Vishal Bhoj | 82c8071 | 2015-12-15 21:13:33 +0530 | [diff] [blame^] | 1 | /** @file
|
| 2 | RTC Architectural Protocol GUID as defined in DxeCis 0.96.
|
| 3 |
|
| 4 | Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
|
| 5 | This program and the accompanying materials
|
| 6 | are licensed and made available under the terms and conditions of the BSD License
|
| 7 | which accompanies this distribution. The full text of the license may be found at
|
| 8 | http://opensource.org/licenses/bsd-license.php
|
| 9 |
|
| 10 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| 11 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
| 12 |
|
| 13 | **/
|
| 14 |
|
| 15 | #include "PcRtc.h"
|
| 16 |
|
| 17 | /**
|
| 18 | Compare the Hour, Minute and Second of the From time and the To time.
|
| 19 |
|
| 20 | Only compare H/M/S in EFI_TIME and ignore other fields here.
|
| 21 |
|
| 22 | @param From the first time
|
| 23 | @param To the second time
|
| 24 |
|
| 25 | @return >0 The H/M/S of the From time is later than those of To time
|
| 26 | @return ==0 The H/M/S of the From time is same as those of To time
|
| 27 | @return <0 The H/M/S of the From time is earlier than those of To time
|
| 28 | **/
|
| 29 | INTN
|
| 30 | CompareHMS (
|
| 31 | IN EFI_TIME *From,
|
| 32 | IN EFI_TIME *To
|
| 33 | );
|
| 34 |
|
| 35 | /**
|
| 36 | To check if second date is later than first date within 24 hours.
|
| 37 |
|
| 38 | @param From the first date
|
| 39 | @param To the second date
|
| 40 |
|
| 41 | @retval TRUE From is previous to To within 24 hours.
|
| 42 | @retval FALSE From is later, or it is previous to To more than 24 hours.
|
| 43 | **/
|
| 44 | BOOLEAN
|
| 45 | IsWithinOneDay (
|
| 46 | IN EFI_TIME *From,
|
| 47 | IN EFI_TIME *To
|
| 48 | );
|
| 49 |
|
| 50 | /**
|
| 51 | Read RTC content through its registers.
|
| 52 |
|
| 53 | @param Address Address offset of RTC. It is recommended to use macros such as
|
| 54 | RTC_ADDRESS_SECONDS.
|
| 55 |
|
| 56 | @return The data of UINT8 type read from RTC.
|
| 57 | **/
|
| 58 | UINT8
|
| 59 | RtcRead (
|
| 60 | IN UINT8 Address
|
| 61 | )
|
| 62 | {
|
| 63 | IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
|
| 64 | return IoRead8 (PCAT_RTC_DATA_REGISTER);
|
| 65 | }
|
| 66 |
|
| 67 | /**
|
| 68 | Write RTC through its registers.
|
| 69 |
|
| 70 | @param Address Address offset of RTC. It is recommended to use macros such as
|
| 71 | RTC_ADDRESS_SECONDS.
|
| 72 | @param Data The content you want to write into RTC.
|
| 73 |
|
| 74 | **/
|
| 75 | VOID
|
| 76 | RtcWrite (
|
| 77 | IN UINT8 Address,
|
| 78 | IN UINT8 Data
|
| 79 | )
|
| 80 | {
|
| 81 | IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
|
| 82 | IoWrite8 (PCAT_RTC_DATA_REGISTER, Data);
|
| 83 | }
|
| 84 |
|
| 85 | /**
|
| 86 | Initialize RTC.
|
| 87 |
|
| 88 | @param Global For global use inside this module.
|
| 89 |
|
| 90 | @retval EFI_DEVICE_ERROR Initialization failed due to device error.
|
| 91 | @retval EFI_SUCCESS Initialization successful.
