/* $NetBSD: dtoa.c,v 1.3.4.1.4.1 2008/04/08 21:10:55 jdc Exp $ */ | |
/**************************************************************** | |
The author of this software is David M. Gay. | |
Copyright (C) 1998, 1999 by Lucent Technologies | |
All Rights Reserved | |
Permission to use, copy, modify, and distribute this software and | |
its documentation for any purpose and without fee is hereby | |
granted, provided that the above copyright notice appear in all | |
copies and that both that the copyright notice and this | |
permission notice and warranty disclaimer appear in supporting | |
documentation, and that the name of Lucent or any of its entities | |
not be used in advertising or publicity pertaining to | |
distribution of the software without specific, written prior | |
permission. | |
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, | |
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. | |
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY | |
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | |
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER | |
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, | |
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF | |
THIS SOFTWARE. | |
****************************************************************/ | |
/* Please send bug reports to David M. Gay (dmg at acm dot org, | |
* with " at " changed at "@" and " dot " changed to "."). */ | |
#include <LibConfig.h> | |
#include "gdtoaimp.h" | |
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | |
* | |
* Inspired by "How to Print Floating-Point Numbers Accurately" by | |
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | |
* | |
* Modifications: | |
* 1. Rather than iterating, we use a simple numeric overestimate | |
* to determine k = floor(log10(d)). We scale relevant | |
* quantities using O(log2(k)) rather than O(k) multiplications. | |
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
* try to generate digits strictly left to right. Instead, we | |
* compute with fewer bits and propagate the carry if necessary | |
* when rounding the final digit up. This is often faster. | |
* 3. Under the assumption that input will be rounded nearest, | |
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
* That is, we allow equality in stopping tests when the | |
* round-nearest rule will give the same floating-point value | |
* as would satisfaction of the stopping test with strict | |
* inequality. | |
* 4. We remove common factors of powers of 2 from relevant | |
* quantities. | |
* 5. When converting floating-point integers less than 1e16, | |
* we use floating-point arithmetic rather than resorting | |
* to multiple-precision integers. | |
* 6. When asked to produce fewer than 15 digits, we first try | |
* to get by with floating-point arithmetic; we resort to | |
* multiple-precision integer arithmetic only if we cannot | |
* guarantee that the floating-point calculation has given | |
* the correctly rounded result. For k requested digits and | |
* "uniformly" distributed input, the probability is | |
* something like 10^(k-15) that we must resort to the Long | |
* calculation. | |
*/ | |
#ifdef Honor_FLT_ROUNDS | |
#define Rounding rounding | |
