOLEAN Flag; | |
CHAR16 CapsuleVarName[30]; | |
CHAR16 *TempVarName; | |
EFI_PHYSICAL_ADDRESS CapsuleDataPtr64; | |
EFI_PEI_READ_ONLY_VARIABLE2_PPI *PPIVariableServices; | |
Index = 0; | |
TempVarName = NULL; | |
CapsuleVarName[0] = 0; | |
ValidIndex = 0; | |
CapsuleDataPtr64 = 0; | |
Status = PeiServicesLocatePpi ( | |
&gEfiPeiReadOnlyVariable2PpiGuid, | |
0, | |
NULL, | |
(VOID **) &PPIVariableServices | |
); | |
if (Status == EFI_SUCCESS) { | |
StrCpy (CapsuleVarName, EFI_CAPSULE_VARIABLE_NAME); | |
TempVarName = CapsuleVarName + StrLen (CapsuleVarName); | |
Size = sizeof (CapsuleDataPtr64); | |
while (1) { | |
if (Index == 0) { | |
// | |
// For the first Capsule Image | |
// | |
Status = PPIVariableServices->GetVariable ( | |
PPIVariableServices, | |
CapsuleVarName, | |
&gEfiCapsuleVendorGuid, | |
NULL, | |
&Size, | |
(VOID *) &CapsuleDataPtr64 | |
); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((EFI_D_ERROR, "Capsule -- capsule variable not set\n")); | |
return EFI_NOT_FOUND; | |
} | |
// | |
// We have a chicken/egg situation where the memory init code needs to | |
// know the boot mode prior to initializing memory. For this case, our | |
// validate function will fail. We can detect if this is the case if blocklist | |
// pointer is null. In that case, return success since we know that the | |
// variable is set. | |
// | |
if (DescriptorBuffer == NULL) { | |
return EFI_SUCCESS; | |
} | |
} else { | |
UnicodeValueToString (TempVarName, 0, Index, 0); | |
Status = PPIVariableServices->GetVariable ( | |
PPIVariableServices, | |
CapsuleVarName, | |
&gEfiCapsuleVendorGuid, | |
NULL, | |
&Size, | |
(VOID *) &CapsuleDataPtr64 | |
); | |
if (EFI_ERROR (Status)) { | |
break; | |
} | |
// | |
// If this BlockList has been linked before, skip this variable | |
// | |
Flag = FALSE; | |
for (TempIndex = 0; TempIndex < ValidIndex; TempIndex++) { | |
if (DescriptorBuffer[TempIndex] == CapsuleDataPtr64) { | |
Flag = TRUE; | |
break; | |
} | |
} | |
if (Flag) { | |
Index ++; | |
continue; | |
} | |
} | |
// | |
// Cache BlockList which has been processed | |
// | |
DescriptorBuffer[ValidIndex++] = CapsuleDataPtr64; | |
Index ++; | |
} | |
} | |
return EFI_SUCCESS; | |
} | |
/** | |
Gets the reserved long mode buffer. | |
@param LongModeBuffer Pointer to the long mode buffer for output. | |
@retval EFI_SUCCESS Long mode buffer successfully retrieved. | |
@retval Others Variable storing long mode buffer not found. | |
**/ | |
EFI_STATUS | |
GetLongModeContext ( | |
OUT EFI_CAPSULE_LONG_MODE_BUFFER *LongModeBuffer | |
) | |
{ | |
EFI_STATUS Status; | |
UINTN Size; | |
EFI_PEI_READ_ONLY_VARIABLE2_PPI *PPIVariableServices; | |
Status = PeiServicesLocatePpi ( | |
&gEfiPeiReadOnlyVariable2PpiGuid, | |
0, | |
NULL, | |
(VOID **) &PPIVariableServices | |
); | |
ASSERT_EFI_ERROR (Status); | |
Size = sizeof (EFI_CAPSULE_LONG_MODE_BUFFER); | |
Status = PPIVariableServices->GetVariable ( | |
PPIVariableServices, | |
EFI_CAPSULE_LONG_MODE_BUFFER_NAME, | |
&gEfiCapsuleVendorGuid, | |
NULL, | |
&Size, | |
LongModeBuffer | |
); | |
