/** @file | |
Main file for compression routine. | |
Compression routine. The compression algorithm is a mixture of | |
LZ77 and Huffman coding. LZ77 transforms the source data into a | |
sequence of Original Characters and Pointers to repeated strings. | |
This sequence is further divided into Blocks and Huffman codings | |
are applied to each Block. | |
Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials | |
are licensed and made available under the terms and conditions of the BSD License | |
which accompanies this distribution. The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
**/ | |
#include <Library/MemoryAllocationLib.h> | |
#include <Library/BaseMemoryLib.h> | |
#include <Library/DebugLib.h> | |
#include <ShellBase.h> | |
#include <Uefi.h> | |
// | |
// Macro Definitions | |
// | |
typedef INT16 NODE; | |
#define UINT8_MAX 0xff | |
#define UINT8_BIT 8 | |
#define THRESHOLD 3 | |
#define INIT_CRC 0 | |
#define WNDBIT 13 | |
#define WNDSIZ (1U << WNDBIT) | |
#define MAXMATCH 256 | |
#define BLKSIZ (1U << 14) // 16 * 1024U | |
#define PERC_FLAG 0x8000U | |
#define CODE_BIT 16 | |
#define NIL 0 | |
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX) | |
#define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2) | |
#define CRCPOLY 0xA001 | |
#define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT) | |
// | |
// C: the Char&Len Set; P: the Position Set; T: the exTra Set | |
// | |
#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD) | |
#define CBIT 9 | |
#define NP (WNDBIT + 1) | |
#define PBIT 4 | |
#define NT (CODE_BIT + 3) | |
#define TBIT 5 | |
#if NT > NP | |
#define NPT NT | |
#else | |
#define NPT NP | |
#endif | |
// | |
// Function Prototypes | |
// | |
/** | |
Put a dword to output stream | |
@param[in] Data The dword to put. | |
**/ | |
VOID | |
EFIAPI | |
PutDword( | |
IN UINT32 Data | |
); | |
// | |
// Global Variables | |
// | |
STATIC UINT8 *mSrc; | |
STATIC UINT8 *mDst; | |
STATIC UINT8 *mSrcUpperLimit; | |
STATIC UINT8 *mDstUpperLimit; | |
STATIC UINT8 *mLevel; | |
STATIC UINT8 *mText; | |
STATIC UINT8 *mChildCount; | |
STATIC UINT8 *mBuf; | |
STATIC UINT8 mCLen[NC]; | |
STATIC UINT8 mPTLen[NPT]; | |
STATIC UINT8 *mLen; | |
STATIC INT16 mHeap[NC + 1]; | |
STATIC INT32 mRemainder; | |
STATIC INT32 mMatchLen; | |
STATIC INT32 mBitCount; | |
STATIC INT32 mHeapSize; | |
STATIC INT32 mTempInt32; | |
STATIC UINT32 mBufSiz = 0; | |
STATIC UINT32 mOutputPos; | |
STATIC UINT32 mOutputMask; | |
STATIC UINT32 mSubBitBuf; | |
STATIC UINT32 mCrc; | |
STATIC UINT32 mCompSize; | |
STATIC UINT32 mOrigSize; | |
STATIC UINT16 *mFreq; | |
STATIC UINT16 *mSortPtr; | |
STATIC UINT16 mLenCnt[17]; | |
STATIC UINT16 mLeft[2 * NC - 1]; | |
STATIC UINT16 mRight[2 * NC - 1]; | |
STATIC UINT16 mCrcTable[UINT8_MAX + 1]; | |
STATIC UINT16 mCFreq[2 * NC - 1]; | |
STATIC UINT16 mCCode[NC]; | |
STATIC UINT16 mPFreq[2 * NP - 1]; | |
STATIC UINT16 mPTCode[NPT]; | |
STATIC UINT16 mTFreq[2 * NT - 1]; | |
STATIC NODE mPos; | |
STATIC NODE mMatchPos; | |
STATIC NODE mAvail; | |
STATIC NODE *mPosition; | |
STATIC NODE *mParent; | |
STATIC NODE *mPrev; | |
STATIC NODE *mNext = NULL; | |
INT32 mHuffmanDepth = 0; | |
/** | |
Make a CRC table. | |
**/ | |
VOID | |
EFIAPI | |
MakeCrcTable ( | |
VOID | |
) | |
{ | |
UINT32 LoopVar1; | |
UINT32 LoopVar2; | |
UINT32 LoopVar4; | |
for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) { | |
LoopVar4 = LoopVar1; | |
for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) { | |
if ((LoopVar4 & 1) != 0) { | |
LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY; | |
} else { | |
LoopVar4 >>= 1; | |
} | |
} | |
mCrcTable[LoopVar1] = (UINT16) LoopVar4; | |