#undef Check_FLT_ROUNDS | |
#define Check_FLT_ROUNDS | |
#else | |
#define Rounding Flt_Rounds | |
#endif | |
#if defined(_MSC_VER) /* Handle Microsoft VC++ compiler specifics. */ | |
// Disable: warning C4700: uninitialized local variable 'xx' used | |
#pragma warning ( disable : 4700 ) | |
#endif /* defined(_MSC_VER) */ | |
char * | |
dtoa | |
#ifdef KR_headers | |
(d, mode, ndigits, decpt, sign, rve) | |
double d; int mode, ndigits, *decpt, *sign; char **rve; | |
#else | |
(double d, int mode, int ndigits, int *decpt, int *sign, char **rve) | |
#endif | |
{ | |
/* Arguments ndigits, decpt, sign are similar to those | |
of ecvt and fcvt; trailing zeros are suppressed from | |
the returned string. If not null, *rve is set to point | |
to the end of the return value. If d is +-Infinity or NaN, | |
then *decpt is set to 9999. | |
mode: | |
0 ==> shortest string that yields d when read in | |
and rounded to nearest. | |
1 ==> like 0, but with Steele & White stopping rule; | |
e.g. with IEEE P754 arithmetic , mode 0 gives | |
1e23 whereas mode 1 gives 9.999999999999999e22. | |
2 ==> max(1,ndigits) significant digits. This gives a | |
return value similar to that of ecvt, except | |
that trailing zeros are suppressed. | |
3 ==> through ndigits past the decimal point. This | |
gives a return value similar to that from fcvt, | |
except that trailing zeros are suppressed, and | |
ndigits can be negative. | |
4,5 ==> similar to 2 and 3, respectively, but (in | |
round-nearest mode) with the tests of mode 0 to | |
possibly return a shorter string that rounds to d. | |
With IEEE arithmetic and compilation with | |
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | |
as modes 2 and 3 when FLT_ROUNDS != 1. | |
6-9 ==> Debugging modes similar to mode - 4: don't try | |
fast floating-point estimate (if applicable). | |
Values of mode other than 0-9 are treated as mode 0. | |
Sufficient space is allocated to the return value | |
to hold the suppressed trailing zeros. | |
*/ | |
int bbits, b2, b5, be, dig, i, ieps, ilim0, | |
j, jj1, k, k0, k_check, leftright, m2, m5, s2, s5, | |
spec_case, try_quick; | |
int ilim = 0, ilim1 = 0; /* pacify gcc */ | |
Long L; | |
#ifndef Sudden_Underflow | |
int denorm; | |
ULong x; | |
#endif | |
Bigint *b, *b1, *delta, *mhi, *S; | |
Bigint *mlo = NULL; /* pacify gcc */ | |
double d2, ds, eps; | |
char *s, *s0; | |
#ifdef Honor_FLT_ROUNDS | |
int rounding; | |
#endif | |
#ifdef SET_INEXACT | |
int inexact, oldinexact; | |
#endif | |
#ifndef MULTIPLE_THREADS | |
if (dtoa_result) { | |
freedtoa(dtoa_result); | |
dtoa_result = 0; | |
} | |
#endif | |
if (word0(d) & Sign_bit) { | |
/* set sign for everything, including 0's and NaNs */ | |
*sign = 1; | |
word0(d) &= ~Sign_bit; /* clear sign bit */ | |
} | |
else | |
*sign = 0; | |
#if defined(IEEE_Arith) + defined(VAX) | |
#ifdef IEEE_Arith | |
if ((word0(d) & Exp_mask) == Exp_mask) | |
#else | |
if (word0(d) == 0x8000) | |
#endif | |
{ | |
/* Infinity or NaN */ | |
*decpt = 9999; | |
#ifdef IEEE_Arith | |
if (!word1(d) && !(word0(d) & 0xfffff)) | |
return nrv_alloc("Infinity", rve, 8); | |
#endif | |
return nrv_alloc("NaN", rve, 3); | |
} | |
#endif | |
#ifdef IBM | |
dval(d) += 0; /* normalize */ | |