if (EFI_ERROR (Status)) { | |
DEBUG (( EFI_D_ERROR, "Error Get LongModeBuffer variable %r!\n", Status)); | |
} | |
return Status; | |
} | |
/** | |
Capsule PPI service to coalesce a fragmented capsule in memory. | |
@param PeiServices General purpose services available to every PEIM. | |
@param MemoryBase Pointer to the base of a block of memory that we can walk | |
all over while trying to coalesce our buffers. | |
On output, this variable will hold the base address of | |
a coalesced capsule. | |
@param MemorySize Size of the memory region pointed to by MemoryBase. | |
On output, this variable will contain the size of the | |
coalesced capsule. | |
@retval EFI_NOT_FOUND if we can't determine the boot mode | |
if the boot mode is not flash-update | |
if we could not find the capsule descriptors | |
@retval EFI_BUFFER_TOO_SMALL | |
if we could not coalesce the capsule in the memory | |
region provided to us | |
@retval EFI_SUCCESS if there's no capsule, or if we processed the | |
capsule successfully. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CapsuleCoalesce ( | |
IN EFI_PEI_SERVICES **PeiServices, | |
IN OUT VOID **MemoryBase, | |
IN OUT UINTN *MemorySize | |
) | |
{ | |
UINTN Index; | |
UINTN Size; | |
UINTN VariableCount; | |
CHAR16 CapsuleVarName[30]; | |
CHAR16 *TempVarName; | |
EFI_PHYSICAL_ADDRESS CapsuleDataPtr64; | |
EFI_STATUS Status; | |
EFI_BOOT_MODE BootMode; | |
EFI_PEI_READ_ONLY_VARIABLE2_PPI *PPIVariableServices; | |
EFI_PHYSICAL_ADDRESS *VariableArrayAddress; | |
#ifdef MDE_CPU_IA32 | |
UINT16 CoalesceImageMachineType; | |
EFI_PHYSICAL_ADDRESS CoalesceImageEntryPoint; | |
COALESCE_ENTRY CoalesceEntry; | |
EFI_CAPSULE_LONG_MODE_BUFFER LongModeBuffer; | |
#endif | |
Index = 0; | |
VariableCount = 0; | |
CapsuleVarName[0] = 0; | |
CapsuleDataPtr64 = 0; | |
// | |
// Someone should have already ascertained the boot mode. If it's not | |
// capsule update, then return normally. | |
// | |
Status = PeiServicesGetBootMode (&BootMode); | |
if (EFI_ERROR (Status) || (BootMode != BOOT_ON_FLASH_UPDATE)) { | |
DEBUG ((EFI_D_ERROR, "Boot mode is not correct for capsule update path.\n")); | |
Status = EFI_NOT_FOUND; | |
goto Done; | |
} | |
// | |
// User may set the same ScatterGatherList with several different variables, | |
// so cache all ScatterGatherList for check later. | |
// | |
Status = PeiServicesLocatePpi ( | |
&gEfiPeiReadOnlyVariable2PpiGuid, | |
0, | |
NULL, | |
(VOID **) &PPIVariableServices | |
); | |
if (EFI_ERROR (Status)) { | |
goto Done; | |
} | |
Size = sizeof (CapsuleDataPtr64); | |
StrCpy (CapsuleVarName, EFI_CAPSULE_VARIABLE_NAME); | |
TempVarName = CapsuleVarName + StrLen (CapsuleVarName); | |
while (TRUE) { | |
if (Index > 0) { | |
UnicodeValueToString (TempVarName, 0, Index, 0); | |
} | |
Status = PPIVariableServices->GetVariable ( | |
PPIVariableServices, | |
CapsuleVarName, | |
&gEfiCapsuleVendorGuid, | |
NULL, | |
&Size, | |
(VOID *) &CapsuleDataPtr64 | |
); | |
if (EFI_ERROR (Status)) { | |
// | |
// There is no capsule variables, quit | |
// | |
DEBUG ((EFI_D_INFO,"Capsule variable Index = %d\n", Index)); | |