|
| 92 |
|
| 93 | **/
|
| 94 | EFI_STATUS
|
| 95 | PcRtcInit (
|
| 96 | IN PC_RTC_MODULE_GLOBALS *Global
|
| 97 | )
|
| 98 | {
|
| 99 | EFI_STATUS Status;
|
| 100 | RTC_REGISTER_A RegisterA;
|
| 101 | RTC_REGISTER_B RegisterB;
|
| 102 | RTC_REGISTER_D RegisterD;
|
| 103 | UINT8 Century;
|
| 104 | EFI_TIME Time;
|
| 105 | UINTN DataSize;
|
| 106 | UINT32 TimerVar;
|
| 107 | BOOLEAN Enabled;
|
| 108 | BOOLEAN Pending;
|
| 109 |
|
| 110 | //
|
| 111 | // Acquire RTC Lock to make access to RTC atomic
|
| 112 | //
|
| 113 | if (!EfiAtRuntime ()) {
|
| 114 | EfiAcquireLock (&Global->RtcLock);
|
| 115 | }
|
| 116 | //
|
| 117 | // Initialize RTC Register
|
| 118 | //
|
| 119 | // Make sure Division Chain is properly configured,
|
| 120 | // or RTC clock won't "tick" -- time won't increment
|
| 121 | //
|
| 122 | RegisterA.Data = RTC_INIT_REGISTER_A;
|
| 123 | RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data);
|
| 124 |
|
| 125 | //
|
| 126 | // Read Register B
|
| 127 | //
|
| 128 | RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
| 129 |
|
| 130 | //
|
| 131 | // Clear RTC flag register
|
| 132 | //
|
| 133 | RtcRead (RTC_ADDRESS_REGISTER_C);
|
| 134 |
|
| 135 | //
|
| 136 | // Clear RTC register D
|
| 137 | //
|
| 138 | RegisterD.Data = RTC_INIT_REGISTER_D;
|
| 139 | RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data);
|
| 140 |
|
| 141 | //
|
| 142 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 143 | //
|
| 144 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 145 | if (EFI_ERROR (Status)) {
|
| 146 | //
|
| 147 | // Set the variable with default value if the RTC is functioning incorrectly.
|
| 148 | //
|
| 149 | Global->SavedTimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
| 150 | Global->Daylight = 0;
|
| 151 | if (!EfiAtRuntime ()) {
|
| 152 | EfiReleaseLock (&Global->RtcLock);
|
| 153 | }
|
| 154 | return EFI_DEVICE_ERROR;
|
| 155 | }
|
| 156 | //
|
| 157 | // Get the Time/Date/Daylight Savings values.
|
| 158 | //
|
| 159 | Time.Second = RtcRead (RTC_ADDRESS_SECONDS);
|
| 160 | Time.Minute = RtcRead (RTC_ADDRESS_MINUTES);
|
| 161 | Time.Hour = RtcRead (RTC_ADDRESS_HOURS);
|
| 162 | Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
| 163 | Time.Month = RtcRead (RTC_ADDRESS_MONTH);
|
| 164 | Time.Year = RtcRead (RTC_ADDRESS_YEAR);
|
| 165 |
|
| 166 | Century = RtcRead (RTC_ADDRESS_CENTURY);
|
| 167 |
|
| 168 | //
|
| 169 | // Set RTC configuration after get original time
|
| 170 | // The value of bit AIE should be reserved.
|
| 171 | //
|
| 172 | RtcWrite (RTC_ADDRESS_REGISTER_B, (UINT8)(RTC_INIT_REGISTER_B | (RegisterB.Data & BIT5)));
|
| 173 |
|
| 174 | //
|
| 175 | // Release RTC Lock.
|
| 176 | //
|
| 177 | if (!EfiAtRuntime ()) {
|
| 178 | EfiReleaseLock (&Global->RtcLock);
|
| 179 | }
|
| 180 |
|
| 181 | //
|
| 182 | // Get the data of Daylight saving and time zone, if they have been
|
| 183 | // stored in NV variable during previous boot.