} | |
} | |
/** | |
Put a dword to output stream | |
@param[in] Data The dword to put. | |
**/ | |
VOID | |
EFIAPI | |
PutDword ( | |
IN UINT32 Data | |
) | |
{ | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = (UINT8) (((UINT8) (Data)) & 0xff); | |
} | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff); | |
} | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff); | |
} | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff); | |
} | |
} | |
/** | |
Allocate memory spaces for data structures used in compression process. | |
@retval EFI_SUCCESS Memory was allocated successfully. | |
@retval EFI_OUT_OF_RESOURCES A memory allocation failed. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
AllocateMemory ( | |
VOID | |
) | |
{ | |
mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH); | |
mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel)); | |
mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount)); | |
mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition)); | |
mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent)); | |
mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev)); | |
mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext)); | |
mBufSiz = BLKSIZ; | |
mBuf = AllocateZeroPool (mBufSiz); | |
while (mBuf == NULL) { | |
mBufSiz = (mBufSiz / 10U) * 9U; | |
if (mBufSiz < 4 * 1024U) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
mBuf = AllocateZeroPool (mBufSiz); | |
} | |
mBuf[0] = 0; | |
return EFI_SUCCESS; | |
} | |
/** | |
Called when compression is completed to free memory previously allocated. | |
**/ | |
VOID | |
EFIAPI | |
FreeMemory ( | |
VOID | |
) | |
{ | |
SHELL_FREE_NON_NULL (mText); | |
SHELL_FREE_NON_NULL (mLevel); | |
SHELL_FREE_NON_NULL (mChildCount); | |
SHELL_FREE_NON_NULL (mPosition); | |
SHELL_FREE_NON_NULL (mParent); | |
SHELL_FREE_NON_NULL (mPrev); | |
SHELL_FREE_NON_NULL (mNext); | |
SHELL_FREE_NON_NULL (mBuf); | |
} | |
/** | |
Initialize String Info Log data structures. | |
**/ | |
VOID | |
EFIAPI | |
InitSlide ( | |
VOID | |
) | |
{ | |
NODE LoopVar1; | |
SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1); | |
SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0); | |
SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0); | |
mAvail = 1; | |
for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) { | |
mNext[LoopVar1] = (NODE) (LoopVar1 + 1); | |
} | |
mNext[WNDSIZ - 1] = NIL; | |
SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0); | |
} | |
/** | |
Find child node given the parent node and the edge character | |
@param[in] LoopVar6 The parent node. | |
@param[in] LoopVar5 The edge character. | |
@return The child node. | |
@retval NIL(Zero) No child could be found. | |
**/ | |
NODE | |
EFIAPI | |
Child ( | |
IN NODE LoopVar6, | |
IN UINT8 LoopVar5 | |
) | |
{ | |
NODE LoopVar4; | |
LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)]; | |
mParent[NIL] = LoopVar6; /* sentinel */ | |
while (mParent[LoopVar4] != LoopVar6) { | |
LoopVar4 = mNext[LoopVar4]; | |
} | |
return LoopVar4; | |
} | |
/** | |
Create a new child for a given parent node. | |
@param[in] LoopVar6 The parent node. | |
@param[in] LoopVar5 The edge character. | |
@param[in] LoopVar4 The child node. | |
**/ | |
VOID | |
EFIAPI | |
MakeChild ( | |
IN NODE LoopVar6, | |
IN UINT8 LoopVar5, | |
IN NODE LoopVar4 | |
) | |
{ | |
NODE LoopVar12; | |
NODE LoopVar10; | |
LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5); | |
LoopVar10 = mNext[LoopVar12]; | |
mNext[LoopVar12] = LoopVar4; | |
mNext[LoopVar4] = LoopVar10; | |
mPrev[LoopVar10] = LoopVar4; | |
mPrev[LoopVar4] = LoopVar12; | |
mParent[LoopVar4] = LoopVar6; | |