#endif | |
if (!dval(d)) { | |
*decpt = 1; | |
return nrv_alloc("0", rve, 1); | |
} | |
#ifdef SET_INEXACT | |
try_quick = oldinexact = get_inexact(); | |
inexact = 1; | |
#endif | |
#ifdef Honor_FLT_ROUNDS | |
if ((rounding = Flt_Rounds) >= 2) { | |
if (*sign) | |
rounding = rounding == 2 ? 0 : 2; | |
else | |
if (rounding != 2) | |
rounding = 0; | |
} | |
#endif | |
b = d2b(dval(d), &be, &bbits); | |
if (b == NULL) | |
return NULL; | |
#ifdef Sudden_Underflow | |
i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); | |
#else | |
if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) { | |
#endif | |
dval(d2) = dval(d); | |
word0(d2) &= Frac_mask1; | |
word0(d2) |= Exp_11; | |
#ifdef IBM | |
if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0) | |
dval(d2) /= 1 << j; | |
#endif | |
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
* log10(x) = log(x) / log(10) | |
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
* | |
* This suggests computing an approximation k to log10(d) by | |
* | |
* k = (i - Bias)*0.301029995663981 | |
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
* | |
* We want k to be too large rather than too small. | |
* The error in the first-order Taylor series approximation | |
* is in our favor, so we just round up the constant enough | |
* to compensate for any error in the multiplication of | |
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
* adding 1e-13 to the constant term more than suffices. | |
* Hence we adjust the constant term to 0.1760912590558. | |
* (We could get a more accurate k by invoking log10, | |
* but this is probably not worthwhile.) | |
*/ | |
i -= Bias; | |
#ifdef IBM | |
i <<= 2; | |
i += j; | |
#endif | |
#ifndef Sudden_Underflow | |
denorm = 0; | |
} | |
else { | |
/* d is denormalized */ | |
i = bbits + be + (Bias + (P-1) - 1); | |
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) | |
: word1(d) << (32 - i); | |
dval(d2) = (double)x; | |
word0(d2) -= 31*Exp_msk1; /* adjust exponent */ | |
i -= (Bias + (P-1) - 1) + 1; | |
denorm = 1; | |
} | |
#endif | |
ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; | |
k = (int)ds; | |
if (ds < 0. && ds != k) | |
k--; /* want k = floor(ds) */ | |
k_check = 1; | |
if (k >= 0 && k <= Ten_pmax) { | |
if (dval(d) < tens[k]) | |
k--; | |
k_check = 0; | |
} | |
j = bbits - i - 1; | |
if (j >= 0) { | |
b2 = 0; | |
s2 = j; | |
} | |
else { | |
b2 = -j; | |
s2 = 0; | |
} | |
if (k >= 0) { | |
b5 = 0; | |
s5 = k; | |
s2 += k; | |
} | |
else { | |
b2 -= k; | |
b5 = -k; | |
s5 = 0; | |
} | |
if (mode < 0 || mode > 9) | |
mode = 0; | |
#ifndef SET_INEXACT | |
#ifdef Check_FLT_ROUNDS | |
try_quick = Rounding == 1; | |
#else | |
try_quick = 1; | |
#endif | |
#endif /*SET_INEXACT*/ | |
if (mode > 5) { | |
mode -= 4; | |
try_quick = 0; | |
} | |
leftright = 1; | |
switch(mode) { | |
case 0: | |
case 1: | |
ilim = ilim1 = -1; | |
i = 18; | |
ndigits = 0; | |
break; | |
case 2: | |
leftright = 0; | |
/* FALLTHROUGH */ | |
case 4: | |
if (ndigits <= 0) | |
ndigits = 1; | |
ilim = ilim1 = i = ndigits; | |
break; | |
case 3: | |
leftright = 0; | |
/* FALLTHROUGH */ | |
case 5: | |
i = ndigits + k + 1; | |
ilim = i; | |
ilim1 = i - 1; | |
if (i <= 0) | |
