/** | |
Definitions and Implementation for <time.h>. | |
Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR> | |
This program and the accompanying materials are licensed and made available under | |
the terms and conditions of the BSD License that accompanies this distribution. | |
The full text of the license may be found at | |
http://opensource.org/licenses/bsd-license.php. | |
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, | |
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. | |
Portions derived from the NIH time zone package file, localtime.c, | |
which contains the following notice: | |
This file is in the public domain, so clarified as of | |
1996-06-05 by Arthur David Olson (arthur_david_olson@nih.gov). | |
NetBSD: localtime.c,v 1.39 2006/03/22 14:01:30 christos Exp | |
**/ | |
#include <Uefi.h> | |
#include <Library/UefiLib.h> | |
#include <Library/TimerLib.h> | |
#include <Library/BaseLib.h> | |
#include <Library/UefiRuntimeServicesTableLib.h> | |
//#include <Library/UefiRuntimeLib.h> | |
#include <LibConfig.h> | |
#include <errno.h> | |
#include <limits.h> | |
#include <time.h> | |
#include <reentrant.h> | |
#include "tzfile.h" | |
#include "TimeVals.h" | |
#include <MainData.h> | |
#include <extern.h> // Library/include/extern.h: Private to implementation | |
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ | |
// Keep compiler quiet about casting from function to data pointers | |
#pragma warning ( disable : 4054 ) | |
#endif /* defined(_MSC_VER) */ | |
/* ####################### Private Data ################################# */ | |
#if 0 | |
static EFI_TIME TimeBuffer; | |
static UINT16 MonthOffs[12] = { | |
00, | |
31, 59, 90, 120, | |
151, 181, 212, 243, | |
273, 304, 334 | |
}; | |
static clock_t y2kOffs = 730485; | |
#endif | |
const int mon_lengths[2][MONSPERYEAR] = { | |
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, | |
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } | |
}; | |
const int year_lengths[2] = { | |
DAYSPERNYEAR, DAYSPERLYEAR | |
}; | |
static const char *wday_name[7] = { | |
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" | |
}; | |
static const char *mon_name[12] = { | |
"Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" | |
}; | |
static int gmt_is_set; | |
/* ############### Implementation Functions ############################ */ | |
// Forward reference | |
static void | |
localsub(const time_t * const timep, const long offset, struct tm * const tmp); | |
clock_t | |
__getCPS(void) | |
{ | |
return gMD->ClocksPerSecond; | |
} | |
static void | |
timesub( | |
const time_t * const timep, | |
const long offset, | |
const struct state * const sp, | |
struct tm * const tmp | |
) | |
{ | |
const struct lsinfo * lp; | |
time_t /*INTN*/ days; | |
time_t /*INTN*/ rem; | |
time_t /*INTN*/ y; | |
int yleap; | |
const int * ip; | |
time_t /*INTN*/ corr; | |
int hit; | |
int i; | |
corr = 0; | |
hit = 0; | |
#ifdef ALL_STATE | |
i = (sp == NULL) ? 0 : sp->leapcnt; | |
#endif /* defined ALL_STATE */ | |
#ifndef ALL_STATE | |
i = sp->leapcnt; | |
#endif /* State Farm */ | |
while (--i >= 0) { | |
lp = &sp->lsis[i]; | |
if (*timep >= lp->ls_trans) { | |
if (*timep == lp->ls_trans) { | |
hit = ((i == 0 && lp->ls_corr > 0) || | |
lp->ls_corr > sp->lsis[i - 1].ls_corr); | |
if (hit) | |
while (i > 0 && | |
sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && | |
sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1 ) | |
{ | |
++hit; | |
--i; | |
} | |
} | |
corr = lp->ls_corr; | |
break; | |
} | |
} | |
days = *timep / SECSPERDAY; | |
rem = *timep % SECSPERDAY; | |
rem += (offset - corr); | |
while (rem < 0) { | |
rem += SECSPERDAY; | |
--days; | |
} | |
while (rem >= SECSPERDAY) { | |
rem -= SECSPERDAY; | |
