Vishal Bhoj | 82c8071 | 2015-12-15 21:13:33 +0530 | [diff] [blame^] | 1 | /** @file
|
| 2 | IP6 internal functions to process the incoming packets.
|
| 3 |
|
| 4 | Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
|
| 5 |
|
| 6 | This program and the accompanying materials
|
| 7 | are licensed and made available under the terms and conditions of the BSD License
|
| 8 | which accompanies this distribution. The full text of the license may be found at
|
| 9 | http://opensource.org/licenses/bsd-license.php.
|
| 10 |
|
| 11 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| 12 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
| 13 |
|
| 14 | **/
|
| 15 |
|
| 16 | #include "Ip6Impl.h"
|
| 17 |
|
| 18 | /**
|
| 19 | Create an empty assemble entry for the packet identified by
|
| 20 | (Dst, Src, Id). The default life for the packet is 60 seconds.
|
| 21 |
|
| 22 | @param[in] Dst The destination address.
|
| 23 | @param[in] Src The source address.
|
| 24 | @param[in] Id The ID field in the IP header.
|
| 25 |
|
| 26 | @return NULL if failed to allocate memory for the entry. Otherwise,
|
| 27 | the pointer to the just created reassemble entry.
|
| 28 |
|
| 29 | **/
|
| 30 | IP6_ASSEMBLE_ENTRY *
|
| 31 | Ip6CreateAssembleEntry (
|
| 32 | IN EFI_IPv6_ADDRESS *Dst,
|
| 33 | IN EFI_IPv6_ADDRESS *Src,
|
| 34 | IN UINT32 Id
|
| 35 | )
|
| 36 | {
|
| 37 | IP6_ASSEMBLE_ENTRY *Assemble;
|
| 38 |
|
| 39 | Assemble = AllocatePool (sizeof (IP6_ASSEMBLE_ENTRY));
|
| 40 | if (Assemble == NULL) {
|
| 41 | return NULL;
|
| 42 | }
|
| 43 |
|
| 44 | IP6_COPY_ADDRESS (&Assemble->Dst, Dst);
|
| 45 | IP6_COPY_ADDRESS (&Assemble->Src, Src);
|
| 46 | InitializeListHead (&Assemble->Fragments);
|
| 47 |
|
| 48 | Assemble->Id = Id;
|
| 49 | Assemble->Life = IP6_FRAGMENT_LIFE + 1;
|
| 50 |
|
| 51 | Assemble->TotalLen = 0;
|
| 52 | Assemble->CurLen = 0;
|
| 53 | Assemble->Head = NULL;
|
| 54 | Assemble->Info = NULL;
|
| 55 | Assemble->Packet = NULL;
|
| 56 |
|
| 57 | return Assemble;
|
| 58 | }
|
| 59 |
|
| 60 | /**
|
| 61 | Release all the fragments of a packet, then free the assemble entry.
|
| 62 |
|
| 63 | @param[in] Assemble The assemble entry to free.
|
| 64 |
|
| 65 | **/
|
| 66 | VOID
|
| 67 | Ip6FreeAssembleEntry (
|
| 68 | IN IP6_ASSEMBLE_ENTRY *Assemble
|
| 69 | )
|
| 70 | {
|
| 71 | LIST_ENTRY *Entry;
|
| 72 | LIST_ENTRY *Next;
|
| 73 | NET_BUF *Fragment;
|
| 74 |
|
| 75 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) {
|
| 76 | Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
|
| 77 |
|
| 78 | RemoveEntryList (Entry);
|
| 79 | NetbufFree (Fragment);
|
| 80 | }
|
| 81 |
|
| 82 | if (Assemble->Packet != NULL) {
|
| 83 | NetbufFree (Assemble->Packet);
|
| 84 | }
|
| 85 |
|
| 86 | FreePool (Assemble);
|
| 87 | }
|
| 88 |
|
| 89 | /**
|
| 90 | Release all the fragments of the packet. This is the callback for
|
| 91 | the assembled packet's OnFree. It will free the assemble entry,
|
| 92 | which in turn frees all the fragments of the packet.
|
| 93 |
|
| 94 | @param[in] Arg The assemble entry to free.
|
| 95 |
|
| 96 | **/
|
| 97 | VOID
|
| 98 | EFIAPI
|
| 99 | Ip6OnFreeFragments (
|
| 100 | IN VOID *Arg
|
| 101 | )
|
| 102 | {
|
| 103 | Ip6FreeAssembleEntry ((IP6_ASSEMBLE_ENTRY *) Arg);
|
| 104 | }
|
| 105 |
|
| 106 | /**
|
| 107 | Trim the packet to fit in [Start, End), and update per the
|
| 108 | packet information.
|
| 109 |
|
| 110 | @param[in, out] Packet Packet to trim.
|
| 111 | @param[in] Start The sequence of the first byte to fit in.
|
| 112 | @param[in] End One beyond the sequence of last byte to fit in.
|
| 113 |
|
| 114 | **/
|
| 115 | VOID
|
| 116 | Ip6TrimPacket (
|
| 117 | IN OUT NET_BUF *Packet,
|
| 118 | IN INTN Start,
|
| 119 | IN INTN End
|
| 120 | )
|
| 121 | {
|
| 122 | IP6_CLIP_INFO *Info;
|
| 123 | INTN Len;
|
| 124 |
|
| 125 | Info = IP6_GET_CLIP_INFO (Packet);
|
| 126 |
|
| 127 | ASSERT (Info->Start + Info->Length == Info->End);
|
| 128 | ASSERT ((Info->Start < End) && (Start < Info->End));
|
| 129 |
|
| 130 | if (Info->Start < Start) {
|
| 131 | Len = Start - Info->Start;
|
| 132 |
|
| 133 | NetbufTrim (Packet, (UINT32) Len, NET_BUF_HEAD);
|
| 134 | Info->Start = (UINT32) Start;
|
| 135 | Info->Length -= (UINT32) Len;
|
| 136 | }
|
| 137 |
|
| 138 | if (End < Info->End) {
|
| 139 | Len = End - Info->End;
|
| 140 |
|
| 141 | NetbufTrim (Packet, (UINT32) Len, NET_BUF_TAIL);
|
| 142 | Info->End = (UINT32) End;
|
| 143 | Info->Length -= (UINT32) Len;
|
| 144 | }
|
| 145 | }
|
| 146 |
|
| 147 | /**
|
| 148 | Reassemble the IP fragments. If all the fragments of the packet
|
| 149 | have been received, it will wrap the packet in a net buffer then
|
| 150 | return it to caller. If the packet can't be assembled, NULL is
|
| 151 | returned.
|
| 152 |
|
| 153 | @param[in, out] Table The assemble table used. A new assemble entry will be created
|
| 154 | if the Packet is from a new chain of fragments.
|
| 155 | @param[in] Packet The fragment to assemble. It might be freed if the fragment
|
| 156 | can't be re-assembled.
|
| 157 |
|
| 158 | @return NULL if the packet can't be reassembled. The pointer to the just assembled
|
| 159 | packet if all the fragments of the packet have arrived.
|
| 160 |
|
| 161 | **/
|
| 162 | NET_BUF *
|
| 163 | Ip6Reassemble (
|
| 164 | IN OUT IP6_ASSEMBLE_TABLE *Table,
|
| 165 | IN NET_BUF *Packet
|
| 166 | )
|
| 167 | {
|
| 168 | EFI_IP6_HEADER *Head;
|
| 169 | IP6_CLIP_INFO *This;
|
| 170 | IP6_CLIP_INFO *Node;
|
| 171 | IP6_ASSEMBLE_ENTRY *Assemble;
|
| 172 | IP6_ASSEMBLE_ENTRY *Entry;
|
| 173 | LIST_ENTRY *ListHead;
|
| 174 | LIST_ENTRY *Prev;
|
| 175 | LIST_ENTRY *Cur;
|
| 176 | NET_BUF *Fragment;
|
| 177 | NET_BUF *TmpPacket;
|
| 178 | NET_BUF *NewPacket;
|
| 179 | NET_BUF *Duplicate;
|
| 180 | UINT8 *DupHead;
|
| 181 | INTN Index;
|
| 182 | UINT16 UnFragmentLen;
|
| 183 | UINT8 *NextHeader;
|
| 184 |
|
| 185 | Head = Packet->Ip.Ip6;
|
| 186 | This = IP6_GET_CLIP_INFO (Packet);
|
| 187 |
|
| 188 | ASSERT (Head != NULL);
|
| 189 |
|
| 190 | //
|
| 191 | // Find the corresponding assemble entry by (Dst, Src, Id)
|
| 192 | //
|
| 193 | Assemble = NULL;
|
| 194 | Index = IP6_ASSEMBLE_HASH (&Head->DestinationAddress, &Head->SourceAddress, This->Id);
|
| 195 |
|
| 196 | NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) {
|
| 197 | Entry = NET_LIST_USER_STRUCT (Cur, IP6_ASSEMBLE_ENTRY, Link);
|
| 198 |
|
| 199 | if (Entry->Id == This->Id &&
|
| 200 | EFI_IP6_EQUAL (&Entry->Src, &Head->SourceAddress) &&
|
| 201 | EFI_IP6_EQUAL (&Entry->Dst, &Head->DestinationAddress)
|
| 202 | ) {
|
| 203 | Assemble = Entry;
|
| 204 | break;
|
| 205 | }
|
| 206 | }
|
| 207 |
|
| 208 | //
|
| 209 | // Create a new entry if can not find an existing one, insert it to assemble table
|
| 210 | //
|
| 211 | if (Assemble == NULL) {
|
| 212 | Assemble = Ip6CreateAssembleEntry (
|
| 213 | &Head->DestinationAddress,
|
| 214 | &Head->SourceAddress,
|
| 215 | This->Id
|
| 216 | );
|
| 217 |
|
| 218 | if (Assemble == NULL) {
|
| 219 | goto Error;
|
| 220 | }
|
| 221 |
|
| 222 | InsertHeadList (&Table->Bucket[Index], &Assemble->Link);
|
| 223 | }
|
| 224 |
|
| 225 | //
|
| 226 | // Find the point to insert the packet: before the first
|
| 227 | // fragment with THIS.Start < CUR.Start. the previous one
|
| 228 | // has PREV.Start <= THIS.Start < CUR.Start.
|
| 229 | //
|
| 230 | ListHead = &Assemble->Fragments;
|
| 231 |
|
| 232 | NET_LIST_FOR_EACH (Cur, ListHead) {
|
| 233 | Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
|
| 234 |
|
| 235 | if (This->Start < IP6_GET_CLIP_INFO (Fragment)->Start) {
|
| 236 | break;
|
| 237 | }
|
| 238 | }
|
| 239 |
|
| 240 | //
|
| 241 | // Check whether the current fragment overlaps with the previous one.