|
| 184 | //
|
| 185 | DataSize = sizeof (UINT32);
|
| 186 | Status = EfiGetVariable (
|
| 187 | L"RTC",
|
| 188 | &gEfiCallerIdGuid,
|
| 189 | NULL,
|
| 190 | &DataSize,
|
| 191 | (VOID *) &TimerVar
|
| 192 | );
|
| 193 | if (!EFI_ERROR (Status)) {
|
| 194 | Time.TimeZone = (INT16) TimerVar;
|
| 195 | Time.Daylight = (UINT8) (TimerVar >> 16);
|
| 196 | } else {
|
| 197 | Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
| 198 | Time.Daylight = 0;
|
| 199 | }
|
| 200 |
|
| 201 | //
|
| 202 | // Validate time fields
|
| 203 | //
|
| 204 | Status = ConvertRtcTimeToEfiTime (&Time, Century, RegisterB);
|
| 205 | if (!EFI_ERROR (Status)) {
|
| 206 | Status = RtcTimeFieldsValid (&Time);
|
| 207 | }
|
| 208 | if (EFI_ERROR (Status)) {
|
| 209 | //
|
| 210 | // Report Status Code to indicate that the RTC has bad date and time
|
| 211 | //
|
| 212 | REPORT_STATUS_CODE (
|
| 213 | EFI_ERROR_CODE | EFI_ERROR_MINOR,
|
| 214 | (EFI_SOFTWARE_DXE_RT_DRIVER | EFI_SW_EC_BAD_DATE_TIME)
|
| 215 | );
|
| 216 | Time.Second = RTC_INIT_SECOND;
|
| 217 | Time.Minute = RTC_INIT_MINUTE;
|
| 218 | Time.Hour = RTC_INIT_HOUR;
|
| 219 | Time.Day = RTC_INIT_DAY;
|
| 220 | Time.Month = RTC_INIT_MONTH;
|
| 221 | Time.Year = RTC_INIT_YEAR;
|
| 222 | Time.Nanosecond = 0;
|
| 223 | Time.TimeZone = EFI_UNSPECIFIED_TIMEZONE;
|
| 224 | Time.Daylight = 0;
|
| 225 | }
|
| 226 |
|
| 227 | //
|
| 228 | // Reset time value according to new RTC configuration
|
| 229 | //
|
| 230 | Status = PcRtcSetTime (&Time, Global);
|
| 231 | if (EFI_ERROR (Status)) {
|
| 232 | return EFI_DEVICE_ERROR;
|
| 233 | }
|
| 234 |
|
| 235 | //
|
| 236 | // Reset wakeup time value to valid state when wakeup alarm is disabled and wakeup time is invalid.
|
| 237 | // Global variable has already had valid SavedTimeZone and Daylight,
|
| 238 | // so we can use them to get and set wakeup time.
|
| 239 | //
|
| 240 | Status = PcRtcGetWakeupTime (&Enabled, &Pending, &Time, Global);
|
| 241 | if ((Enabled) || (!EFI_ERROR (Status))) {
|
| 242 | return EFI_SUCCESS;
|
| 243 | }
|
| 244 |
|
| 245 | //
|
| 246 | // When wakeup time is disabled and invalid, reset wakeup time register to valid state
|
| 247 | // but keep wakeup alarm disabled.
