Vishal Bhoj | 82c8071 | 2015-12-15 21:13:33 +0530 | [diff] [blame^] | 1 | /*++
|
| 2 |
|
| 3 | Caution: This file is used for Duet platform only, do not use them in real platform.
|
| 4 | All variable code, variable metadata, and variable data used by Duet platform are on
|
| 5 | disk. They can be changed by user. BIOS is not able to protoect those.
|
| 6 | Duet trusts all meta data from disk. If variable code, variable metadata and variable
|
| 7 | data is modified in inproper way, the behavior is undefined.
|
| 8 |
|
| 9 | Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.<BR>
|
| 10 | This program and the accompanying materials
|
| 11 | are licensed and made available under the terms and conditions of the BSD License
|
| 12 | which accompanies this distribution. The full text of the license may be found at
|
| 13 | http://opensource.org/licenses/bsd-license.php
|
| 14 |
|
| 15 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| 16 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
| 17 |
|
| 18 | Module Name:
|
| 19 |
|
| 20 | FSVariable.c
|
| 21 |
|
| 22 | Abstract:
|
| 23 |
|
| 24 | Provide support functions for variable services.
|
| 25 |
|
| 26 | --*/
|
| 27 |
|
| 28 | #include "FSVariable.h"
|
| 29 |
|
| 30 | VARIABLE_STORE_HEADER mStoreHeaderTemplate = {
|
| 31 | VARIABLE_STORE_SIGNATURE,
|
| 32 | VOLATILE_VARIABLE_STORE_SIZE,
|
| 33 | VARIABLE_STORE_FORMATTED,
|
| 34 | VARIABLE_STORE_HEALTHY,
|
| 35 | 0,
|
| 36 | 0
|
| 37 | };
|
| 38 |
|
| 39 | //
|
| 40 | // Don't use module globals after the SetVirtualAddress map is signaled
|
| 41 | //
|
| 42 | VARIABLE_GLOBAL *mGlobal;
|
| 43 |
|
| 44 | /**
|
| 45 | Update the variable region with Variable information. These are the same
|
| 46 | arguments as the EFI Variable services.
|
| 47 |
|
| 48 | @param[in] VariableName Name of variable
|
| 49 |
|
| 50 | @param[in] VendorGuid Guid of variable
|
| 51 |
|
| 52 | @param[in] Data Variable data
|
| 53 |
|
| 54 | @param[in] DataSize Size of data. 0 means delete
|
| 55 |
|
| 56 | @param[in] Attributes Attribues of the variable
|
| 57 |
|
| 58 | @param[in] Variable The variable information which is used to keep track of variable usage.
|
| 59 |
|
| 60 | @retval EFI_SUCCESS The update operation is success.
|
| 61 |
|
| 62 | @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
|
| 63 |
|
| 64 | **/
|
| 65 | EFI_STATUS
|
| 66 | EFIAPI
|
| 67 | UpdateVariable (
|
| 68 | IN CHAR16 *VariableName,
|
| 69 | IN EFI_GUID *VendorGuid,
|
| 70 | IN VOID *Data,
|
| 71 | IN UINTN DataSize,
|
| 72 | IN UINT32 Attributes OPTIONAL,
|
| 73 | IN VARIABLE_POINTER_TRACK *Variable
|
| 74 | );
|
| 75 |
|
| 76 | VOID
|
| 77 | EFIAPI
|
| 78 | OnVirtualAddressChangeFsv (
|
| 79 | IN EFI_EVENT Event,
|
| 80 | IN VOID *Context
|
| 81 | );
|
| 82 |
|
| 83 | VOID
|
| 84 | EFIAPI
|
| 85 | OnSimpleFileSystemInstall (
|
| 86 | IN EFI_EVENT Event,
|
| 87 | IN VOID *Context
|
| 88 | );
|
| 89 |
|
| 90 | BOOLEAN
|
| 91 | IsValidVariableHeader (
|
| 92 | IN VARIABLE_HEADER *Variable
|
| 93 | )
|
| 94 | /*++
|
| 95 |
|
| 96 | Routine Description:
|
| 97 |
|
| 98 | This code checks if variable header is valid or not.
|
| 99 |
|
| 100 | Arguments:
|
| 101 | Variable Pointer to the Variable Header.
|
| 102 |
|
| 103 | Returns:
|
| 104 | TRUE Variable header is valid.
|
| 105 | FALSE Variable header is not valid.
|
| 106 |
|
| 107 | --*/
|
| 108 | {
|
| 109 | if (Variable == NULL || Variable->StartId != VARIABLE_DATA) {
|
| 110 | return FALSE;
|
| 111 | }
|
| 112 |
|
| 113 | return TRUE;
|
| 114 | }
|
| 115 |
|
| 116 | VARIABLE_STORE_STATUS
|
| 117 | GetVariableStoreStatus (
|
| 118 | IN VARIABLE_STORE_HEADER *VarStoreHeader
|
| 119 | )
|
| 120 | /*++
|
| 121 |
|
| 122 | Routine Description:
|
| 123 |
|
| 124 | This code gets the current status of Variable Store.
|
| 125 |
|
| 126 | Arguments:
|
| 127 |
|
| 128 | VarStoreHeader Pointer to the Variable Store Header.
|
| 129 |
|
| 130 | Returns:
|
| 131 |
|
| 132 | EfiRaw Variable store status is raw
|
| 133 | EfiValid Variable store status is valid
|
| 134 | EfiInvalid Variable store status is invalid
|
| 135 |
|
| 136 | --*/
|
| 137 | {
|
| 138 | if (CompareGuid (&VarStoreHeader->Signature, &mStoreHeaderTemplate.Signature) &&
|
| 139 | (VarStoreHeader->Format == mStoreHeaderTemplate.Format) &&
|
| 140 | (VarStoreHeader->State == mStoreHeaderTemplate.State)
|
| 141 | ) {
|
| 142 | return EfiValid;
|
| 143 | } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == VAR_DEFAULT_VALUE_32 &&
|
| 144 | ((UINT32 *)(&VarStoreHeader->Signature))[1] == VAR_DEFAULT_VALUE_32 &&
|
| 145 | ((UINT32 *)(&VarStoreHeader->Signature))[2] == VAR_DEFAULT_VALUE_32 &&
|
| 146 | ((UINT32 *)(&VarStoreHeader->Signature))[3] == VAR_DEFAULT_VALUE_32 &&
|
| 147 | VarStoreHeader->Size == VAR_DEFAULT_VALUE_32 &&
|
| 148 | VarStoreHeader->Format == VAR_DEFAULT_VALUE &&
|
| 149 | VarStoreHeader->State == VAR_DEFAULT_VALUE
|
| 150 | ) {
|
| 151 |
|
| 152 | return EfiRaw;
|
| 153 | } else {
|
| 154 | return EfiInvalid;
|
| 155 | }
|
| 156 | }
|
| 157 |
|
| 158 | UINT8 *
|
| 159 | GetVariableDataPtr (
|
| 160 | IN VARIABLE_HEADER *Variable
|
| 161 | )
|
| 162 | /*++
|
| 163 |
|
| 164 | Routine Description:
|
| 165 |
|
| 166 | This code gets the pointer to the variable data.
|
| 167 |
|
| 168 | Arguments:
|
| 169 |
|
| 170 | Variable Pointer to the Variable Header.
|
| 171 |
|
| 172 | Returns:
|
| 173 |
|
| 174 | UINT8* Pointer to Variable Data
|
| 175 |
|
| 176 | --*/
|
| 177 | {
|
| 178 | //
|
| 179 | // Be careful about pad size for alignment
|
| 180 | //
|
| 181 | return (UINT8 *) ((UINTN) GET_VARIABLE_NAME_PTR (Variable) + Variable->NameSize + GET_PAD_SIZE (Variable->NameSize));
|
| 182 | }
|
| 183 |
|
| 184 | VARIABLE_HEADER *
|
| 185 | GetNextVariablePtr (
|
| 186 | IN VARIABLE_HEADER *Variable
|
| 187 | )
|
| 188 | /*++
|
| 189 |
|
| 190 | Routine Description:
|
| 191 |
|
| 192 | This code gets the pointer to the next variable header.
|
| 193 |
|
| 194 | Arguments:
|
| 195 |
|
| 196 | Variable Pointer to the Variable Header.
|
| 197 |
|
| 198 | Returns:
|
| 199 |
|
| 200 | VARIABLE_HEADER* Pointer to next variable header.
|
| 201 |
|
| 202 | --*/
|
| 203 | {
|
| 204 | if (!IsValidVariableHeader (Variable)) {
|
| 205 | return NULL;
|
| 206 | }
|
| 207 | //
|
| 208 | // Be careful about pad size for alignment
|
| 209 | //
|
| 210 | return (VARIABLE_HEADER *) ((UINTN) GetVariableDataPtr (Variable) + Variable->DataSize + GET_PAD_SIZE (Variable->DataSize));
|
| 211 | }
|
| 212 |
|
| 213 | VARIABLE_HEADER *
|
| 214 | GetEndPointer (
|
| 215 | IN VARIABLE_STORE_HEADER *VarStoreHeader
|
| 216 | )
|
| 217 | /*++
|
| 218 |
|
| 219 | Routine Description:
|
| 220 |
|
| 221 | This code gets the pointer to the last variable memory pointer byte
|
| 222 |
|
| 223 | Arguments:
|
| 224 |
|
| 225 | VarStoreHeader Pointer to the Variable Store Header.
|
| 226 |
|
| 227 | Returns:
|
| 228 |
|
| 229 | VARIABLE_HEADER* Pointer to last unavailable Variable Header
|
| 230 |
|
| 231 | --*/
|
| 232 | {
|
| 233 | //
|
| 234 | // The end of variable store
|
| 235 | //
|
| 236 | return (VARIABLE_HEADER *) ((UINTN) VarStoreHeader + VarStoreHeader->Size);
|
| 237 | }
|
| 238 |
|
| 239 | BOOLEAN
|
| 240 | ExistNewerVariable (
|
| 241 | IN VARIABLE_HEADER *Variable
|
| 242 | )
|
| 243 | /*++
|
| 244 |
|
| 245 | Routine Description:
|
| 246 |
|
| 247 | Check if exist newer variable when doing reclaim
|
| 248 |
|
| 249 | Arguments:
|
| 250 |
|
| 251 | Variable Pointer to start position
|
| 252 |
|
| 253 | Returns:
|
| 254 |
|
| 255 | TRUE - Exists another variable, which is newer than the current one
|
| 256 | FALSE - Doesn't exist another vairable which is newer than the current one
|
| 257 |
|
| 258 | --*/
|
| 259 | {
|
| 260 | VARIABLE_HEADER *NextVariable;
|
| 261 | CHAR16 *VariableName;
|
| 262 | EFI_GUID *VendorGuid;
|
| 263 |
|
| 264 | VendorGuid = &Variable->VendorGuid;
|
| 265 | VariableName = GET_VARIABLE_NAME_PTR(Variable);
|
| 266 |
|
| 267 | NextVariable = GetNextVariablePtr (Variable);
|
| 268 | while (IsValidVariableHeader (NextVariable)) {
|
| 269 | if ((NextVariable->State == VAR_ADDED) || (NextVariable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
|
| 270 | //
|
| 271 | // If match Guid and Name
|
| 272 | //
|
| 273 | if (CompareGuid (VendorGuid, &NextVariable->VendorGuid)) {
|
| 274 | if (CompareMem (VariableName, GET_VARIABLE_NAME_PTR (NextVariable), StrSize (VariableName)) == 0) {
|
| 275 | return TRUE;
|
| 276 | }
|
| 277 | }
|
| 278 | }
|
| 279 | NextVariable = GetNextVariablePtr (NextVariable);
|
| 280 | }
|
| 281 | return FALSE;
|
| 282 | }
|
| 283 |
|
| 284 | EFI_STATUS
|
| 285 | Reclaim (
|
| 286 | IN VARIABLE_STORAGE_TYPE StorageType,
|
| 287 | IN VARIABLE_HEADER *CurrentVariable OPTIONAL
|
| 288 | )
|
| 289 | /*++
|
| 290 |
|
| 291 | Routine Description:
|
| 292 |
|
| 293 | Variable store garbage collection and reclaim operation
|
| 294 |
|
| 295 | Arguments:
|
| 296 |
|
| 297 | IsVolatile The variable store is volatile or not,
|
| 298 | if it is non-volatile, need FTW
|
| 299 | CurrentVairable If it is not NULL, it means not to process
|
| 300 | current variable for Reclaim.