|
| 242 | // It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to
|
| 243 | // check whether THIS.Start < PREV.End for overlap. If two fragments
|
| 244 | // overlaps, trim the overlapped part off THIS fragment.
|
| 245 | //
|
| 246 | if ((Prev = Cur->BackLink) != ListHead) {
|
| 247 | Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List);
|
| 248 | Node = IP6_GET_CLIP_INFO (Fragment);
|
| 249 |
|
| 250 | if (This->Start < Node->End) {
|
| 251 | if (This->End <= Node->End) {
|
| 252 | goto Error;
|
| 253 | }
|
| 254 |
|
| 255 | //
|
| 256 | // Trim the previous fragment from tail.
|
| 257 | //
|
| 258 | Ip6TrimPacket (Fragment, Node->Start, This->Start);
|
| 259 | }
|
| 260 | }
|
| 261 |
|
| 262 | //
|
| 263 | // Insert the fragment into the packet. The fragment may be removed
|
| 264 | // from the list by the following checks.
|
| 265 | //
|
| 266 | NetListInsertBefore (Cur, &Packet->List);
|
| 267 |
|
| 268 | //
|
| 269 | // Check the packets after the insert point. It holds that:
|
| 270 | // THIS.Start <= NODE.Start < NODE.End. The equality holds
|
| 271 | // if PREV and NEXT are continuous. THIS fragment may fill
|
| 272 | // several holes. Remove the completely overlapped fragments
|
| 273 | //
|
| 274 | while (Cur != ListHead) {
|
| 275 | Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
|
| 276 | Node = IP6_GET_CLIP_INFO (Fragment);
|
| 277 |
|
| 278 | //
|
| 279 | // Remove fragments completely overlapped by this fragment
|
| 280 | //
|
| 281 | if (Node->End <= This->End) {
|
| 282 | Cur = Cur->ForwardLink;
|
| 283 |
|
| 284 | RemoveEntryList (&Fragment->List);
|
| 285 | Assemble->CurLen -= Node->Length;
|
| 286 |
|
| 287 | NetbufFree (Fragment);
|
| 288 | continue;
|
| 289 | }
|
| 290 |
|
| 291 | //
|
| 292 | // The conditions are: THIS.Start <= NODE.Start, and THIS.End <
|
| 293 | // NODE.End. Two fragments overlaps if NODE.Start < THIS.End.
|
| 294 | // If two fragments start at the same offset, remove THIS fragment
|
| 295 | // because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)).
|
| 296 | //
|
| 297 | if (Node->Start < This->End) {
|
| 298 | if (This->Start == Node->Start) {
|
| 299 | RemoveEntryList (&Packet->List);
|
| 300 | goto Error;
|
| 301 | }
|
| 302 |
|
| 303 | Ip6TrimPacket (Packet, This->Start, Node->Start);
|
| 304 | }
|
| 305 |
|
| 306 | break;
|
| 307 | }
|
| 308 |
|
| 309 | //
|
| 310 | // Update the assemble info: increase the current length. If it is
|
| 311 | // the frist fragment, update the packet's IP head and per packet
|
| 312 | // info. If it is the last fragment, update the total length.
|
| 313 | //
|
| 314 | Assemble->CurLen += This->Length;
|
| 315 |
|
| 316 | if (This->Start == 0) {
|
| 317 | //
|
| 318 | // Once the first fragment is enqueued, it can't be removed
|
| 319 | // from the fragment list. So, Assemble->Head always point
|
| 320 | // to valid memory area.
|
| 321 | //
|
| 322 | if ((Assemble->Head != NULL) || (Assemble->Packet != NULL)) {
|
| 323 | goto Error;
|
| 324 | }
|
| 325 |
|
| 326 | //
|
| 327 | // Backup the first fragment in case the reasembly of that packet fail.
|
| 328 | //
|
| 329 | Duplicate = NetbufDuplicate (Packet, NULL, sizeof (EFI_IP6_HEADER));
|
| 330 | if (Duplicate == NULL) {
|
| 331 | goto Error;
|
| 332 | }
|
| 333 |
|
| 334 | //
|
| 335 | // Revert IP head to network order.
|
| 336 | //
|
| 337 | DupHead = NetbufGetByte (Duplicate, 0, NULL);
|
| 338 | ASSERT (DupHead != NULL);
|
| 339 | Duplicate->Ip.Ip6 = Ip6NtohHead ((EFI_IP6_HEADER *) DupHead);
|
| 340 | Assemble->Packet = Duplicate;
|
| 341 |
|
| 342 | //
|
| 343 | // Adjust the unfragmentable part in first fragment
|
| 344 | //
|
| 345 | UnFragmentLen = (UINT16) (This->HeadLen - sizeof (EFI_IP6_HEADER));
|
| 346 | if (UnFragmentLen == 0) {
|
| 347 | //
|
| 348 | // There is not any unfragmentable extension header.
|
| 349 | //
|
| 350 | ASSERT (Head->NextHeader == IP6_FRAGMENT);
|
| 351 | Head->NextHeader = This->NextHeader;
|
| 352 | } else {
|
| 353 | NextHeader = NetbufGetByte (
|
| 354 | Packet,
|
| 355 | This->FormerNextHeader + sizeof (EFI_IP6_HEADER),
|
| 356 | 0
|
| 357 | );
|
| 358 | if (NextHeader == NULL) {
|
| 359 | goto Error;
|
| 360 | }
|
| 361 |
|
| 362 | *NextHeader = This->NextHeader;
|
| 363 | }
|
| 364 |
|
| 365 | Assemble->Head = Head;
|
| 366 | Assemble->Info = IP6_GET_CLIP_INFO (Packet);
|
| 367 | }
|
| 368 |
|
| 369 | //
|
| 370 | // Don't update the length more than once.
|
| 371 | //
|
| 372 | if ((This->LastFrag != 0) && (Assemble->TotalLen == 0)) {
|
| 373 | Assemble->TotalLen = This->End;
|
| 374 | }
|
| 375 |
|
| 376 | //
|
| 377 | // Deliver the whole packet if all the fragments received.
|
| 378 | // All fragments received if:
|
| 379 | // 1. received the last one, so, the totoal length is know
|
| 380 | // 2. received all the data. If the last fragment on the
|
| 381 | // queue ends at the total length, all data is received.
|
| 382 | //
|
| 383 | if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) {
|
| 384 |
|
| 385 | RemoveEntryList (&Assemble->Link);
|
| 386 |
|
| 387 | //
|
| 388 | // If the packet is properly formated, the last fragment's End
|
| 389 | // equals to the packet's total length. Otherwise, the packet
|
| 390 | // is a fake, drop it now.
|
| 391 | //
|
| 392 | Fragment = NET_LIST_USER_STRUCT (ListHead->BackLink, NET_BUF, List);
|
| 393 | if (IP6_GET_CLIP_INFO (Fragment)->End != (INTN) Assemble->TotalLen) {
|
| 394 | Ip6FreeAssembleEntry (Assemble);
|
| 395 | goto Error;
|
| 396 | }
|
| 397 |
|
| 398 | Fragment = NET_LIST_HEAD (ListHead, NET_BUF, List);
|
| 399 | This = Assemble->Info;
|
| 400 |
|
| 401 | //
|
| 402 | // This TmpPacket is used to hold the unfragmentable part, i.e.,
|
| 403 | // the IPv6 header and the unfragmentable extension headers. Be noted that
|
| 404 | // the Fragment Header is exluded.
|
| 405 | //
|
| 406 | TmpPacket = NetbufGetFragment (Fragment, 0, This->HeadLen, 0);
|
| 407 | ASSERT (TmpPacket != NULL);
|
| 408 |
|
| 409 | NET_LIST_FOR_EACH (Cur, ListHead) {
|
| 410 | //
|
| 411 | // Trim off the unfragment part plus the fragment header from all fragments.
|
| 412 | //
|
| 413 | Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
|
| 414 | NetbufTrim (Fragment, This->HeadLen + sizeof (IP6_FRAGMENT_HEADER), TRUE);
|
| 415 | }
|
| 416 |
|
| 417 | InsertHeadList (ListHead, &TmpPacket->List);
|
| 418 |
|
| 419 | //
|
| 420 | // Wrap the packet in a net buffer then deliver it up
|
| 421 | //
|
| 422 | NewPacket = NetbufFromBufList (
|
| 423 | &Assemble->Fragments,
|
| 424 | 0,
|
| 425 | 0,
|
| 426 | Ip6OnFreeFragments,
|
| 427 | Assemble
|
| 428 | );
|
| 429 |
|
| 430 | if (NewPacket == NULL) {
|
| 431 | Ip6FreeAssembleEntry (Assemble);
|
| 432 | goto Error;
|
| 433 | }
|
| 434 |
|
| 435 | NewPacket->Ip.Ip6 = Assemble->Head;
|
| 436 |
|
| 437 | CopyMem (IP6_GET_CLIP_INFO (NewPacket), Assemble->Info, sizeof (IP6_CLIP_INFO));
|
| 438 |
|
| 439 | return NewPacket;
|
| 440 | }
|
| 441 |
|
| 442 | return NULL;
|
| 443 |
|
| 444 | Error:
|
| 445 | NetbufFree (Packet);
|
| 446 | return NULL;
|
| 447 | }
|
| 448 |
|
| 449 |
|
| 450 | /**
|
| 451 | The callback function for the net buffer that wraps the packet processed by
|
| 452 | IPsec. It releases the wrap packet and also signals IPsec to free the resources.
|
| 453 |
|
| 454 | @param[in] Arg The wrap context.
|
| 455 |
|
| 456 | **/
|
| 457 | VOID
|
| 458 | EFIAPI
|
| 459 | Ip6IpSecFree (
|
| 460 | IN VOID *Arg
|
| 461 | )
|
| 462 | {
|
| 463 | IP6_IPSEC_WRAP *Wrap;
|
| 464 |
|
| 465 | Wrap = (IP6_IPSEC_WRAP *) Arg;
|
| 466 |
|
| 467 | if (Wrap->IpSecRecycleSignal != NULL) {
|
| 468 | gBS->SignalEvent (Wrap->IpSecRecycleSignal);
|
| 469 | }
|
| 470 |
|
| 471 | NetbufFree (Wrap->Packet);
|
| 472 |
|
| 473 | FreePool (Wrap);
|
| 474 |
|
| 475 | return;
|
| 476 | }
|
| 477 |
|
| 478 | /**
|
| 479 | The work function to locate the IPsec protocol to process the inbound or
|
| 480 | outbound IP packets. The process routine handles the packet with the following
|
| 481 | actions: bypass the packet, discard the packet, or protect the packet.