|
| 248 | //
|
| 249 | Time.Second = RTC_INIT_SECOND;
|
| 250 | Time.Minute = RTC_INIT_MINUTE;
|
| 251 | Time.Hour = RTC_INIT_HOUR;
|
| 252 | Time.Day = RTC_INIT_DAY;
|
| 253 | Time.Month = RTC_INIT_MONTH;
|
| 254 | Time.Year = RTC_INIT_YEAR;
|
| 255 | Time.Nanosecond = 0;
|
| 256 | Time.TimeZone = Global->SavedTimeZone;
|
| 257 | Time.Daylight = Global->Daylight;;
|
| 258 |
|
| 259 | //
|
| 260 | // Acquire RTC Lock to make access to RTC atomic
|
| 261 | //
|
| 262 | if (!EfiAtRuntime ()) {
|
| 263 | EfiAcquireLock (&Global->RtcLock);
|
| 264 | }
|
| 265 | //
|
| 266 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 267 | //
|
| 268 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 269 | if (EFI_ERROR (Status)) {
|
| 270 | if (!EfiAtRuntime ()) {
|
| 271 | EfiReleaseLock (&Global->RtcLock);
|
| 272 | }
|
| 273 | return EFI_DEVICE_ERROR;
|
| 274 | }
|
| 275 |
|
| 276 | ConvertEfiTimeToRtcTime (&Time, RegisterB, &Century);
|
| 277 |
|
| 278 | //
|
| 279 | // Set the Y/M/D info to variable as it has no corresponding hw registers.
|
| 280 | //
|
| 281 | Status = EfiSetVariable (
|
| 282 | L"RTCALARM",
|
| 283 | &gEfiCallerIdGuid,
|
| 284 | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
|
| 285 | sizeof (Time),
|
| 286 | &Time
|
| 287 | );
|
| 288 | if (EFI_ERROR (Status)) {
|
| 289 | if (!EfiAtRuntime ()) {
|
| 290 | EfiReleaseLock (&Global->RtcLock);
|
| 291 | }
|
| 292 | return EFI_DEVICE_ERROR;
|
| 293 | }
|
| 294 |
|
| 295 | //
|
| 296 | // Inhibit updates of the RTC
|
| 297 | //
|
| 298 | RegisterB.Bits.Set = 1;
|
| 299 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 300 |
|
| 301 | //
|
| 302 | // Set RTC alarm time registers
|
| 303 | //
|
| 304 | RtcWrite (RTC_ADDRESS_SECONDS_ALARM, Time.Second);
|
| 305 | RtcWrite (RTC_ADDRESS_MINUTES_ALARM, Time.Minute);
|
| 306 | RtcWrite (RTC_ADDRESS_HOURS_ALARM, Time.Hour);
|
| 307 |
|
| 308 | //
|
| 309 | // Allow updates of the RTC registers
|
| 310 | //
|
| 311 | RegisterB.Bits.Set = 0;
|
| 312 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 313 |
|
| 314 | //
|
| 315 | // Release RTC Lock.
|
| 316 | //
|
| 317 | if (!EfiAtRuntime ()) {
|
| 318 | EfiReleaseLock (&Global->RtcLock);
|
| 319 | }
|
| 320 | return EFI_SUCCESS;
|
| 321 | }
|
| 322 |
|
| 323 | /**
|
| 324 | Returns the current time and date information, and the time-keeping capabilities
|
| 325 | of the hardware platform.
|
| 326 |
|
| 327 | @param Time A pointer to storage to receive a snapshot of the current time.
|
| 328 | @param Capabilities An optional pointer to a buffer to receive the real time clock
|
| 329 | device's capabilities.
|
| 330 | @param Global For global use inside this module.
|
| 331 |
|
| 332 | @retval EFI_SUCCESS The operation completed successfully.
|
| 333 | @retval EFI_INVALID_PARAMETER Time is NULL.
|
| 334 | @retval EFI_DEVICE_ERROR The time could not be retrieved due to hardware error.
