Vishal Bhoj | 82c8071 | 2015-12-15 21:13:33 +0530 | [diff] [blame^] | 1 | /** @file
|
| 2 | The internal functions and routines to transmit the IP6 packet.
|
| 3 |
|
| 4 | Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
|
| 5 |
|
| 6 | This program and the accompanying materials
|
| 7 | are licensed and made available under the terms and conditions of the BSD License
|
| 8 | which accompanies this distribution. The full text of the license may be found at
|
| 9 | http://opensource.org/licenses/bsd-license.php.
|
| 10 |
|
| 11 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| 12 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
| 13 |
|
| 14 | **/
|
| 15 |
|
| 16 | #include "Ip6Impl.h"
|
| 17 |
|
| 18 | UINT32 mIp6Id;
|
| 19 |
|
| 20 | /**
|
| 21 | Output all the available source addresses to a list entry head SourceList. The
|
| 22 | number of source addresses are also returned.
|
| 23 |
|
| 24 | @param[in] IpSb Points to an IP6 service binding instance.
|
| 25 | @param[out] SourceList The list entry head of all source addresses.
|
| 26 | It is the caller's responsiblity to free the
|
| 27 | resources.
|
| 28 | @param[out] SourceCount The number of source addresses.
|
| 29 |
|
| 30 | @retval EFI_SUCCESS The source addresses were copied to a list entry head
|
| 31 | SourceList.
|
| 32 | @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation.
|
| 33 |
|
| 34 | **/
|
| 35 | EFI_STATUS
|
| 36 | Ip6CandidateSource (
|
| 37 | IN IP6_SERVICE *IpSb,
|
| 38 | OUT LIST_ENTRY *SourceList,
|
| 39 | OUT UINT32 *SourceCount
|
| 40 | )
|
| 41 | {
|
| 42 | IP6_INTERFACE *IpIf;
|
| 43 | LIST_ENTRY *Entry;
|
| 44 | LIST_ENTRY *Entry2;
|
| 45 | IP6_ADDRESS_INFO *AddrInfo;
|
| 46 | IP6_ADDRESS_INFO *Copy;
|
| 47 |
|
| 48 | *SourceCount = 0;
|
| 49 |
|
| 50 | if (IpSb->LinkLocalOk) {
|
| 51 | Copy = AllocatePool (sizeof (IP6_ADDRESS_INFO));
|
| 52 | if (Copy == NULL) {
|
| 53 | return EFI_OUT_OF_RESOURCES;
|
| 54 | }
|
| 55 |
|
| 56 | Copy->Signature = IP6_ADDR_INFO_SIGNATURE;
|
| 57 | IP6_COPY_ADDRESS (&Copy->Address, &IpSb->LinkLocalAddr);
|
| 58 | Copy->IsAnycast = FALSE;
|
| 59 | Copy->PrefixLength = IP6_LINK_LOCAL_PREFIX_LENGTH;
|
| 60 | Copy->ValidLifetime = (UINT32) IP6_INFINIT_LIFETIME;
|
| 61 | Copy->PreferredLifetime = (UINT32) IP6_INFINIT_LIFETIME;
|
| 62 |
|
| 63 | InsertTailList (SourceList, &Copy->Link);
|
| 64 | (*SourceCount)++;
|
| 65 | }
|
| 66 |
|
| 67 | NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
|
| 68 | IpIf = NET_LIST_USER_STRUCT (Entry, IP6_INTERFACE, Link);
|
| 69 |
|
| 70 | NET_LIST_FOR_EACH (Entry2, &IpIf->AddressList) {
|
| 71 | AddrInfo = NET_LIST_USER_STRUCT_S (Entry2, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
|
| 72 |
|
| 73 | if (AddrInfo->IsAnycast) {
|
| 74 | //
|
| 75 | // Never use an anycast address.
|
| 76 | //
|
| 77 | continue;
|
| 78 | }
|
| 79 |
|
| 80 | Copy = AllocateCopyPool (sizeof (IP6_ADDRESS_INFO), AddrInfo);
|
| 81 | if (Copy == NULL) {
|
| 82 | return EFI_OUT_OF_RESOURCES;
|
| 83 | }
|
| 84 |
|
| 85 | InsertTailList (SourceList, &Copy->Link);
|
| 86 | (*SourceCount)++;
|
| 87 | }
|
| 88 | }
|
| 89 |
|
| 90 | return EFI_SUCCESS;
|
| 91 | }
|
| 92 |
|
| 93 | /**
|
| 94 | Caculate how many bits are the same between two IPv6 addresses.
|
| 95 |
|
| 96 | @param[in] AddressA Points to an IPv6 address.
|
| 97 | @param[in] AddressB Points to another IPv6 address.
|
| 98 |
|
| 99 | @return The common bits of the AddressA and AddressB.
|
| 100 |
|
| 101 | **/
|
| 102 | UINT8
|
| 103 | Ip6CommonPrefixLen (
|
| 104 | IN EFI_IPv6_ADDRESS *AddressA,
|
| 105 | IN EFI_IPv6_ADDRESS *AddressB
|
| 106 | )
|
| 107 | {
|
| 108 | UINT8 Count;
|
| 109 | UINT8 Index;
|
| 110 | UINT8 ByteA;
|
| 111 | UINT8 ByteB;
|
| 112 | UINT8 NumBits;
|
| 113 |
|
| 114 | Count = 0;
|
| 115 | Index = 0;
|
| 116 |
|
| 117 | while (Index < 16) {
|
| 118 | ByteA = AddressA->Addr[Index];
|
| 119 | ByteB = AddressB->Addr[Index];
|
| 120 |
|
| 121 | if (ByteA == ByteB) {
|
| 122 | Count += 8;
|
| 123 | Index++;
|
| 124 | continue;
|
| 125 | }
|
| 126 |
|
| 127 | //
|
| 128 | // Check how many bits are common between the two bytes.
|
| 129 | //
|
| 130 | NumBits = 8;
|
| 131 | ByteA = (UINT8) (ByteA ^ ByteB);
|
| 132 |
|
| 133 | while (ByteA != 0) {
|
| 134 | NumBits--;
|
| 135 | ByteA = (UINT8) (ByteA >> 1);
|
| 136 | }
|
| 137 |
|
| 138 | return (UINT8) (Count + NumBits);
|
| 139 | }
|
| 140 |
|
| 141 | return Count;
|
| 142 | }
|
| 143 |
|
| 144 | /**
|
| 145 | Output all the available source addresses to a list entry head SourceList. The
|
| 146 | number of source addresses are also returned.