break; | |
} | |
VariableCount++; | |
Index++; | |
} | |
DEBUG ((EFI_D_INFO,"Capsule variable count = %d\n", VariableCount)); | |
// | |
// The last entry is the end flag. | |
// | |
Status = PeiServicesAllocatePool ( | |
(VariableCount + 1) * sizeof (EFI_PHYSICAL_ADDRESS), | |
(VOID **)&VariableArrayAddress | |
); | |
if (Status != EFI_SUCCESS) { | |
DEBUG ((EFI_D_ERROR, "AllocatePages Failed!, Status = %x\n", Status)); | |
goto Done; | |
} | |
ZeroMem (VariableArrayAddress, (VariableCount + 1) * sizeof (EFI_PHYSICAL_ADDRESS)); | |
// | |
// Find out if we actually have a capsule. | |
// GetCapsuleDescriptors depends on variable PPI, so it should run in 32-bit environment. | |
// | |
Status = GetCapsuleDescriptors (VariableArrayAddress); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((EFI_D_ERROR, "Fail to find capsule variables.\n")); | |
goto Done; | |
} | |
#ifdef MDE_CPU_IA32 | |
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { | |
// | |
// Switch to 64-bit mode to process capsule data when: | |
// 1. When DXE phase is 64-bit | |
// 2. When the buffer for 64-bit transition exists | |
// 3. When Capsule X64 image is built in BIOS image | |
// In 64-bit mode, we can process capsule data above 4GB. | |
// | |
CoalesceImageEntryPoint = 0; | |
Status = GetLongModeContext (&LongModeBuffer); | |
if (EFI_ERROR (Status)) { | |
DEBUG ((EFI_D_ERROR, "Fail to find the variables for long mode context!\n")); | |
Status = EFI_NOT_FOUND; | |
goto Done; | |
} | |
Status = FindCapsuleCoalesceImage (&CoalesceImageEntryPoint, &CoalesceImageMachineType); | |
if ((EFI_ERROR (Status)) || (CoalesceImageMachineType != EFI_IMAGE_MACHINE_X64)) { | |
DEBUG ((EFI_D_ERROR, "Fail to find CapsuleX64 module in FV!\n")); | |
Status = EFI_NOT_FOUND; | |
goto Done; | |
} | |
ASSERT (CoalesceImageEntryPoint != 0); | |
CoalesceEntry = (COALESCE_ENTRY) (UINTN) CoalesceImageEntryPoint; | |
Status = ModeSwitch (&LongModeBuffer, CoalesceEntry, (EFI_PHYSICAL_ADDRESS)(UINTN)VariableArrayAddress, MemoryBase, MemorySize); | |
} else { | |
// | |
// Capsule is processed in IA32 mode. | |
// | |
Status = CapsuleDataCoalesce (PeiServices, (EFI_PHYSICAL_ADDRESS *)(UINTN)VariableArrayAddress, MemoryBase, MemorySize); | |
} | |
#else | |
// | |
// Process capsule directly. | |
// | |
Status = CapsuleDataCoalesce (PeiServices, (EFI_PHYSICAL_ADDRESS *)(UINTN)VariableArrayAddress, MemoryBase, MemorySize); | |
#endif | |
DEBUG ((EFI_D_INFO, "Capsule Coalesce Status = %r!\n", Status)); | |
if (Status == EFI_BUFFER_TOO_SMALL) { | |
DEBUG ((EFI_D_ERROR, "There is not enough memory to process capsule!\n")); | |
} | |
if (Status == EFI_NOT_FOUND) { | |
DEBUG ((EFI_D_ERROR, "Fail to parse capsule descriptor in memory!\n")); | |
REPORT_STATUS_CODE ( | |
EFI_ERROR_CODE | EFI_ERROR_MAJOR, | |
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_INVALID_CAPSULE_DESCRIPTOR) | |
); | |
} | |
Done: | |
return Status; | |
} | |
/** | |
Determine if we're in capsule update boot mode. | |
@param PeiServices PEI services table | |
@retval EFI_SUCCESS if we have a capsule available | |