i = 1; | |
} | |
s = s0 = rv_alloc((size_t)i); | |
if (s == NULL) | |
return NULL; | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1 && rounding != 1) | |
leftright = 0; | |
#endif | |
if (ilim >= 0 && ilim <= Quick_max && try_quick) { | |
/* Try to get by with floating-point arithmetic. */ | |
i = 0; | |
dval(d2) = dval(d); | |
k0 = k; | |
ilim0 = ilim; | |
ieps = 2; /* conservative */ | |
if (k > 0) { | |
ds = tens[k&0xf]; | |
j = (unsigned int)k >> 4; | |
if (j & Bletch) { | |
/* prevent overflows */ | |
j &= Bletch - 1; | |
dval(d) /= bigtens[n_bigtens-1]; | |
ieps++; | |
} | |
for(; j; j = (unsigned int)j >> 1, i++) | |
if (j & 1) { | |
ieps++; | |
ds *= bigtens[i]; | |
} | |
dval(d) /= ds; | |
} | |
else if (( jj1 = -k )!=0) { | |
dval(d) *= tens[jj1 & 0xf]; | |
for(j = jj1 >> 4; j; j >>= 1, i++) | |
if (j & 1) { | |
ieps++; | |
dval(d) *= bigtens[i]; | |
} | |
} | |
if (k_check && dval(d) < 1. && ilim > 0) { | |
if (ilim1 <= 0) | |
goto fast_failed; | |
ilim = ilim1; | |
k--; | |
dval(d) *= 10.; | |
ieps++; | |
} | |
dval(eps) = ieps*dval(d) + 7.; | |
word0(eps) -= (P-1)*Exp_msk1; | |
if (ilim == 0) { | |
S = mhi = 0; | |
dval(d) -= 5.; | |
if (dval(d) > dval(eps)) | |
goto one_digit; | |
if (dval(d) < -dval(eps)) | |
goto no_digits; | |
goto fast_failed; | |
} | |
#ifndef No_leftright | |
if (leftright) { | |
/* Use Steele & White method of only | |
* generating digits needed. | |
*/ | |
dval(eps) = 0.5/tens[ilim-1] - dval(eps); | |
for(i = 0;;) { | |
L = (INT32)dval(d); | |
dval(d) -= L; | |
*s++ = (char)('0' + (int)L); | |
if (dval(d) < dval(eps)) | |
goto ret1; | |
if (1. - dval(d) < dval(eps)) | |
goto bump_up; | |
if (++i >= ilim) | |
break; | |
dval(eps) *= 10.; | |
dval(d) *= 10.; | |
} | |
} | |
else { | |
#endif | |
/* Generate ilim digits, then fix them up. */ | |
dval(eps) *= tens[ilim-1]; | |
for(i = 1;; i++, dval(d) *= 10.) { | |
L = (Long)(dval(d)); | |
if (!(dval(d) -= L)) | |
ilim = i; | |
*s++ = (char)('0' + (int)L); | |
if (i == ilim) { | |
if (dval(d) > 0.5 + dval(eps)) | |
goto bump_up; | |
else if (dval(d) < 0.5 - dval(eps)) { | |
while(*--s == '0'); | |
s++; | |
goto ret1; | |
} | |
break; | |
} | |
} | |
#ifndef No_leftright | |
} | |
#endif | |
fast_failed: | |
s = s0; | |
dval(d) = dval(d2); | |
k = k0; | |
ilim = ilim0; | |
} | |
/* Do we have a "small" integer? */ | |
if (be >= 0 && k <= Int_max) { | |
/* Yes. */ | |
ds = tens[k]; | |
if (ndigits < 0 && ilim <= 0) { | |
S = mhi = 0; | |
if (ilim < 0 || dval(d) <= 5*ds) | |
goto no_digits; | |
goto one_digit; | |
} | |
for(i = 1;; i++, dval(d) *= 10.) { | |
L = (Long)(dval(d) / ds); | |
dval(d) -= L*ds; | |
#ifdef Check_FLT_ROUNDS | |
/* If FLT_ROUNDS == 2, L will usually be high by 1 */ | |
if (dval(d) < 0) { | |
L--; | |
dval(d) += ds; | |
} | |
#endif | |
*s++ = (char)('0' + (int)L); | |
if (!dval(d)) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
break; | |
} | |
if (i == ilim) { | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1) | |
switch(rounding) { | |
case 0: goto ret1; | |
case 2: goto bump_up; | |
} | |
#endif | |
dval(d) += dval(d); | |
if (dval(d) > ds || (dval(d) == ds && L & 1)) { | |
bump_up: | |
while(*--s == '9') | |
if (s == s0) { | |
k++; | |
*s = '0'; | |