++days; | |
} | |
tmp->tm_hour = (int) (rem / SECSPERHOUR); | |
rem = rem % SECSPERHOUR; | |
tmp->tm_min = (int) (rem / SECSPERMIN); | |
/* | |
** A positive leap second requires a special | |
** representation. This uses "... ??:59:60" et seq. | |
*/ | |
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; | |
tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK); | |
if (tmp->tm_wday < 0) | |
tmp->tm_wday += DAYSPERWEEK; | |
y = EPOCH_YEAR; | |
while (days < 0 || days >= (LONG32) year_lengths[yleap = isleap(y)]) { | |
time_t /*INTN*/ newy; | |
newy = (y + days / DAYSPERNYEAR); | |
if (days < 0) | |
--newy; | |
days -= (newy - y) * DAYSPERNYEAR + | |
LEAPS_THRU_END_OF(newy - 1) - | |
LEAPS_THRU_END_OF(y - 1); | |
y = newy; | |
} | |
tmp->tm_year = (int)(y - TM_YEAR_BASE); | |
tmp->tm_yday = (int) days; | |
ip = mon_lengths[yleap]; | |
for (tmp->tm_mon = 0; days >= (LONG32) ip[tmp->tm_mon]; ++(tmp->tm_mon)) | |
days = days - (LONG32) ip[tmp->tm_mon]; | |
tmp->tm_mday = (int) (days + 1); | |
tmp->tm_isdst = 0; | |
#ifdef TM_GMTOFF | |
tmp->TM_GMTOFF = offset; | |
#endif /* defined TM_GMTOFF */ | |
} | |
/* ############### Time Manipulation Functions ########################## */ | |
/** | |
**/ | |
double | |
difftime(time_t time1, time_t time0) | |
{ | |
return (double)(time1 - time0); | |
} | |
/* | |
** Adapted from code provided by Robert Elz, who writes: | |
** The "best" way to do mktime I think is based on an idea of Bob | |
** Kridle's (so its said...) from a long time ago. | |
** [kridle@xinet.com as of 1996-01-16.] | |
** It does a binary search of the time_t space. Since time_t's are | |
** just 32 bits, its a max of 32 iterations (even at 64 bits it | |
** would still be very reasonable). | |
*/ | |
#ifndef WRONG | |
#define WRONG (-1) | |
#endif /* !defined WRONG */ | |
/* | |
** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com). | |
*/ | |
static int | |
increment_overflow(int * number, int delta) | |
{ | |
int number0; | |
number0 = *number; | |
*number += delta; | |
return (*number < number0) != (delta < 0); | |
} | |
static int | |
normalize_overflow(int * const tensptr, int * const unitsptr, const int base) | |
{ | |
register int tensdelta; | |
tensdelta = (*unitsptr >= 0) ? | |
(*unitsptr / base) : (-1 - (-1 - *unitsptr) / base); | |
*unitsptr -= tensdelta * base; | |
return increment_overflow(tensptr, tensdelta); | |
} | |
static int | |
tmcomp(const struct tm * const atmp, const struct tm * const btmp) | |
{ | |
register int result; | |
if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && | |
(result = (atmp->tm_mon - btmp->tm_mon)) == 0 && | |
(result = (atmp->tm_mday - btmp->tm_mday)) == 0 && | |
(result = (atmp->tm_hour - btmp->tm_hour)) == 0 && | |
(result = (atmp->tm_min - btmp->tm_min)) == 0) | |
result = atmp->tm_sec - btmp->tm_sec; | |
return result; | |
} | |
static time_t | |
time2sub( | |
struct tm * const tmp, | |
void (* const funcp)(const time_t*, long, struct tm*), | |
const long offset, | |
int * const okayp, | |
const int do_norm_secs | |
) | |
{ | |
register const struct state * sp; | |
register int dir; | |
register int bits; | |
register int i, j ; | |
register int saved_seconds; | |
time_t newt; | |
time_t t; | |
struct tm yourtm, mytm; | |
*okayp = FALSE; | |
yourtm = *tmp; // Create a copy of tmp | |
if (do_norm_secs) { | |
if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, | |
SECSPERMIN)) | |
return WRONG; | |
} | |
if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) | |
return WRONG; | |
if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) | |
return WRONG; | |
if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR)) | |
return WRONG; | |
/* | |