|
| 301 |
|
| 302 | Returns:
|
| 303 |
|
| 304 | EFI STATUS
|
| 305 |
|
| 306 | --*/
|
| 307 | {
|
| 308 | VARIABLE_HEADER *Variable;
|
| 309 | VARIABLE_HEADER *NextVariable;
|
| 310 | VARIABLE_STORE_HEADER *VariableStoreHeader;
|
| 311 | UINT8 *ValidBuffer;
|
| 312 | UINTN ValidBufferSize;
|
| 313 | UINTN VariableSize;
|
| 314 | UINT8 *CurrPtr;
|
| 315 | EFI_STATUS Status;
|
| 316 |
|
| 317 | VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType];
|
| 318 |
|
| 319 | //
|
| 320 | // Start Pointers for the variable.
|
| 321 | //
|
| 322 | Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
|
| 323 |
|
| 324 | //
|
| 325 | // recaluate the total size of Common/HwErr type variables in non-volatile area.
|
| 326 | //
|
| 327 | if (!StorageType) {
|
| 328 | mGlobal->CommonVariableTotalSize = 0;
|
| 329 | mGlobal->HwErrVariableTotalSize = 0;
|
| 330 | }
|
| 331 | //
|
| 332 | // To make the reclaim, here we just allocate a memory that equal to the original memory
|
| 333 | //
|
| 334 | ValidBufferSize = sizeof (VARIABLE_STORE_HEADER) + VariableStoreHeader->Size;
|
| 335 |
|
| 336 | Status = gBS->AllocatePool (
|
| 337 | EfiBootServicesData,
|
| 338 | ValidBufferSize,
|
| 339 | (VOID**) &ValidBuffer
|
| 340 | );
|
| 341 | if (EFI_ERROR (Status)) {
|
| 342 | return Status;
|
| 343 | }
|
| 344 |
|
| 345 | CurrPtr = ValidBuffer;
|
| 346 |
|
| 347 | //
|
| 348 | // Copy variable store header
|
| 349 | //
|
| 350 | CopyMem (CurrPtr, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER));
|
| 351 | CurrPtr += sizeof (VARIABLE_STORE_HEADER);
|
| 352 |
|
| 353 | //
|
| 354 | // Start Pointers for the variable.
|
| 355 | //
|
| 356 | Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
|
| 357 |
|
| 358 |
|
| 359 | ValidBufferSize = sizeof (VARIABLE_STORE_HEADER);
|
| 360 | while (IsValidVariableHeader (Variable)) {
|
| 361 | NextVariable = GetNextVariablePtr (Variable);
|
| 362 | //
|
| 363 | // State VAR_ADDED or VAR_IN_DELETED_TRANSITION are to kept,
|
| 364 | // The CurrentVariable, is also saved, as SetVariable may fail due to lack of space
|
| 365 | //
|
| 366 | if (Variable->State == VAR_ADDED) {
|
| 367 | VariableSize = (UINTN) NextVariable - (UINTN) Variable;
|
| 368 | CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
|
| 369 | ValidBufferSize += VariableSize;
|
| 370 | CurrPtr += VariableSize;
|
| 371 | if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 372 | mGlobal->HwErrVariableTotalSize += VariableSize;
|
| 373 | } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 374 | mGlobal->CommonVariableTotalSize += VariableSize;
|
| 375 | }
|
| 376 | } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
|
| 377 | //
|
| 378 | // As variables that with the same guid and name may exist in NV due to power failure during SetVariable,
|
| 379 | // we will only save the latest valid one
|
| 380 | //
|
| 381 | if (!ExistNewerVariable(Variable)) {
|
| 382 | VariableSize = (UINTN) NextVariable - (UINTN) Variable;
|
| 383 | CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize);
|
| 384 | //
|
| 385 | // If CurrentVariable == Variable, mark as VAR_IN_DELETED_TRANSITION
|
| 386 | //
|
| 387 | if (Variable != CurrentVariable){
|
| 388 | ((VARIABLE_HEADER *)CurrPtr)->State = VAR_ADDED;
|
| 389 | }
|
| 390 | CurrPtr += VariableSize;
|
| 391 | ValidBufferSize += VariableSize;
|
| 392 | if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 393 | mGlobal->HwErrVariableTotalSize += VariableSize;
|
| 394 | } else if ((!StorageType) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 395 | mGlobal->CommonVariableTotalSize += VariableSize;
|
| 396 | }
|
| 397 | }
|
| 398 | }
|
| 399 | Variable = NextVariable;
|
| 400 | }
|
| 401 |
|
| 402 | mGlobal->LastVariableOffset[StorageType] = ValidBufferSize;
|
| 403 |
|
| 404 | //
|
| 405 | // TODO: cannot restore to original state, basic FTW needed
|
| 406 | //
|
| 407 | Status = mGlobal->VariableStore[StorageType]->Erase (
|
| 408 | mGlobal->VariableStore[StorageType]
|
| 409 | );
|
| 410 | Status = mGlobal->VariableStore[StorageType]->Write (
|
| 411 | mGlobal->VariableStore[StorageType],
|
| 412 | 0,
|
| 413 | ValidBufferSize,
|
| 414 | ValidBuffer
|
| 415 | );
|
| 416 |
|
| 417 | if (EFI_ERROR (Status)) {
|
| 418 | //
|
| 419 | // If error, then reset the last variable offset to zero.
|
| 420 | //
|
| 421 | mGlobal->LastVariableOffset[StorageType] = 0;
|
| 422 | };
|
| 423 |
|
| 424 | gBS->FreePool (ValidBuffer);
|
| 425 |
|
| 426 | return Status;
|
| 427 | }
|
| 428 |
|
| 429 | EFI_STATUS
|
| 430 | FindVariable (
|
| 431 | IN CHAR16 *VariableName,
|
| 432 | IN EFI_GUID *VendorGuid,
|
| 433 | OUT VARIABLE_POINTER_TRACK *PtrTrack
|
| 434 | )
|
| 435 | /*++
|
| 436 |
|
| 437 | Routine Description:
|
| 438 |
|
| 439 | This code finds variable in storage blocks (Volatile or Non-Volatile)
|
| 440 |
|
| 441 | Arguments:
|
| 442 |
|
| 443 | VariableName Name of the variable to be found
|
| 444 | VendorGuid Vendor GUID to be found.
|
| 445 | PtrTrack Variable Track Pointer structure that contains
|
| 446 | Variable Information.
|
| 447 | Contains the pointer of Variable header.
|
| 448 |
|
| 449 | Returns:
|
| 450 |
|
| 451 | EFI_INVALID_PARAMETER - Invalid parameter
|
| 452 | EFI_SUCCESS - Find the specified variable
|
| 453 | EFI_NOT_FOUND - Not found
|
| 454 |
|
| 455 | --*/
|
| 456 | {
|
| 457 | VARIABLE_HEADER *Variable;
|
| 458 | VARIABLE_STORE_HEADER *VariableStoreHeader;
|
| 459 | UINTN Index;
|
| 460 | VARIABLE_HEADER *InDeleteVariable;
|
| 461 | UINTN InDeleteIndex;
|
| 462 | VARIABLE_HEADER *InDeleteStartPtr;
|
| 463 | VARIABLE_HEADER *InDeleteEndPtr;
|
| 464 |
|
| 465 | if (VariableName[0] != 0 && VendorGuid == NULL) {
|
| 466 | return EFI_INVALID_PARAMETER;
|
| 467 | }
|
| 468 |
|
| 469 | InDeleteVariable = NULL;
|
| 470 | InDeleteIndex = (UINTN)-1;
|
| 471 | InDeleteStartPtr = NULL;
|
| 472 | InDeleteEndPtr = NULL;
|
| 473 |
|
| 474 | for (Index = 0; Index < MaxType; Index ++) {
|
| 475 | //
|
| 476 | // 0: Non-Volatile, 1: Volatile
|
| 477 | //
|
| 478 | VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Index];
|
| 479 |
|
| 480 | //
|
| 481 | // Start Pointers for the variable.
|
| 482 | // Actual Data Pointer where data can be written.
|
| 483 | //
|
| 484 | Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
|
| 485 |
|
| 486 | //
|
| 487 | // Find the variable by walk through non-volatile and volatile variable store
|
| 488 | //
|
| 489 | PtrTrack->StartPtr = Variable;
|
| 490 | PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader);
|
| 491 |
|
| 492 | while ((Variable < PtrTrack->EndPtr) && IsValidVariableHeader (Variable)) {
|
| 493 | if (Variable->State == VAR_ADDED) {
|
| 494 | if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
|
| 495 | if (VariableName[0] == 0) {
|
| 496 | PtrTrack->CurrPtr = Variable;
|
| 497 | PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
|
| 498 | return EFI_SUCCESS;
|
| 499 | } else {
|
| 500 | if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
|
| 501 | if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
|
| 502 | PtrTrack->CurrPtr = Variable;
|
| 503 | PtrTrack->Type = (VARIABLE_STORAGE_TYPE) Index;
|
| 504 | return EFI_SUCCESS;
|
| 505 | }
|
| 506 | }
|
| 507 | }
|
| 508 | }
|
| 509 | } else if (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)) {
|
| 510 | //
|
| 511 | // VAR_IN_DELETED_TRANSITION should also be checked.
|
| 512 | //
|
| 513 | if (!EfiAtRuntime () || (Variable->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
|
| 514 | if (VariableName[0] == 0) {
|
| 515 | InDeleteVariable = Variable;
|
| 516 | InDeleteIndex = Index;
|
| 517 | InDeleteStartPtr = PtrTrack->StartPtr;
|
| 518 | InDeleteEndPtr = PtrTrack->EndPtr;
|
| 519 | } else {
|
| 520 | if (CompareGuid (VendorGuid, &Variable->VendorGuid)) {
|
| 521 | if (!CompareMem (VariableName, GET_VARIABLE_NAME_PTR (Variable), StrSize (VariableName))) {
|
| 522 | InDeleteVariable = Variable;
|
| 523 | InDeleteIndex = Index;
|
| 524 | InDeleteStartPtr = PtrTrack->StartPtr;
|
| 525 | InDeleteEndPtr = PtrTrack->EndPtr;
|
| 526 | }
|
| 527 | }
|
| 528 | }
|
| 529 | }
|
| 530 | }
|
| 531 |
|
| 532 | Variable = GetNextVariablePtr (Variable);
|
| 533 | }
|
| 534 | //
|
| 535 | // While (...)