|
| 147 |
|
| 148 | @param[in] IpSb Points to a IP6 service binding instance.
|
| 149 | @param[in] Destination The IPv6 destination address.
|
| 150 | @param[out] Source The selected IPv6 source address according to
|
| 151 | the Destination.
|
| 152 |
|
| 153 | @retval EFI_SUCCESS The source addresses were copied to a list entry
|
| 154 | head SourceList.
|
| 155 | @retval EFI_NO_MAPPING The IPv6 stack is not auto configured.
|
| 156 |
|
| 157 | **/
|
| 158 | EFI_STATUS
|
| 159 | Ip6SelectSourceAddress (
|
| 160 | IN IP6_SERVICE *IpSb,
|
| 161 | IN EFI_IPv6_ADDRESS *Destination,
|
| 162 | OUT EFI_IPv6_ADDRESS *Source
|
| 163 | )
|
| 164 | {
|
| 165 | EFI_STATUS Status;
|
| 166 | LIST_ENTRY SourceList;
|
| 167 | UINT32 SourceCount;
|
| 168 | UINT8 ScopeD;
|
| 169 | LIST_ENTRY *Entry;
|
| 170 | IP6_ADDRESS_INFO *AddrInfo;
|
| 171 | IP6_PREFIX_LIST_ENTRY *Prefix;
|
| 172 | UINT8 LastCommonLength;
|
| 173 | UINT8 CurrentCommonLength;
|
| 174 | EFI_IPv6_ADDRESS *TmpAddress;
|
| 175 |
|
| 176 | NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
|
| 177 |
|
| 178 | Status = EFI_SUCCESS;
|
| 179 | InitializeListHead (&SourceList);
|
| 180 |
|
| 181 | if (!IpSb->LinkLocalOk) {
|
| 182 | return EFI_NO_MAPPING;
|
| 183 | }
|
| 184 |
|
| 185 | //
|
| 186 | // Rule 1: Prefer same address.
|
| 187 | //
|
| 188 | if (Ip6IsOneOfSetAddress (IpSb, Destination, NULL, NULL)) {
|
| 189 | IP6_COPY_ADDRESS (Source, Destination);
|
| 190 | goto Exit;
|
| 191 | }
|
| 192 |
|
| 193 | //
|
| 194 | // Rule 2: Prefer appropriate scope.
|
| 195 | //
|
| 196 | if (IP6_IS_MULTICAST (Destination)) {
|
| 197 | ScopeD = (UINT8) (Destination->Addr[1] >> 4);
|
| 198 | } else if (NetIp6IsLinkLocalAddr (Destination)) {
|
| 199 | ScopeD = 0x2;
|
| 200 | } else {
|
| 201 | ScopeD = 0xE;
|
| 202 | }
|
| 203 |
|
| 204 | if (ScopeD <= 0x2) {
|
| 205 | //
|
| 206 | // Return the link-local address if it exists
|
| 207 | // One IP6_SERVICE only has one link-local address.
|
| 208 | //
|
| 209 | IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
|
| 210 | goto Exit;
|
| 211 | }
|
| 212 |
|
| 213 | //
|
| 214 | // All candidate source addresses are global unicast address.
|
| 215 | //
|
| 216 | Ip6CandidateSource (IpSb, &SourceList, &SourceCount);
|
| 217 |
|
| 218 | if (SourceCount == 0) {
|
| 219 | Status = EFI_NO_MAPPING;
|
| 220 | goto Exit;
|
| 221 | }
|
| 222 |
|
| 223 | IP6_COPY_ADDRESS (Source, &IpSb->LinkLocalAddr);
|
| 224 |
|
| 225 | if (SourceCount == 1) {
|
| 226 | goto Exit;
|
| 227 | }
|
| 228 |
|
| 229 | //
|
| 230 | // Rule 3: Avoid deprecated addresses.
|
| 231 | // TODO: check the "deprecated" state of the stateful configured address
|
| 232 | //
|
| 233 | NET_LIST_FOR_EACH (Entry, &IpSb->AutonomousPrefix) {
|
| 234 | Prefix = NET_LIST_USER_STRUCT (Entry, IP6_PREFIX_LIST_ENTRY, Link);
|
| 235 | if (Prefix->PreferredLifetime == 0) {
|
| 236 | Ip6RemoveAddr (NULL, &SourceList, &SourceCount, &Prefix->Prefix, Prefix->PrefixLength);
|
| 237 |
|
| 238 | if (SourceCount == 1) {
|
| 239 | goto Exit;
|
| 240 | }
|
| 241 | }
|
| 242 | }
|
| 243 |
|
| 244 | //
|
| 245 | // TODO: Rule 4: Prefer home addresses.
|
| 246 | // TODO: Rule 5: Prefer outgoing interface.
|
| 247 | // TODO: Rule 6: Prefer matching label.
|
| 248 | // TODO: Rule 7: Prefer public addresses.
|
| 249 | //
|
| 250 |
|
| 251 | //
|
| 252 | // Rule 8: Use longest matching prefix.
|
| 253 | //
|
| 254 | LastCommonLength = Ip6CommonPrefixLen (Source, Destination);
|
| 255 | TmpAddress = NULL;
|
| 256 |
|
| 257 | for (Entry = SourceList.ForwardLink; Entry != &SourceList; Entry = Entry->ForwardLink) {
|
| 258 | AddrInfo = NET_LIST_USER_STRUCT_S (Entry, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE);
|
| 259 |
|
| 260 | CurrentCommonLength = Ip6CommonPrefixLen (&AddrInfo->Address, Destination);
|
| 261 | if (CurrentCommonLength > LastCommonLength) {
|
| 262 | LastCommonLength = CurrentCommonLength;
|
| 263 | TmpAddress = &AddrInfo->Address;
|
| 264 | }
|
| 265 | }
|
| 266 |
|
| 267 | if (TmpAddress != NULL) {
|
| 268 | IP6_COPY_ADDRESS (Source, TmpAddress);
|
| 269 | }
|
| 270 |
|
| 271 | Exit:
|
| 272 |
|
| 273 | Ip6RemoveAddr (NULL, &SourceList, &SourceCount, NULL, 0);
|
| 274 |
|
| 275 | return Status;
|
| 276 | }
|
| 277 |
|
| 278 | /**
|
| 279 | Select an interface to send the packet generated in the IP6 driver
|
| 280 | itself: that is, not by the requests of the IP6 child's consumer. Such
|
| 281 | packets include the ICMPv6 echo replies and other ICMPv6 error packets.