** Turn yourtm.tm_year into an actual year number for now. | |
** It is converted back to an offset from TM_YEAR_BASE later. | |
*/ | |
if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE)) | |
return WRONG; | |
while (yourtm.tm_mday <= 0) { | |
if (increment_overflow(&yourtm.tm_year, -1)) | |
return WRONG; | |
i = yourtm.tm_year + (1 < yourtm.tm_mon); | |
yourtm.tm_mday += year_lengths[isleap(i)]; | |
} | |
while (yourtm.tm_mday > DAYSPERLYEAR) { | |
i = yourtm.tm_year + (1 < yourtm.tm_mon); | |
yourtm.tm_mday -= year_lengths[isleap(i)]; | |
if (increment_overflow(&yourtm.tm_year, 1)) | |
return WRONG; | |
} | |
for ( ; ; ) { | |
i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon]; | |
if (yourtm.tm_mday <= i) | |
break; | |
yourtm.tm_mday -= i; | |
if (++yourtm.tm_mon >= MONSPERYEAR) { | |
yourtm.tm_mon = 0; | |
if (increment_overflow(&yourtm.tm_year, 1)) | |
return WRONG; | |
} | |
} | |
if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE)) | |
return WRONG; | |
if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) | |
saved_seconds = 0; | |
else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) { | |
/* | |
** We can't set tm_sec to 0, because that might push the | |
** time below the minimum representable time. | |
** Set tm_sec to 59 instead. | |
** This assumes that the minimum representable time is | |
** not in the same minute that a leap second was deleted from, | |
** which is a safer assumption than using 58 would be. | |
*/ | |
if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) | |
return WRONG; | |
saved_seconds = yourtm.tm_sec; | |
yourtm.tm_sec = SECSPERMIN - 1; | |
} else { | |
saved_seconds = yourtm.tm_sec; | |
yourtm.tm_sec = 0; | |
} | |
/* | |
** Divide the search space in half | |
** (this works whether time_t is signed or unsigned). | |
*/ | |
bits = TYPE_BIT(time_t) - 1; | |
/* | |
** Set t to the midpoint of our binary search. | |
** | |
** If time_t is signed, then 0 is just above the median, | |
** assuming two's complement arithmetic. | |
** If time_t is unsigned, then (1 << bits) is just above the median. | |
*/ | |
t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits); | |
for ( ; ; ) { | |
(*funcp)(&t, offset, &mytm); // Convert t to broken-down time in mytm | |
dir = tmcomp(&mytm, &yourtm); // Is mytm larger, equal, or less than yourtm? | |
if (dir != 0) { // If mytm != yourtm... | |
if (bits-- < 0) // If we have exhausted all the bits.. | |
return WRONG; // Return that we failed | |
if (bits < 0) // If on the last bit... | |
--t; /* may be needed if new t is minimal */ | |
else if (dir > 0) // else if mytm > yourtm... | |
t -= ((time_t) 1) << bits; // subtract half the remaining time-space | |
else t += ((time_t) 1) << bits; // otherwise add half the remaining time-space | |
continue; // Repeat for the next half | |
} | |
if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) | |
break; | |
/* | |
** Right time, wrong type. | |
** Hunt for right time, right type. | |
** It's okay to guess wrong since the guess | |
** gets checked. | |
*/ | |
/* | |
** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. | |
*/ | |
sp = (const struct state *) | |
(((void *) funcp == (void *) localsub) ? | |
lclptr : gmtptr); | |
#ifdef ALL_STATE | |
if (sp == NULL) | |
return WRONG; | |
#endif /* defined ALL_STATE */ | |
for (i = sp->typecnt - 1; i >= 0; --i) { | |
if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) | |
continue; | |
for (j = sp->typecnt - 1; j >= 0; --j) { | |
if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) | |
continue; | |
newt = t + sp->ttis[j].tt_gmtoff - | |
sp->ttis[i].tt_gmtoff; | |
(*funcp)(&newt, offset, &mytm); | |
if (tmcomp(&mytm, &yourtm) != 0) | |
continue; | |
if (mytm.tm_isdst != yourtm.tm_isdst) | |
continue; | |