mChildCount[LoopVar6]++; | |
} | |
/** | |
Split a node. | |
@param[in] Old The node to split. | |
**/ | |
VOID | |
EFIAPI | |
Split ( | |
IN NODE Old | |
) | |
{ | |
NODE New; | |
NODE LoopVar10; | |
New = mAvail; | |
mAvail = mNext[New]; | |
mChildCount[New] = 0; | |
LoopVar10 = mPrev[Old]; | |
mPrev[New] = LoopVar10; | |
mNext[LoopVar10] = New; | |
LoopVar10 = mNext[Old]; | |
mNext[New] = LoopVar10; | |
mPrev[LoopVar10] = New; | |
mParent[New] = mParent[Old]; | |
mLevel[New] = (UINT8) mMatchLen; | |
mPosition[New] = mPos; | |
MakeChild (New, mText[mMatchPos + mMatchLen], Old); | |
MakeChild (New, mText[mPos + mMatchLen], mPos); | |
} | |
/** | |
Insert string info for current position into the String Info Log. | |
**/ | |
VOID | |
EFIAPI | |
InsertNode ( | |
VOID | |
) | |
{ | |
NODE LoopVar6; | |
NODE LoopVar4; | |
NODE LoopVar2; | |
NODE LoopVar10; | |
UINT8 LoopVar5; | |
UINT8 *TempString3; | |
UINT8 *TempString2; | |
if (mMatchLen >= 4) { | |
// | |
// We have just got a long match, the target tree | |
// can be located by MatchPos + 1. Travese the tree | |
// from bottom up to get to a proper starting point. | |
// The usage of PERC_FLAG ensures proper node deletion | |
// in DeleteNode() later. | |
// | |
mMatchLen--; | |
LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ); | |
LoopVar6 = mParent[LoopVar4]; | |
while (LoopVar6 == NIL) { | |
LoopVar4 = mNext[LoopVar4]; | |
LoopVar6 = mParent[LoopVar4]; | |
} | |
while (mLevel[LoopVar6] >= mMatchLen) { | |
LoopVar4 = LoopVar6; | |
LoopVar6 = mParent[LoopVar6]; | |
} | |
LoopVar10 = LoopVar6; | |
while (mPosition[LoopVar10] < 0) { | |
mPosition[LoopVar10] = mPos; | |
LoopVar10 = mParent[LoopVar10]; | |
} | |
if (LoopVar10 < WNDSIZ) { | |
mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG); | |
} | |
} else { | |
// | |
// Locate the target tree | |
// | |
LoopVar6 = (NODE) (mText[mPos] + WNDSIZ); | |
LoopVar5 = mText[mPos + 1]; | |
LoopVar4 = Child (LoopVar6, LoopVar5); | |
if (LoopVar4 == NIL) { | |
MakeChild (LoopVar6, LoopVar5, mPos); | |
mMatchLen = 1; | |
return ; | |
} | |
mMatchLen = 2; | |
} | |
// | |
// Traverse down the tree to find a match. | |
// Update Position value along the route. | |
// Node split or creation is involved. | |
// | |
for (;;) { | |
if (LoopVar4 >= WNDSIZ) { | |
LoopVar2 = MAXMATCH; | |
mMatchPos = LoopVar4; | |
} else { | |
LoopVar2 = mLevel[LoopVar4]; | |
mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); | |
} | |
if (mMatchPos >= mPos) { | |
mMatchPos -= WNDSIZ; | |
} | |
TempString3 = &mText[mPos + mMatchLen]; | |
TempString2 = &mText[mMatchPos + mMatchLen]; | |
while (mMatchLen < LoopVar2) { | |
if (*TempString3 != *TempString2) { | |
Split (LoopVar4); | |
return ; | |
} | |
mMatchLen++; | |
TempString3++; | |
TempString2++; | |
} | |
if (mMatchLen >= MAXMATCH) { | |
break; | |
} | |
mPosition[LoopVar4] = mPos; | |
LoopVar6 = LoopVar4; | |
LoopVar4 = Child (LoopVar6, *TempString3); | |
if (LoopVar4 == NIL) { | |
MakeChild (LoopVar6, *TempString3, mPos); | |
return ; | |
} | |
mMatchLen++; | |
} | |
LoopVar10 = mPrev[LoopVar4]; | |
mPrev[mPos] = LoopVar10; | |
mNext[LoopVar10] = mPos; | |
LoopVar10 = mNext[LoopVar4]; | |
mNext[mPos] = LoopVar10; | |
mPrev[LoopVar10] = mPos; | |
mParent[mPos] = LoopVar6; | |
mParent[LoopVar4] = NIL; | |
// | |
// Special usage of 'next' | |
// | |
mNext[LoopVar4] = mPos; | |
} | |
/** | |
Delete outdated string info. (The Usage of PERC_FLAG | |
ensures a clean deletion). | |
**/ | |
VOID | |
EFIAPI | |
DeleteNode ( | |
VOID | |
) | |
{ | |
NODE LoopVar6; | |
NODE LoopVar4; | |
NODE LoopVar11; | |
NODE LoopVar10; | |
NODE LoopVar9; | |
if (mParent[mPos] == NIL) { | |
return ; | |