@retval EFI_NOT_FOUND no capsule detected | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CheckCapsuleUpdate ( | |
IN EFI_PEI_SERVICES **PeiServices | |
) | |
{ | |
EFI_STATUS Status; | |
Status = GetCapsuleDescriptors (NULL); | |
return Status; | |
} | |
/** | |
This function will look at a capsule and determine if it's a test pattern. | |
If it is, then it will verify it and emit an error message if corruption is detected. | |
@param PeiServices Standard pei services pointer | |
@param CapsuleBase Base address of coalesced capsule, which is preceeded | |
by private data. Very implementation specific. | |
@retval TRUE Capsule image is the test image | |
@retval FALSE Capsule image is not the test image. | |
**/ | |
BOOLEAN | |
CapsuleTestPattern ( | |
IN EFI_PEI_SERVICES **PeiServices, | |
IN VOID *CapsuleBase | |
) | |
{ | |
UINT32 *TestPtr; | |
UINT32 TestCounter; | |
UINT32 TestSize; | |
BOOLEAN RetValue; | |
RetValue = FALSE; | |
// | |
// Look at the capsule data and determine if it's a test pattern. If it | |
// is, then test it now. | |
// | |
TestPtr = (UINT32 *) CapsuleBase; | |
// | |
// 0x54534554 "TEST" | |
// | |
if (*TestPtr == 0x54534554) { | |
RetValue = TRUE; | |
DEBUG ((EFI_D_INFO, "Capsule test pattern mode activated...\n")); | |
TestSize = TestPtr[1] / sizeof (UINT32); | |
// | |
// Skip over the signature and the size fields in the pattern data header | |
// | |
TestPtr += 2; | |
TestCounter = 0; | |
while (TestSize > 0) { | |
if (*TestPtr != TestCounter) { | |
DEBUG ((EFI_D_INFO, "Capsule test pattern mode FAILED: BaseAddr/FailAddr 0x%X 0x%X\n", (UINT32)(UINTN)(EFI_CAPSULE_PEIM_PRIVATE_DATA *)CapsuleBase, (UINT32)(UINTN)TestPtr)); | |
return TRUE; | |
} | |
TestPtr++; | |
TestCounter++; | |
TestSize--; | |
} | |
DEBUG ((EFI_D_INFO, "Capsule test pattern mode SUCCESS\n")); | |
} | |
return RetValue; | |
} | |
/** | |
Capsule PPI service that gets called after memory is available. The | |
capsule coalesce function, which must be called first, returns a base | |
address and size, which can be anything actually. Once the memory init | |
PEIM has discovered memory, then it should call this function and pass in | |
the base address and size returned by the coalesce function. Then this | |
function can create a capsule HOB and return. | |
@param PeiServices standard pei services pointer | |
@param CapsuleBase address returned by the capsule coalesce function. Most | |
likely this will actually be a pointer to private data. | |
@param CapsuleSize value returned by the capsule coalesce function. | |
@retval EFI_VOLUME_CORRUPTED CapsuleBase does not appear to point to a | |
coalesced capsule | |
@retval EFI_SUCCESS if all goes well. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CreateState ( | |
IN EFI_PEI_SERVICES **PeiServices, | |
IN VOID *CapsuleBase, | |
IN UINTN CapsuleSize | |
) | |
{ | |
EFI_STATUS Status; | |
EFI_CAPSULE_PEIM_PRIVATE_DATA *PrivateData; | |
UINTN Size; | |
EFI_PHYSICAL_ADDRESS NewBuffer; | |
UINTN CapsuleNumber; | |
UINT32 Index; | |