break; | |
} | |
++*s++; | |
} | |
break; | |
} | |
} | |
goto ret1; | |
} | |
m2 = b2; | |
m5 = b5; | |
mhi = mlo = 0; | |
if (leftright) { | |
i = | |
#ifndef Sudden_Underflow | |
denorm ? be + (Bias + (P-1) - 1 + 1) : | |
#endif | |
#ifdef IBM | |
1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); | |
#else | |
1 + P - bbits; | |
#endif | |
b2 += i; | |
s2 += i; | |
mhi = i2b(1); | |
if (mhi == NULL) | |
return NULL; | |
} | |
if (m2 > 0 && s2 > 0) { | |
i = m2 < s2 ? m2 : s2; | |
b2 -= i; | |
m2 -= i; | |
s2 -= i; | |
} | |
if (b5 > 0) { | |
if (leftright) { | |
if (m5 > 0) { | |
mhi = pow5mult(mhi, m5); | |
if (mhi == NULL) | |
return NULL; | |
b1 = mult(mhi, b); | |
if (b1 == NULL) | |
return NULL; | |
Bfree(b); | |
b = b1; | |
} | |
if (( j = b5 - m5 )!=0) | |
b = pow5mult(b, j); | |
if (b == NULL) | |
return NULL; | |
} | |
else | |
b = pow5mult(b, b5); | |
if (b == NULL) | |
return NULL; | |
} | |
S = i2b(1); | |
if (S == NULL) | |
return NULL; | |
if (s5 > 0) { | |
S = pow5mult(S, s5); | |
if (S == NULL) | |
return NULL; | |
} | |
/* Check for special case that d is a normalized power of 2. */ | |
spec_case = 0; | |
if ((mode < 2 || leftright) | |
#ifdef Honor_FLT_ROUNDS | |
&& rounding == 1 | |
#endif | |
) { | |
if (!word1(d) && !(word0(d) & Bndry_mask) | |
#ifndef Sudden_Underflow | |
&& word0(d) & (Exp_mask & ~Exp_msk1) | |
#endif | |
) { | |
/* The special case */ | |
b2 += Log2P; | |
s2 += Log2P; | |
spec_case = 1; | |
} | |
} | |
/* Arrange for convenient computation of quotients: | |
* shift left if necessary so divisor has 4 leading 0 bits. | |
* | |
* Perhaps we should just compute leading 28 bits of S once | |
* and for all and pass them and a shift to quorem, so it | |
* can do shifts and ors to compute the numerator for q. | |
*/ | |
#ifdef Pack_32 | |
if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f )!=0) | |
i = 32 - i; | |
#else | |
if (( i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf )!=0) | |
i = 16 - i; | |
#endif | |
if (i > 4) { | |
i -= 4; | |
b2 += i; | |
m2 += i; | |
s2 += i; | |
} | |
else if (i < 4) { | |
i += 28; | |
b2 += i; | |
m2 += i; | |
s2 += i; | |
} | |
if (b2 > 0) { | |
b = lshift(b, b2); | |
if (b == NULL) | |
return NULL; | |
} | |
if (s2 > 0) { | |
S = lshift(S, s2); | |
if (S == NULL) | |
return NULL; | |
} | |
if (k_check) { | |
if (cmp(b,S) < 0) { | |
k--; | |
b = multadd(b, 10, 0); /* we botched the k estimate */ | |
if (b == NULL) | |
return NULL; | |
if (leftright) { | |
mhi = multadd(mhi, 10, 0); | |
if (mhi == NULL) | |
return NULL; | |
} | |
ilim = ilim1; | |
} | |
} | |
if (ilim <= 0 && (mode == 3 || mode == 5)) { | |
if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { | |
/* no digits, fcvt style */ | |
no_digits: | |
k = -1 - ndigits; | |
goto ret; | |
} | |
one_digit: | |
*s++ = '1'; | |
k++; | |
goto ret; | |
} | |
if (leftright) { | |
if (m2 > 0) { | |
mhi = lshift(mhi, m2); | |
if (mhi == NULL) | |
return NULL; | |
} | |
/* Compute mlo -- check for special case | |
* that d is a normalized power of 2. | |
*/ | |
mlo = mhi; | |
if (spec_case) { | |
mhi = Balloc(mhi->k); | |
if (mhi == NULL) | |
return NULL; | |
Bcopy(mhi, mlo); | |
mhi = lshift(mhi, Log2P); | |
if (mhi == NULL) | |