} | |
LoopVar4 = mPrev[mPos]; | |
LoopVar11 = mNext[mPos]; | |
mNext[LoopVar4] = LoopVar11; | |
mPrev[LoopVar11] = LoopVar4; | |
LoopVar4 = mParent[mPos]; | |
mParent[mPos] = NIL; | |
if (LoopVar4 >= WNDSIZ) { | |
return ; | |
} | |
mChildCount[LoopVar4]--; | |
if (mChildCount[LoopVar4] > 1) { | |
return ; | |
} | |
LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG); | |
if (LoopVar10 >= mPos) { | |
LoopVar10 -= WNDSIZ; | |
} | |
LoopVar11 = LoopVar10; | |
LoopVar6 = mParent[LoopVar4]; | |
LoopVar9 = mPosition[LoopVar6]; | |
while ((LoopVar9 & PERC_FLAG) != 0){ | |
LoopVar9 &= ~PERC_FLAG; | |
if (LoopVar9 >= mPos) { | |
LoopVar9 -= WNDSIZ; | |
} | |
if (LoopVar9 > LoopVar11) { | |
LoopVar11 = LoopVar9; | |
} | |
mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ); | |
LoopVar6 = mParent[LoopVar6]; | |
LoopVar9 = mPosition[LoopVar6]; | |
} | |
if (LoopVar6 < WNDSIZ) { | |
if (LoopVar9 >= mPos) { | |
LoopVar9 -= WNDSIZ; | |
} | |
if (LoopVar9 > LoopVar11) { | |
LoopVar11 = LoopVar9; | |
} | |
mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG); | |
} | |
LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]); | |
LoopVar10 = mPrev[LoopVar11]; | |
LoopVar9 = mNext[LoopVar11]; | |
mNext[LoopVar10] = LoopVar9; | |
mPrev[LoopVar9] = LoopVar10; | |
LoopVar10 = mPrev[LoopVar4]; | |
mNext[LoopVar10] = LoopVar11; | |
mPrev[LoopVar11] = LoopVar10; | |
LoopVar10 = mNext[LoopVar4]; | |
mPrev[LoopVar10] = LoopVar11; | |
mNext[LoopVar11] = LoopVar10; | |
mParent[LoopVar11] = mParent[LoopVar4]; | |
mParent[LoopVar4] = NIL; | |
mNext[LoopVar4] = mAvail; | |
mAvail = LoopVar4; | |
} | |
/** | |
Read in source data | |
@param[out] LoopVar7 The buffer to hold the data. | |
@param[in] LoopVar8 The number of bytes to read. | |
@return The number of bytes actually read. | |
**/ | |
INT32 | |
EFIAPI | |
FreadCrc ( | |
OUT UINT8 *LoopVar7, | |
IN INT32 LoopVar8 | |
) | |
{ | |
INT32 LoopVar1; | |
for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) { | |
*LoopVar7++ = *mSrc++; | |
} | |
LoopVar8 = LoopVar1; | |
LoopVar7 -= LoopVar8; | |
mOrigSize += LoopVar8; | |
LoopVar1--; | |
while (LoopVar1 >= 0) { | |
UPDATE_CRC (*LoopVar7++); | |
LoopVar1--; | |
} | |
return LoopVar8; | |
} | |
/** | |
Advance the current position (read in new data if needed). | |
Delete outdated string info. Find a match string for current position. | |
@retval TRUE The operation was successful. | |
@retval FALSE The operation failed due to insufficient memory. | |
**/ | |
BOOLEAN | |
EFIAPI | |
GetNextMatch ( | |
VOID | |
) | |
{ | |
INT32 LoopVar8; | |
VOID *Temp; | |
mRemainder--; | |
mPos++; | |
if (mPos == WNDSIZ * 2) { | |
Temp = AllocateZeroPool (WNDSIZ + MAXMATCH); | |
if (Temp == NULL) { | |
return (FALSE); | |
} | |
CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH); | |
CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH); | |
FreePool (Temp); | |
LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ); | |
mRemainder += LoopVar8; | |
mPos = WNDSIZ; | |
} | |
DeleteNode (); | |
InsertNode (); | |
return (TRUE); | |
} | |
/** | |
Send entry LoopVar1 down the queue. | |
@param[in] LoopVar1 The index of the item to move. | |
**/ | |
VOID | |
EFIAPI | |
DownHeap ( | |
IN INT32 i | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar2; | |
// | |
// priority queue: send i-th entry down heap | |
// | |
LoopVar2 = mHeap[i]; | |
LoopVar1 = 2 * i; | |
while (LoopVar1 <= mHeapSize) { | |
if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) { | |
LoopVar1++; | |
} | |
if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) { | |
break; | |
} | |
mHeap[i] = mHeap[LoopVar1]; | |
i = LoopVar1; | |
LoopVar1 = 2 * i; | |
} | |