|
| 536 | //
|
| 537 | }
|
| 538 | //
|
| 539 | // for (...)
|
| 540 | //
|
| 541 |
|
| 542 | //
|
| 543 | // if VAR_IN_DELETED_TRANSITION found, and VAR_ADDED not found,
|
| 544 | // we return it.
|
| 545 | //
|
| 546 | if (InDeleteVariable != NULL) {
|
| 547 | PtrTrack->CurrPtr = InDeleteVariable;
|
| 548 | PtrTrack->Type = (VARIABLE_STORAGE_TYPE) InDeleteIndex;
|
| 549 | PtrTrack->StartPtr = InDeleteStartPtr;
|
| 550 | PtrTrack->EndPtr = InDeleteEndPtr;
|
| 551 | return EFI_SUCCESS;
|
| 552 | }
|
| 553 |
|
| 554 | PtrTrack->CurrPtr = NULL;
|
| 555 | return EFI_NOT_FOUND;
|
| 556 | }
|
| 557 |
|
| 558 | /**
|
| 559 | Get index from supported language codes according to language string.
|
| 560 |
|
| 561 | This code is used to get corresponding index in supported language codes. It can handle
|
| 562 | RFC4646 and ISO639 language tags.
|
| 563 | In ISO639 language tags, take 3-characters as a delimitation to find matched string and calculate the index.
|
| 564 | In RFC4646 language tags, take semicolon as a delimitation to find matched string and calculate the index.
|
| 565 |
|
| 566 | For example:
|
| 567 | SupportedLang = "engfraengfra"
|
| 568 | Lang = "eng"
|
| 569 | Iso639Language = TRUE
|
| 570 | The return value is "0".
|
| 571 | Another example:
|
| 572 | SupportedLang = "en;fr;en-US;fr-FR"
|
| 573 | Lang = "fr-FR"
|
| 574 | Iso639Language = FALSE
|
| 575 | The return value is "3".
|
| 576 |
|
| 577 | @param SupportedLang Platform supported language codes.
|
| 578 | @param Lang Configured language.
|
| 579 | @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
|
| 580 |
|
| 581 | @retval the index of language in the language codes.
|
| 582 |
|
| 583 | **/
|
| 584 | UINTN
|
| 585 | GetIndexFromSupportedLangCodes(
|
| 586 | IN CHAR8 *SupportedLang,
|
| 587 | IN CHAR8 *Lang,
|
| 588 | IN BOOLEAN Iso639Language
|
| 589 | )
|
| 590 | {
|
| 591 | UINTN Index;
|
| 592 | UINTN CompareLength;
|
| 593 | UINTN LanguageLength;
|
| 594 |
|
| 595 | if (Iso639Language) {
|
| 596 | CompareLength = ISO_639_2_ENTRY_SIZE;
|
| 597 | for (Index = 0; Index < AsciiStrLen (SupportedLang); Index += CompareLength) {
|
| 598 | if (AsciiStrnCmp (Lang, SupportedLang + Index, CompareLength) == 0) {
|
| 599 | //
|
| 600 | // Successfully find the index of Lang string in SupportedLang string.
|
| 601 | //
|
| 602 | Index = Index / CompareLength;
|
| 603 | return Index;
|
| 604 | }
|
| 605 | }
|
| 606 | ASSERT (FALSE);
|
| 607 | return 0;
|
| 608 | } else {
|
| 609 | //
|
| 610 | // Compare RFC4646 language code
|
| 611 | //
|
| 612 | Index = 0;
|
| 613 | for (LanguageLength = 0; Lang[LanguageLength] != '\0'; LanguageLength++);
|
| 614 |
|
| 615 | for (Index = 0; *SupportedLang != '\0'; Index++, SupportedLang += CompareLength) {
|
| 616 | //
|
| 617 | // Skip ';' characters in SupportedLang
|
| 618 | //
|
| 619 | for (; *SupportedLang != '\0' && *SupportedLang == ';'; SupportedLang++);
|
| 620 | //
|
| 621 | // Determine the length of the next language code in SupportedLang
|
| 622 | //
|
| 623 | for (CompareLength = 0; SupportedLang[CompareLength] != '\0' && SupportedLang[CompareLength] != ';'; CompareLength++);
|
| 624 |
|
| 625 | if ((CompareLength == LanguageLength) &&
|
| 626 | (AsciiStrnCmp (Lang, SupportedLang, CompareLength) == 0)) {
|
| 627 | //
|
| 628 | // Successfully find the index of Lang string in SupportedLang string.
|
| 629 | //
|
| 630 | return Index;
|
| 631 | }
|
| 632 | }
|
| 633 | ASSERT (FALSE);
|
| 634 | return 0;
|
| 635 | }
|
| 636 | }
|
| 637 |
|
| 638 | /**
|
| 639 | Get language string from supported language codes according to index.
|
| 640 |
|
| 641 | This code is used to get corresponding language string in supported language codes. It can handle
|
| 642 | RFC4646 and ISO639 language tags.
|
| 643 | In ISO639 language tags, take 3-characters as a delimitation. Find language string according to the index.
|
| 644 | In RFC4646 language tags, take semicolon as a delimitation. Find language string according to the index.
|
| 645 |
|
| 646 | For example:
|
| 647 | SupportedLang = "engfraengfra"
|
| 648 | Index = "1"
|
| 649 | Iso639Language = TRUE
|
| 650 | The return value is "fra".
|
| 651 | Another example:
|
| 652 | SupportedLang = "en;fr;en-US;fr-FR"
|
| 653 | Index = "1"
|
| 654 | Iso639Language = FALSE
|
| 655 | The return value is "fr".
|
| 656 |
|
| 657 | @param SupportedLang Platform supported language codes.
|
| 658 | @param Index the index in supported language codes.
|
| 659 | @param Iso639Language A bool value to signify if the handler is operated on ISO639 or RFC4646.
|
| 660 |
|
| 661 | @retval the language string in the language codes.
|
| 662 |
|
| 663 | **/
|
| 664 | CHAR8 *
|
| 665 | GetLangFromSupportedLangCodes (
|
| 666 | IN CHAR8 *SupportedLang,
|
| 667 | IN UINTN Index,
|
| 668 | IN BOOLEAN Iso639Language
|
| 669 | )
|
| 670 | {
|
| 671 | UINTN SubIndex;
|
| 672 | UINTN CompareLength;
|
| 673 | CHAR8 *Supported;
|
| 674 |
|
| 675 | SubIndex = 0;
|
| 676 | Supported = SupportedLang;
|
| 677 | if (Iso639Language) {
|
| 678 | //
|
| 679 | // according to the index of Lang string in SupportedLang string to get the language.
|
| 680 | // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
|
| 681 | // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
|
| 682 | //
|
| 683 | CompareLength = ISO_639_2_ENTRY_SIZE;
|
| 684 | mGlobal->Lang[CompareLength] = '\0';
|
| 685 | return CopyMem (mGlobal->Lang, SupportedLang + Index * CompareLength, CompareLength);
|
| 686 |
|
| 687 | } else {
|
| 688 | while (TRUE) {
|
| 689 | //
|
| 690 | // take semicolon as delimitation, sequentially traverse supported language codes.
|
| 691 | //
|
| 692 | for (CompareLength = 0; *Supported != ';' && *Supported != '\0'; CompareLength++) {
|
| 693 | Supported++;
|
| 694 | }
|
| 695 | if ((*Supported == '\0') && (SubIndex != Index)) {
|
| 696 | //
|
| 697 | // Have completed the traverse, but not find corrsponding string.
|
| 698 | // This case is not allowed to happen.
|
| 699 | //
|
| 700 | ASSERT(FALSE);
|
| 701 | return NULL;
|
| 702 | }
|
| 703 | if (SubIndex == Index) {
|
| 704 | //
|
| 705 | // according to the index of Lang string in SupportedLang string to get the language.
|
| 706 | // As this code will be invoked in RUNTIME, therefore there is not memory allocate/free operation.
|
| 707 | // In driver entry, it pre-allocates a runtime attribute memory to accommodate this string.
|
| 708 | //
|
| 709 | mGlobal->PlatformLang[CompareLength] = '\0';
|
| 710 | return CopyMem (mGlobal->PlatformLang, Supported - CompareLength, CompareLength);
|
| 711 | }
|
| 712 | SubIndex++;
|
| 713 |
|
| 714 | //
|
| 715 | // Skip ';' characters in Supported
|
| 716 | //
|
| 717 | for (; *Supported != '\0' && *Supported == ';'; Supported++);
|
| 718 | }
|
| 719 | }
|
| 720 | }
|
| 721 |
|
| 722 | /**
|
| 723 | Returns a pointer to an allocated buffer that contains the best matching language
|
| 724 | from a set of supported languages.
|
| 725 |
|
| 726 | This function supports both ISO 639-2 and RFC 4646 language codes, but language
|
| 727 | code types may not be mixed in a single call to this function. This function
|
| 728 | supports a variable argument list that allows the caller to pass in a prioritized
|
| 729 | list of language codes to test against all the language codes in SupportedLanguages.
|
| 730 |
|
| 731 | If SupportedLanguages is NULL, then ASSERT().
|
| 732 |
|
| 733 | @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
|
| 734 | contains a set of language codes in the format
|
| 735 | specified by Iso639Language.
|
| 736 | @param[in] Iso639Language If TRUE, then all language codes are assumed to be
|
| 737 | in ISO 639-2 format. If FALSE, then all language
|
| 738 | codes are assumed to be in RFC 4646 language format
|
| 739 | @param[in] ... A variable argument list that contains pointers to
|
| 740 | Null-terminated ASCII strings that contain one or more
|
| 741 | language codes in the format specified by Iso639Language.
|
| 742 | The first language code from each of these language
|
| 743 | code lists is used to determine if it is an exact or
|
| 744 | close match to any of the language codes in
|
| 745 | SupportedLanguages. Close matches only apply to RFC 4646
|
| 746 | language codes, and the matching algorithm from RFC 4647
|
| 747 | is used to determine if a close match is present. If
|
| 748 | an exact or close match is found, then the matching
|
| 749 | language code from SupportedLanguages is returned. If
|
| 750 | no matches are found, then the next variable argument
|
| 751 | parameter is evaluated. The variable argument list
|
| 752 | is terminated by a NULL.
|
| 753 |
|
| 754 | @retval NULL The best matching language could not be found in SupportedLanguages.
|
| 755 | @retval NULL There are not enough resources available to return the best matching
|
| 756 | language.
|
| 757 | @retval Other A pointer to a Null-terminated ASCII string that is the best matching
|
| 758 | language in SupportedLanguages.
|
| 759 |
|
| 760 | **/
|
| 761 | CHAR8 *
|
| 762 | EFIAPI
|
| 763 | VariableGetBestLanguage (
|
| 764 | IN CONST CHAR8 *SupportedLanguages,
|
| 765 | IN BOOLEAN Iso639Language,
|
| 766 | ...