|
| 282 |
|
| 283 | @param[in] IpSb The IP4 service that wants to send the packets.
|
| 284 | @param[in] Destination The destination of the packet.
|
| 285 | @param[in, out] Source The source of the packet.
|
| 286 |
|
| 287 | @return NULL if no proper interface is found, otherwise, the interface that
|
| 288 | can be used to send the system packet from.
|
| 289 |
|
| 290 | **/
|
| 291 | IP6_INTERFACE *
|
| 292 | Ip6SelectInterface (
|
| 293 | IN IP6_SERVICE *IpSb,
|
| 294 | IN EFI_IPv6_ADDRESS *Destination,
|
| 295 | IN OUT EFI_IPv6_ADDRESS *Source
|
| 296 | )
|
| 297 | {
|
| 298 | EFI_STATUS Status;
|
| 299 | EFI_IPv6_ADDRESS SelectedSource;
|
| 300 | IP6_INTERFACE *IpIf;
|
| 301 | BOOLEAN Exist;
|
| 302 |
|
| 303 | NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
|
| 304 | ASSERT (Destination != NULL && Source != NULL);
|
| 305 |
|
| 306 | if (NetIp6IsUnspecifiedAddr (Destination)) {
|
| 307 | return NULL;
|
| 308 | }
|
| 309 |
|
| 310 | if (!NetIp6IsUnspecifiedAddr (Source)) {
|
| 311 | Exist = Ip6IsOneOfSetAddress (IpSb, Source, &IpIf, NULL);
|
| 312 | ASSERT (Exist);
|
| 313 |
|
| 314 | return IpIf;
|
| 315 | }
|
| 316 |
|
| 317 | //
|
| 318 | // If source is unspecified, select a source according to the destination.
|
| 319 | //
|
| 320 | Status = Ip6SelectSourceAddress (IpSb, Destination, &SelectedSource);
|
| 321 | if (EFI_ERROR (Status)) {
|
| 322 | return IpSb->DefaultInterface;
|
| 323 | }
|
| 324 |
|
| 325 | Ip6IsOneOfSetAddress (IpSb, &SelectedSource, &IpIf, NULL);
|
| 326 | IP6_COPY_ADDRESS (Source, &SelectedSource);
|
| 327 |
|
| 328 | return IpIf;
|
| 329 | }
|
| 330 |
|
| 331 | /**
|
| 332 | The default callback function for the system generated packet.
|
| 333 | It will free the packet.
|
| 334 |
|
| 335 | @param[in] Packet The packet that transmitted.
|
| 336 | @param[in] IoStatus The result of the transmission, succeeded or failed.
|
| 337 | @param[in] LinkFlag Not used when transmitted. Check IP6_FRAME_CALLBACK
|
| 338 | for reference.
|
| 339 | @param[in] Context The context provided by us.
|
| 340 |
|
| 341 | **/
|
| 342 | VOID
|
| 343 | Ip6SysPacketSent (
|
| 344 | NET_BUF *Packet,
|
| 345 | EFI_STATUS IoStatus,
|
| 346 | UINT32 LinkFlag,
|
| 347 | VOID *Context
|
| 348 | )
|
| 349 | {
|
| 350 | NetbufFree (Packet);
|
| 351 | Packet = NULL;
|
| 352 | }
|
| 353 |
|
| 354 | /**
|
| 355 | Prefix an IP6 basic head and unfragmentable extension headers and a fragment header
|
| 356 | to the Packet. Used for IP6 fragmentation.
|
| 357 |
|
| 358 | @param[in] IpSb The IP6 service instance to transmit the packet.
|
| 359 | @param[in] Packet The packet to prefix the IP6 header to.
|
| 360 | @param[in] Head The caller supplied header.
|
| 361 | @param[in] FragmentOffset The fragment offset of the data following the header.
|
| 362 | @param[in] ExtHdrs The length of the original extension header.
|
| 363 | @param[in] ExtHdrsLen The length of the extension headers.
|
| 364 | @param[in] LastHeader The pointer of next header of last extension header.
|
| 365 | @param[in] HeadLen The length of the unfragmented part of the IP6 header.
|
| 366 |
|
| 367 | @retval EFI_BAD_BUFFER_SIZE There is no enought room in the head space of
|
| 368 | Packet.
|
| 369 | @retval EFI_SUCCESS The operation performed successfully.
|
| 370 |
|
| 371 | **/
|
| 372 | EFI_STATUS
|
| 373 | Ip6PrependHead (
|
| 374 | IN IP6_SERVICE *IpSb,
|
| 375 | IN NET_BUF *Packet,
|
| 376 | IN EFI_IP6_HEADER *Head,
|
| 377 | IN UINT16 FragmentOffset,
|
| 378 | IN UINT8 *ExtHdrs,
|
| 379 | IN UINT32 ExtHdrsLen,
|
| 380 | IN UINT8 LastHeader,
|
| 381 | IN UINT32 HeadLen
|
| 382 | )
|
| 383 | {
|
| 384 | UINT32 Len;
|
| 385 | UINT32 UnFragExtHdrsLen;
|
| 386 | EFI_IP6_HEADER *PacketHead;
|
| 387 | UINT8 *UpdatedExtHdrs;
|
| 388 | EFI_STATUS Status;
|
| 389 | UINT8 NextHeader;
|
| 390 |
|
| 391 | UpdatedExtHdrs = NULL;
|
| 392 |
|
| 393 | //
|
| 394 | // HeadLen is the length of the fixed part of the sequences of fragments, i.e.
|
| 395 | // the unfragment part.
|
| 396 | //
|
| 397 | PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
|
| 398 | if (PacketHead == NULL) {
|
| 399 | return EFI_BAD_BUFFER_SIZE;
|
| 400 | }
|
| 401 |
|
| 402 | //
|
| 403 | // Set the head up, convert the host byte order to network byte order
|
| 404 | //
|
| 405 | CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
|
| 406 | PacketHead->PayloadLength = HTONS ((UINT16) (Packet->TotalSize - sizeof (EFI_IP6_HEADER)));
|
| 407 | Packet->Ip.Ip6 = PacketHead;
|
| 408 |
|
| 409 | Len = HeadLen - sizeof (EFI_IP6_HEADER);
|
| 410 | UnFragExtHdrsLen = Len - sizeof (IP6_FRAGMENT_HEADER);
|
| 411 |
|
| 412 | if (UnFragExtHdrsLen == 0) {
|
| 413 | PacketHead->NextHeader = IP6_FRAGMENT;
|
| 414 | }
|
| 415 |
|
| 416 | //
|
| 417 | // Append the extension headers: firstly copy the unfragmentable headers, then append
|
| 418 | // fragmentation header.