mHeap[i] = (INT16) LoopVar2; | |
} | |
/** | |
Count the number of each code length for a Huffman tree. | |
@param[in] LoopVar1 The top node. | |
**/ | |
VOID | |
EFIAPI | |
CountLen ( | |
IN INT32 LoopVar1 | |
) | |
{ | |
if (LoopVar1 < mTempInt32) { | |
mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++; | |
} else { | |
mHuffmanDepth++; | |
CountLen (mLeft[LoopVar1]); | |
CountLen (mRight[LoopVar1]); | |
mHuffmanDepth--; | |
} | |
} | |
/** | |
Create code length array for a Huffman tree. | |
@param[in] Root The root of the tree. | |
**/ | |
VOID | |
EFIAPI | |
MakeLen ( | |
IN INT32 Root | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar2; | |
UINT32 Cum; | |
for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) { | |
mLenCnt[LoopVar1] = 0; | |
} | |
CountLen (Root); | |
// | |
// Adjust the length count array so that | |
// no code will be generated longer than its designated length | |
// | |
Cum = 0; | |
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { | |
Cum += mLenCnt[LoopVar1] << (16 - LoopVar1); | |
} | |
while (Cum != (1U << 16)) { | |
mLenCnt[16]--; | |
for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) { | |
if (mLenCnt[LoopVar1] != 0) { | |
mLenCnt[LoopVar1]--; | |
mLenCnt[LoopVar1 + 1] += 2; | |
break; | |
} | |
} | |
Cum--; | |
} | |
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) { | |
LoopVar2 = mLenCnt[LoopVar1]; | |
LoopVar2--; | |
while (LoopVar2 >= 0) { | |
mLen[*mSortPtr++] = (UINT8) LoopVar1; | |
LoopVar2--; | |
} | |
} | |
} | |
/** | |
Assign code to each symbol based on the code length array. | |
@param[in] LoopVar8 The number of symbols. | |
@param[in] Len The code length array. | |
@param[out] Code The stores codes for each symbol. | |
**/ | |
VOID | |
EFIAPI | |
MakeCode ( | |
IN INT32 LoopVar8, | |
IN UINT8 Len[ ], | |
OUT UINT16 Code[ ] | |
) | |
{ | |
INT32 LoopVar1; | |
UINT16 Start[18]; | |
Start[1] = 0; | |
for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) { | |
Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1); | |
} | |
for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) { | |
Code[LoopVar1] = Start[Len[LoopVar1]]++; | |
} | |
} | |
/** | |
Generates Huffman codes given a frequency distribution of symbols. | |
@param[in] NParm The number of symbols. | |
@param[in] FreqParm The frequency of each symbol. | |
@param[out] LenParm The code length for each symbol. | |
@param[out] CodeParm The code for each symbol. | |
@return The root of the Huffman tree. | |
**/ | |
INT32 | |
EFIAPI | |
MakeTree ( | |
IN INT32 NParm, | |
IN UINT16 FreqParm[ ], | |
OUT UINT8 LenParm[ ], | |
OUT UINT16 CodeParm[ ] | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar2; | |
INT32 LoopVar3; | |
INT32 Avail; | |
// | |
// make tree, calculate len[], return root | |
// | |
mTempInt32 = NParm; | |
mFreq = FreqParm; | |
mLen = LenParm; | |
Avail = mTempInt32; | |
mHeapSize = 0; | |
mHeap[1] = 0; | |
for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) { | |
mLen[LoopVar1] = 0; | |
if ((mFreq[LoopVar1]) != 0) { | |
mHeapSize++; | |
mHeap[mHeapSize] = (INT16) LoopVar1; | |
} | |
} | |
if (mHeapSize < 2) { | |
CodeParm[mHeap[1]] = 0; | |
return mHeap[1]; | |
} | |
for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) { | |
// | |
// make priority queue | |
// | |
DownHeap (LoopVar1); | |
} | |
mSortPtr = CodeParm; | |
do { | |
LoopVar1 = mHeap[1]; | |
if (LoopVar1 < mTempInt32) { | |
*mSortPtr++ = (UINT16) LoopVar1; | |
} | |
mHeap[1] = mHeap[mHeapSize--]; | |
DownHeap (1); | |
LoopVar2 = mHeap[1]; | |
if (LoopVar2 < mTempInt32) { | |
*mSortPtr++ = (UINT16) LoopVar2; | |
} | |
LoopVar3 = Avail++; | |
mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]); | |