|
| 767 | )
|
| 768 | {
|
| 769 | VA_LIST Args;
|
| 770 | CHAR8 *Language;
|
| 771 | UINTN CompareLength;
|
| 772 | UINTN LanguageLength;
|
| 773 | CONST CHAR8 *Supported;
|
| 774 | CHAR8 *Buffer;
|
| 775 |
|
| 776 | ASSERT (SupportedLanguages != NULL);
|
| 777 |
|
| 778 | VA_START (Args, Iso639Language);
|
| 779 | while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
|
| 780 | //
|
| 781 | // Default to ISO 639-2 mode
|
| 782 | //
|
| 783 | CompareLength = 3;
|
| 784 | LanguageLength = MIN (3, AsciiStrLen (Language));
|
| 785 |
|
| 786 | //
|
| 787 | // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
|
| 788 | //
|
| 789 | if (!Iso639Language) {
|
| 790 | for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
|
| 791 | }
|
| 792 |
|
| 793 | //
|
| 794 | // Trim back the length of Language used until it is empty
|
| 795 | //
|
| 796 | while (LanguageLength > 0) {
|
| 797 | //
|
| 798 | // Loop through all language codes in SupportedLanguages
|
| 799 | //
|
| 800 | for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
|
| 801 | //
|
| 802 | // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
|
| 803 | //
|
| 804 | if (!Iso639Language) {
|
| 805 | //
|
| 806 | // Skip ';' characters in Supported
|
| 807 | //
|
| 808 | for (; *Supported != '\0' && *Supported == ';'; Supported++);
|
| 809 | //
|
| 810 | // Determine the length of the next language code in Supported
|
| 811 | //
|
| 812 | for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
|
| 813 | //
|
| 814 | // If Language is longer than the Supported, then skip to the next language
|
| 815 | //
|
| 816 | if (LanguageLength > CompareLength) {
|
| 817 | continue;
|
| 818 | }
|
| 819 | }
|
| 820 | //
|
| 821 | // See if the first LanguageLength characters in Supported match Language
|
| 822 | //
|
| 823 | if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
|
| 824 | VA_END (Args);
|
| 825 |
|
| 826 | Buffer = Iso639Language ? mGlobal->Lang : mGlobal->PlatformLang;
|
| 827 | Buffer[CompareLength] = '\0';
|
| 828 | return CopyMem (Buffer, Supported, CompareLength);
|
| 829 | }
|
| 830 | }
|
| 831 |
|
| 832 | if (Iso639Language) {
|
| 833 | //
|
| 834 | // If ISO 639 mode, then each language can only be tested once
|
| 835 | //
|
| 836 | LanguageLength = 0;
|
| 837 | } else {
|
| 838 | //
|
| 839 | // If RFC 4646 mode, then trim Language from the right to the next '-' character
|
| 840 | //
|
| 841 | for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
|
| 842 | }
|
| 843 | }
|
| 844 | }
|
| 845 | VA_END (Args);
|
| 846 |
|
| 847 | //
|
| 848 | // No matches were found
|
| 849 | //
|
| 850 | return NULL;
|
| 851 | }
|
| 852 |
|
| 853 | /**
|
| 854 | Hook the operations in PlatformLangCodes, LangCodes, PlatformLang and Lang.
|
| 855 |
|
| 856 | When setting Lang/LangCodes, simultaneously update PlatformLang/PlatformLangCodes.
|
| 857 |
|
| 858 | According to UEFI spec, PlatformLangCodes/LangCodes are only set once in firmware initialization,
|
| 859 | and are read-only. Therefore, in variable driver, only store the original value for other use.
|
| 860 |
|
| 861 | @param[in] VariableName Name of variable
|
| 862 |
|
| 863 | @param[in] Data Variable data
|
| 864 |
|
| 865 | @param[in] DataSize Size of data. 0 means delete
|
| 866 |
|
| 867 | **/
|
| 868 | VOID
|
| 869 | AutoUpdateLangVariable(
|
| 870 | IN CHAR16 *VariableName,
|
| 871 | IN VOID *Data,
|
| 872 | IN UINTN DataSize
|
| 873 | )
|
| 874 | {
|
| 875 | EFI_STATUS Status;
|
| 876 | CHAR8 *BestPlatformLang;
|
| 877 | CHAR8 *BestLang;
|
| 878 | UINTN Index;
|
| 879 | UINT32 Attributes;
|
| 880 | VARIABLE_POINTER_TRACK Variable;
|
| 881 | BOOLEAN SetLanguageCodes;
|
| 882 |
|
| 883 | //
|
| 884 | // Don't do updates for delete operation
|
| 885 | //
|
| 886 | if (DataSize == 0) {
|
| 887 | return;
|
| 888 | }
|
| 889 |
|
| 890 | SetLanguageCodes = FALSE;
|
| 891 |
|
| 892 | if (StrCmp (VariableName, L"PlatformLangCodes") == 0) {
|
| 893 | //
|
| 894 | // PlatformLangCodes is a volatile variable, so it can not be updated at runtime.
|
| 895 | //
|
| 896 | if (EfiAtRuntime ()) {
|
| 897 | return;
|
| 898 | }
|
| 899 |
|
| 900 | SetLanguageCodes = TRUE;
|
| 901 |
|
| 902 | //
|
| 903 | // According to UEFI spec, PlatformLangCodes is only set once in firmware initialization, and is read-only
|
| 904 | // Therefore, in variable driver, only store the original value for other use.
|
| 905 | //
|
| 906 | if (mGlobal->PlatformLangCodes != NULL) {
|
| 907 | FreePool (mGlobal->PlatformLangCodes);
|
| 908 | }
|
| 909 | mGlobal->PlatformLangCodes = AllocateRuntimeCopyPool (DataSize, Data);
|
| 910 | ASSERT (mGlobal->PlatformLangCodes != NULL);
|
| 911 |
|
| 912 | //
|
| 913 | // PlatformLang holds a single language from PlatformLangCodes,
|
| 914 | // so the size of PlatformLangCodes is enough for the PlatformLang.
|
| 915 | //
|
| 916 | if (mGlobal->PlatformLang != NULL) {
|
| 917 | FreePool (mGlobal->PlatformLang);
|
| 918 | }
|
| 919 | mGlobal->PlatformLang = AllocateRuntimePool (DataSize);
|
| 920 | ASSERT (mGlobal->PlatformLang != NULL);
|
| 921 |
|
| 922 | } else if (StrCmp (VariableName, L"LangCodes") == 0) {
|
| 923 | //
|
| 924 | // LangCodes is a volatile variable, so it can not be updated at runtime.
|
| 925 | //
|
| 926 | if (EfiAtRuntime ()) {
|
| 927 | return;
|
| 928 | }
|
| 929 |
|
| 930 | SetLanguageCodes = TRUE;
|
| 931 |
|
| 932 | //
|
| 933 | // According to UEFI spec, LangCodes is only set once in firmware initialization, and is read-only
|
| 934 | // Therefore, in variable driver, only store the original value for other use.
|
| 935 | //
|
| 936 | if (mGlobal->LangCodes != NULL) {
|
| 937 | FreePool (mGlobal->LangCodes);
|
| 938 | }
|
| 939 | mGlobal->LangCodes = AllocateRuntimeCopyPool (DataSize, Data);
|
| 940 | ASSERT (mGlobal->LangCodes != NULL);
|
| 941 | }
|
| 942 |
|
| 943 | if (SetLanguageCodes
|
| 944 | && (mGlobal->PlatformLangCodes != NULL)
|
| 945 | && (mGlobal->LangCodes != NULL)) {
|
| 946 | //
|
| 947 | // Update Lang if PlatformLang is already set
|
| 948 | // Update PlatformLang if Lang is already set
|
| 949 | //
|
| 950 | Status = FindVariable (L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
|
| 951 | if (!EFI_ERROR (Status)) {
|
| 952 | //
|
| 953 | // Update Lang
|
| 954 | //
|
| 955 | VariableName = L"PlatformLang";
|
| 956 | Data = GetVariableDataPtr (Variable.CurrPtr);
|
| 957 | DataSize = Variable.CurrPtr->DataSize;
|
| 958 | } else {
|
| 959 | Status = FindVariable (L"Lang", &gEfiGlobalVariableGuid, &Variable);
|
| 960 | if (!EFI_ERROR (Status)) {
|
| 961 | //
|
| 962 | // Update PlatformLang
|
| 963 | //
|
| 964 | VariableName = L"Lang";
|
| 965 | Data = GetVariableDataPtr (Variable.CurrPtr);
|
| 966 | DataSize = Variable.CurrPtr->DataSize;
|
| 967 | } else {
|
| 968 | //
|
| 969 | // Neither PlatformLang nor Lang is set, directly return
|
| 970 | //
|
| 971 | return;
|
| 972 | }
|
| 973 | }
|
| 974 | }
|
| 975 |
|
| 976 | //
|
| 977 | // According to UEFI spec, "Lang" and "PlatformLang" is NV|BS|RT attributions.
|
| 978 | //
|
| 979 | Attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
|
| 980 |
|
| 981 | if (StrCmp (VariableName, L"PlatformLang") == 0) {
|
| 982 | //
|
| 983 | // Update Lang when PlatformLangCodes/LangCodes were set.
|
| 984 | //
|
| 985 | if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
|
| 986 | //
|
| 987 | // When setting PlatformLang, firstly get most matched language string from supported language codes.
|
| 988 | //
|
| 989 | BestPlatformLang = VariableGetBestLanguage (mGlobal->PlatformLangCodes, FALSE, Data, NULL);
|
| 990 | if (BestPlatformLang != NULL) {
|
| 991 | //
|
| 992 | // Get the corresponding index in language codes.
|
| 993 | //
|
| 994 | Index = GetIndexFromSupportedLangCodes (mGlobal->PlatformLangCodes, BestPlatformLang, FALSE);
|
| 995 |
|
| 996 | //
|
| 997 | // Get the corresponding ISO639 language tag according to RFC4646 language tag.
|
| 998 | //
|
| 999 | BestLang = GetLangFromSupportedLangCodes (mGlobal->LangCodes, Index, TRUE);
|
| 1000 |
|
| 1001 | //
|
| 1002 | // Successfully convert PlatformLang to Lang, and set the BestLang value into Lang variable simultaneously.
|
| 1003 | //
|
| 1004 | FindVariable(L"Lang", &gEfiGlobalVariableGuid, &Variable);
|
| 1005 |
|
| 1006 | Status = UpdateVariable (L"Lang", &gEfiGlobalVariableGuid, BestLang, ISO_639_2_ENTRY_SIZE + 1, Attributes, &Variable);
|
| 1007 |
|
| 1008 | DEBUG ((EFI_D_INFO, "Variable Driver Auto Update PlatformLang, PlatformLang:%a, Lang:%a\n", BestPlatformLang, BestLang));
|
| 1009 |
|
| 1010 | ASSERT_EFI_ERROR(Status);
|
| 1011 | }
|
| 1012 | }
|
| 1013 |
|
| 1014 | } else if (StrCmp (VariableName, L"Lang") == 0) {
|
| 1015 | //
|
| 1016 | // Update PlatformLang when PlatformLangCodes/LangCodes were set.