|
| 419 | //
|
| 420 | if ((FragmentOffset & IP6_FRAGMENT_OFFSET_MASK) == 0) {
|
| 421 | NextHeader = Head->NextHeader;
|
| 422 | } else {
|
| 423 | NextHeader = PacketHead->NextHeader;
|
| 424 | }
|
| 425 |
|
| 426 | Status = Ip6FillFragmentHeader (
|
| 427 | IpSb,
|
| 428 | NextHeader,
|
| 429 | LastHeader,
|
| 430 | ExtHdrs,
|
| 431 | ExtHdrsLen,
|
| 432 | FragmentOffset,
|
| 433 | &UpdatedExtHdrs
|
| 434 | );
|
| 435 | if (EFI_ERROR (Status)) {
|
| 436 | return Status;
|
| 437 | }
|
| 438 |
|
| 439 | CopyMem (
|
| 440 | (UINT8 *) (PacketHead + 1),
|
| 441 | UpdatedExtHdrs,
|
| 442 | UnFragExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER)
|
| 443 | );
|
| 444 |
|
| 445 | FreePool (UpdatedExtHdrs);
|
| 446 | return EFI_SUCCESS;
|
| 447 | }
|
| 448 |
|
| 449 | /**
|
| 450 | Transmit an IP6 packet. The packet comes either from the IP6
|
| 451 | child's consumer (IpInstance != NULL) or the IP6 driver itself
|
| 452 | (IpInstance == NULL). It will route the packet, fragment it,
|
| 453 | then transmit all the fragments through an interface.
|
| 454 |
|
| 455 | @param[in] IpSb The IP6 service instance to transmit the packet.
|
| 456 | @param[in] Interface The IP6 interface to transmit the packet. Ignored
|
| 457 | if NULL.
|
| 458 | @param[in] IpInstance The IP6 child that issues the transmission. It is
|
| 459 | NULL if the packet is from the system.
|
| 460 | @param[in] Packet The user data to send, excluding the IP header.
|
| 461 | @param[in] Head The caller supplied header. The caller should set
|
| 462 | the following header fields: NextHeader, HopLimit,
|
| 463 | Src, Dest, FlowLabel, PayloadLength. This function
|
| 464 | will fill in the Ver, TrafficClass.
|
| 465 | @param[in] ExtHdrs The extension headers to append to the IPv6 basic
|
| 466 | header.
|
| 467 | @param[in] ExtHdrsLen The length of the extension headers.
|
| 468 | @param[in] Callback The callback function to issue when transmission
|
| 469 | completed.
|
| 470 | @param[in] Context The opaque context for the callback.
|
| 471 |
|
| 472 | @retval EFI_INVALID_PARAMETER Any input parameter or the packet is invalid.
|
| 473 | @retval EFI_NO_MAPPING There is no interface to the destination.
|
| 474 | @retval EFI_NOT_FOUND There is no route to the destination.
|
| 475 | @retval EFI_SUCCESS The packet successfully transmitted.
|
| 476 | @retval EFI_OUT_OF_RESOURCES Failed to finish the operation due to lack of
|
| 477 | resources.
|
| 478 | @retval Others Failed to transmit the packet.
|
| 479 |
|
| 480 | **/
|
| 481 | EFI_STATUS
|
| 482 | Ip6Output (
|
| 483 | IN IP6_SERVICE *IpSb,
|
| 484 | IN IP6_INTERFACE *Interface OPTIONAL,
|
| 485 | IN IP6_PROTOCOL *IpInstance OPTIONAL,
|
| 486 | IN NET_BUF *Packet,
|
| 487 | IN EFI_IP6_HEADER *Head,
|
| 488 | IN UINT8 *ExtHdrs,
|
| 489 | IN UINT32 ExtHdrsLen,
|
| 490 | IN IP6_FRAME_CALLBACK Callback,
|
| 491 | IN VOID *Context
|
| 492 | )
|
| 493 | {
|
| 494 | IP6_INTERFACE *IpIf;
|
| 495 | EFI_IPv6_ADDRESS NextHop;
|
| 496 | IP6_NEIGHBOR_ENTRY *NeighborCache;
|
| 497 | IP6_ROUTE_CACHE_ENTRY *RouteCache;
|
| 498 | EFI_STATUS Status;
|
| 499 | UINT32 Mtu;
|
| 500 | UINT32 HeadLen;
|
| 501 | UINT16 FragmentOffset;
|
| 502 | UINT8 *LastHeader;
|
| 503 | UINT32 UnFragmentLen;
|
| 504 | UINT32 UnFragmentHdrsLen;
|
| 505 | UINT32 FragmentHdrsLen;
|
| 506 | UINT16 *Checksum;
|
| 507 | UINT16 PacketChecksum;
|
| 508 | UINT16 PseudoChecksum;
|
| 509 | UINT32 Index;
|
| 510 | UINT32 PacketLen;
|
| 511 | UINT32 RealExtLen;
|
| 512 | UINT32 Offset;
|
| 513 | NET_BUF *TmpPacket;
|
| 514 | NET_BUF *Fragment;
|
| 515 | UINT32 Num;
|
| 516 | UINT8 *Buf;
|
| 517 | EFI_IP6_HEADER *PacketHead;
|
| 518 | IP6_ICMP_HEAD *IcmpHead;
|
| 519 | IP6_TXTOKEN_WRAP *Wrap;
|
| 520 | IP6_ROUTE_ENTRY *RouteEntry;
|
| 521 | UINT8 *UpdatedExtHdrs;
|
| 522 | UINT8 NextHeader;
|
| 523 | UINT8 LastHeaderBackup;
|
| 524 | BOOLEAN FragmentHeadInserted;
|
| 525 | UINT8 *ExtHdrsBackup;
|
| 526 | UINT8 NextHeaderBackup;
|
| 527 | EFI_IPv6_ADDRESS Source;
|
| 528 | EFI_IPv6_ADDRESS Destination;
|
| 529 |
|
| 530 | NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
|
| 531 |
|
| 532 | //
|
| 533 | // RFC2460: Each extension header is an integer multiple of 8 octets long,
|
| 534 | // in order to retain 8-octet alignment for subsequent headers.