/* | |
** We have a match. | |
*/ | |
t = newt; | |
goto label; | |
} | |
} | |
return WRONG; | |
} | |
label: | |
newt = t + saved_seconds; | |
if ((newt < t) != (saved_seconds < 0)) | |
return WRONG; | |
t = newt; | |
(*funcp)(&t, offset, tmp); | |
*okayp = TRUE; | |
return t; | |
} | |
time_t | |
time2(struct tm * const tmp, void (* const funcp)(const time_t*, long, struct tm*), | |
const long offset, int * const okayp) | |
{ | |
time_t t; | |
/* | |
** First try without normalization of seconds | |
** (in case tm_sec contains a value associated with a leap second). | |
** If that fails, try with normalization of seconds. | |
*/ | |
t = time2sub(tmp, funcp, offset, okayp, FALSE); | |
return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); | |
} | |
static time_t | |
time1( | |
struct tm * const tmp, | |
void (* const funcp)(const time_t *, long, struct tm *), | |
const long offset | |
) | |
{ | |
register time_t t; | |
register const struct state * sp; | |
register int samei, otheri; | |
register int sameind, otherind; | |
register int i; | |
register int nseen; | |
int seen[TZ_MAX_TYPES]; | |
int types[TZ_MAX_TYPES]; | |
int okay; | |
if (tmp->tm_isdst > 1) | |
tmp->tm_isdst = 1; | |
t = time2(tmp, funcp, offset, &okay); | |
#ifdef PCTS | |
/* | |
** PCTS code courtesy Grant Sullivan (grant@osf.org). | |
*/ | |
if (okay) | |
return t; | |
if (tmp->tm_isdst < 0) | |
tmp->tm_isdst = 0; /* reset to std and try again */ | |
#endif /* defined PCTS */ | |
#ifndef PCTS | |
if (okay || tmp->tm_isdst < 0) | |
return t; | |
#endif /* !defined PCTS */ | |
/* | |
** We're supposed to assume that somebody took a time of one type | |
** and did some math on it that yielded a "struct tm" that's bad. | |
** We try to divine the type they started from and adjust to the | |
** type they need. | |
*/ | |
/* | |
** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's. | |
*/ | |
sp = (const struct state *) (((void *) funcp == (void *) localsub) ? | |
lclptr : gmtptr); | |
#ifdef ALL_STATE | |
if (sp == NULL) | |
return WRONG; | |
#endif /* defined ALL_STATE */ | |
for (i = 0; i < sp->typecnt; ++i) | |
seen[i] = FALSE; | |
nseen = 0; | |
for (i = sp->timecnt - 1; i >= 0; --i) | |
if (!seen[sp->types[i]]) { | |
seen[sp->types[i]] = TRUE; | |
types[nseen++] = sp->types[i]; | |
} | |
for (sameind = 0; sameind < nseen; ++sameind) { | |
samei = types[sameind]; | |
if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) | |
continue; | |
for (otherind = 0; otherind < nseen; ++otherind) { | |
otheri = types[otherind]; | |
if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) | |
continue; | |
tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - | |
sp->ttis[samei].tt_gmtoff); | |
tmp->tm_isdst = !tmp->tm_isdst; | |
t = time2(tmp, funcp, offset, &okay); | |
if (okay) | |
return t; | |
tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - | |
sp->ttis[samei].tt_gmtoff); | |
tmp->tm_isdst = !tmp->tm_isdst; | |
} | |
} | |
return WRONG; | |
} | |
/** The mktime function converts the broken-down time, expressed as local time, | |
in the structure pointed to by timeptr into a calendar time value with the | |
same encoding as that of the values returned by the time function. The | |
original values of the tm_wday and tm_yday components of the structure are | |
ignored, and the original values of the other components are not restricted | |
to the ranges indicated above. Thus, a positive or zero value for tm_isdst | |
causes the mktime function to presume initially that Daylight Saving Time, | |
respectively, is or is not in effect for the specified time. A negative | |
value causes it to attempt to determine whether Daylight Saving Time is in | |
effect for the specified time. On successful completion, the values of the | |