|
| 1017 | //
|
| 1018 | if ((mGlobal->PlatformLangCodes != NULL) && (mGlobal->LangCodes != NULL)) {
|
| 1019 | //
|
| 1020 | // When setting Lang, firstly get most matched language string from supported language codes.
|
| 1021 | //
|
| 1022 | BestLang = VariableGetBestLanguage (mGlobal->LangCodes, TRUE, Data, NULL);
|
| 1023 | if (BestLang != NULL) {
|
| 1024 | //
|
| 1025 | // Get the corresponding index in language codes.
|
| 1026 | //
|
| 1027 | Index = GetIndexFromSupportedLangCodes (mGlobal->LangCodes, BestLang, TRUE);
|
| 1028 |
|
| 1029 | //
|
| 1030 | // Get the corresponding RFC4646 language tag according to ISO639 language tag.
|
| 1031 | //
|
| 1032 | BestPlatformLang = GetLangFromSupportedLangCodes (mGlobal->PlatformLangCodes, Index, FALSE);
|
| 1033 |
|
| 1034 | //
|
| 1035 | // Successfully convert Lang to PlatformLang, and set the BestPlatformLang value into PlatformLang variable simultaneously.
|
| 1036 | //
|
| 1037 | FindVariable(L"PlatformLang", &gEfiGlobalVariableGuid, &Variable);
|
| 1038 |
|
| 1039 | Status = UpdateVariable (L"PlatformLang", &gEfiGlobalVariableGuid, BestPlatformLang,
|
| 1040 | AsciiStrSize (BestPlatformLang), Attributes, &Variable);
|
| 1041 |
|
| 1042 | DEBUG ((EFI_D_INFO, "Variable Driver Auto Update Lang, Lang:%a, PlatformLang:%a\n", BestLang, BestPlatformLang));
|
| 1043 | ASSERT_EFI_ERROR (Status);
|
| 1044 | }
|
| 1045 | }
|
| 1046 | }
|
| 1047 | }
|
| 1048 |
|
| 1049 | /**
|
| 1050 | Update the variable region with Variable information. These are the same
|
| 1051 | arguments as the EFI Variable services.
|
| 1052 |
|
| 1053 | @param[in] VariableName Name of variable
|
| 1054 |
|
| 1055 | @param[in] VendorGuid Guid of variable
|
| 1056 |
|
| 1057 | @param[in] Data Variable data
|
| 1058 |
|
| 1059 | @param[in] DataSize Size of data. 0 means delete
|
| 1060 |
|
| 1061 | @param[in] Attributes Attribues of the variable
|
| 1062 |
|
| 1063 | @param[in] Variable The variable information which is used to keep track of variable usage.
|
| 1064 |
|
| 1065 | @retval EFI_SUCCESS The update operation is success.
|
| 1066 |
|
| 1067 | @retval EFI_OUT_OF_RESOURCES Variable region is full, can not write other data into this region.
|
| 1068 |
|
| 1069 | **/
|
| 1070 | EFI_STATUS
|
| 1071 | EFIAPI
|
| 1072 | UpdateVariable (
|
| 1073 | IN CHAR16 *VariableName,
|
| 1074 | IN EFI_GUID *VendorGuid,
|
| 1075 | IN VOID *Data,
|
| 1076 | IN UINTN DataSize,
|
| 1077 | IN UINT32 Attributes OPTIONAL,
|
| 1078 | IN VARIABLE_POINTER_TRACK *Variable
|
| 1079 | )
|
| 1080 | {
|
| 1081 | EFI_STATUS Status;
|
| 1082 | VARIABLE_HEADER *NextVariable;
|
| 1083 | UINTN VarNameOffset;
|
| 1084 | UINTN VarDataOffset;
|
| 1085 | UINTN VarNameSize;
|
| 1086 | UINTN VarSize;
|
| 1087 | UINT8 State;
|
| 1088 | BOOLEAN Reclaimed;
|
| 1089 | VARIABLE_STORAGE_TYPE StorageType;
|
| 1090 |
|
| 1091 | Reclaimed = FALSE;
|
| 1092 |
|
| 1093 | if (Variable->CurrPtr != NULL) {
|
| 1094 | //
|
| 1095 | // Update/Delete existing variable
|
| 1096 | //
|
| 1097 |
|
| 1098 | if (EfiAtRuntime ()) {
|
| 1099 | //
|
| 1100 | // If EfiAtRuntime and the variable is Volatile and Runtime Access,
|
| 1101 | // the volatile is ReadOnly, and SetVariable should be aborted and
|
| 1102 | // return EFI_WRITE_PROTECTED.
|
| 1103 | //
|
| 1104 | if (Variable->Type == Volatile) {
|
| 1105 | return EFI_WRITE_PROTECTED;
|
| 1106 | }
|
| 1107 | //
|
| 1108 | // Only variable have NV attribute can be updated/deleted in Runtime
|
| 1109 | //
|
| 1110 | if (!(Variable->CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE)) {
|
| 1111 | return EFI_INVALID_PARAMETER;
|
| 1112 | }
|
| 1113 | }
|
| 1114 |
|
| 1115 | //
|
| 1116 | // Setting a data variable with no access, or zero DataSize attributes
|
| 1117 | // specified causes it to be deleted.
|
| 1118 | //
|
| 1119 | if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
|
| 1120 | //
|
| 1121 | // Found this variable in storage
|
| 1122 | //
|
| 1123 | State = Variable->CurrPtr->State;
|
| 1124 | State &= VAR_DELETED;
|
| 1125 |
|
| 1126 | Status = mGlobal->VariableStore[Variable->Type]->Write (
|
| 1127 | mGlobal->VariableStore[Variable->Type],
|
| 1128 | VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
|
| 1129 | sizeof (Variable->CurrPtr->State),
|
| 1130 | &State
|
| 1131 | );
|
| 1132 | //
|
| 1133 | // NOTE: Write operation at least can write data to memory cache
|
| 1134 | // Discard file writing failure here.
|
| 1135 | //
|
| 1136 | return EFI_SUCCESS;
|
| 1137 | }
|
| 1138 |
|
| 1139 | //
|
| 1140 | // Found this variable in storage
|
| 1141 | // If the variable is marked valid and the same data has been passed in
|
| 1142 | // then return to the caller immediately.
|
| 1143 | //
|
| 1144 | if ((Variable->CurrPtr->DataSize == DataSize) &&
|
| 1145 | (CompareMem (Data, GetVariableDataPtr (Variable->CurrPtr), DataSize) == 0)
|
| 1146 | ) {
|
| 1147 | return EFI_SUCCESS;
|
| 1148 | } else if ((Variable->CurrPtr->State == VAR_ADDED) ||
|
| 1149 | (Variable->CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
|
| 1150 | //
|
| 1151 | // Mark the old variable as in delete transition
|
| 1152 | //
|
| 1153 | State = Variable->CurrPtr->State;
|
| 1154 | State &= VAR_IN_DELETED_TRANSITION;
|
| 1155 |
|
| 1156 | Status = mGlobal->VariableStore[Variable->Type]->Write (
|
| 1157 | mGlobal->VariableStore[Variable->Type],
|
| 1158 | VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
|
| 1159 | sizeof (Variable->CurrPtr->State),
|
| 1160 | &State
|
| 1161 | );
|
| 1162 | //
|
| 1163 | // NOTE: Write operation at least can write data to memory cache
|
| 1164 | // Discard file writing failure here.
|
| 1165 | //
|
| 1166 | }
|
| 1167 | } else {
|
| 1168 | //
|
| 1169 | // Create a new variable
|
| 1170 | //
|
| 1171 |
|
| 1172 | //
|
| 1173 | // Make sure we are trying to create a new variable.
|
| 1174 | // Setting a data variable with no access, or zero DataSize attributes means to delete it.
|
| 1175 | //
|
| 1176 | if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) {
|
| 1177 | return EFI_NOT_FOUND;
|
| 1178 | }
|
| 1179 | //
|
| 1180 | // Only variable have NV|RT attribute can be created in Runtime
|
| 1181 | //
|
| 1182 | if (EfiAtRuntime () &&
|
| 1183 | (!(Attributes & EFI_VARIABLE_RUNTIME_ACCESS) || !(Attributes & EFI_VARIABLE_NON_VOLATILE))) {
|
| 1184 | return EFI_INVALID_PARAMETER;
|
| 1185 | }
|
| 1186 |
|
| 1187 | }
|
| 1188 |
|
| 1189 | //
|
| 1190 | // Function part - create a new variable and copy the data.
|
| 1191 | // Both update a variable and create a variable will come here.
|
| 1192 | // We can firstly write all the data in memory, then write them to file
|
| 1193 | // This can reduce the times of write operation
|
| 1194 | //
|
| 1195 |
|
| 1196 | NextVariable = (VARIABLE_HEADER *) mGlobal->Scratch;
|
| 1197 |
|
| 1198 | NextVariable->StartId = VARIABLE_DATA;
|
| 1199 | NextVariable->Attributes = Attributes;
|
| 1200 | NextVariable->State = VAR_ADDED;
|
| 1201 | NextVariable->Reserved = 0;
|
| 1202 | VarNameOffset = sizeof (VARIABLE_HEADER);
|
| 1203 | VarNameSize = StrSize (VariableName);
|
| 1204 | CopyMem (
|
| 1205 | (UINT8 *) ((UINTN) NextVariable + VarNameOffset),
|
| 1206 | VariableName,
|
| 1207 | VarNameSize
|
| 1208 | );
|
| 1209 | VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize);
|
| 1210 | CopyMem (
|
| 1211 | (UINT8 *) ((UINTN) NextVariable + VarDataOffset),
|
| 1212 | Data,
|
| 1213 | DataSize
|
| 1214 | );
|
| 1215 | CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID));
|
| 1216 | //
|
| 1217 | // There will be pad bytes after Data, the NextVariable->NameSize and
|
| 1218 | // NextVariable->DataSize should not include pad size so that variable
|
| 1219 | // service can get actual size in GetVariable
|
| 1220 | //
|
| 1221 | NextVariable->NameSize = (UINT32)VarNameSize;
|
| 1222 | NextVariable->DataSize = (UINT32)DataSize;
|
| 1223 |
|
| 1224 | //
|
| 1225 | // The actual size of the variable that stores in storage should
|
| 1226 | // include pad size.