|
| 535 | //
|
| 536 | if ((ExtHdrsLen & 0x7) != 0) {
|
| 537 | return EFI_INVALID_PARAMETER;
|
| 538 | }
|
| 539 |
|
| 540 | LastHeader = NULL;
|
| 541 |
|
| 542 | Ip6IsExtsValid (
|
| 543 | NULL,
|
| 544 | NULL,
|
| 545 | &Head->NextHeader,
|
| 546 | ExtHdrs,
|
| 547 | ExtHdrsLen,
|
| 548 | FALSE,
|
| 549 | NULL,
|
| 550 | &LastHeader,
|
| 551 | NULL,
|
| 552 | NULL,
|
| 553 | NULL
|
| 554 | );
|
| 555 |
|
| 556 | //
|
| 557 | // Select an interface/source for system packet, application
|
| 558 | // should select them itself.
|
| 559 | //
|
| 560 | IpIf = Interface;
|
| 561 | if (IpIf == NULL) {
|
| 562 | //
|
| 563 | // IpInstance->Interface is NULL when IpInstance is configured with both stationaddress
|
| 564 | // and destinationaddress is unspecified.
|
| 565 | //
|
| 566 | if (IpInstance == NULL || IpInstance->Interface == NULL) {
|
| 567 | IpIf = Ip6SelectInterface (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
|
| 568 | if (IpInstance != NULL) {
|
| 569 | IpInstance->Interface = IpIf;
|
| 570 | }
|
| 571 | } else {
|
| 572 | IpIf = IpInstance->Interface;
|
| 573 | }
|
| 574 | }
|
| 575 |
|
| 576 | if (IpIf == NULL) {
|
| 577 | return EFI_NO_MAPPING;
|
| 578 | }
|
| 579 |
|
| 580 | //
|
| 581 | // Update the common field in Head here.
|
| 582 | //
|
| 583 | Head->Version = 6;
|
| 584 | Head->TrafficClassL = 0;
|
| 585 | Head->TrafficClassH = 0;
|
| 586 |
|
| 587 | Checksum = NULL;
|
| 588 | NextHeader = *LastHeader;
|
| 589 |
|
| 590 | switch (NextHeader) {
|
| 591 | case EFI_IP_PROTO_UDP:
|
| 592 | Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, NULL);
|
| 593 | ASSERT (Packet->Udp != NULL);
|
| 594 | if (Packet->Udp->Checksum == 0) {
|
| 595 | Checksum = &Packet->Udp->Checksum;
|
| 596 | }
|
| 597 | break;
|
| 598 |
|
| 599 | case EFI_IP_PROTO_TCP:
|
| 600 | Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, NULL);
|
| 601 | ASSERT (Packet->Tcp != NULL);
|
| 602 | if (Packet->Tcp->Checksum == 0) {
|
| 603 | Checksum = &Packet->Tcp->Checksum;
|
| 604 | }
|
| 605 | break;
|
| 606 |
|
| 607 | case IP6_ICMP:
|
| 608 | //
|
| 609 | // Don't send ICMP packet to an IPv6 anycast address.
|
| 610 | //
|
| 611 | if (Ip6IsAnycast (IpSb, &Head->DestinationAddress)) {
|
| 612 | return EFI_INVALID_PARAMETER;
|
| 613 | }
|
| 614 |
|
| 615 | IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
|
| 616 | ASSERT (IcmpHead != NULL);
|
| 617 | if (IcmpHead->Checksum == 0) {
|
| 618 | Checksum = &IcmpHead->Checksum;
|
| 619 | }
|
| 620 | break;
|
| 621 |
|
| 622 | default:
|
| 623 | break;
|
| 624 | }
|
| 625 |
|
| 626 | if (Checksum != NULL) {
|
| 627 | //
|
| 628 | // Calculate the checksum for upper layer protocol if it is not calculated due to lack of
|
| 629 | // IPv6 source address.
|
| 630 | //
|
| 631 | PacketChecksum = NetbufChecksum (Packet);
|
| 632 | PseudoChecksum = NetIp6PseudoHeadChecksum (
|
| 633 | &Head->SourceAddress,
|
| 634 | &Head->DestinationAddress,
|
| 635 | NextHeader,
|
| 636 | Packet->TotalSize
|
| 637 | );
|
| 638 | *Checksum = (UINT16) ~NetAddChecksum (PacketChecksum, PseudoChecksum);
|
| 639 | }
|
| 640 |
|
| 641 | Status = Ip6IpSecProcessPacket (
|
| 642 | IpSb,
|
| 643 | &Head,
|
| 644 | LastHeader, // no need get the lasthead value for output
|
| 645 | &Packet,
|
| 646 | &ExtHdrs,
|
| 647 | &ExtHdrsLen,
|
| 648 | EfiIPsecOutBound,
|
| 649 | Context
|
| 650 | );
|
| 651 |
|
| 652 | if (EFI_ERROR(Status)) {
|
| 653 | return Status;
|
| 654 | }
|
| 655 |
|
| 656 | LastHeader = NULL;
|
| 657 | //
|
| 658 | // Check incoming parameters.
|
| 659 | //
|
| 660 | if (!Ip6IsExtsValid (
|
| 661 | IpSb,
|
| 662 | Packet,
|
| 663 | &Head->NextHeader,
|
| 664 | ExtHdrs,
|
| 665 | ExtHdrsLen,
|
| 666 | FALSE,
|
| 667 | NULL,
|
| 668 | &LastHeader,
|
| 669 | &RealExtLen,
|
| 670 | &UnFragmentHdrsLen,
|
| 671 | NULL
|
| 672 | )) {
|
| 673 | return EFI_INVALID_PARAMETER;
|
| 674 | }
|
| 675 |
|
| 676 | if ((RealExtLen & 0x7) != 0) {
|
| 677 | return EFI_INVALID_PARAMETER;
|
| 678 | }
|
| 679 |
|
| 680 | LastHeaderBackup = *LastHeader;
|
| 681 |
|
| 682 | //
|
| 683 | // Perform next hop determination:
|
| 684 | // For multicast packets, the next-hop is always the destination address and
|
| 685 | // is considered to be on-link.
|
| 686 | //
|
| 687 | if (IP6_IS_MULTICAST (&Head->DestinationAddress)) {
|
| 688 | IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
|
| 689 | } else {
|
| 690 | //
|
| 691 | // For unicast packets, use a combination of the Destination Cache, the Prefix List
|
| 692 | // and the Default Router List to determine the IP address of the appropriate next hop.