tm_wday and tm_yday components of the structure are set appropriately, and | |
the other components are set to represent the specified calendar time, but | |
with their values forced to the ranges indicated above; the final value of | |
tm_mday is not set until tm_mon and tm_year are determined. | |
@return The mktime function returns the specified calendar time encoded | |
as a value of type time_t. If the calendar time cannot be | |
represented, the function returns the value (time_t)(-1). | |
**/ | |
time_t | |
mktime(struct tm *timeptr) | |
{ | |
/* From NetBSD */ | |
time_t result; | |
rwlock_wrlock(&lcl_lock); | |
tzset(); | |
result = time1(timeptr, &localsub, 0L); | |
rwlock_unlock(&lcl_lock); | |
return (result); | |
} | |
/** The time function determines the current calendar time. The encoding of | |
the value is unspecified. | |
@return The time function returns the implementation's best approximation | |
to the current calendar time. The value (time_t)(-1) is returned | |
if the calendar time is not available. If timer is not a null | |
pointer, the return value is also assigned to the object it | |
points to. | |
**/ | |
time_t | |
time(time_t *timer) | |
{ | |
time_t CalTime; | |
EFI_STATUS Status; | |
EFI_TIME *ET; | |
struct tm *BT; | |
ET = &gMD->TimeBuffer; | |
BT = &gMD->BDTime; | |
// Get EFI Time | |
Status = gRT->GetTime( ET, NULL); | |
// Status = EfiGetTime( ET, NULL); | |
EFIerrno = Status; | |
if( Status != RETURN_SUCCESS) { | |
return (time_t)-1; | |
} | |
// Convert EFI time to broken-down time. | |
Efi2Tm( ET, BT); | |
// Convert to time_t | |
CalTime = mktime(&gMD->BDTime); | |
if( timer != NULL) { | |
*timer = CalTime; | |
} | |
return CalTime; // Return calendar time in microseconds | |
} | |
/** The clock function determines the processor time used. | |
@return The clock function returns the implementation's best | |
approximation to the processor time used by the program since the | |
beginning of an implementation-defined era related only to the | |
program invocation. To determine the time in seconds, the value | |
returned by the clock function should be divided by the value of | |
the macro CLOCKS_PER_SEC. If the processor time used is not | |
available or its value cannot be represented, the function | |
returns the value (clock_t)(-1). | |
**/ | |
clock_t | |
clock(void) | |
{ | |
clock_t retval; | |
time_t temp; | |
temp = time(NULL); | |
retval = ((clock_t)((UINT32)temp)) - gMD->AppStartTime; | |
return retval; | |
} | |
/* ################# Time Conversion Functions ########################## */ | |
/* | |
Except for the strftime function, these functions each return a pointer to | |
one of two types of static objects: a broken-down time structure or an | |
array of char. Execution of any of the functions that return a pointer to | |
one of these object types may overwrite the information in any object of | |
the same type pointed to by the value returned from any previous call to | |
any of them. The implementation shall behave as if no other library | |
functions call these functions. | |
*/ | |
/** The asctime function converts the broken-down time in the structure pointed | |
to by timeptr into a string in the form | |
Sun Sep 16 01:03:52 1973\n\0 | |
using the equivalent of the following algorithm. | |
char *asctime(const struct tm *timeptr) | |
{ | |
static const char wday_name[7][3] = { | |
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" | |
}; | |
static const char mon_name[12][3] = { | |
"Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" | |
}; | |
static char result[26]; | |
sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n", | |
wday_name[timeptr->tm_wday], | |