|
| 482 |
|
| 483 | @param[in] IpSb The IP6 service instance.
|
| 484 | @param[in, out] Head The caller-supplied IP6 header.
|
| 485 | @param[in, out] LastHead The next header field of last IP header.
|
| 486 | @param[in, out] Netbuf The IP6 packet to be processed by IPsec.
|
| 487 | @param[in, out] ExtHdrs The caller-supplied options.
|
| 488 | @param[in, out] ExtHdrsLen The length of the option.
|
| 489 | @param[in] Direction The directionality in an SPD entry,
|
| 490 | EfiIPsecInBound, or EfiIPsecOutBound.
|
| 491 | @param[in] Context The token's wrap.
|
| 492 |
|
| 493 | @retval EFI_SUCCESS The IPsec protocol is not available or disabled.
|
| 494 | @retval EFI_SUCCESS The packet was bypassed, and all buffers remain the same.
|
| 495 | @retval EFI_SUCCESS The packet was protected.
|
| 496 | @retval EFI_ACCESS_DENIED The packet was discarded.
|
| 497 | @retval EFI_OUT_OF_RESOURCES There are not suffcient resources to complete the operation.
|
| 498 | @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than the
|
| 499 | number of input data blocks when building a fragment table.
|
| 500 |
|
| 501 | **/
|
| 502 | EFI_STATUS
|
| 503 | Ip6IpSecProcessPacket (
|
| 504 | IN IP6_SERVICE *IpSb,
|
| 505 | IN OUT EFI_IP6_HEADER **Head,
|
| 506 | IN OUT UINT8 *LastHead,
|
| 507 | IN OUT NET_BUF **Netbuf,
|
| 508 | IN OUT UINT8 **ExtHdrs,
|
| 509 | IN OUT UINT32 *ExtHdrsLen,
|
| 510 | IN EFI_IPSEC_TRAFFIC_DIR Direction,
|
| 511 | IN VOID *Context
|
| 512 | )
|
| 513 | {
|
| 514 | NET_FRAGMENT *FragmentTable;
|
| 515 | NET_FRAGMENT *OriginalFragmentTable;
|
| 516 | UINT32 FragmentCount;
|
| 517 | UINT32 OriginalFragmentCount;
|
| 518 | EFI_EVENT RecycleEvent;
|
| 519 | NET_BUF *Packet;
|
| 520 | IP6_TXTOKEN_WRAP *TxWrap;
|
| 521 | IP6_IPSEC_WRAP *IpSecWrap;
|
| 522 | EFI_STATUS Status;
|
| 523 | EFI_IP6_HEADER *PacketHead;
|
| 524 | UINT8 *Buf;
|
| 525 | EFI_IP6_HEADER ZeroHead;
|
| 526 |
|
| 527 | Status = EFI_SUCCESS;
|
| 528 | Packet = *Netbuf;
|
| 529 | RecycleEvent = NULL;
|
| 530 | IpSecWrap = NULL;
|
| 531 | FragmentTable = NULL;
|
| 532 | PacketHead = NULL;
|
| 533 | Buf = NULL;
|
| 534 | TxWrap = (IP6_TXTOKEN_WRAP *) Context;
|
| 535 | FragmentCount = Packet->BlockOpNum;
|
| 536 | ZeroMem (&ZeroHead, sizeof (EFI_IP6_HEADER));
|
| 537 |
|
| 538 | if (mIpSec == NULL) {
|
| 539 | gBS->LocateProtocol (&gEfiIpSec2ProtocolGuid, NULL, (VOID **) &mIpSec);
|
| 540 |
|
| 541 | //
|
| 542 | // Check whether the ipsec protocol is available.
|
| 543 | //
|
| 544 | if (mIpSec == NULL) {
|
| 545 | goto ON_EXIT;
|
| 546 | }
|
| 547 | }
|
| 548 |
|
| 549 | //
|
| 550 | // Check whether the ipsec enable variable is set.
|
| 551 | //
|
| 552 | if (mIpSec->DisabledFlag) {
|
| 553 | //
|
| 554 | // If IPsec is disabled, restore the original MTU
|
| 555 | //
|
| 556 | IpSb->MaxPacketSize = IpSb->OldMaxPacketSize;
|
| 557 | goto ON_EXIT;
|
| 558 | } else {
|
| 559 | //
|
| 560 | // If IPsec is enabled, use the MTU which reduce the IPsec header length.
|
| 561 | //
|
| 562 | IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP6_MAX_IPSEC_HEADLEN;
|
| 563 | }
|
| 564 |
|
| 565 |
|
| 566 | //
|
| 567 | // Bypass all multicast inbound or outbound traffic.
|
| 568 | //
|
| 569 | if (IP6_IS_MULTICAST (&(*Head)->DestinationAddress) || IP6_IS_MULTICAST (&(*Head)->SourceAddress)) {
|
| 570 | goto ON_EXIT;
|
| 571 | }
|
| 572 |
|
| 573 | //
|
| 574 | // Rebuild fragment table from netbuf to ease ipsec process.
|
| 575 | //
|
| 576 | FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT));
|
| 577 |
|
| 578 | if (FragmentTable == NULL) {
|
| 579 | Status = EFI_OUT_OF_RESOURCES;
|
| 580 | goto ON_EXIT;
|
| 581 | }
|
| 582 |
|
| 583 | Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount);
|
| 584 | OriginalFragmentTable = FragmentTable;
|
| 585 | OriginalFragmentCount = FragmentCount;
|
| 586 |
|
| 587 | if (EFI_ERROR(Status)) {
|
| 588 | FreePool (FragmentTable);
|
| 589 | goto ON_EXIT;
|
| 590 | }
|
| 591 |
|
| 592 | //
|
| 593 | // Convert host byte order to network byte order
|
| 594 | //
|
| 595 | Ip6NtohHead (*Head);
|
| 596 |
|
| 597 | Status = mIpSec->ProcessExt (
|
| 598 | mIpSec,
|
| 599 | IpSb->Controller,
|
| 600 | IP_VERSION_6,
|
| 601 | (VOID *) (*Head),
|
| 602 | LastHead,
|
| 603 | (VOID **) ExtHdrs,
|
| 604 | ExtHdrsLen,
|
| 605 | (EFI_IPSEC_FRAGMENT_DATA **) (&FragmentTable),
|
| 606 | &FragmentCount,
|
| 607 | Direction,
|
| 608 | &RecycleEvent
|
| 609 | );
|
| 610 | //
|
| 611 | // Convert back to host byte order
|
| 612 | //
|
| 613 | Ip6NtohHead (*Head);
|
| 614 |
|
| 615 | if (EFI_ERROR (Status)) {
|
| 616 | FreePool (OriginalFragmentTable);
|
| 617 | goto ON_EXIT;
|
| 618 | }
|
| 619 |
|
| 620 | if (OriginalFragmentCount == FragmentCount && OriginalFragmentTable == FragmentTable) {
|
| 621 | //
|
| 622 | // For ByPass Packet
|
| 623 | //
|
| 624 | FreePool (FragmentTable);
|
| 625 | goto ON_EXIT;
|
| 626 | } else {
|
| 627 | //
|
| 628 | // Free the FragmentTable which allocated before calling the IPsec.
|
| 629 | //
|
| 630 | FreePool (OriginalFragmentTable);
|
| 631 | }
|
| 632 |
|
| 633 | if (Direction == EfiIPsecOutBound && TxWrap != NULL) {
|
| 634 | TxWrap->IpSecRecycleSignal = RecycleEvent;
|
| 635 | TxWrap->Packet = NetbufFromExt (
|
| 636 | FragmentTable,
|
| 637 | FragmentCount,
|
| 638 | IP6_MAX_HEADLEN,
|
| 639 | 0,
|
| 640 | Ip6FreeTxToken,
|
| 641 | TxWrap
|
| 642 | );
|
| 643 | if (TxWrap->Packet == NULL) {
|
| 644 | TxWrap->Packet = *Netbuf;
|
| 645 | Status = EFI_OUT_OF_RESOURCES;
|
| 646 | goto ON_EXIT;
|
| 647 | }
|
| 648 |
|
| 649 | CopyMem (
|
| 650 | IP6_GET_CLIP_INFO (TxWrap->Packet),
|
| 651 | IP6_GET_CLIP_INFO (Packet),
|
| 652 | sizeof (IP6_CLIP_INFO)
|
| 653 | );
|
| 654 |
|
| 655 | NetIpSecNetbufFree(Packet);
|
| 656 | *Netbuf = TxWrap->Packet;
|
| 657 |
|
| 658 | } else {
|
| 659 |
|
| 660 | IpSecWrap = AllocateZeroPool (sizeof (IP6_IPSEC_WRAP));
|
| 661 |
|
| 662 | if (IpSecWrap == NULL) {
|
| 663 | Status = EFI_OUT_OF_RESOURCES;
|
| 664 | gBS->SignalEvent (RecycleEvent);
|
| 665 | goto ON_EXIT;
|
| 666 | }
|
| 667 |
|
| 668 | IpSecWrap->IpSecRecycleSignal = RecycleEvent;
|
| 669 | IpSecWrap->Packet = Packet;
|
| 670 | Packet = NetbufFromExt (
|
| 671 | FragmentTable,
|
| 672 | FragmentCount,
|
| 673 | IP6_MAX_HEADLEN,
|
| 674 | 0,
|
| 675 | Ip6IpSecFree,
|
| 676 | IpSecWrap
|
| 677 | );
|
| 678 |
|
| 679 | if (Packet == NULL) {
|
| 680 | Packet = IpSecWrap->Packet;
|
| 681 | gBS->SignalEvent (RecycleEvent);
|
| 682 | FreePool (IpSecWrap);
|
| 683 | Status = EFI_OUT_OF_RESOURCES;
|
| 684 | goto ON_EXIT;
|
| 685 | }
|
| 686 |
|
| 687 | if (Direction == EfiIPsecInBound && 0 != CompareMem (&ZeroHead, *Head, sizeof (EFI_IP6_HEADER))) {
|
| 688 |
|
| 689 | PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (
|
| 690 | Packet,
|
| 691 | sizeof (EFI_IP6_HEADER) + *ExtHdrsLen,
|
| 692 | NET_BUF_HEAD
|
| 693 | );
|
| 694 | if (PacketHead == NULL) {
|
| 695 | *Netbuf = Packet;
|
| 696 | Status = EFI_OUT_OF_RESOURCES;
|
| 697 | goto ON_EXIT;
|
| 698 | }
|
| 699 |
|
| 700 | CopyMem (PacketHead, *Head, sizeof (EFI_IP6_HEADER));
|
| 701 | *Head = PacketHead;
|
| 702 | Packet->Ip.Ip6 = PacketHead;
|
| 703 |
|
| 704 | if (*ExtHdrs != NULL) {
|
| 705 | Buf = (UINT8 *) (PacketHead + 1);
|
| 706 | CopyMem (Buf, *ExtHdrs, *ExtHdrsLen);
|
| 707 | }
|
| 708 |
|
| 709 | NetbufTrim (Packet, sizeof (EFI_IP6_HEADER) + *ExtHdrsLen, TRUE);
|
| 710 | CopyMem (
|
| 711 | IP6_GET_CLIP_INFO (Packet),
|
| 712 | IP6_GET_CLIP_INFO (IpSecWrap->Packet),
|
| 713 | sizeof (IP6_CLIP_INFO)
|
| 714 | );
|
| 715 | }
|
| 716 | *Netbuf = Packet;
|
| 717 | }
|
| 718 |
|
| 719 | ON_EXIT:
|
| 720 | return Status;
|
| 721 | }
|
| 722 |
|
| 723 | /**
|
| 724 | Pre-process the IPv6 packet. First validates the IPv6 packet, and
|
| 725 | then reassembles packet if it is necessary.