|
| 1227 | // VarDataOffset: offset from begin of current variable header
|
| 1228 | //
|
| 1229 | VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize);
|
| 1230 |
|
| 1231 | StorageType = (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile;
|
| 1232 |
|
| 1233 | if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
|
| 1234 | ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
|
| 1235 | ) {
|
| 1236 | if ((StorageType == NonVolatile) && EfiAtRuntime ()) {
|
| 1237 | return EFI_OUT_OF_RESOURCES;
|
| 1238 | }
|
| 1239 | //
|
| 1240 | // Perform garbage collection & reclaim operation
|
| 1241 | //
|
| 1242 | Status = Reclaim (StorageType, Variable->CurrPtr);
|
| 1243 | if (EFI_ERROR (Status)) {
|
| 1244 | //
|
| 1245 | // Reclaim error
|
| 1246 | // we cannot restore to original state, fetal error, report to user
|
| 1247 | //
|
| 1248 | DEBUG ((EFI_D_ERROR, "FSVariable: Recalim error (fetal error) - %r\n", Status));
|
| 1249 | return Status;
|
| 1250 | }
|
| 1251 | //
|
| 1252 | // If still no enough space, return out of resources
|
| 1253 | //
|
| 1254 | if ((UINT32) (VarSize + mGlobal->LastVariableOffset[StorageType]) >
|
| 1255 | ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[StorageType])->Size
|
| 1256 | ) {
|
| 1257 | return EFI_OUT_OF_RESOURCES;
|
| 1258 | }
|
| 1259 |
|
| 1260 | Reclaimed = TRUE;
|
| 1261 | }
|
| 1262 | Status = mGlobal->VariableStore[StorageType]->Write (
|
| 1263 | mGlobal->VariableStore[StorageType],
|
| 1264 | mGlobal->LastVariableOffset[StorageType],
|
| 1265 | VarSize,
|
| 1266 | NextVariable
|
| 1267 | );
|
| 1268 | //
|
| 1269 | // NOTE: Write operation at least can write data to memory cache
|
| 1270 | // Discard file writing failure here.
|
| 1271 | //
|
| 1272 | mGlobal->LastVariableOffset[StorageType] += VarSize;
|
| 1273 |
|
| 1274 | if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) {
|
| 1275 | mGlobal->HwErrVariableTotalSize += VarSize;
|
| 1276 | } else {
|
| 1277 | mGlobal->CommonVariableTotalSize += VarSize;
|
| 1278 | }
|
| 1279 |
|
| 1280 | //
|
| 1281 | // Mark the old variable as deleted
|
| 1282 | //
|
| 1283 | if (!Reclaimed && !EFI_ERROR (Status) && Variable->CurrPtr != NULL) {
|
| 1284 | State = Variable->CurrPtr->State;
|
| 1285 | State &= VAR_DELETED;
|
| 1286 |
|
| 1287 | Status = mGlobal->VariableStore[StorageType]->Write (
|
| 1288 | mGlobal->VariableStore[StorageType],
|
| 1289 | VARIABLE_MEMBER_OFFSET (State, (UINTN) Variable->CurrPtr - (UINTN) Variable->StartPtr),
|
| 1290 | sizeof (Variable->CurrPtr->State),
|
| 1291 | &State
|
| 1292 | );
|
| 1293 | //
|
| 1294 | // NOTE: Write operation at least can write data to memory cache
|
| 1295 | // Discard file writing failure here.
|
| 1296 | //
|
| 1297 | }
|
| 1298 | return EFI_SUCCESS;
|
| 1299 | }
|
| 1300 |
|
| 1301 | EFI_STATUS
|
| 1302 | EFIAPI
|
| 1303 | DuetGetVariable (
|
| 1304 | IN CHAR16 *VariableName,
|
| 1305 | IN EFI_GUID *VendorGuid,
|
| 1306 | OUT UINT32 *Attributes OPTIONAL,
|
| 1307 | IN OUT UINTN *DataSize,
|
| 1308 | OUT VOID *Data
|
| 1309 | )
|
| 1310 | /*++
|
| 1311 |
|
| 1312 | Routine Description:
|
| 1313 |
|
| 1314 | This code finds variable in storage blocks (Volatile or Non-Volatile)
|
| 1315 |
|
| 1316 | Arguments:
|
| 1317 |
|
| 1318 | VariableName Name of Variable to be found
|
| 1319 | VendorGuid Variable vendor GUID
|
| 1320 | Attributes OPTIONAL Attribute value of the variable found
|
| 1321 | DataSize Size of Data found. If size is less than the
|
| 1322 | data, this value contains the required size.
|
| 1323 | Data Data pointer
|
| 1324 |
|
| 1325 | Returns:
|
| 1326 |
|
| 1327 | EFI STATUS
|
| 1328 |
|
| 1329 | --*/
|
| 1330 | {
|
| 1331 | VARIABLE_POINTER_TRACK Variable;
|
| 1332 | UINTN VarDataSize;
|
| 1333 | EFI_STATUS Status;
|
| 1334 |
|
| 1335 | if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) {
|
| 1336 | return EFI_INVALID_PARAMETER;
|
| 1337 | }
|
| 1338 |
|
| 1339 | //
|
| 1340 | // Find existing variable
|
| 1341 | //
|
| 1342 | Status = FindVariable (VariableName, VendorGuid, &Variable);
|
| 1343 |
|
| 1344 | if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
|
| 1345 | return Status;
|
| 1346 | }
|
| 1347 | //
|
| 1348 | // Get data size
|
| 1349 | //
|
| 1350 | VarDataSize = Variable.CurrPtr->DataSize;
|
| 1351 | if (*DataSize >= VarDataSize) {
|
| 1352 | if (Data == NULL) {
|
| 1353 | return EFI_INVALID_PARAMETER;
|
| 1354 | }
|
| 1355 | CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);
|
| 1356 |
|
| 1357 | if (Attributes != NULL) {
|
| 1358 | *Attributes = Variable.CurrPtr->Attributes;
|
| 1359 | }
|
| 1360 |
|
| 1361 | *DataSize = VarDataSize;
|
| 1362 |
|
| 1363 | return EFI_SUCCESS;
|
| 1364 | } else {
|
| 1365 | *DataSize = VarDataSize;
|
| 1366 | return EFI_BUFFER_TOO_SMALL;
|
| 1367 | }
|
| 1368 | }
|
| 1369 |
|
| 1370 | EFI_STATUS
|
| 1371 | EFIAPI
|
| 1372 | GetNextVariableName (
|
| 1373 | IN OUT UINTN *VariableNameSize,
|
| 1374 | IN OUT CHAR16 *VariableName,
|
| 1375 | IN OUT EFI_GUID *VendorGuid
|
| 1376 | )
|
| 1377 | /*++
|
| 1378 |
|
| 1379 | Routine Description:
|
| 1380 |
|
| 1381 | This code Finds the Next available variable
|
| 1382 |
|
| 1383 | Arguments:
|
| 1384 |
|
| 1385 | VariableNameSize Size of the variable
|
| 1386 | VariableName Pointer to variable name
|
| 1387 | VendorGuid Variable Vendor Guid
|
| 1388 |
|
| 1389 | Returns:
|
| 1390 |
|
| 1391 | EFI STATUS
|
| 1392 |
|
| 1393 | --*/
|
| 1394 | {
|
| 1395 | VARIABLE_POINTER_TRACK Variable;
|
| 1396 | UINTN VarNameSize;
|
| 1397 | EFI_STATUS Status;
|
| 1398 |
|
| 1399 | if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) {
|
| 1400 | return EFI_INVALID_PARAMETER;
|
| 1401 | }
|
| 1402 |
|
| 1403 | Status = FindVariable (VariableName, VendorGuid, &Variable);
|
| 1404 |
|
| 1405 | if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) {
|
| 1406 | return Status;
|
| 1407 | }
|
| 1408 |
|
| 1409 | if (VariableName[0] != 0) {
|
| 1410 | //
|
| 1411 | // If variable name is not NULL, get next variable
|
| 1412 | //
|
| 1413 | Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
|
| 1414 | }
|
| 1415 |
|
| 1416 | while (TRUE) {
|
| 1417 | //
|
| 1418 | // The order we find variable is: 1). NonVolatile; 2). Volatile
|
| 1419 | // If both volatile and non-volatile variable store are parsed,
|
| 1420 | // return not found
|
| 1421 | //
|
| 1422 | if (Variable.CurrPtr >= Variable.EndPtr || Variable.CurrPtr == NULL) {
|
| 1423 | if (Variable.Type == Volatile) {
|
| 1424 | //
|
| 1425 | // Since we met the end of Volatile storage, we have parsed all the stores.
|
| 1426 | //
|
| 1427 | return EFI_NOT_FOUND;
|
| 1428 | }
|
| 1429 |
|
| 1430 | //
|
| 1431 | // End of NonVolatile, continue to parse Volatile
|
| 1432 | //
|
| 1433 | Variable.Type = Volatile;
|
| 1434 | Variable.StartPtr = (VARIABLE_HEADER *) ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile] + 1);
|
| 1435 | Variable.EndPtr = (VARIABLE_HEADER *) GetEndPointer ((VARIABLE_STORE_HEADER *) mGlobal->VariableBase[Volatile]);
|
| 1436 |
|
| 1437 | Variable.CurrPtr = Variable.StartPtr;
|
| 1438 | if (!IsValidVariableHeader (Variable.CurrPtr)) {
|
| 1439 | continue;
|
| 1440 | }
|
| 1441 | }
|
| 1442 | //
|
| 1443 | // Variable is found
|
| 1444 | //
|
| 1445 | if (IsValidVariableHeader (Variable.CurrPtr) &&
|
| 1446 | ((Variable.CurrPtr->State == VAR_ADDED) ||
|
| 1447 | (Variable.CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION)))) {
|
| 1448 | if (!EfiAtRuntime () || (Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
|
| 1449 | VarNameSize = Variable.CurrPtr->NameSize;
|
| 1450 | if (VarNameSize <= *VariableNameSize) {
|
| 1451 | CopyMem (
|
| 1452 | VariableName,
|
| 1453 | GET_VARIABLE_NAME_PTR (Variable.CurrPtr),
|
| 1454 | VarNameSize
|
| 1455 | );
|
| 1456 | CopyMem (
|
| 1457 | VendorGuid,
|
| 1458 | &Variable.CurrPtr->VendorGuid,
|
| 1459 | sizeof (EFI_GUID)
|
| 1460 | );
|
| 1461 | Status = EFI_SUCCESS;
|
| 1462 | } else {
|
| 1463 | Status = EFI_BUFFER_TOO_SMALL;
|
| 1464 | }
|
| 1465 |
|
| 1466 | *VariableNameSize = VarNameSize;
|
| 1467 | return Status;
|
| 1468 | }
|
| 1469 | }
|
| 1470 |
|
| 1471 | Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr);
|
| 1472 | }
|
| 1473 | }
|
| 1474 |
|
| 1475 | EFI_STATUS
|
| 1476 | EFIAPI
|
| 1477 | SetVariable (
|
| 1478 | IN CHAR16 *VariableName,
|
| 1479 | IN EFI_GUID *VendorGuid,
|
| 1480 | IN UINT32 Attributes,
|
| 1481 | IN UINTN DataSize,
|
| 1482 | IN VOID *Data
|
| 1483 | )
|
| 1484 | /*++
|
| 1485 |
|
| 1486 | Routine Description:
|
| 1487 |
|
| 1488 | This code sets variable in storage blocks (Volatile or Non-Volatile)
|
| 1489 |
|
| 1490 | Arguments:
|
| 1491 |
|
| 1492 | VariableName Name of Variable to be found
|
| 1493 | VendorGuid Variable vendor GUID
|
| 1494 | Attributes Attribute value of the variable found
|
| 1495 | DataSize Size of Data found. If size is less than the
|
| 1496 | data, this value contains the required size.