mHeap[1] = (INT16) LoopVar3; | |
DownHeap (1); | |
mLeft[LoopVar3] = (UINT16) LoopVar1; | |
mRight[LoopVar3] = (UINT16) LoopVar2; | |
} while (mHeapSize > 1); | |
mSortPtr = CodeParm; | |
MakeLen (LoopVar3); | |
MakeCode (NParm, LenParm, CodeParm); | |
// | |
// return root | |
// | |
return LoopVar3; | |
} | |
/** | |
Outputs rightmost LoopVar8 bits of x | |
@param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used. | |
@param[in] x The data. | |
**/ | |
VOID | |
EFIAPI | |
PutBits ( | |
IN INT32 LoopVar8, | |
IN UINT32 x | |
) | |
{ | |
UINT8 Temp; | |
if (LoopVar8 < mBitCount) { | |
mSubBitBuf |= x << (mBitCount -= LoopVar8); | |
} else { | |
Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount))); | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = Temp; | |
} | |
mCompSize++; | |
if (LoopVar8 < UINT8_BIT) { | |
mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8); | |
} else { | |
Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT)); | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = Temp; | |
} | |
mCompSize++; | |
mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8); | |
} | |
} | |
} | |
/** | |
Encode a signed 32 bit number. | |
@param[in] LoopVar5 The number to encode. | |
**/ | |
VOID | |
EFIAPI | |
EncodeC ( | |
IN INT32 LoopVar5 | |
) | |
{ | |
PutBits (mCLen[LoopVar5], mCCode[LoopVar5]); | |
} | |
/** | |
Encode a unsigned 32 bit number. | |
@param[in] LoopVar7 The number to encode. | |
**/ | |
VOID | |
EFIAPI | |
EncodeP ( | |
IN UINT32 LoopVar7 | |
) | |
{ | |
UINT32 LoopVar5; | |
UINT32 LoopVar6; | |
LoopVar5 = 0; | |
LoopVar6 = LoopVar7; | |
while (LoopVar6 != 0) { | |
LoopVar6 >>= 1; | |
LoopVar5++; | |
} | |
PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]); | |
if (LoopVar5 > 1) { | |
PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5))); | |
} | |
} | |
/** | |
Count the frequencies for the Extra Set. | |
**/ | |
VOID | |
EFIAPI | |
CountTFreq ( | |
VOID | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar3; | |
INT32 LoopVar8; | |
INT32 Count; | |
for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) { | |
mTFreq[LoopVar1] = 0; | |
} | |
LoopVar8 = NC; | |
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { | |
LoopVar8--; | |
} | |
LoopVar1 = 0; | |
while (LoopVar1 < LoopVar8) { | |
LoopVar3 = mCLen[LoopVar1++]; | |
if (LoopVar3 == 0) { | |
Count = 1; | |
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { | |
LoopVar1++; | |
Count++; | |
} | |
if (Count <= 2) { | |
mTFreq[0] = (UINT16) (mTFreq[0] + Count); | |
} else if (Count <= 18) { | |
mTFreq[1]++; | |
} else if (Count == 19) { | |
mTFreq[0]++; | |
mTFreq[1]++; | |
} else { | |
mTFreq[2]++; | |
} | |
} else { | |
ASSERT((LoopVar3+2)<(2 * NT - 1)); | |
mTFreq[LoopVar3 + 2]++; | |
} | |
} | |
} | |
/** | |
Outputs the code length array for the Extra Set or the Position Set. | |
@param[in] LoopVar8 The number of symbols. | |
@param[in] nbit The number of bits needed to represent 'LoopVar8'. | |
@param[in] Special The special symbol that needs to be take care of. | |
**/ | |
VOID | |
EFIAPI | |
WritePTLen ( | |
IN INT32 LoopVar8, | |
IN INT32 nbit, | |
IN INT32 Special | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar3; | |
while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) { | |
LoopVar8--; | |
} | |
PutBits (nbit, LoopVar8); | |
LoopVar1 = 0; | |
while (LoopVar1 < LoopVar8) { | |
LoopVar3 = mPTLen[LoopVar1++]; | |
if (LoopVar3 <= 6) { | |
PutBits (3, LoopVar3); | |
} else { | |
PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2); | |
} | |
if (LoopVar1 == Special) { | |
while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) { | |