|
| 726 |
|
| 727 | @param[in] IpSb The IP6 service instance.
|
| 728 | @param[in, out] Packet The received IP6 packet to be processed.
|
| 729 | @param[in] Flag The link layer flag for the packet received, such
|
| 730 | as multicast.
|
| 731 | @param[out] Payload The pointer to the payload of the recieved packet.
|
| 732 | it starts from the first byte of the extension header.
|
| 733 | @param[out] LastHead The pointer of NextHeader of the last extension
|
| 734 | header processed by IP6.
|
| 735 | @param[out] ExtHdrsLen The length of the whole option.
|
| 736 | @param[out] UnFragmentLen The length of unfragmented length of extension headers.
|
| 737 | @param[out] Fragmented Indicate whether the packet is fragmented.
|
| 738 | @param[out] Head The pointer to the EFI_IP6_Header.
|
| 739 |
|
| 740 | @retval EFI_SUCCESS The received packet is well format.
|
| 741 | @retval EFI_INVALID_PARAMETER The received packet is malformed.
|
| 742 |
|
| 743 | **/
|
| 744 | EFI_STATUS
|
| 745 | Ip6PreProcessPacket (
|
| 746 | IN IP6_SERVICE *IpSb,
|
| 747 | IN OUT NET_BUF **Packet,
|
| 748 | IN UINT32 Flag,
|
| 749 | OUT UINT8 **Payload,
|
| 750 | OUT UINT8 **LastHead,
|
| 751 | OUT UINT32 *ExtHdrsLen,
|
| 752 | OUT UINT32 *UnFragmentLen,
|
| 753 | OUT BOOLEAN *Fragmented,
|
| 754 | OUT EFI_IP6_HEADER **Head
|
| 755 | )
|
| 756 | {
|
| 757 | UINT16 PayloadLen;
|
| 758 | UINT16 TotalLen;
|
| 759 | UINT32 FormerHeadOffset;
|
| 760 | UINT32 HeadLen;
|
| 761 | IP6_FRAGMENT_HEADER *FragmentHead;
|
| 762 | UINT16 FragmentOffset;
|
| 763 | IP6_CLIP_INFO *Info;
|
| 764 | EFI_IPv6_ADDRESS Loopback;
|
| 765 |
|
| 766 | HeadLen = 0;
|
| 767 | PayloadLen = 0;
|
| 768 | //
|
| 769 | // Check whether the input packet is a valid packet
|
| 770 | //
|
| 771 | if ((*Packet)->TotalSize < IP6_MIN_HEADLEN) {
|
| 772 | return EFI_INVALID_PARAMETER;
|
| 773 | }
|
| 774 |
|
| 775 | //
|
| 776 | // Get header information of the packet.
|
| 777 | //
|
| 778 | *Head = (EFI_IP6_HEADER *) NetbufGetByte (*Packet, 0, NULL);
|
| 779 | if (*Head == NULL) {
|
| 780 | return EFI_INVALID_PARAMETER;
|
| 781 | }
|
| 782 |
|
| 783 | //
|
| 784 | // Multicast addresses must not be used as source addresses in IPv6 packets.
|
| 785 | //
|
| 786 | if (((*Head)->Version != 6) || (IP6_IS_MULTICAST (&(*Head)->SourceAddress))) {
|
| 787 | return EFI_INVALID_PARAMETER;
|
| 788 | }
|
| 789 |
|
| 790 | //
|
| 791 | // A packet with a destination address of loopback ::1/128 or unspecified must be dropped.
|
| 792 | //
|
| 793 | ZeroMem (&Loopback, sizeof (EFI_IPv6_ADDRESS));
|
| 794 | Loopback.Addr[15] = 0x1;
|
| 795 | if ((CompareMem (&Loopback, &(*Head)->DestinationAddress, sizeof (EFI_IPv6_ADDRESS)) == 0) ||
|
| 796 | (NetIp6IsUnspecifiedAddr (&(*Head)->DestinationAddress))) {
|
| 797 | return EFI_INVALID_PARAMETER;
|
| 798 | }
|
| 799 |
|
| 800 | //
|
| 801 | // Convert the IP header to host byte order.
|
| 802 | //
|
| 803 | (*Packet)->Ip.Ip6 = Ip6NtohHead (*Head);
|
| 804 |
|
| 805 | //
|
| 806 | // Get the per packet info.
|
| 807 | //
|
| 808 | Info = IP6_GET_CLIP_INFO (*Packet);
|
| 809 | Info->LinkFlag = Flag;
|
| 810 | Info->CastType = 0;
|
| 811 |
|
| 812 | if (IpSb->MnpConfigData.EnablePromiscuousReceive) {
|
| 813 | Info->CastType = Ip6Promiscuous;
|
| 814 | }
|
| 815 |
|
| 816 | if (Ip6IsOneOfSetAddress (IpSb, &(*Head)->DestinationAddress, NULL, NULL)) {
|
| 817 | Info->CastType = Ip6Unicast;
|
| 818 | } else if (IP6_IS_MULTICAST (&(*Head)->DestinationAddress)) {
|
| 819 | if (Ip6FindMldEntry (IpSb, &(*Head)->DestinationAddress) != NULL) {
|
| 820 | Info->CastType = Ip6Multicast;
|
| 821 | }
|
| 822 | }
|
| 823 |
|
| 824 | //
|
| 825 | // Drop the packet that is not delivered to us.
|
| 826 | //
|
| 827 | if (Info->CastType == 0) {
|
| 828 | return EFI_INVALID_PARAMETER;
|
| 829 | }
|
| 830 |
|
| 831 |
|
| 832 | PayloadLen = (*Head)->PayloadLength;
|
| 833 |
|
| 834 | Info->Start = 0;
|
| 835 | Info->Length = PayloadLen;
|
| 836 | Info->End = Info->Start + Info->Length;
|
| 837 | Info->HeadLen = (UINT16) sizeof (EFI_IP6_HEADER);
|
| 838 | Info->Status = EFI_SUCCESS;
|
| 839 | Info->LastFrag = FALSE;
|
| 840 |
|
| 841 | TotalLen = (UINT16) (PayloadLen + sizeof (EFI_IP6_HEADER));
|
| 842 |
|
| 843 | //
|
| 844 | // Mnp may deliver frame trailer sequence up, trim it off.
|
| 845 | //
|
| 846 | if (TotalLen < (*Packet)->TotalSize) {
|
| 847 | NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE);
|
| 848 | }
|
| 849 |
|
| 850 | if (TotalLen != (*Packet)->TotalSize) {
|
| 851 | return EFI_INVALID_PARAMETER;
|
| 852 | }
|
| 853 |
|
| 854 | //
|
| 855 | // Check the extension headers, if exist validate them
|
| 856 | //
|
| 857 | if (PayloadLen != 0) {
|
| 858 | *Payload = AllocatePool ((UINTN) PayloadLen);
|
| 859 | if (*Payload == NULL) {
|
| 860 | return EFI_INVALID_PARAMETER;
|
| 861 | }
|
| 862 |
|
| 863 | NetbufCopy (*Packet, sizeof (EFI_IP6_HEADER), PayloadLen, *Payload);
|
| 864 | }
|
| 865 |
|
| 866 | if (!Ip6IsExtsValid (
|
| 867 | IpSb,
|
| 868 | *Packet,
|
| 869 | &(*Head)->NextHeader,
|
| 870 | *Payload,
|
| 871 | (UINT32) PayloadLen,
|
| 872 | TRUE,
|
| 873 | &FormerHeadOffset,
|
| 874 | LastHead,
|
| 875 | ExtHdrsLen,
|
| 876 | UnFragmentLen,
|
| 877 | Fragmented
|
| 878 | )) {
|
| 879 | return EFI_INVALID_PARAMETER;
|
| 880 | }
|
| 881 |
|
| 882 | HeadLen = sizeof (EFI_IP6_HEADER) + *UnFragmentLen;
|
| 883 |
|
| 884 | if (*Fragmented) {
|
| 885 | //
|
| 886 | // Get the fragment offset from the Fragment header
|
| 887 | //
|
| 888 | FragmentHead = (IP6_FRAGMENT_HEADER *) NetbufGetByte (*Packet, HeadLen, NULL);
|
| 889 | if (FragmentHead == NULL) {
|
| 890 | return EFI_INVALID_PARAMETER;
|
| 891 | }
|
| 892 |
|
| 893 | FragmentOffset = NTOHS (FragmentHead->FragmentOffset);
|
| 894 |
|
| 895 | if ((FragmentOffset & 0x1) == 0) {
|
| 896 | Info->LastFrag = TRUE;
|
| 897 | }
|
| 898 |
|
| 899 | FragmentOffset &= (~0x1);
|
| 900 |
|
| 901 | //
|
| 902 | // This is the first fragment of the packet
|
| 903 | //
|
| 904 | if (FragmentOffset == 0) {
|
| 905 | Info->NextHeader = FragmentHead->NextHeader;
|
| 906 | }
|
| 907 |
|
| 908 | Info->HeadLen = (UINT16) HeadLen;
|
| 909 | HeadLen += sizeof (IP6_FRAGMENT_HEADER);
|
| 910 | Info->Start = FragmentOffset;
|
| 911 | Info->Length = TotalLen - (UINT16) HeadLen;
|
| 912 | Info->End = Info->Start + Info->Length;
|
| 913 | Info->Id = FragmentHead->Identification;
|
| 914 | Info->FormerNextHeader = FormerHeadOffset;
|
| 915 |
|
| 916 | //
|
| 917 | // Fragments should in the unit of 8 octets long except the last one.