|
| 693 | //
|
| 694 |
|
| 695 | NeighborCache = Ip6FindNeighborEntry (IpSb, &Head->DestinationAddress);
|
| 696 | if (NeighborCache != NULL) {
|
| 697 | //
|
| 698 | // Hit Neighbor Cache.
|
| 699 | //
|
| 700 | IP6_COPY_ADDRESS (&NextHop, &Head->DestinationAddress);
|
| 701 | } else {
|
| 702 | //
|
| 703 | // Not in Neighbor Cache, check Router cache
|
| 704 | //
|
| 705 | RouteCache = Ip6Route (IpSb, &Head->DestinationAddress, &Head->SourceAddress);
|
| 706 | if (RouteCache == NULL) {
|
| 707 | return EFI_NOT_FOUND;
|
| 708 | }
|
| 709 |
|
| 710 | IP6_COPY_ADDRESS (&NextHop, &RouteCache->NextHop);
|
| 711 | Ip6FreeRouteCacheEntry (RouteCache);
|
| 712 | }
|
| 713 | }
|
| 714 |
|
| 715 | //
|
| 716 | // Examines the Neighbor Cache for link-layer information about that neighbor.
|
| 717 | // DO NOT create neighbor cache if neighbor is itself - when reporting ICMP error.
|
| 718 | //
|
| 719 | if (!IP6_IS_MULTICAST (&NextHop) && !EFI_IP6_EQUAL (&Head->DestinationAddress, &Head->SourceAddress)) {
|
| 720 | NeighborCache = Ip6FindNeighborEntry (IpSb, &NextHop);
|
| 721 | if (NeighborCache == NULL) {
|
| 722 | NeighborCache = Ip6CreateNeighborEntry (IpSb, Ip6OnArpResolved, &NextHop, NULL);
|
| 723 |
|
| 724 | if (NeighborCache == NULL) {
|
| 725 | return EFI_OUT_OF_RESOURCES;
|
| 726 | }
|
| 727 |
|
| 728 | //
|
| 729 | // Send out multicast neighbor solicitation for address resolution immediatly.
|
| 730 | //
|
| 731 | Ip6CreateSNMulticastAddr (&NeighborCache->Neighbor, &Destination);
|
| 732 | Status = Ip6SelectSourceAddress (IpSb, &NeighborCache->Neighbor, &Source);
|
| 733 | if (EFI_ERROR (Status)) {
|
| 734 | return Status;
|
| 735 | }
|
| 736 |
|
| 737 | Status = Ip6SendNeighborSolicit (
|
| 738 | IpSb,
|
| 739 | &Source,
|
| 740 | &Destination,
|
| 741 | &NeighborCache->Neighbor,
|
| 742 | &IpSb->SnpMode.CurrentAddress
|
| 743 | );
|
| 744 | if (EFI_ERROR (Status)) {
|
| 745 | return Status;
|
| 746 | }
|
| 747 |
|
| 748 | --NeighborCache->Transmit;
|
| 749 | NeighborCache->Ticks = IP6_GET_TICKS (IpSb->RetransTimer) + 1;
|
| 750 | }
|
| 751 |
|
| 752 | NeighborCache->Interface = IpIf;
|
| 753 | }
|
| 754 |
|
| 755 | UpdatedExtHdrs = NULL;
|
| 756 | ExtHdrsBackup = NULL;
|
| 757 | NextHeaderBackup = 0;
|
| 758 | FragmentHeadInserted = FALSE;
|
| 759 |
|
| 760 | //
|
| 761 | // Check whether we received Packet Too Big message for the packet sent to the
|
| 762 | // Destination. If yes include a Fragment Header in the subsequent packets.
|
| 763 | //
|
| 764 | RouteEntry = Ip6FindRouteEntry (
|
| 765 | IpSb->RouteTable,
|
| 766 | &Head->DestinationAddress,
|
| 767 | NULL
|
| 768 | );
|
| 769 | if (RouteEntry != NULL) {
|
| 770 | if ((RouteEntry->Flag & IP6_PACKET_TOO_BIG) == IP6_PACKET_TOO_BIG) {
|
| 771 |
|
| 772 | //
|
| 773 | // FragmentHead is inserted after Hop-by-Hop Options header, Destination
|
| 774 | // Options header (first occur), Routing header, and before Fragment header,
|
| 775 | // Authentication header, Encapsulating Security Payload header, and
|
| 776 | // Destination Options header (last occur), and upper-layer header.
|
| 777 | //
|
| 778 | Status = Ip6FillFragmentHeader (
|
| 779 | IpSb,
|
| 780 | Head->NextHeader,
|
| 781 | LastHeaderBackup,
|
| 782 | ExtHdrs,
|
| 783 | ExtHdrsLen,
|
| 784 | 0,
|
| 785 | &UpdatedExtHdrs
|
| 786 | );
|
| 787 | if (EFI_ERROR (Status)) {
|
| 788 | return Status;
|
| 789 | }
|
| 790 |
|
| 791 | if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
|
| 792 | NextHeaderBackup = Head->NextHeader;
|
| 793 | Head->NextHeader = IP6_FRAGMENT;
|
| 794 | }
|
| 795 |
|
| 796 | ExtHdrsBackup = ExtHdrs;
|
| 797 | ExtHdrs = UpdatedExtHdrs;
|
| 798 | ExtHdrsLen = ExtHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
|
| 799 | RealExtLen = RealExtLen + sizeof (IP6_FRAGMENT_HEADER);
|
| 800 |
|
| 801 | mIp6Id++;
|
| 802 |
|
| 803 | FragmentHeadInserted = TRUE;
|
| 804 | }
|
| 805 |
|
| 806 | Ip6FreeRouteEntry (RouteEntry);
|
| 807 | }
|
| 808 |
|
| 809 | //
|
| 810 | // OK, selected the source and route, fragment the packet then send
|
| 811 | // them. Tag each fragment other than the first one as spawn from it.
|
| 812 | // Each extension header is an integar multiple of 8 octets long, in
|
| 813 | // order to retain 8-octet alignment for subsequent headers.
|
| 814 | //
|
| 815 | Mtu = IpSb->MaxPacketSize + sizeof (EFI_IP6_HEADER);
|
| 816 | HeadLen = sizeof (EFI_IP6_HEADER) + RealExtLen;
|
| 817 |
|
| 818 | if (Packet->TotalSize + HeadLen > Mtu) {
|
| 819 | //
|
| 820 | // Remove the inserted Fragment Header since we need fragment the packet.