LoopVar1++; | |
} | |
PutBits (2, (LoopVar1 - 3) & 3); | |
} | |
} | |
} | |
/** | |
Outputs the code length array for Char&Length Set. | |
**/ | |
VOID | |
EFIAPI | |
WriteCLen ( | |
VOID | |
) | |
{ | |
INT32 LoopVar1; | |
INT32 LoopVar3; | |
INT32 LoopVar8; | |
INT32 Count; | |
LoopVar8 = NC; | |
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) { | |
LoopVar8--; | |
} | |
PutBits (CBIT, LoopVar8); | |
LoopVar1 = 0; | |
while (LoopVar1 < LoopVar8) { | |
LoopVar3 = mCLen[LoopVar1++]; | |
if (LoopVar3 == 0) { | |
Count = 1; | |
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) { | |
LoopVar1++; | |
Count++; | |
} | |
if (Count <= 2) { | |
for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) { | |
PutBits (mPTLen[0], mPTCode[0]); | |
} | |
} else if (Count <= 18) { | |
PutBits (mPTLen[1], mPTCode[1]); | |
PutBits (4, Count - 3); | |
} else if (Count == 19) { | |
PutBits (mPTLen[0], mPTCode[0]); | |
PutBits (mPTLen[1], mPTCode[1]); | |
PutBits (4, 15); | |
} else { | |
PutBits (mPTLen[2], mPTCode[2]); | |
PutBits (CBIT, Count - 20); | |
} | |
} else { | |
ASSERT((LoopVar3+2)<NPT); | |
PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]); | |
} | |
} | |
} | |
/** | |
Huffman code the block and output it. | |
**/ | |
VOID | |
EFIAPI | |
SendBlock ( | |
VOID | |
) | |
{ | |
UINT32 LoopVar1; | |
UINT32 LoopVar3; | |
UINT32 Flags; | |
UINT32 Root; | |
UINT32 Pos; | |
UINT32 Size; | |
Flags = 0; | |
Root = MakeTree (NC, mCFreq, mCLen, mCCode); | |
Size = mCFreq[Root]; | |
PutBits (16, Size); | |
if (Root >= NC) { | |
CountTFreq (); | |
Root = MakeTree (NT, mTFreq, mPTLen, mPTCode); | |
if (Root >= NT) { | |
WritePTLen (NT, TBIT, 3); | |
} else { | |
PutBits (TBIT, 0); | |
PutBits (TBIT, Root); | |
} | |
WriteCLen (); | |
} else { | |
PutBits (TBIT, 0); | |
PutBits (TBIT, 0); | |
PutBits (CBIT, 0); | |
PutBits (CBIT, Root); | |
} | |
Root = MakeTree (NP, mPFreq, mPTLen, mPTCode); | |
if (Root >= NP) { | |
WritePTLen (NP, PBIT, -1); | |
} else { | |
PutBits (PBIT, 0); | |
PutBits (PBIT, Root); | |
} | |
Pos = 0; | |
for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) { | |
if (LoopVar1 % UINT8_BIT == 0) { | |
Flags = mBuf[Pos++]; | |
} else { | |
Flags <<= 1; | |
} | |
if ((Flags & (1U << (UINT8_BIT - 1))) != 0){ | |
EncodeC(mBuf[Pos++] + (1U << UINT8_BIT)); | |
LoopVar3 = mBuf[Pos++] << UINT8_BIT; | |
LoopVar3 += mBuf[Pos++]; | |
EncodeP (LoopVar3); | |
} else { | |
EncodeC (mBuf[Pos++]); | |
} | |
} | |
SetMem (mCFreq, NC * sizeof (UINT16), 0); | |
SetMem (mPFreq, NP * sizeof (UINT16), 0); | |
} | |
/** | |
Start the huffman encoding. | |
**/ | |
VOID | |
EFIAPI | |
HufEncodeStart ( | |
VOID | |
) | |
{ | |
SetMem (mCFreq, NC * sizeof (UINT16), 0); | |
SetMem (mPFreq, NP * sizeof (UINT16), 0); | |
mOutputPos = mOutputMask = 0; | |
mBitCount = UINT8_BIT; | |
mSubBitBuf = 0; | |
} | |
/** | |
Outputs an Original Character or a Pointer. | |
@param[in] LoopVar5 The original character or the 'String Length' element of | |
a Pointer. | |
@param[in] LoopVar7 The 'Position' field of a Pointer. | |
**/ | |
VOID | |
EFIAPI | |
CompressOutput ( | |
IN UINT32 LoopVar5, | |
IN UINT32 LoopVar7 | |
) | |
{ | |
STATIC UINT32 CPos; | |
if ((mOutputMask >>= 1) == 0) { | |
mOutputMask = 1U << (UINT8_BIT - 1); | |
if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) { | |
SendBlock (); | |
mOutputPos = 0; | |
} | |
CPos = mOutputPos++; | |
mBuf[CPos] = 0; | |
} | |
mBuf[mOutputPos++] = (UINT8) LoopVar5; | |
mCFreq[LoopVar5]++; | |
if (LoopVar5 >= (1U << UINT8_BIT)) { | |
mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask); | |
mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT); | |