EFI_PHYSICAL_ADDRESS BaseAddress; | |
UINT64 Length; | |
PrivateData = (EFI_CAPSULE_PEIM_PRIVATE_DATA *) CapsuleBase; | |
if (PrivateData->Signature != EFI_CAPSULE_PEIM_PRIVATE_DATA_SIGNATURE) { | |
return EFI_VOLUME_CORRUPTED; | |
} | |
if (PrivateData->CapsuleAllImageSize >= MAX_ADDRESS) { | |
DEBUG ((EFI_D_ERROR, "CapsuleAllImageSize too big - 0x%lx\n", PrivateData->CapsuleAllImageSize)); | |
return EFI_OUT_OF_RESOURCES; | |
} | |
if (PrivateData->CapsuleNumber >= MAX_ADDRESS) { | |
DEBUG ((EFI_D_ERROR, "CapsuleNumber too big - 0x%lx\n", PrivateData->CapsuleNumber)); | |
return EFI_OUT_OF_RESOURCES; | |
} | |
// | |
// Capsule Number and Capsule Offset is in the tail of Capsule data. | |
// | |
Size = (UINTN)PrivateData->CapsuleAllImageSize; | |
CapsuleNumber = (UINTN)PrivateData->CapsuleNumber; | |
// | |
// Allocate the memory so that it gets preserved into DXE | |
// | |
Status = PeiServicesAllocatePages ( | |
EfiRuntimeServicesData, | |
EFI_SIZE_TO_PAGES (Size), | |
&NewBuffer | |
); | |
if (Status != EFI_SUCCESS) { | |
DEBUG ((EFI_D_ERROR, "AllocatePages Failed!\n")); | |
return Status; | |
} | |
// | |
// Copy to our new buffer for DXE | |
// | |
DEBUG ((EFI_D_INFO, "Capsule copy from 0x%8X to 0x%8X with size 0x%8X\n", (UINTN)((UINT8 *)PrivateData + sizeof(EFI_CAPSULE_PEIM_PRIVATE_DATA) + (CapsuleNumber - 1) * sizeof(UINT64)), (UINTN) NewBuffer, Size)); | |
CopyMem ((VOID *) (UINTN) NewBuffer, (VOID *) (UINTN) ((UINT8 *)PrivateData + sizeof(EFI_CAPSULE_PEIM_PRIVATE_DATA) + (CapsuleNumber - 1) * sizeof(UINT64)), Size); | |
// | |
// Check for test data pattern. If it is the test pattern, then we'll | |
// test it ans still create the HOB so that it can be used to verify | |
// that capsules don't get corrupted all the way into BDS. BDS will | |
// still try to turn it into a firmware volume, but will think it's | |
// corrupted so nothing will happen. | |
// | |
DEBUG_CODE ( | |
CapsuleTestPattern (PeiServices, (VOID *) (UINTN) NewBuffer); | |
); | |
// | |
// Build the UEFI Capsule Hob for each capsule image. | |
// | |
for (Index = 0; Index < CapsuleNumber; Index ++) { | |
BaseAddress = NewBuffer + PrivateData->CapsuleOffset[Index]; | |
Length = ((EFI_CAPSULE_HEADER *)((UINTN) BaseAddress))->CapsuleImageSize; | |
BuildCvHob (BaseAddress, Length); | |
} | |
return EFI_SUCCESS; | |
} | |
CONST PEI_CAPSULE_PPI mCapsulePpi = { | |
CapsuleCoalesce, | |
CheckCapsuleUpdate, | |
CreateState | |
}; | |
CONST EFI_PEI_PPI_DESCRIPTOR mUefiPpiListCapsule = { | |
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), | |
&gPeiCapsulePpiGuid, | |
(PEI_CAPSULE_PPI *) &mCapsulePpi | |
}; | |
/** | |
Entry point function for the PEIM | |
@param FileHandle Handle of the file being invoked. | |
@param PeiServices Describes the list of possible PEI Services. | |
@return EFI_SUCCESS If we installed our PPI | |
**/ | |
EFI_STATUS | |
EFIAPI | |
CapsuleMain ( | |
IN EFI_PEI_FILE_HANDLE FileHandle, | |
IN CONST EFI_PEI_SERVICES **PeiServices | |
) | |
{ | |
// | |
// Just produce our PPI | |
// | |
return PeiServicesInstallPpi (&mUefiPpiListCapsule); | |
} |