|
| 821 | //
|
| 822 | if (FragmentHeadInserted) {
|
| 823 | ExtHdrs = ExtHdrsBackup;
|
| 824 | ExtHdrsLen = ExtHdrsLen - sizeof (IP6_FRAGMENT_HEADER);
|
| 825 |
|
| 826 | if ((ExtHdrs == NULL) && (ExtHdrsLen == 0)) {
|
| 827 | Head->NextHeader = NextHeaderBackup;
|
| 828 | }
|
| 829 | }
|
| 830 |
|
| 831 | FragmentHdrsLen = ExtHdrsLen - UnFragmentHdrsLen;
|
| 832 |
|
| 833 | //
|
| 834 | // The packet is beyond the maximum which can be described through the
|
| 835 | // fragment offset field in Fragment header.
|
| 836 | //
|
| 837 | if ((((Packet->TotalSize + FragmentHdrsLen) >> 3) & (~0x1fff)) != 0) {
|
| 838 | Status = EFI_BAD_BUFFER_SIZE;
|
| 839 | goto Error;
|
| 840 | }
|
| 841 |
|
| 842 | if (FragmentHdrsLen != 0) {
|
| 843 | //
|
| 844 | // Append the fragmentable extension hdrs before the upper layer payload
|
| 845 | // to form a new NET_BUF. This NET_BUF contains all the buffer which will
|
| 846 | // be fragmented below.
|
| 847 | //
|
| 848 | TmpPacket = NetbufGetFragment (Packet, 0, Packet->TotalSize, FragmentHdrsLen);
|
| 849 | ASSERT (TmpPacket != NULL);
|
| 850 |
|
| 851 | //
|
| 852 | // Allocate the space to contain the fragmentable hdrs and copy the data.
|
| 853 | //
|
| 854 | Buf = NetbufAllocSpace (TmpPacket, FragmentHdrsLen, TRUE);
|
| 855 | ASSERT (Buf != NULL);
|
| 856 | CopyMem (Buf, ExtHdrs + UnFragmentHdrsLen, FragmentHdrsLen);
|
| 857 |
|
| 858 | //
|
| 859 | // Free the old Packet.
|
| 860 | //
|
| 861 | NetbufFree (Packet);
|
| 862 | Packet = TmpPacket;
|
| 863 | }
|
| 864 |
|
| 865 | //
|
| 866 | // The unfragment part which appears in every fragmented IPv6 packet includes
|
| 867 | // the IPv6 header, the unfragmentable extension hdrs and the fragment header.
|
| 868 | //
|
| 869 | UnFragmentLen = sizeof (EFI_IP6_HEADER) + UnFragmentHdrsLen + sizeof (IP6_FRAGMENT_HEADER);
|
| 870 |
|
| 871 | //
|
| 872 | // Mtu now is the length of the fragment part in a full-length fragment.
|
| 873 | //
|
| 874 | Mtu = (Mtu - UnFragmentLen) & (~0x07);
|
| 875 | Num = (Packet->TotalSize + Mtu - 1) / Mtu;
|
| 876 |
|
| 877 | for (Index = 0, Offset = 0, PacketLen = Mtu; Index < Num; Index++) {
|
| 878 | //
|
| 879 | // Get fragment from the Packet, append UnFragnmentLen spare buffer
|
| 880 | // before the fragmented data, the corresponding data is filled in later.
|
| 881 | //
|
| 882 | Fragment = NetbufGetFragment (Packet, Offset, PacketLen, UnFragmentLen);
|
| 883 | if (Fragment == NULL) {
|
| 884 | Status = EFI_OUT_OF_RESOURCES;
|
| 885 | goto Error;
|
| 886 | }
|
| 887 |
|
| 888 | FragmentOffset = (UINT16) ((UINT16) Offset | 0x1);
|
| 889 | if (Index == Num - 1){
|
| 890 | //
|
| 891 | // The last fragment, clear the M flag.
|
| 892 | //
|
| 893 | FragmentOffset &= (~0x1);
|
| 894 | }
|
| 895 |
|
| 896 | Status = Ip6PrependHead (
|
| 897 | IpSb,
|
| 898 | Fragment,
|
| 899 | Head,
|
| 900 | FragmentOffset,
|
| 901 | ExtHdrs,
|
| 902 | ExtHdrsLen,
|
| 903 | LastHeaderBackup,
|
| 904 | UnFragmentLen
|
| 905 | );
|
| 906 | ASSERT (Status == EFI_SUCCESS);
|
| 907 |
|
| 908 | Status = Ip6SendFrame (
|
| 909 | IpIf,
|
| 910 | IpInstance,
|
| 911 | Fragment,
|
| 912 | &NextHop,
|
| 913 | Ip6SysPacketSent,
|
| 914 | Packet
|
| 915 | );
|
| 916 | if (EFI_ERROR (Status)) {
|
| 917 | goto Error;
|
| 918 | }
|
| 919 |
|
| 920 | //
|
| 921 | // The last fragment of upper layer packet, update the IP6 token status.
|
| 922 | //
|
| 923 | if ((Index == Num -1) && (Context != NULL)) {
|
| 924 | Wrap = (IP6_TXTOKEN_WRAP *) Context;
|
| 925 | Wrap->Token->Status = Status;
|
| 926 | }
|
| 927 |
|
| 928 | Offset += PacketLen;
|
| 929 | PacketLen = Packet->TotalSize - Offset;
|
| 930 | if (PacketLen > Mtu) {
|
| 931 | PacketLen = Mtu;
|
| 932 | }
|
| 933 | }
|
| 934 |
|
| 935 | NetbufFree (Packet);
|
| 936 | mIp6Id++;
|
| 937 |
|
| 938 | if (UpdatedExtHdrs != NULL) {
|
| 939 | FreePool (UpdatedExtHdrs);
|
| 940 | }
|
| 941 |
|
| 942 | return EFI_SUCCESS;
|
| 943 | }
|
| 944 |
|
| 945 | //
|
| 946 | // Need not fragment the packet, send it in one frame.
|
| 947 | //
|
| 948 | PacketHead = (EFI_IP6_HEADER *) NetbufAllocSpace (Packet, HeadLen, NET_BUF_HEAD);
|
| 949 | if (PacketHead == NULL) {
|
| 950 | Status = EFI_BAD_BUFFER_SIZE;
|
| 951 | goto Error;
|
| 952 | }
|
| 953 |
|
| 954 | CopyMem (PacketHead, Head, sizeof (EFI_IP6_HEADER));
|
| 955 | Packet->Ip.Ip6 = PacketHead;
|
| 956 |
|
| 957 | if (ExtHdrs != NULL) {
|
| 958 | Buf = (UINT8 *) (PacketHead + 1);
|
| 959 | CopyMem (Buf, ExtHdrs, ExtHdrsLen);
|
| 960 | }
|
| 961 |
|
| 962 | if (UpdatedExtHdrs != NULL) {
|
| 963 | //
|
| 964 | // A Fragment Header is inserted to the packet, update the payload length.