|
| 918 | //
|
| 919 | if ((Info->LastFrag == 0) && (Info->Length % 8 != 0)) {
|
| 920 | return EFI_INVALID_PARAMETER;
|
| 921 | }
|
| 922 |
|
| 923 | //
|
| 924 | // Reassemble the packet.
|
| 925 | //
|
| 926 | *Packet = Ip6Reassemble (&IpSb->Assemble, *Packet);
|
| 927 | if (*Packet == NULL) {
|
| 928 | return EFI_INVALID_PARAMETER;
|
| 929 | }
|
| 930 |
|
| 931 | //
|
| 932 | // Re-check the assembled packet to get the right values.
|
| 933 | //
|
| 934 | *Head = (*Packet)->Ip.Ip6;
|
| 935 | PayloadLen = (*Head)->PayloadLength;
|
| 936 | if (PayloadLen != 0) {
|
| 937 | if (*Payload != NULL) {
|
| 938 | FreePool (*Payload);
|
| 939 | }
|
| 940 |
|
| 941 | *Payload = AllocatePool ((UINTN) PayloadLen);
|
| 942 | if (*Payload == NULL) {
|
| 943 | return EFI_INVALID_PARAMETER;
|
| 944 | }
|
| 945 |
|
| 946 | NetbufCopy (*Packet, sizeof (EFI_IP6_HEADER), PayloadLen, *Payload);
|
| 947 | }
|
| 948 |
|
| 949 | if (!Ip6IsExtsValid (
|
| 950 | IpSb,
|
| 951 | *Packet,
|
| 952 | &(*Head)->NextHeader,
|
| 953 | *Payload,
|
| 954 | (UINT32) PayloadLen,
|
| 955 | TRUE,
|
| 956 | NULL,
|
| 957 | LastHead,
|
| 958 | ExtHdrsLen,
|
| 959 | UnFragmentLen,
|
| 960 | Fragmented
|
| 961 | )) {
|
| 962 | return EFI_INVALID_PARAMETER;
|
| 963 | }
|
| 964 | }
|
| 965 |
|
| 966 | //
|
| 967 | // Trim the head off, after this point, the packet is headless.
|
| 968 | // and Packet->TotalLen == Info->Length.
|
| 969 | //
|
| 970 | NetbufTrim (*Packet, sizeof (EFI_IP6_HEADER) + *ExtHdrsLen, TRUE);
|
| 971 |
|
| 972 | return EFI_SUCCESS;
|
| 973 | }
|
| 974 |
|
| 975 | /**
|
| 976 | The IP6 input routine. It is called by the IP6_INTERFACE when an
|
| 977 | IP6 fragment is received from MNP.
|
| 978 |
|
| 979 | @param[in] Packet The IP6 packet received.
|
| 980 | @param[in] IoStatus The return status of receive request.
|
| 981 | @param[in] Flag The link layer flag for the packet received, such
|
| 982 | as multicast.
|
| 983 | @param[in] Context The IP6 service instance that owns the MNP.
|
| 984 |
|
| 985 | **/
|
| 986 | VOID
|
| 987 | Ip6AcceptFrame (
|
| 988 | IN NET_BUF *Packet,
|
| 989 | IN EFI_STATUS IoStatus,
|
| 990 | IN UINT32 Flag,
|
| 991 | IN VOID *Context
|
| 992 | )
|
| 993 | {
|
| 994 | IP6_SERVICE *IpSb;
|
| 995 | EFI_IP6_HEADER *Head;
|
| 996 | UINT8 *Payload;
|
| 997 | UINT8 *LastHead;
|
| 998 | UINT32 UnFragmentLen;
|
| 999 | UINT32 ExtHdrsLen;
|
| 1000 | BOOLEAN Fragmented;
|
| 1001 | EFI_STATUS Status;
|
| 1002 | EFI_IP6_HEADER ZeroHead;
|
| 1003 |
|
| 1004 | IpSb = (IP6_SERVICE *) Context;
|
| 1005 | NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
|
| 1006 |
|
| 1007 | Payload = NULL;
|
| 1008 | LastHead = NULL;
|
| 1009 |
|
| 1010 | //
|
| 1011 | // Check input parameters
|
| 1012 | //
|
| 1013 | if (EFI_ERROR (IoStatus) || (IpSb->State == IP6_SERVICE_DESTROY)) {
|
| 1014 | goto Drop;
|
| 1015 | }
|
| 1016 |
|
| 1017 | //
|
| 1018 | // Pre-Process the Ipv6 Packet and then reassemble if it is necessary.
|
| 1019 | //
|
| 1020 | Status = Ip6PreProcessPacket (
|
| 1021 | IpSb,
|
| 1022 | &Packet,
|
| 1023 | Flag,
|
| 1024 | &Payload,
|
| 1025 | &LastHead,
|
| 1026 | &ExtHdrsLen,
|
| 1027 | &UnFragmentLen,
|
| 1028 | &Fragmented,
|
| 1029 | &Head
|
| 1030 | );
|
| 1031 | if (EFI_ERROR (Status)) {
|
| 1032 | goto Restart;
|
| 1033 | }
|
| 1034 | //
|
| 1035 | // After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer,
|
| 1036 | // and no need consider any other ahead ext headers.
|
| 1037 | //
|
| 1038 | Status = Ip6IpSecProcessPacket (
|
| 1039 | IpSb,
|
| 1040 | &Head,
|
| 1041 | LastHead, // need get the lasthead value for input
|
| 1042 | &Packet,
|
| 1043 | &Payload,
|
| 1044 | &ExtHdrsLen,
|
| 1045 | EfiIPsecInBound,
|
| 1046 | NULL
|
| 1047 | );
|
| 1048 |
|
| 1049 | if (EFI_ERROR (Status)) {
|
| 1050 | goto Restart;
|
| 1051 | }
|
| 1052 |
|
| 1053 | //
|
| 1054 | // If the packet is protected by IPsec Tunnel Mode, Check the Inner Ip Packet.
|
| 1055 | //
|
| 1056 | ZeroMem (&ZeroHead, sizeof (EFI_IP6_HEADER));
|
| 1057 | if (0 == CompareMem (Head, &ZeroHead, sizeof (EFI_IP6_HEADER))) {
|
| 1058 | Status = Ip6PreProcessPacket (
|
| 1059 | IpSb,
|
| 1060 | &Packet,
|
| 1061 | Flag,
|
| 1062 | &Payload,
|
| 1063 | &LastHead,
|
| 1064 | &ExtHdrsLen,
|
| 1065 | &UnFragmentLen,
|
| 1066 | &Fragmented,
|
| 1067 | &Head
|
| 1068 | );
|
| 1069 | if (EFI_ERROR (Status)) {
|
| 1070 | goto Restart;
|
| 1071 | }
|
| 1072 | }
|
| 1073 |
|
| 1074 | //
|
| 1075 | // Check the Packet again.
|
| 1076 | //
|
| 1077 | if (Packet == NULL) {
|
| 1078 | goto Restart;
|
| 1079 | }
|
| 1080 |
|
| 1081 | //
|
| 1082 | // Packet may have been changed. The ownership of the packet
|
| 1083 | // is transfered to the packet process logic.
|
| 1084 | //
|
| 1085 | Head = Packet->Ip.Ip6;
|
| 1086 | IP6_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS;
|
| 1087 |
|
| 1088 | switch (*LastHead) {
|
| 1089 | case IP6_ICMP:
|
| 1090 | Ip6IcmpHandle (IpSb, Head, Packet);
|
| 1091 | break;
|
| 1092 | default:
|
| 1093 | Ip6Demultiplex (IpSb, Head, Packet);
|
| 1094 | }
|
| 1095 |
|
| 1096 | Packet = NULL;
|
| 1097 |
|
| 1098 | //
|
| 1099 | // Dispatch the DPCs queued by the NotifyFunction of the rx token's events
|
| 1100 | // which are signaled with received data.
|
| 1101 | //
|
| 1102 | DispatchDpc ();
|
| 1103 |
|
| 1104 | Restart:
|
| 1105 | if (Payload != NULL) {
|
| 1106 | FreePool (Payload);
|
| 1107 | }
|
| 1108 |
|
| 1109 | Ip6ReceiveFrame (Ip6AcceptFrame, IpSb);
|
| 1110 |
|
| 1111 | Drop:
|
| 1112 | if (Packet != NULL) {
|
| 1113 | NetbufFree (Packet);
|
| 1114 | }
|
| 1115 |
|
| 1116 | return ;
|
| 1117 | }
|
| 1118 |
|
| 1119 | /**
|
| 1120 | Initialize an already allocated assemble table. This is generally
|
| 1121 | the assemble table embedded in the IP6 service instance.
|
| 1122 |
|
| 1123 | @param[in, out] Table The assemble table to initialize.
|
| 1124 |
|
| 1125 | **/
|
| 1126 | VOID
|
| 1127 | Ip6CreateAssembleTable (
|
| 1128 | IN OUT IP6_ASSEMBLE_TABLE *Table
|
| 1129 | )
|
| 1130 | {
|
| 1131 | UINT32 Index;
|
| 1132 |
|
| 1133 | for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) {
|
| 1134 | InitializeListHead (&Table->Bucket[Index]);
|
| 1135 | }
|
| 1136 | }
|
| 1137 |
|
| 1138 | /**
|
| 1139 | Clean up the assemble table by removing all of the fragments
|
| 1140 | and assemble entries.
|
| 1141 |
|
| 1142 | @param[in, out] Table The assemble table to clean up.
|
| 1143 |
|
| 1144 | **/
|
| 1145 | VOID
|
| 1146 | Ip6CleanAssembleTable (
|
| 1147 | IN OUT IP6_ASSEMBLE_TABLE *Table
|
| 1148 | )
|
| 1149 | {
|
| 1150 | LIST_ENTRY *Entry;
|
| 1151 | LIST_ENTRY *Next;
|
| 1152 | IP6_ASSEMBLE_ENTRY *Assemble;
|
| 1153 | UINT32 Index;
|
| 1154 |
|
| 1155 | for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) {
|
| 1156 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) {
|
| 1157 | Assemble = NET_LIST_USER_STRUCT (Entry, IP6_ASSEMBLE_ENTRY, Link);
|
| 1158 |
|
| 1159 | RemoveEntryList (Entry);
|
| 1160 | Ip6FreeAssembleEntry (Assemble);
|
| 1161 | }
|
| 1162 | }
|
| 1163 | }
|
| 1164 |
|
| 1165 |
|
| 1166 | /**
|
| 1167 | The signal handle of IP6's recycle event. It is called back
|
| 1168 | when the upper layer releases the packet.