|
| 335 |
|
| 336 | **/
|
| 337 | EFI_STATUS
|
| 338 | PcRtcGetTime (
|
| 339 | OUT EFI_TIME *Time,
|
| 340 | OUT EFI_TIME_CAPABILITIES *Capabilities, OPTIONAL
|
| 341 | IN PC_RTC_MODULE_GLOBALS *Global
|
| 342 | )
|
| 343 | {
|
| 344 | EFI_STATUS Status;
|
| 345 | RTC_REGISTER_B RegisterB;
|
| 346 | UINT8 Century;
|
| 347 |
|
| 348 | //
|
| 349 | // Check parameters for null pointer
|
| 350 | //
|
| 351 | if (Time == NULL) {
|
| 352 | return EFI_INVALID_PARAMETER;
|
| 353 |
|
| 354 | }
|
| 355 | //
|
| 356 | // Acquire RTC Lock to make access to RTC atomic
|
| 357 | //
|
| 358 | if (!EfiAtRuntime ()) {
|
| 359 | EfiAcquireLock (&Global->RtcLock);
|
| 360 | }
|
| 361 | //
|
| 362 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 363 | //
|
| 364 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 365 | if (EFI_ERROR (Status)) {
|
| 366 | if (!EfiAtRuntime ()) {
|
| 367 | EfiReleaseLock (&Global->RtcLock);
|
| 368 | }
|
| 369 | return Status;
|
| 370 | }
|
| 371 | //
|
| 372 | // Read Register B
|
| 373 | //
|
| 374 | RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
| 375 |
|
| 376 | //
|
| 377 | // Get the Time/Date/Daylight Savings values.
|
| 378 | //
|
| 379 | Time->Second = RtcRead (RTC_ADDRESS_SECONDS);
|
| 380 | Time->Minute = RtcRead (RTC_ADDRESS_MINUTES);
|
| 381 | Time->Hour = RtcRead (RTC_ADDRESS_HOURS);
|
| 382 | Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
| 383 | Time->Month = RtcRead (RTC_ADDRESS_MONTH);
|
| 384 | Time->Year = RtcRead (RTC_ADDRESS_YEAR);
|
| 385 |
|
| 386 | Century = RtcRead (RTC_ADDRESS_CENTURY);
|
| 387 |
|
| 388 | //
|
| 389 | // Release RTC Lock.
|
| 390 | //
|
| 391 | if (!EfiAtRuntime ()) {
|
| 392 | EfiReleaseLock (&Global->RtcLock);
|
| 393 | }
|
| 394 |
|
| 395 | //
|
| 396 | // Get the variable that contains the TimeZone and Daylight fields
|
| 397 | //
|
| 398 | Time->TimeZone = Global->SavedTimeZone;
|
| 399 | Time->Daylight = Global->Daylight;
|
| 400 |
|
| 401 | //
|
| 402 | // Make sure all field values are in correct range
|
| 403 | //
|
| 404 | Status = ConvertRtcTimeToEfiTime (Time, Century, RegisterB);
|
| 405 | if (!EFI_ERROR (Status)) {
|
| 406 | Status = RtcTimeFieldsValid (Time);
|
| 407 | }
|
| 408 | if (EFI_ERROR (Status)) {
|
| 409 | return EFI_DEVICE_ERROR;
|
| 410 | }
|
| 411 |
|
| 412 | //
|
| 413 | // Fill in Capabilities if it was passed in
|
| 414 | //
|
| 415 | if (Capabilities != NULL) {
|
| 416 | Capabilities->Resolution = 1;
|
| 417 | //
|
| 418 | // 1 hertz
|
| 419 | //
|
| 420 | Capabilities->Accuracy = 50000000;
|
| 421 | //
|
| 422 | // 50 ppm
|
| 423 | //
|
| 424 | Capabilities->SetsToZero = FALSE;
|
| 425 | }
|
| 426 |
|
| 427 | return EFI_SUCCESS;
|
| 428 | }
|
| 429 |
|
| 430 | /**
|
| 431 | Sets the current local time and date information.
|
| 432 |
|
| 433 | @param Time A pointer to the current time.
|
| 434 | @param Global For global use inside this module.
|
| 435 |
|
| 436 | @retval EFI_SUCCESS The operation completed successfully.
|
| 437 | @retval EFI_INVALID_PARAMETER A time field is out of range.
|
| 438 | @retval EFI_DEVICE_ERROR The time could not be set due due to hardware error.