|
| 1497 | Data Data pointer
|
| 1498 |
|
| 1499 | Returns:
|
| 1500 |
|
| 1501 | EFI_INVALID_PARAMETER - Invalid parameter
|
| 1502 | EFI_SUCCESS - Set successfully
|
| 1503 | EFI_OUT_OF_RESOURCES - Resource not enough to set variable
|
| 1504 | EFI_NOT_FOUND - Not found
|
| 1505 | EFI_DEVICE_ERROR - Variable can not be saved due to hardware failure
|
| 1506 | EFI_WRITE_PROTECTED - Variable is read-only
|
| 1507 |
|
| 1508 | --*/
|
| 1509 | {
|
| 1510 | VARIABLE_POINTER_TRACK Variable;
|
| 1511 | EFI_STATUS Status;
|
| 1512 |
|
| 1513 | //
|
| 1514 | // Check input parameters
|
| 1515 | //
|
| 1516 | if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) {
|
| 1517 | return EFI_INVALID_PARAMETER;
|
| 1518 | }
|
| 1519 |
|
| 1520 | if (DataSize != 0 && Data == NULL) {
|
| 1521 | return EFI_INVALID_PARAMETER;
|
| 1522 | }
|
| 1523 |
|
| 1524 | //
|
| 1525 | // Not support authenticated variable write yet.
|
| 1526 | //
|
| 1527 | if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
|
| 1528 | return EFI_INVALID_PARAMETER;
|
| 1529 | }
|
| 1530 |
|
| 1531 | //
|
| 1532 | // Make sure if runtime bit is set, boot service bit is set also
|
| 1533 | //
|
| 1534 | if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
|
| 1535 | return EFI_INVALID_PARAMETER;
|
| 1536 | }
|
| 1537 |
|
| 1538 | //
|
| 1539 | // The size of the VariableName, including the Unicode Null in bytes plus
|
| 1540 | // the DataSize is limited to maximum size of PcdGet32 (PcdMaxHardwareErrorVariableSize)
|
| 1541 | // bytes for HwErrRec, and PcdGet32 (PcdMaxVariableSize) bytes for the others.
|
| 1542 | //
|
| 1543 | if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
| 1544 | if ((DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize)) ||
|
| 1545 | (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxHardwareErrorVariableSize))) {
|
| 1546 | return EFI_INVALID_PARAMETER;
|
| 1547 | }
|
| 1548 | //
|
| 1549 | // According to UEFI spec, HARDWARE_ERROR_RECORD variable name convention should be L"HwErrRecXXXX"
|
| 1550 | //
|
| 1551 | if (StrnCmp(VariableName, L"HwErrRec", StrLen(L"HwErrRec")) != 0) {
|
| 1552 | return EFI_INVALID_PARAMETER;
|
| 1553 | }
|
| 1554 | } else {
|
| 1555 | if ((DataSize > PcdGet32(PcdMaxVariableSize)) ||
|
| 1556 | (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > PcdGet32(PcdMaxVariableSize))) {
|
| 1557 | return EFI_INVALID_PARAMETER;
|
| 1558 | }
|
| 1559 | }
|
| 1560 |
|
| 1561 | //
|
| 1562 | // Check whether the input variable is already existed
|
| 1563 | //
|
| 1564 | Status = FindVariable (VariableName, VendorGuid, &Variable);
|
| 1565 |
|
| 1566 | //
|
| 1567 | // Hook the operation of setting PlatformLangCodes/PlatformLang and LangCodes/Lang
|
| 1568 | //
|
| 1569 | AutoUpdateLangVariable (VariableName, Data, DataSize);
|
| 1570 |
|
| 1571 | Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, &Variable);
|
| 1572 |
|
| 1573 | return Status;
|
| 1574 | }
|
| 1575 |
|
| 1576 | EFI_STATUS
|
| 1577 | EFIAPI
|
| 1578 | QueryVariableInfo (
|
| 1579 | IN UINT32 Attributes,
|
| 1580 | OUT UINT64 *MaximumVariableStorageSize,
|
| 1581 | OUT UINT64 *RemainingVariableStorageSize,
|
| 1582 | OUT UINT64 *MaximumVariableSize
|
| 1583 | )
|
| 1584 | /*++
|
| 1585 |
|
| 1586 | Routine Description:
|
| 1587 |
|
| 1588 | This code returns information about the EFI variables.
|
| 1589 |
|
| 1590 | Arguments:
|
| 1591 |
|
| 1592 | Attributes Attributes bitmask to specify the type of variables
|
| 1593 | on which to return information.
|
| 1594 | MaximumVariableStorageSize Pointer to the maximum size of the storage space available
|
| 1595 | for the EFI variables associated with the attributes specified.
|
| 1596 | RemainingVariableStorageSize Pointer to the remaining size of the storage space available
|
| 1597 | for the EFI variables associated with the attributes specified.
|
| 1598 | MaximumVariableSize Pointer to the maximum size of the individual EFI variables
|
| 1599 | associated with the attributes specified.
|
| 1600 |
|
| 1601 | Returns:
|
| 1602 |
|
| 1603 | EFI STATUS
|
| 1604 | EFI_INVALID_PARAMETER - An invalid combination of attribute bits was supplied.
|
| 1605 | EFI_SUCCESS - Query successfully.
|
| 1606 | EFI_UNSUPPORTED - The attribute is not supported on this platform.
|
| 1607 |
|
| 1608 | --*/
|
| 1609 | {
|
| 1610 | VARIABLE_HEADER *Variable;
|
| 1611 | VARIABLE_HEADER *NextVariable;
|
| 1612 | UINT64 VariableSize;
|
| 1613 | VARIABLE_STORE_HEADER *VariableStoreHeader;
|
| 1614 | UINT64 CommonVariableTotalSize;
|
| 1615 | UINT64 HwErrVariableTotalSize;
|
| 1616 |
|
| 1617 | CommonVariableTotalSize = 0;
|
| 1618 | HwErrVariableTotalSize = 0;
|
| 1619 |
|
| 1620 | if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) {
|
| 1621 | return EFI_INVALID_PARAMETER;
|
| 1622 | }
|
| 1623 |
|
| 1624 | if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) {
|
| 1625 | //
|
| 1626 | // Make sure the Attributes combination is supported by the platform.
|
| 1627 | //
|
| 1628 | return EFI_UNSUPPORTED;
|
| 1629 | } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) {
|
| 1630 | //
|
| 1631 | // Make sure if runtime bit is set, boot service bit is set also.
|
| 1632 | //
|
| 1633 | return EFI_INVALID_PARAMETER;
|
| 1634 | } else if (EfiAtRuntime () && !(Attributes & EFI_VARIABLE_RUNTIME_ACCESS)) {
|
| 1635 | //
|
| 1636 | // Make sure RT Attribute is set if we are in Runtime phase.
|
| 1637 | //
|
| 1638 | return EFI_INVALID_PARAMETER;
|
| 1639 | } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
| 1640 | //
|
| 1641 | // Make sure Hw Attribute is set with NV.
|
| 1642 | //
|
| 1643 | return EFI_INVALID_PARAMETER;
|
| 1644 | } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) {
|
| 1645 | //
|
| 1646 | // Not support authentiated variable write yet.
|
| 1647 | //
|
| 1648 | return EFI_UNSUPPORTED;
|
| 1649 | }
|
| 1650 |
|
| 1651 | VariableStoreHeader = (VARIABLE_STORE_HEADER *) mGlobal->VariableBase[
|
| 1652 | (Attributes & EFI_VARIABLE_NON_VOLATILE) ? NonVolatile : Volatile
|
| 1653 | ];
|
| 1654 | //
|
| 1655 | // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize
|
| 1656 | // with the storage size (excluding the storage header size).
|
| 1657 | //
|
| 1658 | *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER);
|
| 1659 |
|
| 1660 | //
|
| 1661 | // Harware error record variable needs larger size.
|
| 1662 | //
|
| 1663 | if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 1664 | *MaximumVariableStorageSize = PcdGet32(PcdHwErrStorageSize);
|
| 1665 | *MaximumVariableSize = PcdGet32(PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER);
|
| 1666 | } else {
|
| 1667 | if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) {
|
| 1668 | ASSERT (PcdGet32(PcdHwErrStorageSize) < VariableStoreHeader->Size);
|
| 1669 | *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize);
|
| 1670 | }
|
| 1671 |
|
| 1672 | //
|
| 1673 | // Let *MaximumVariableSize be PcdGet32(PcdMaxVariableSize) with the exception of the variable header size.
|
| 1674 | //
|
| 1675 | *MaximumVariableSize = PcdGet32(PcdMaxVariableSize) - sizeof (VARIABLE_HEADER);
|
| 1676 | }
|
| 1677 |
|
| 1678 | //
|
| 1679 | // Point to the starting address of the variables.
|
| 1680 | //
|
| 1681 | Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
|
| 1682 |
|
| 1683 | //
|
| 1684 | // Now walk through the related variable store.
|
| 1685 | //
|
| 1686 | while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) {
|
| 1687 | NextVariable = GetNextVariablePtr (Variable);
|
| 1688 | VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable;
|
| 1689 |
|
| 1690 | if (EfiAtRuntime ()) {
|
| 1691 | //
|
| 1692 | // we don't take the state of the variables in mind
|
| 1693 | // when calculating RemainingVariableStorageSize,
|
| 1694 | // since the space occupied by variables not marked with
|
| 1695 | // VAR_ADDED is not allowed to be reclaimed in Runtime.
|
| 1696 | //
|
| 1697 | if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
| 1698 | HwErrVariableTotalSize += VariableSize;
|
| 1699 | } else {
|
| 1700 | CommonVariableTotalSize += VariableSize;
|
| 1701 | }
|
| 1702 | } else {
|
| 1703 | //
|
| 1704 | // Only care about Variables with State VAR_ADDED,because
|
| 1705 | // the space not marked as VAR_ADDED is reclaimable now.
|
| 1706 | //
|
| 1707 | if ((Variable->State == VAR_ADDED) || (Variable->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) {
|
| 1708 | if ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) {
|
| 1709 | HwErrVariableTotalSize += VariableSize;
|
| 1710 | } else {
|
| 1711 | CommonVariableTotalSize += VariableSize;
|
| 1712 | }
|
| 1713 | }
|
| 1714 | }
|
| 1715 |
|
| 1716 | //
|
| 1717 | // Go to the next one
|
| 1718 | //
|
| 1719 | Variable = NextVariable;
|
| 1720 | }
|
| 1721 |
|
| 1722 | if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){
|
| 1723 | *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize;
|
| 1724 | } else {
|
| 1725 | *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize;
|
| 1726 | }
|
| 1727 |
|
| 1728 | return EFI_SUCCESS;
|
| 1729 | }
|
| 1730 |
|
| 1731 | EFI_STATUS
|
| 1732 | EFIAPI
|
| 1733 | VariableServiceInitialize (
|
| 1734 | IN EFI_HANDLE ImageHandle,
|
| 1735 | IN EFI_SYSTEM_TABLE *SystemTable
|
| 1736 | )
|
| 1737 | /*++
|
| 1738 |
|
| 1739 | Routine Description:
|
| 1740 | This function does initialization for variable services
|
| 1741 |
|
| 1742 | Arguments:
|
| 1743 |
|
| 1744 | ImageHandle - The firmware allocated handle for the EFI image.
|
| 1745 | SystemTable - A pointer to the EFI System Table.
|
| 1746 |
|
| 1747 | Returns:
|
| 1748 |
|
| 1749 | Status code.
|
| 1750 |
|
| 1751 | EFI_NOT_FOUND - Variable store area not found.