|
| 965 | //
|
| 966 | PacketHead->PayloadLength = (UINT16) (NTOHS (PacketHead->PayloadLength) +
|
| 967 | sizeof (IP6_FRAGMENT_HEADER));
|
| 968 | PacketHead->PayloadLength = HTONS (PacketHead->PayloadLength);
|
| 969 | FreePool (UpdatedExtHdrs);
|
| 970 | }
|
| 971 |
|
| 972 | return Ip6SendFrame (
|
| 973 | IpIf,
|
| 974 | IpInstance,
|
| 975 | Packet,
|
| 976 | &NextHop,
|
| 977 | Callback,
|
| 978 | Context
|
| 979 | );
|
| 980 |
|
| 981 | Error:
|
| 982 | if (UpdatedExtHdrs != NULL) {
|
| 983 | FreePool (UpdatedExtHdrs);
|
| 984 | }
|
| 985 | Ip6CancelPacket (IpIf, Packet, Status);
|
| 986 | return Status;
|
| 987 | }
|
| 988 |
|
| 989 | /**
|
| 990 | The filter function to find a packet and all its fragments.
|
| 991 | The packet's fragments have their Context set to the packet.
|
| 992 |
|
| 993 | @param[in] Frame The frames hold by the low level interface.
|
| 994 | @param[in] Context Context to the function, which is the packet.
|
| 995 |
|
| 996 | @retval TRUE This is the packet to cancel or its fragments.
|
| 997 | @retval FALSE This is an unrelated packet.
|
| 998 |
|
| 999 | **/
|
| 1000 | BOOLEAN
|
| 1001 | Ip6CancelPacketFragments (
|
| 1002 | IN IP6_LINK_TX_TOKEN *Frame,
|
| 1003 | IN VOID *Context
|
| 1004 | )
|
| 1005 | {
|
| 1006 | if ((Frame->Packet == (NET_BUF *) Context) || (Frame->Context == Context)) {
|
| 1007 | return TRUE;
|
| 1008 | }
|
| 1009 |
|
| 1010 | return FALSE;
|
| 1011 | }
|
| 1012 |
|
| 1013 | /**
|
| 1014 | Remove all the frames on the interface that pass the FrameToCancel,
|
| 1015 | either queued on ARP queues or that have already been delivered to
|
| 1016 | MNP and not yet recycled.
|
| 1017 |
|
| 1018 | @param[in] Interface Interface to remove the frames from.
|
| 1019 | @param[in] IoStatus The transmit status returned to the frames' callback.
|
| 1020 | @param[in] FrameToCancel Function to select the frame to cancel; NULL to select all.
|
| 1021 | @param[in] Context Opaque parameters passed to FrameToCancel. Ignored if
|
| 1022 | FrameToCancel is NULL.
|
| 1023 |
|
| 1024 | **/
|
| 1025 | VOID
|
| 1026 | Ip6CancelFrames (
|
| 1027 | IN IP6_INTERFACE *Interface,
|
| 1028 | IN EFI_STATUS IoStatus,
|
| 1029 | IN IP6_FRAME_TO_CANCEL FrameToCancel OPTIONAL,
|
| 1030 | IN VOID *Context OPTIONAL
|
| 1031 | )
|
| 1032 | {
|
| 1033 | LIST_ENTRY *Entry;
|
| 1034 | LIST_ENTRY *Next;
|
| 1035 | IP6_LINK_TX_TOKEN *Token;
|
| 1036 | IP6_SERVICE *IpSb;
|
| 1037 | IP6_NEIGHBOR_ENTRY *ArpQue;
|
| 1038 | EFI_STATUS Status;
|
| 1039 |
|
| 1040 | IpSb = Interface->Service;
|
| 1041 | NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE);
|
| 1042 |
|
| 1043 | //
|
| 1044 | // Cancel all the pending frames on ARP requests
|
| 1045 | //
|
| 1046 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->ArpQues) {
|
| 1047 | ArpQue = NET_LIST_USER_STRUCT (Entry, IP6_NEIGHBOR_ENTRY, ArpList);
|
| 1048 |
|
| 1049 | Status = Ip6FreeNeighborEntry (
|
| 1050 | IpSb,
|
| 1051 | ArpQue,
|
| 1052 | FALSE,
|
| 1053 | FALSE,
|
| 1054 | IoStatus,
|
| 1055 | FrameToCancel,
|
| 1056 | Context
|
| 1057 | );
|
| 1058 | ASSERT_EFI_ERROR (Status);
|
| 1059 | }
|
| 1060 |
|
| 1061 | //
|
| 1062 | // Cancel all the frames that have been delivered to MNP
|
| 1063 | // but not yet recycled.
|
| 1064 | //
|
| 1065 | NET_LIST_FOR_EACH_SAFE (Entry, Next, &Interface->SentFrames) {
|
| 1066 | Token = NET_LIST_USER_STRUCT (Entry, IP6_LINK_TX_TOKEN, Link);
|
| 1067 |
|
| 1068 | if ((FrameToCancel == NULL) || FrameToCancel (Token, Context)) {
|
| 1069 | IpSb->Mnp->Cancel (IpSb->Mnp, &Token->MnpToken);
|
| 1070 | }
|
| 1071 | }
|
| 1072 | }
|
| 1073 |
|
| 1074 | /**
|
| 1075 | Cancel the Packet and all its fragments.
|
| 1076 |
|
| 1077 | @param[in] IpIf The interface from which the Packet is sent.
|
| 1078 | @param[in] Packet The Packet to cancel.
|
| 1079 | @param[in] IoStatus The status returns to the sender.
|
| 1080 |
|
| 1081 | **/
|
| 1082 | VOID
|
| 1083 | Ip6CancelPacket (
|
| 1084 | IN IP6_INTERFACE *IpIf,
|
| 1085 | IN NET_BUF *Packet,
|
| 1086 | IN EFI_STATUS IoStatus
|
| 1087 | )
|
| 1088 | {
|
| 1089 | Ip6CancelFrames (IpIf, IoStatus, Ip6CancelPacketFragments, Packet);
|
| 1090 | }
|
| 1091 |
|