return NULL; | |
} | |
for(i = 1;;i++) { | |
dig = quorem(b,S) + '0'; | |
/* Do we yet have the shortest decimal string | |
* that will round to d? | |
*/ | |
j = cmp(b, mlo); | |
delta = diff(S, mhi); | |
if (delta == NULL) | |
return NULL; | |
jj1 = delta->sign ? 1 : cmp(b, delta); | |
Bfree(delta); | |
#ifndef ROUND_BIASED | |
if (jj1 == 0 && mode != 1 && !(word1(d) & 1) | |
#ifdef Honor_FLT_ROUNDS | |
&& rounding >= 1 | |
#endif | |
) { | |
if (dig == '9') | |
goto round_9_up; | |
if (j > 0) | |
dig++; | |
#ifdef SET_INEXACT | |
else if (!b->x[0] && b->wds <= 1) | |
inexact = 0; | |
#endif | |
*s++ = (char)dig; | |
goto ret; | |
} | |
#endif | |
if (j < 0 || (j == 0 && mode != 1 | |
#ifndef ROUND_BIASED | |
&& !(word1(d) & 1) | |
#endif | |
)) { | |
if (!b->x[0] && b->wds <= 1) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
goto accept_dig; | |
} | |
#ifdef Honor_FLT_ROUNDS | |
if (mode > 1) | |
switch(rounding) { | |
case 0: goto accept_dig; | |
case 2: goto keep_dig; | |
} | |
#endif /*Honor_FLT_ROUNDS*/ | |
if (jj1 > 0) { | |
b = lshift(b, 1); | |
if (b == NULL) | |
return NULL; | |
jj1 = cmp(b, S); | |
if ((jj1 > 0 || (jj1 == 0 && dig & 1)) | |
&& dig++ == '9') | |
goto round_9_up; | |
} | |
accept_dig: | |
*s++ = (char)dig; | |
goto ret; | |
} | |
if (jj1 > 0) { | |
#ifdef Honor_FLT_ROUNDS | |
if (!rounding) | |
goto accept_dig; | |
#endif | |
if (dig == '9') { /* possible if i == 1 */ | |
round_9_up: | |
*s++ = '9'; | |
goto roundoff; | |
} | |
*s++ = (char)(dig + 1); | |
goto ret; | |
} | |
#ifdef Honor_FLT_ROUNDS | |
keep_dig: | |
#endif | |
*s++ = (char)dig; | |
if (i == ilim) | |
break; | |
b = multadd(b, 10, 0); | |
if (b == NULL) | |
return NULL; | |
if (mlo == mhi) { | |
mlo = mhi = multadd(mhi, 10, 0); | |
if (mlo == NULL) | |
return NULL; | |
} | |
else { | |
mlo = multadd(mlo, 10, 0); | |
if (mlo == NULL) | |
return NULL; | |
mhi = multadd(mhi, 10, 0); | |
if (mhi == NULL) | |
return NULL; | |
} | |
} | |
} | |
else | |
for(i = 1;; i++) { | |
*s++ = (char)(dig = (int)(quorem(b,S) + '0')); | |
if (!b->x[0] && b->wds <= 1) { | |
#ifdef SET_INEXACT | |
inexact = 0; | |
#endif | |
goto ret; | |
} | |
if (i >= ilim) | |
break; | |
b = multadd(b, 10, 0); | |
if (b == NULL) | |
return NULL; | |
} | |
/* Round off last digit */ | |
#ifdef Honor_FLT_ROUNDS | |
switch(rounding) { | |
case 0: goto trimzeros; | |
case 2: goto roundoff; | |
} | |
#endif | |
b = lshift(b, 1); | |
j = cmp(b, S); | |
if (j > 0 || (j == 0 && dig & 1)) { | |
roundoff: | |
while(*--s == '9') | |
if (s == s0) { | |
k++; | |
*s++ = '1'; | |
goto ret; | |
} | |
++*s++; | |
} | |
else { | |
#ifdef Honor_FLT_ROUNDS | |
trimzeros: | |
#endif | |
while(*--s == '0'); | |
s++; | |
} | |
ret: | |
Bfree(S); | |
if (mhi) { | |
if (mlo && mlo != mhi) | |
Bfree(mlo); | |
Bfree(mhi); | |
} | |
ret1: | |
#ifdef SET_INEXACT | |
if (inexact) { | |
if (!oldinexact) { | |
word0(d) = Exp_1 + (70 << Exp_shift); | |
word1(d) = 0; | |
dval(d) += 1.; | |
} | |
} | |
else if (!oldinexact) | |
clear_inexact(); | |
#endif | |
Bfree(b); | |
if (s == s0) { /* don't return empty string */ | |
*s++ = '0'; | |
k = 0; | |
} | |
*s = 0; | |
*decpt = k + 1; | |
if (rve) | |
*rve = s; | |
return s0; | |
} |