|
| 1752 | EFI_SUCCESS - Variable services successfully initialized.
|
| 1753 |
|
| 1754 | --*/
|
| 1755 | {
|
| 1756 | EFI_STATUS Status;
|
| 1757 | EFI_HANDLE NewHandle;
|
| 1758 | VS_DEV *Dev;
|
| 1759 | EFI_PEI_HOB_POINTERS GuidHob;
|
| 1760 | VARIABLE_HEADER *Variable;
|
| 1761 | VARIABLE_HEADER *NextVariable;
|
| 1762 | VARIABLE_STORE_HEADER *VariableStoreHeader;
|
| 1763 | EFI_FLASH_MAP_FS_ENTRY_DATA *FlashMapEntryData;
|
| 1764 | EFI_FLASH_SUBAREA_ENTRY VariableStoreEntry;
|
| 1765 | UINT64 BaseAddress;
|
| 1766 | UINT64 Length;
|
| 1767 | EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
|
| 1768 |
|
| 1769 | Status = gBS->AllocatePool (
|
| 1770 | EfiRuntimeServicesData,
|
| 1771 | (UINTN) sizeof (VARIABLE_GLOBAL),
|
| 1772 | (VOID**) &mGlobal
|
| 1773 | );
|
| 1774 | if (EFI_ERROR (Status)) {
|
| 1775 | return Status;
|
| 1776 | }
|
| 1777 |
|
| 1778 | ZeroMem (mGlobal, (UINTN) sizeof (VARIABLE_GLOBAL));
|
| 1779 |
|
| 1780 | GuidHob.Raw = GetHobList ();
|
| 1781 | FlashMapEntryData = NULL;
|
| 1782 | while ((GuidHob.Raw = GetNextGuidHob (&gEfiFlashMapHobGuid, GuidHob.Raw)) != NULL) {
|
| 1783 | FlashMapEntryData = (EFI_FLASH_MAP_FS_ENTRY_DATA *) GET_GUID_HOB_DATA (GuidHob.Guid);
|
| 1784 | if (FlashMapEntryData->AreaType == EFI_FLASH_AREA_EFI_VARIABLES) {
|
| 1785 | break;
|
| 1786 | }
|
| 1787 | GuidHob.Raw = GET_NEXT_HOB (GuidHob);
|
| 1788 | }
|
| 1789 |
|
| 1790 | if (FlashMapEntryData == NULL) {
|
| 1791 | DEBUG ((EFI_D_ERROR, "FSVariable: Could not find flash area for variable!\n"));
|
| 1792 | Status = EFI_NOT_FOUND;
|
| 1793 | return Status;
|
| 1794 | }
|
| 1795 |
|
| 1796 | CopyMem(
|
| 1797 | (VOID*)&VariableStoreEntry,
|
| 1798 | (VOID*)&FlashMapEntryData->Entries[0],
|
| 1799 | sizeof(EFI_FLASH_SUBAREA_ENTRY)
|
| 1800 | );
|
| 1801 |
|
| 1802 | //
|
| 1803 | // Mark the variable storage region of the FLASH as RUNTIME
|
| 1804 | //
|
| 1805 | BaseAddress = VariableStoreEntry.Base & (~EFI_PAGE_MASK);
|
| 1806 | Length = VariableStoreEntry.Length + (VariableStoreEntry.Base - BaseAddress);
|
| 1807 | Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK);
|
| 1808 | Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor);
|
| 1809 | if (EFI_ERROR (Status)) {
|
| 1810 | Status = EFI_UNSUPPORTED;
|
| 1811 | return Status;
|
| 1812 | }
|
| 1813 | Status = gDS->SetMemorySpaceAttributes (
|
| 1814 | BaseAddress,
|
| 1815 | Length,
|
| 1816 | GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME
|
| 1817 | );
|
| 1818 | if (EFI_ERROR (Status)) {
|
| 1819 | Status = EFI_UNSUPPORTED;
|
| 1820 | return Status;
|
| 1821 | }
|
| 1822 |
|
| 1823 | Status = FileStorageConstructor (
|
| 1824 | &mGlobal->VariableStore[NonVolatile],
|
| 1825 | &mGlobal->GoVirtualChildEvent[NonVolatile],
|
| 1826 | VariableStoreEntry.Base,
|
| 1827 | (UINT32) VariableStoreEntry.Length,
|
| 1828 | FlashMapEntryData->VolumeId,
|
| 1829 | FlashMapEntryData->FilePath
|
| 1830 | );
|
| 1831 | ASSERT_EFI_ERROR (Status);
|
| 1832 |
|
| 1833 | //
|
| 1834 | // Volatile Storage
|
| 1835 | //
|
| 1836 | Status = MemStorageConstructor (
|
| 1837 | &mGlobal->VariableStore[Volatile],
|
| 1838 | &mGlobal->GoVirtualChildEvent[Volatile],
|
| 1839 | VOLATILE_VARIABLE_STORE_SIZE
|
| 1840 | );
|
| 1841 | ASSERT_EFI_ERROR (Status);
|
| 1842 |
|
| 1843 | //
|
| 1844 | // Scratch
|
| 1845 | //
|
| 1846 | Status = gBS->AllocatePool (
|
| 1847 | EfiRuntimeServicesData,
|
| 1848 | VARIABLE_SCRATCH_SIZE,
|
| 1849 | &mGlobal->Scratch
|
| 1850 | );
|
| 1851 | ASSERT_EFI_ERROR (Status);
|
| 1852 |
|
| 1853 | //
|
| 1854 | // 1. NV Storage
|
| 1855 | //
|
| 1856 | Dev = DEV_FROM_THIS (mGlobal->VariableStore[NonVolatile]);
|
| 1857 | VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
|
| 1858 | if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) {
|
| 1859 | if (~VariableStoreHeader->Size == 0) {
|
| 1860 | VariableStoreHeader->Size = (UINT32) VariableStoreEntry.Length;
|
| 1861 | }
|
| 1862 | }
|
| 1863 | //
|
| 1864 | // Calculate LastVariableOffset
|
| 1865 | //
|
| 1866 | Variable = (VARIABLE_HEADER *) (VariableStoreHeader + 1);
|
| 1867 | while (IsValidVariableHeader (Variable)) {
|
| 1868 | UINTN VariableSize = 0;
|
| 1869 | NextVariable = GetNextVariablePtr (Variable);
|
| 1870 | VariableSize = NextVariable - Variable;
|
| 1871 | if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) {
|
| 1872 | mGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize);
|
| 1873 | } else {
|
| 1874 | mGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize);
|
| 1875 | }
|
| 1876 | Variable = NextVariable;
|
| 1877 | }
|
| 1878 |
|
| 1879 | mGlobal->LastVariableOffset[NonVolatile] = (UINTN) Variable - (UINTN) VariableStoreHeader;
|
| 1880 | mGlobal->VariableBase[NonVolatile] = VariableStoreHeader;
|
| 1881 |
|
| 1882 | //
|
| 1883 | // Reclaim if remaining space is too small
|
| 1884 | //
|
| 1885 | if ((VariableStoreHeader->Size - mGlobal->LastVariableOffset[NonVolatile]) < VARIABLE_RECLAIM_THRESHOLD) {
|
| 1886 | Status = Reclaim (NonVolatile, NULL);
|
| 1887 | if (EFI_ERROR (Status)) {
|
| 1888 | //
|
| 1889 | // Reclaim error
|
| 1890 | // we cannot restore to original state
|
| 1891 | //
|
| 1892 | DEBUG ((EFI_D_ERROR, "FSVariable: Reclaim error (fatal error) - %r\n", Status));
|
| 1893 | ASSERT_EFI_ERROR (Status);
|
| 1894 | }
|
| 1895 | }
|
| 1896 |
|
| 1897 | //
|
| 1898 | // 2. Volatile Storage
|
| 1899 | //
|
| 1900 | Dev = DEV_FROM_THIS (mGlobal->VariableStore[Volatile]);
|
| 1901 | VariableStoreHeader = (VARIABLE_STORE_HEADER *) VAR_DATA_PTR (Dev);
|
| 1902 | mGlobal->VariableBase[Volatile] = VAR_DATA_PTR (Dev);
|
| 1903 | mGlobal->LastVariableOffset[Volatile] = sizeof (VARIABLE_STORE_HEADER);
|
| 1904 | //
|
| 1905 | // init store_header & body in memory.
|
| 1906 | //
|
| 1907 | mGlobal->VariableStore[Volatile]->Erase (mGlobal->VariableStore[Volatile]);
|
| 1908 | mGlobal->VariableStore[Volatile]->Write (
|
| 1909 | mGlobal->VariableStore[Volatile],
|
| 1910 | 0,
|
| 1911 | sizeof (VARIABLE_STORE_HEADER),
|
| 1912 | &mStoreHeaderTemplate
|
| 1913 | );
|
| 1914 |
|
| 1915 |
|
| 1916 | SystemTable->RuntimeServices->GetVariable = DuetGetVariable;
|
| 1917 | SystemTable->RuntimeServices->GetNextVariableName = GetNextVariableName;
|
| 1918 | SystemTable->RuntimeServices->SetVariable = SetVariable;
|
| 1919 |
|
| 1920 | SystemTable->RuntimeServices->QueryVariableInfo = QueryVariableInfo;
|
| 1921 |
|
| 1922 | //
|
| 1923 | // Now install the Variable Runtime Architectural Protocol on a new handle
|
| 1924 | //
|
| 1925 | NewHandle = NULL;
|
| 1926 | Status = gBS->InstallMultipleProtocolInterfaces (
|
| 1927 | &NewHandle,
|
| 1928 | &gEfiVariableArchProtocolGuid,
|
| 1929 | NULL,
|
| 1930 | &gEfiVariableWriteArchProtocolGuid,
|
| 1931 | NULL,
|
| 1932 | NULL
|
| 1933 | );
|
| 1934 | ASSERT_EFI_ERROR (Status);
|
| 1935 |
|
| 1936 | return Status;
|
| 1937 | }
|
| 1938 |
|
| 1939 |
|
| 1940 |
|
| 1941 | VOID
|
| 1942 | EFIAPI
|
| 1943 | OnVirtualAddressChangeFsv (
|
| 1944 | IN EFI_EVENT Event,
|
| 1945 | IN VOID *Context
|
| 1946 | )
|
| 1947 | {
|
| 1948 | UINTN Index;
|
| 1949 |
|
| 1950 | for (Index = 0; Index < MaxType; Index++) {
|
| 1951 | mGlobal->GoVirtualChildEvent[Index] (Event, mGlobal->VariableStore[Index]);
|
| 1952 | EfiConvertPointer (0, (VOID**) &mGlobal->VariableStore[Index]);
|
| 1953 | EfiConvertPointer (0, &mGlobal->VariableBase[Index]);
|
| 1954 | }
|
| 1955 | EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLangCodes);
|
| 1956 | EfiConvertPointer (0, (VOID **) &mGlobal->LangCodes);
|
| 1957 | EfiConvertPointer (0, (VOID **) &mGlobal->PlatformLang);
|
| 1958 | EfiConvertPointer (0, &mGlobal->Scratch);
|
| 1959 | EfiConvertPointer (0, (VOID**) &mGlobal);
|
| 1960 | }
|