|
| 1169 |
|
| 1170 | @param[in] Event The IP6's recycle event.
|
| 1171 | @param[in] Context The context of the handle, which is a IP6_RXDATA_WRAP.
|
| 1172 |
|
| 1173 | **/
|
| 1174 | VOID
|
| 1175 | EFIAPI
|
| 1176 | Ip6OnRecyclePacket (
|
| 1177 | IN EFI_EVENT Event,
|
| 1178 | IN VOID *Context
|
| 1179 | )
|
| 1180 | {
|
| 1181 | IP6_RXDATA_WRAP *Wrap;
|
| 1182 |
|
| 1183 | Wrap = (IP6_RXDATA_WRAP *) Context;
|
| 1184 |
|
| 1185 | EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock);
|
| 1186 | RemoveEntryList (&Wrap->Link);
|
| 1187 | EfiReleaseLock (&Wrap->IpInstance->RecycleLock);
|
| 1188 |
|
| 1189 | ASSERT (!NET_BUF_SHARED (Wrap->Packet));
|
| 1190 | NetbufFree (Wrap->Packet);
|
| 1191 |
|
| 1192 | gBS->CloseEvent (Wrap->RxData.RecycleSignal);
|
| 1193 | FreePool (Wrap);
|
| 1194 | }
|
| 1195 |
|
| 1196 | /**
|
| 1197 | Wrap the received packet to a IP6_RXDATA_WRAP, which will be
|
| 1198 | delivered to the upper layer. Each IP6 child that accepts the
|
| 1199 | packet will get a not-shared copy of the packet which is wrapped
|
| 1200 | in the IP6_RXDATA_WRAP. The IP6_RXDATA_WRAP->RxData is passed
|
| 1201 | to the upper layer. The upper layer will signal the recycle event in
|
| 1202 | it when it is done with the packet.
|
| 1203 |
|
| 1204 | @param[in] IpInstance The IP6 child to receive the packet.
|
| 1205 | @param[in] Packet The packet to deliver up.
|
| 1206 |
|
| 1207 | @return NULL if it failed to wrap the packet; otherwise, the wrapper.
|
| 1208 |
|
| 1209 | **/
|
| 1210 | IP6_RXDATA_WRAP *
|
| 1211 | Ip6WrapRxData (
|
| 1212 | IN IP6_PROTOCOL *IpInstance,
|
| 1213 | IN NET_BUF *Packet
|
| 1214 | )
|
| 1215 | {
|
| 1216 | IP6_RXDATA_WRAP *Wrap;
|
| 1217 | EFI_IP6_RECEIVE_DATA *RxData;
|
| 1218 | EFI_STATUS Status;
|
| 1219 |
|
| 1220 | Wrap = AllocatePool (IP6_RXDATA_WRAP_SIZE (Packet->BlockOpNum));
|
| 1221 |
|
| 1222 | if (Wrap == NULL) {
|
| 1223 | return NULL;
|
| 1224 | }
|
| 1225 |
|
| 1226 | InitializeListHead (&Wrap->Link);
|
| 1227 |
|
| 1228 | Wrap->IpInstance = IpInstance;
|
| 1229 | Wrap->Packet = Packet;
|
| 1230 | RxData = &Wrap->RxData;
|
| 1231 |
|
| 1232 | ZeroMem (&RxData->TimeStamp, sizeof (EFI_TIME));
|
| 1233 |
|
| 1234 | Status = gBS->CreateEvent (
|
| 1235 | EVT_NOTIFY_SIGNAL,
|
| 1236 | TPL_NOTIFY,
|
| 1237 | Ip6OnRecyclePacket,
|
| 1238 | Wrap,
|
| 1239 | &RxData->RecycleSignal
|
| 1240 | );
|
| 1241 |
|
| 1242 | if (EFI_ERROR (Status)) {
|
| 1243 | FreePool (Wrap);
|
| 1244 | return NULL;
|
| 1245 | }
|
| 1246 |
|
| 1247 | ASSERT (Packet->Ip.Ip6 != NULL);
|
| 1248 |
|
| 1249 | //
|
| 1250 | // The application expects a network byte order header.
|
| 1251 | //
|
| 1252 | RxData->HeaderLength = sizeof (EFI_IP6_HEADER);
|
| 1253 | RxData->Header = (EFI_IP6_HEADER *) Ip6NtohHead (Packet->Ip.Ip6);
|
| 1254 | RxData->DataLength = Packet->TotalSize;
|
| 1255 |
|
| 1256 | //
|
| 1257 | // Build the fragment table to be delivered up.
|
| 1258 | //
|
| 1259 | RxData->FragmentCount = Packet->BlockOpNum;
|
| 1260 | NetbufBuildExt (Packet, (NET_FRAGMENT *) RxData->FragmentTable, &RxData->FragmentCount);
|
| 1261 |
|
| 1262 | return Wrap;
|
| 1263 | }
|
| 1264 |
|
| 1265 | /**
|
| 1266 | Check whether this IP child accepts the packet.
|
| 1267 |
|
| 1268 | @param[in] IpInstance The IP child to check.
|
| 1269 | @param[in] Head The IP header of the packet.
|
| 1270 | @param[in] Packet The data of the packet.
|
| 1271 |
|
| 1272 | @retval TRUE The child wants to receive the packet.
|
| 1273 | @retval FALSE The child does not want to receive the packet.
|
| 1274 |
|
| 1275 | **/
|
| 1276 | BOOLEAN
|
| 1277 | Ip6InstanceFrameAcceptable (
|
| 1278 | IN IP6_PROTOCOL *IpInstance,
|
| 1279 | IN EFI_IP6_HEADER *Head,
|
| 1280 | IN NET_BUF *Packet
|
| 1281 | )
|
| 1282 | {
|
| 1283 | IP6_ICMP_ERROR_HEAD Icmp;
|
| 1284 | EFI_IP6_CONFIG_DATA *Config;
|
| 1285 | IP6_CLIP_INFO *Info;
|
| 1286 | UINT8 *Proto;
|
| 1287 | UINT32 Index;
|
| 1288 | UINT8 *ExtHdrs;
|
| 1289 | UINT16 ErrMsgPayloadLen;
|
| 1290 | UINT8 *ErrMsgPayload;
|
| 1291 |
|
| 1292 | Config = &IpInstance->ConfigData;
|
| 1293 | Proto = NULL;
|
| 1294 |
|
| 1295 | //
|
| 1296 | // Dirty trick for the Tiano UEFI network stack implmentation. If
|
| 1297 | // ReceiveTimeout == -1, the receive of the packet for this instance
|
| 1298 | // is disabled. The UEFI spec don't have such captibility. We add
|
| 1299 | // this to improve the performance because IP will make a copy of
|
| 1300 | // the received packet for each accepting instance. Some IP instances
|
| 1301 | // used by UDP/TCP only send packets, they don't wants to receive.
|
| 1302 | //
|
| 1303 | if (Config->ReceiveTimeout == (UINT32)(-1)) {
|
| 1304 | return FALSE;
|
| 1305 | }
|
| 1306 |
|
| 1307 | if (Config->AcceptPromiscuous) {
|
| 1308 | return TRUE;
|
| 1309 | }
|
| 1310 |
|
| 1311 | //
|
| 1312 | // Check whether the protocol is acceptable.
|
| 1313 | //
|
| 1314 | ExtHdrs = NetbufGetByte (Packet, 0, NULL);
|
| 1315 |
|
| 1316 | if (!Ip6IsExtsValid (
|
| 1317 | IpInstance->Service,
|
| 1318 | Packet,
|
| 1319 | &Head->NextHeader,
|
| 1320 | ExtHdrs,
|
| 1321 | (UINT32) Head->PayloadLength,
|
| 1322 | TRUE,
|
| 1323 | NULL,
|
| 1324 | &Proto,
|
| 1325 | NULL,
|
| 1326 | NULL,
|
| 1327 | NULL
|
| 1328 | )) {
|
| 1329 | return FALSE;
|
| 1330 | }
|
| 1331 |
|
| 1332 | //
|
| 1333 | // The upper layer driver may want to receive the ICMPv6 error packet
|
| 1334 | // invoked by its packet, like UDP.
|
| 1335 | //
|
| 1336 | if ((*Proto == IP6_ICMP) && (!Config->AcceptAnyProtocol) && (*Proto != Config->DefaultProtocol)) {
|
| 1337 | NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *) &Icmp);
|
| 1338 |
|
| 1339 | if (Icmp.Head.Type <= ICMP_V6_ERROR_MAX) {
|
| 1340 | if (!Config->AcceptIcmpErrors) {
|
| 1341 | return FALSE;
|
| 1342 | }
|
| 1343 |
|
| 1344 | //
|
| 1345 | // Get the protocol of the invoking packet of ICMPv6 error packet.
|
| 1346 | //
|
| 1347 | ErrMsgPayloadLen = NTOHS (Icmp.IpHead.PayloadLength);
|
| 1348 | ErrMsgPayload = NetbufGetByte (Packet, sizeof (Icmp), NULL);
|
| 1349 |
|
| 1350 | if (!Ip6IsExtsValid (
|
| 1351 | NULL,
|
| 1352 | NULL,
|
| 1353 | &Icmp.IpHead.NextHeader,
|
| 1354 | ErrMsgPayload,
|
| 1355 | ErrMsgPayloadLen,
|
| 1356 | TRUE,
|
| 1357 | NULL,
|
| 1358 | &Proto,
|
| 1359 | NULL,
|
| 1360 | NULL,
|
| 1361 | NULL
|
| 1362 | )) {
|
| 1363 | return FALSE;
|
| 1364 | }
|
| 1365 | }
|
| 1366 | }
|
| 1367 |
|
| 1368 | //
|
| 1369 | // Match the protocol
|
| 1370 | //
|
| 1371 | if (!Config->AcceptAnyProtocol && (*Proto != Config->DefaultProtocol)) {
|
| 1372 | return FALSE;
|
| 1373 | }
|
| 1374 |
|
| 1375 | //
|
| 1376 | // Check for broadcast, the caller has computed the packet's
|
| 1377 | // cast type for this child's interface.
|
| 1378 | //
|
| 1379 | Info = IP6_GET_CLIP_INFO (Packet);
|
| 1380 |
|
| 1381 | //
|
| 1382 | // If it is a multicast packet, check whether we are in the group.