mBuf[mOutputPos++] = (UINT8) LoopVar7; | |
LoopVar5 = 0; | |
while (LoopVar7!=0) { | |
LoopVar7 >>= 1; | |
LoopVar5++; | |
} | |
mPFreq[LoopVar5]++; | |
} | |
} | |
/** | |
End the huffman encoding. | |
**/ | |
VOID | |
EFIAPI | |
HufEncodeEnd ( | |
VOID | |
) | |
{ | |
SendBlock (); | |
// | |
// Flush remaining bits | |
// | |
PutBits (UINT8_BIT - 1, 0); | |
} | |
/** | |
The main controlling routine for compression process. | |
@retval EFI_SUCCESS The compression is successful. | |
@retval EFI_OUT_0F_RESOURCES Not enough memory for compression process. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
Encode ( | |
VOID | |
) | |
{ | |
EFI_STATUS Status; | |
INT32 LastMatchLen; | |
NODE LastMatchPos; | |
Status = AllocateMemory (); | |
if (EFI_ERROR (Status)) { | |
FreeMemory (); | |
return Status; | |
} | |
InitSlide (); | |
HufEncodeStart (); | |
mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH); | |
mMatchLen = 0; | |
mPos = WNDSIZ; | |
InsertNode (); | |
if (mMatchLen > mRemainder) { | |
mMatchLen = mRemainder; | |
} | |
while (mRemainder > 0) { | |
LastMatchLen = mMatchLen; | |
LastMatchPos = mMatchPos; | |
if (!GetNextMatch ()) { | |
Status = EFI_OUT_OF_RESOURCES; | |
} | |
if (mMatchLen > mRemainder) { | |
mMatchLen = mRemainder; | |
} | |
if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) { | |
// | |
// Not enough benefits are gained by outputting a pointer, | |
// so just output the original character | |
// | |
CompressOutput(mText[mPos - 1], 0); | |
} else { | |
// | |
// Outputting a pointer is beneficial enough, do it. | |
// | |
CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD), | |
(mPos - LastMatchPos - 2) & (WNDSIZ - 1)); | |
LastMatchLen--; | |
while (LastMatchLen > 0) { | |
if (!GetNextMatch ()) { | |
Status = EFI_OUT_OF_RESOURCES; | |
} | |
LastMatchLen--; | |
} | |
if (mMatchLen > mRemainder) { | |
mMatchLen = mRemainder; | |
} | |
} | |
} | |
HufEncodeEnd (); | |
FreeMemory (); | |
return (Status); | |
} | |
/** | |
The compression routine. | |
@param[in] SrcBuffer The buffer containing the source data. | |
@param[in] SrcSize The number of bytes in SrcBuffer. | |
@param[in] DstBuffer The buffer to put the compressed image in. | |
@param[in, out] DstSize On input the size (in bytes) of DstBuffer, on | |
return the number of bytes placed in DstBuffer. | |
@retval EFI_SUCCESS The compression was sucessful. | |
@retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required. | |
**/ | |
EFI_STATUS | |
EFIAPI | |
Compress ( | |
IN VOID *SrcBuffer, | |
IN UINT64 SrcSize, | |
IN VOID *DstBuffer, | |
IN OUT UINT64 *DstSize | |
) | |
{ | |
EFI_STATUS Status; | |
// | |
// Initializations | |
// | |
mBufSiz = 0; | |
mBuf = NULL; | |
mText = NULL; | |
mLevel = NULL; | |
mChildCount = NULL; | |
mPosition = NULL; | |
mParent = NULL; | |
mPrev = NULL; | |
mNext = NULL; | |
mSrc = SrcBuffer; | |
mSrcUpperLimit = mSrc + SrcSize; | |
mDst = DstBuffer; | |
mDstUpperLimit = mDst +*DstSize; | |
PutDword (0L); | |
PutDword (0L); | |
MakeCrcTable (); | |
mOrigSize = mCompSize = 0; | |
mCrc = INIT_CRC; | |
// | |
// Compress it | |
// | |
Status = Encode (); | |
if (EFI_ERROR (Status)) { | |
return EFI_OUT_OF_RESOURCES; | |
} | |
// | |
// Null terminate the compressed data | |
// | |
if (mDst < mDstUpperLimit) { | |
*mDst++ = 0; | |
} | |
// | |
// Fill in compressed size and original size | |
// | |
mDst = DstBuffer; | |
PutDword (mCompSize + 1); | |
PutDword (mOrigSize); | |
// | |
// Return | |
// | |
if (mCompSize + 1 + 8 > *DstSize) { | |
*DstSize = mCompSize + 1 + 8; | |
return EFI_BUFFER_TOO_SMALL; | |
} else { | |
*DstSize = mCompSize + 1 + 8; | |
return EFI_SUCCESS; | |
} | |
} | |