mon_name[timeptr->tm_mon], | |
timeptr->tm_mday, timeptr->tm_hour, | |
timeptr->tm_min, timeptr->tm_sec, | |
1900 + timeptr->tm_year); | |
return result; | |
} | |
@return The asctime function returns a pointer to the string. | |
**/ | |
char * | |
asctime(const struct tm *timeptr) | |
{ | |
register const char * wn; | |
register const char * mn; | |
if (timeptr->tm_wday < 0 || timeptr->tm_wday >= DAYSPERWEEK) | |
wn = "???"; | |
else wn = wday_name[timeptr->tm_wday]; | |
if (timeptr->tm_mon < 0 || timeptr->tm_mon >= MONSPERYEAR) | |
mn = "???"; | |
else mn = mon_name[timeptr->tm_mon]; | |
/* | |
** The X3J11-suggested format is | |
** "%.3s %.3s%3d %02.2d:%02.2d:%02.2d %d\n" | |
** Since the .2 in 02.2d is ignored, we drop it. | |
*/ | |
(void)snprintf(gMD->ASasctime, | |
sizeof (char[ASCTIME_BUFLEN]), | |
"%.3s %.3s%3d %02d:%02d:%02d %d\r\n", // explicit CRLF for EFI | |
wn, mn, | |
timeptr->tm_mday, timeptr->tm_hour, | |
timeptr->tm_min, timeptr->tm_sec, | |
TM_YEAR_BASE + timeptr->tm_year); | |
return gMD->ASasctime; | |
} | |
/** | |
**/ | |
char * | |
ctime(const time_t *timer) | |
{ | |
return asctime(localtime(timer)); | |
} | |
/* | |
** gmtsub is to gmtime as localsub is to localtime. | |
*/ | |
void | |
gmtsub( | |
const time_t * const timep, | |
const long offset, | |
struct tm * const tmp | |
) | |
{ | |
#ifdef _REENTRANT | |
static mutex_t gmt_mutex = MUTEX_INITIALIZER; | |
#endif | |
mutex_lock(&gmt_mutex); | |
if (!gmt_is_set) { | |
gmt_is_set = TRUE; | |
#ifdef ALL_STATE | |
gmtptr = (struct state *) malloc(sizeof *gmtptr); | |
if (gmtptr != NULL) | |
#endif /* defined ALL_STATE */ | |
gmtload(gmtptr); | |
} | |
mutex_unlock(&gmt_mutex); | |
timesub(timep, offset, gmtptr, tmp); | |
#ifdef TM_ZONE | |
/* | |
** Could get fancy here and deliver something such as | |
** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, | |
** but this is no time for a treasure hunt. | |
*/ | |
if (offset != 0) | |
tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr); | |
else { | |
#ifdef ALL_STATE | |
if (gmtptr == NULL) | |
tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt); | |
else tmp->TM_ZONE = gmtptr->chars; | |
#endif /* defined ALL_STATE */ | |
#ifndef ALL_STATE | |
tmp->TM_ZONE = gmtptr->chars; | |
#endif /* State Farm */ | |
} | |
#endif /* defined TM_ZONE */ | |
} | |
/** | |
**/ | |
struct tm * | |
gmtime(const time_t *timer) | |
{ | |
gmtsub(timer, 0L, &gMD->BDTime); | |
return &gMD->BDTime; | |
} | |
static void | |
localsub(const time_t * const timep, const long offset, struct tm * const tmp) | |
{ | |
register struct state * sp; | |
register const struct ttinfo * ttisp; | |
register int i; | |
const time_t t = *timep; | |
sp = lclptr; | |
#ifdef ALL_STATE | |
if (sp == NULL) { | |
gmtsub(timep, offset, tmp); | |
return; | |
} | |
#endif /* defined ALL_STATE */ | |
if (sp->timecnt == 0 || t < sp->ats[0]) { | |
i = 0; | |
while (sp->ttis[i].tt_isdst) | |
if (++i >= sp->typecnt) { | |
i = 0; | |
break; | |
} | |
} else { | |
for (i = 1; i < sp->timecnt; ++i) | |
if (t < sp->ats[i]) | |
break; | |
i = sp->types[i - 1]; | |
} | |
ttisp = &sp->ttis[i]; | |
/* | |
** To get (wrong) behavior that's compatible with System V Release 2.0 | |
** you'd replace the statement below with | |
** t += ttisp->tt_gmtoff; | |
** timesub(&t, 0L, sp, tmp); | |
*/ | |
timesub(&t, ttisp->tt_gmtoff, sp, tmp); | |
tmp->tm_isdst = ttisp->tt_isdst; | |
tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; | |
#ifdef TM_ZONE | |
tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; | |
#endif /* defined TM_ZONE */ | |
} | |
/** | |
**/ | |
struct tm * | |
localtime(const time_t *timer) | |
{ | |
tzset(); | |
localsub(timer, 0L, &gMD->BDTime); | |
return &gMD->BDTime; | |
} |