|
| 1383 | //
|
| 1384 | if (Info->CastType == Ip6Multicast) {
|
| 1385 | //
|
| 1386 | // Receive the multicast if the instance wants to receive all packets.
|
| 1387 | //
|
| 1388 | if (NetIp6IsUnspecifiedAddr (&IpInstance->ConfigData.StationAddress)) {
|
| 1389 | return TRUE;
|
| 1390 | }
|
| 1391 |
|
| 1392 | for (Index = 0; Index < IpInstance->GroupCount; Index++) {
|
| 1393 | if (EFI_IP6_EQUAL (IpInstance->GroupList + Index, &Head->DestinationAddress)) {
|
| 1394 | break;
|
| 1395 | }
|
| 1396 | }
|
| 1397 |
|
| 1398 | return (BOOLEAN)(Index < IpInstance->GroupCount);
|
| 1399 | }
|
| 1400 |
|
| 1401 | return TRUE;
|
| 1402 | }
|
| 1403 |
|
| 1404 | /**
|
| 1405 | Enqueue a shared copy of the packet to the IP6 child if the
|
| 1406 | packet is acceptable to it. Here the data of the packet is
|
| 1407 | shared, but the net buffer isn't.
|
| 1408 |
|
| 1409 | @param IpInstance The IP6 child to enqueue the packet to.
|
| 1410 | @param Head The IP header of the received packet.
|
| 1411 | @param Packet The data of the received packet.
|
| 1412 |
|
| 1413 | @retval EFI_NOT_STARTED The IP child hasn't been configured.
|
| 1414 | @retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet.
|
| 1415 | @retval EFI_OUT_OF_RESOURCES Failed to allocate some resources
|
| 1416 | @retval EFI_SUCCESS A shared copy the packet is enqueued to the child.
|
| 1417 |
|
| 1418 | **/
|
| 1419 | EFI_STATUS
|
| 1420 | Ip6InstanceEnquePacket (
|
| 1421 | IN IP6_PROTOCOL *IpInstance,
|
| 1422 | IN EFI_IP6_HEADER *Head,
|
| 1423 | IN NET_BUF *Packet
|
| 1424 | )
|
| 1425 | {
|
| 1426 | IP6_CLIP_INFO *Info;
|
| 1427 | NET_BUF *Clone;
|
| 1428 |
|
| 1429 | //
|
| 1430 | // Check whether the packet is acceptable to this instance.
|
| 1431 | //
|
| 1432 | if (IpInstance->State != IP6_STATE_CONFIGED) {
|
| 1433 | return EFI_NOT_STARTED;
|
| 1434 | }
|
| 1435 |
|
| 1436 | if (!Ip6InstanceFrameAcceptable (IpInstance, Head, Packet)) {
|
| 1437 | return EFI_INVALID_PARAMETER;
|
| 1438 | }
|
| 1439 |
|
| 1440 | //
|
| 1441 | // Enque a shared copy of the packet.
|
| 1442 | //
|
| 1443 | Clone = NetbufClone (Packet);
|
| 1444 |
|
| 1445 | if (Clone == NULL) {
|
| 1446 | return EFI_OUT_OF_RESOURCES;
|
| 1447 | }
|
| 1448 |
|
| 1449 | //
|
| 1450 | // Set the receive time out for the assembled packet. If it expires,
|
| 1451 | // packet will be removed from the queue.
|
| 1452 | //
|
| 1453 | Info = IP6_GET_CLIP_INFO (Clone);
|
| 1454 | Info->Life = IP6_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout);
|
| 1455 |
|
| 1456 | InsertTailList (&IpInstance->Received, &Clone->List);
|
| 1457 | return EFI_SUCCESS;
|
| 1458 | }
|
| 1459 |
|
| 1460 | /**
|
| 1461 | Deliver the received packets to the upper layer if there are both received
|
| 1462 | requests and enqueued packets. If the enqueued packet is shared, it will
|
| 1463 | duplicate it to a non-shared packet, release the shared packet, then
|
| 1464 | deliver the non-shared packet up.
|
| 1465 |
|
| 1466 | @param[in] IpInstance The IP child to deliver the packet up.
|
| 1467 |
|
| 1468 | @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the
|
| 1469 | packets.
|
| 1470 | @retval EFI_SUCCESS All the enqueued packets that can be delivered
|
| 1471 | are delivered up.
|
| 1472 |
|
| 1473 | **/
|
| 1474 | EFI_STATUS
|
| 1475 | Ip6InstanceDeliverPacket (
|
| 1476 | IN IP6_PROTOCOL *IpInstance
|
| 1477 | )
|
| 1478 | {
|
| 1479 | EFI_IP6_COMPLETION_TOKEN *Token;
|
| 1480 | IP6_RXDATA_WRAP *Wrap;
|
| 1481 | NET_BUF *Packet;
|
| 1482 | NET_BUF *Dup;
|
| 1483 | UINT8 *Head;
|
| 1484 |
|
| 1485 | //
|
| 1486 | // Deliver a packet if there are both a packet and a receive token.
|
| 1487 | //
|
| 1488 | while (!IsListEmpty (&IpInstance->Received) && !NetMapIsEmpty (&IpInstance->RxTokens)) {
|
| 1489 |
|
| 1490 | Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List);
|
| 1491 |
|
| 1492 | if (!NET_BUF_SHARED (Packet)) {
|
| 1493 | //
|
| 1494 | // If this is the only instance that wants the packet, wrap it up.
|
| 1495 | //
|
| 1496 | Wrap = Ip6WrapRxData (IpInstance, Packet);
|
| 1497 |
|
| 1498 | if (Wrap == NULL) {
|
| 1499 | return EFI_OUT_OF_RESOURCES;
|
| 1500 | }
|
| 1501 |
|
| 1502 | RemoveEntryList (&Packet->List);
|
| 1503 |
|
| 1504 | } else {
|
| 1505 | //
|
| 1506 | // Create a duplicated packet if this packet is shared
|
| 1507 | //
|
| 1508 | Dup = NetbufDuplicate (Packet, NULL, sizeof (EFI_IP6_HEADER));
|
| 1509 |
|
| 1510 | if (Dup == NULL) {
|
| 1511 | return EFI_OUT_OF_RESOURCES;
|
| 1512 | }
|
| 1513 |
|
| 1514 | //
|
| 1515 | // Copy the IP head over. The packet to deliver up is
|
| 1516 | // headless. Trim the head off after copy. The IP head
|
| 1517 | // may be not continuous before the data.
|
| 1518 | //
|
| 1519 | Head = NetbufAllocSpace (Dup, sizeof (EFI_IP6_HEADER), NET_BUF_HEAD);
|
| 1520 | ASSERT (Head != NULL);
|
| 1521 | Dup->Ip.Ip6 = (EFI_IP6_HEADER *) Head;
|
| 1522 |
|
| 1523 | CopyMem (Head, Packet->Ip.Ip6, sizeof (EFI_IP6_HEADER));
|
| 1524 | NetbufTrim (Dup, sizeof (EFI_IP6_HEADER), TRUE);
|
| 1525 |
|
| 1526 | Wrap = Ip6WrapRxData (IpInstance, Dup);
|
| 1527 |
|
| 1528 | if (Wrap == NULL) {
|
| 1529 | NetbufFree (Dup);
|
| 1530 | return EFI_OUT_OF_RESOURCES;
|
| 1531 | }
|
| 1532 |
|
| 1533 | RemoveEntryList (&Packet->List);
|
| 1534 | NetbufFree (Packet);
|
| 1535 |
|
| 1536 | Packet = Dup;
|
| 1537 | }
|
| 1538 |
|
| 1539 | //
|
| 1540 | // Insert it into the delivered packet, then get a user's
|
| 1541 | // receive token, pass the wrapped packet up.
|
| 1542 | //
|
| 1543 | EfiAcquireLockOrFail (&IpInstance->RecycleLock);
|
| 1544 | InsertHeadList (&IpInstance->Delivered, &Wrap->Link);
|
| 1545 | EfiReleaseLock (&IpInstance->RecycleLock);
|
| 1546 |
|
| 1547 | Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL);
|
| 1548 | Token->Status = IP6_GET_CLIP_INFO (Packet)->Status;
|
| 1549 | Token->Packet.RxData = &Wrap->RxData;
|
| 1550 |
|
| 1551 | gBS->SignalEvent (Token->Event);
|
| 1552 | }
|
| 1553 |
|
| 1554 | return EFI_SUCCESS;
|
| 1555 | }
|
| 1556 |
|
| 1557 | /**
|
| 1558 | Enqueue a received packet to all the IP children that share
|
| 1559 | the same interface.
|
| 1560 |
|
| 1561 | @param[in] IpSb The IP6 service instance that receive the packet.
|
| 1562 | @param[in] Head The header of the received packet.
|
| 1563 | @param[in] Packet The data of the received packet.
|
| 1564 | @param[in] IpIf The interface to enqueue the packet to.
|
| 1565 |
|
| 1566 | @return The number of the IP6 children that accepts the packet.
|
| 1567 |
|
| 1568 | **/
|
| 1569 | INTN
|
| 1570 | Ip6InterfaceEnquePacket (
|
| 1571 | IN IP6_SERVICE *IpSb,
|
| 1572 | IN EFI_IP6_HEADER *Head,
|
| 1573 | IN NET_BUF *Packet,
|
| 1574 | IN IP6_INTERFACE *IpIf
|
| 1575 | )
|
| 1576 | {
|
| 1577 | IP6_PROTOCOL *IpInstance;
|
| 1578 | IP6_CLIP_INFO *Info;
|
| 1579 | LIST_ENTRY *Entry;
|
| 1580 | INTN Enqueued;
|
| 1581 | INTN LocalType;
|
| 1582 | INTN SavedType;
|
| 1583 |
|
| 1584 | //
|
| 1585 | // First, check that the packet is acceptable to this interface
|
| 1586 | // and find the local cast type for the interface.
|
| 1587 | //
|
| 1588 | LocalType = 0;
|
| 1589 | Info = IP6_GET_CLIP_INFO (Packet);
|
| 1590 |
|
| 1591 | if (IpIf->PromiscRecv) {
|
| 1592 | LocalType = Ip6Promiscuous;
|
| 1593 | } else {
|
| 1594 | LocalType = Info->CastType;
|
| 1595 | }
|
| 1596 |
|
| 1597 | //
|
| 1598 | // Iterate through the ip instances on the interface, enqueue
|
| 1599 | // the packet if filter passed. Save the original cast type,
|
| 1600 | // and pass the local cast type to the IP children on the
|
| 1601 | // interface. The global cast type will be restored later.