|
| 439 |
|
| 440 | **/
|
| 441 | EFI_STATUS
|
| 442 | PcRtcSetTime (
|
| 443 | IN EFI_TIME *Time,
|
| 444 | IN PC_RTC_MODULE_GLOBALS *Global
|
| 445 | )
|
| 446 | {
|
| 447 | EFI_STATUS Status;
|
| 448 | EFI_TIME RtcTime;
|
| 449 | RTC_REGISTER_B RegisterB;
|
| 450 | UINT8 Century;
|
| 451 | UINT32 TimerVar;
|
| 452 |
|
| 453 | if (Time == NULL) {
|
| 454 | return EFI_INVALID_PARAMETER;
|
| 455 | }
|
| 456 | //
|
| 457 | // Make sure that the time fields are valid
|
| 458 | //
|
| 459 | Status = RtcTimeFieldsValid (Time);
|
| 460 | if (EFI_ERROR (Status)) {
|
| 461 | return Status;
|
| 462 | }
|
| 463 |
|
| 464 | CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
|
| 465 |
|
| 466 | //
|
| 467 | // Acquire RTC Lock to make access to RTC atomic
|
| 468 | //
|
| 469 | if (!EfiAtRuntime ()) {
|
| 470 | EfiAcquireLock (&Global->RtcLock);
|
| 471 | }
|
| 472 | //
|
| 473 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 474 | //
|
| 475 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 476 | if (EFI_ERROR (Status)) {
|
| 477 | if (!EfiAtRuntime ()) {
|
| 478 | EfiReleaseLock (&Global->RtcLock);
|
| 479 | }
|
| 480 | return Status;
|
| 481 | }
|
| 482 |
|
| 483 | //
|
| 484 | // Write timezone and daylight to RTC variable
|
| 485 | //
|
| 486 | TimerVar = Time->Daylight;
|
| 487 | TimerVar = (UINT32) ((TimerVar << 16) | (UINT16)(Time->TimeZone));
|
| 488 | Status = EfiSetVariable (
|
| 489 | L"RTC",
|
| 490 | &gEfiCallerIdGuid,
|
| 491 | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
|
| 492 | sizeof (TimerVar),
|
| 493 | &TimerVar
|
| 494 | );
|
| 495 | if (EFI_ERROR (Status)) {
|
| 496 | if (!EfiAtRuntime ()) {
|
| 497 | EfiReleaseLock (&Global->RtcLock);
|
| 498 | }
|
| 499 | return EFI_DEVICE_ERROR;
|
| 500 | }
|
| 501 |
|
| 502 | //
|
| 503 | // Read Register B, and inhibit updates of the RTC
|
| 504 | //
|
| 505 | RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
| 506 | RegisterB.Bits.Set = 1;
|
| 507 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 508 |
|
| 509 | ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
|
| 510 |
|
| 511 | RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second);
|
| 512 | RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute);
|
| 513 | RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour);
|
| 514 | RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day);
|
| 515 | RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month);
|
| 516 | RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year);
|
| 517 | RtcWrite (RTC_ADDRESS_CENTURY, Century);
|
| 518 |
|
| 519 | //
|
| 520 | // Allow updates of the RTC registers
|
| 521 | //
|
| 522 | RegisterB.Bits.Set = 0;
|
| 523 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 524 |
|
| 525 | //
|
| 526 | // Release RTC Lock.
|
| 527 | //
|
| 528 | if (!EfiAtRuntime ()) {
|
| 529 | EfiReleaseLock (&Global->RtcLock);
|
| 530 | }
|
| 531 | //
|
| 532 | // Set the variable that contains the TimeZone and Daylight fields
|
| 533 | //
|
| 534 | Global->SavedTimeZone = Time->TimeZone;
|
| 535 | Global->Daylight = Time->Daylight;
|
| 536 |
|
| 537 | return EFI_SUCCESS;
|
| 538 | }
|
| 539 |
|
| 540 | /**
|
| 541 | Returns the current wakeup alarm clock setting.