|
| 1602 | //
|
| 1603 | SavedType = Info->CastType;
|
| 1604 | Info->CastType = (UINT32) LocalType;
|
| 1605 |
|
| 1606 | Enqueued = 0;
|
| 1607 |
|
| 1608 | NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
|
| 1609 | IpInstance = NET_LIST_USER_STRUCT (Entry, IP6_PROTOCOL, AddrLink);
|
| 1610 | NET_CHECK_SIGNATURE (IpInstance, IP6_PROTOCOL_SIGNATURE);
|
| 1611 |
|
| 1612 | if (Ip6InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) {
|
| 1613 | Enqueued++;
|
| 1614 | }
|
| 1615 | }
|
| 1616 |
|
| 1617 | Info->CastType = (UINT32) SavedType;
|
| 1618 | return Enqueued;
|
| 1619 | }
|
| 1620 |
|
| 1621 | /**
|
| 1622 | Deliver the packet for each IP6 child on the interface.
|
| 1623 |
|
| 1624 | @param[in] IpSb The IP6 service instance that received the packet.
|
| 1625 | @param[in] IpIf The IP6 interface to deliver the packet.
|
| 1626 |
|
| 1627 | **/
|
| 1628 | VOID
|
| 1629 | Ip6InterfaceDeliverPacket (
|
| 1630 | IN IP6_SERVICE *IpSb,
|
| 1631 | IN IP6_INTERFACE *IpIf
|
| 1632 | )
|
| 1633 | {
|
| 1634 | IP6_PROTOCOL *IpInstance;
|
| 1635 | LIST_ENTRY *Entry;
|
| 1636 |
|
| 1637 | NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
|
| 1638 | IpInstance = NET_LIST_USER_STRUCT (Entry, IP6_PROTOCOL, AddrLink);
|
| 1639 | Ip6InstanceDeliverPacket (IpInstance);
|
| 1640 | }
|
| 1641 | }
|
| 1642 |
|
| 1643 | /**
|
| 1644 | De-multiplex the packet. the packet delivery is processed in two
|
| 1645 | passes. The first pass will enqueue a shared copy of the packet
|
| 1646 | to each IP6 child that accepts the packet. The second pass will
|
| 1647 | deliver a non-shared copy of the packet to each IP6 child that
|
| 1648 | has pending receive requests. Data is copied if more than one
|
| 1649 | child wants to consume the packet, because each IP child needs
|
| 1650 | its own copy of the packet to make changes.
|
| 1651 |
|
| 1652 | @param[in] IpSb The IP6 service instance that received the packet.
|
| 1653 | @param[in] Head The header of the received packet.
|
| 1654 | @param[in] Packet The data of the received packet.
|
| 1655 |
|
| 1656 | @retval EFI_NOT_FOUND No IP child accepts the packet.
|
| 1657 | @retval EFI_SUCCESS The packet is enqueued or delivered to some IP
|
| 1658 | children.
|
| 1659 |
|
| 1660 | **/
|
| 1661 | EFI_STATUS
|
| 1662 | Ip6Demultiplex (
|
| 1663 | IN IP6_SERVICE *IpSb,
|
| 1664 | IN EFI_IP6_HEADER *Head,
|
| 1665 | IN NET_BUF *Packet
|
| 1666 | )
|
| 1667 | {
|
| 1668 |
|
| 1669 | LIST_ENTRY *Entry;
|
| 1670 | IP6_INTERFACE *IpIf;
|
| 1671 | INTN Enqueued;
|
| 1672 |
|
| 1673 | //
|
| 1674 | // Two pass delivery: first, enque a shared copy of the packet
|
| 1675 | // to each instance that accept the packet.
|
| 1676 | //
|
| 1677 | Enqueued = 0;
|
| 1678 |
|
| 1679 | NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
|
| 1680 | IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link);
|
| 1681 |
|
| 1682 | if (IpIf->Configured) {
|
| 1683 | Enqueued += Ip6InterfaceEnquePacket (IpSb, Head, Packet, IpIf);
|
| 1684 | }
|
| 1685 | }
|
| 1686 |
|
| 1687 | //
|
| 1688 | // Second: deliver a duplicate of the packet to each instance.
|
| 1689 | // Release the local reference first, so that the last instance
|
| 1690 | // getting the packet will not copy the data.
|
| 1691 | //
|
| 1692 | NetbufFree (Packet);
|
| 1693 | Packet = NULL;
|
| 1694 |
|
| 1695 | if (Enqueued == 0) {
|
| 1696 | return EFI_NOT_FOUND;
|
| 1697 | }
|
| 1698 |
|
| 1699 | NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
|
| 1700 | IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link);
|
| 1701 |
|
| 1702 | if (IpIf->Configured) {
|
| 1703 | Ip6InterfaceDeliverPacket (IpSb, IpIf);
|
| 1704 | }
|
| 1705 | }
|
| 1706 |
|
| 1707 | return EFI_SUCCESS;
|
| 1708 | }
|
| 1709 |
|
| 1710 | /**
|
| 1711 | Decrease the life of the transmitted packets. If it is
|
| 1712 | decreased to zero, cancel the packet. This function is
|
| 1713 | called by Ip6packetTimerTicking that provides timeout for both the
|
| 1714 | received-but-not-delivered and transmitted-but-not-recycle
|
| 1715 | packets.
|
| 1716 |
|
| 1717 | @param[in] Map The IP6 child's transmit map.
|
| 1718 | @param[in] Item Current transmitted packet.
|
| 1719 | @param[in] Context Not used.
|
| 1720 |
|
| 1721 | @retval EFI_SUCCESS Always returns EFI_SUCCESS.
|
| 1722 |
|
| 1723 | **/
|
| 1724 | EFI_STATUS
|
| 1725 | EFIAPI
|
| 1726 | Ip6SentPacketTicking (
|
| 1727 | IN NET_MAP *Map,
|
| 1728 | IN NET_MAP_ITEM *Item,
|
| 1729 | IN VOID *Context
|
| 1730 | )
|
| 1731 | {
|
| 1732 | IP6_TXTOKEN_WRAP *Wrap;
|
| 1733 |
|
| 1734 | Wrap = (IP6_TXTOKEN_WRAP *) Item->Value;
|
| 1735 | ASSERT (Wrap != NULL);
|
| 1736 |
|
| 1737 | if ((Wrap->Life > 0) && (--Wrap->Life == 0)) {
|
| 1738 | Ip6CancelPacket (Wrap->IpInstance->Interface, Wrap->Packet, EFI_ABORTED);
|
| 1739 | }
|
| 1740 |
|
| 1741 | return EFI_SUCCESS;
|
| 1742 | }
|
| 1743 |
|
| 1744 | /**
|
| 1745 | Timeout the fragments, and the enqueued, and transmitted packets.
|
| 1746 |
|
| 1747 | @param[in] IpSb The IP6 service instance to timeout.
|
| 1748 |
|
| 1749 | **/
|
| 1750 | VOID
|
| 1751 | Ip6PacketTimerTicking (
|
| 1752 | IN IP6_SERVICE *IpSb
|
| 1753 | )
|
| 1754 | {
|
| 1755 | LIST_ENTRY *InstanceEntry;
|
| 1756 | LIST_ENTRY *Entry;
|
| 1757 | LIST_ENTRY *Next;
|
| 1758 | IP6_PROTOCOL *IpInstance;
|
| 1759 | IP6_ASSEMBLE_ENTRY *Assemble;
|
| 1760 | NET_BUF *Packet;
|
| 1761 | IP6_CLIP_INFO *Info;
|
| 1762 | UINT32 Index;
|
| 1763 |
|
| 1764 | //
|
| 1765 | // First, time out the fragments. The packet's life is counting down
|
| 1766 | // once the first-arriving fragment of that packet was received.
|
| 1767 | //
|
| 1768 | for (Index = 0; Index < IP6_ASSEMLE_HASH_SIZE; Index++) {
|
| 1769 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &(IpSb->Assemble.Bucket[Index])) {
|
| 1770 | Assemble = NET_LIST_USER_STRUCT (Entry, IP6_ASSEMBLE_ENTRY, Link);
|
| 1771 |
|
| 1772 | if ((Assemble->Life > 0) && (--Assemble->Life == 0)) {
|
| 1773 | //
|
| 1774 | // If the first fragment (the one with a Fragment Offset of zero)
|
| 1775 | // has been received, an ICMP Time Exceeded - Fragment Reassembly
|
| 1776 | // Time Exceeded message should be sent to the source of that fragment.
|
| 1777 | //
|
| 1778 | if ((Assemble->Packet != NULL) &&
|
| 1779 | !IP6_IS_MULTICAST (&Assemble->Head->DestinationAddress)) {
|
| 1780 | Ip6SendIcmpError (
|
| 1781 | IpSb,
|
| 1782 | Assemble->Packet,
|
| 1783 | NULL,
|
| 1784 | &Assemble->Head->SourceAddress,
|
| 1785 | ICMP_V6_TIME_EXCEEDED,
|
| 1786 | ICMP_V6_TIMEOUT_REASSEMBLE,
|
| 1787 | NULL
|
| 1788 | );
|
| 1789 | }
|
| 1790 |
|
| 1791 | //
|
| 1792 | // If reassembly of a packet is not completed within 60 seconds of
|
| 1793 | // the reception of the first-arriving fragment of that packet, the
|
| 1794 | // reassembly must be abandoned and all the fragments that have been
|
| 1795 | // received for that packet must be discarded.
|
| 1796 | //
|
| 1797 | RemoveEntryList (Entry);
|
| 1798 | Ip6FreeAssembleEntry (Assemble);
|
| 1799 | }
|
| 1800 | }
|
| 1801 | }
|
| 1802 |
|
| 1803 | NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) {
|
| 1804 | IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP6_PROTOCOL, Link);
|
| 1805 |
|
| 1806 | //
|
| 1807 | // Second, time out the assembled packets enqueued on each IP child.
|
| 1808 | //
|
| 1809 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) {
|
| 1810 | Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
|
| 1811 | Info = IP6_GET_CLIP_INFO (Packet);
|
| 1812 |
|
| 1813 | if ((Info->Life > 0) && (--Info->Life == 0)) {
|
| 1814 | RemoveEntryList (Entry);
|
| 1815 | NetbufFree (Packet);
|
| 1816 | }
|
| 1817 | }
|
| 1818 |
|
| 1819 | //
|
| 1820 | // Third: time out the transmitted packets.
|
| 1821 | //
|
| 1822 | NetMapIterate (&IpInstance->TxTokens, Ip6SentPacketTicking, NULL);
|
| 1823 | }
|
| 1824 | }
|
| 1825 |
|