|
| 542 |
|
| 543 | @param Enabled Indicates if the alarm is currently enabled or disabled.
|
| 544 | @param Pending Indicates if the alarm signal is pending and requires acknowledgment.
|
| 545 | @param Time The current alarm setting.
|
| 546 | @param Global For global use inside this module.
|
| 547 |
|
| 548 | @retval EFI_SUCCESS The alarm settings were returned.
|
| 549 | @retval EFI_INVALID_PARAMETER Enabled is NULL.
|
| 550 | @retval EFI_INVALID_PARAMETER Pending is NULL.
|
| 551 | @retval EFI_INVALID_PARAMETER Time is NULL.
|
| 552 | @retval EFI_DEVICE_ERROR The wakeup time could not be retrieved due to a hardware error.
|
| 553 | @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
|
| 554 |
|
| 555 | **/
|
| 556 | EFI_STATUS
|
| 557 | PcRtcGetWakeupTime (
|
| 558 | OUT BOOLEAN *Enabled,
|
| 559 | OUT BOOLEAN *Pending,
|
| 560 | OUT EFI_TIME *Time,
|
| 561 | IN PC_RTC_MODULE_GLOBALS *Global
|
| 562 | )
|
| 563 | {
|
| 564 | EFI_STATUS Status;
|
| 565 | RTC_REGISTER_B RegisterB;
|
| 566 | RTC_REGISTER_C RegisterC;
|
| 567 | UINT8 Century;
|
| 568 | EFI_TIME RtcTime;
|
| 569 | UINTN DataSize;
|
| 570 |
|
| 571 | //
|
| 572 | // Check parameters for null pointers
|
| 573 | //
|
| 574 | if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) {
|
| 575 | return EFI_INVALID_PARAMETER;
|
| 576 |
|
| 577 | }
|
| 578 | //
|
| 579 | // Acquire RTC Lock to make access to RTC atomic
|
| 580 | //
|
| 581 | if (!EfiAtRuntime ()) {
|
| 582 | EfiAcquireLock (&Global->RtcLock);
|
| 583 | }
|
| 584 | //
|
| 585 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 586 | //
|
| 587 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 588 | if (EFI_ERROR (Status)) {
|
| 589 | if (!EfiAtRuntime ()) {
|
| 590 | EfiReleaseLock (&Global->RtcLock);
|
| 591 | }
|
| 592 | return EFI_DEVICE_ERROR;
|
| 593 | }
|
| 594 | //
|
| 595 | // Read Register B and Register C
|
| 596 | //
|
| 597 | RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
| 598 | RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);
|
| 599 |
|
| 600 | //
|
| 601 | // Get the Time/Date/Daylight Savings values.
|
| 602 | //
|
| 603 | *Enabled = RegisterB.Bits.Aie;
|
| 604 | *Pending = RegisterC.Bits.Af;
|
| 605 |
|
| 606 | Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
|
| 607 | Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
|
| 608 | Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
|
| 609 | Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
| 610 | Time->Month = RtcRead (RTC_ADDRESS_MONTH);
|
| 611 | Time->Year = RtcRead (RTC_ADDRESS_YEAR);
|
| 612 | Time->TimeZone = Global->SavedTimeZone;
|
| 613 | Time->Daylight = Global->Daylight;
|
| 614 |
|
| 615 | Century = RtcRead (RTC_ADDRESS_CENTURY);
|
| 616 |
|
| 617 | //
|
| 618 | // Get the alarm info from variable
|
| 619 | //
|
| 620 | DataSize = sizeof (EFI_TIME);
|
| 621 | Status = EfiGetVariable (
|
| 622 | L"RTCALARM",
|
| 623 | &gEfiCallerIdGuid,
|
| 624 | NULL,
|
| 625 | &DataSize,
|
| 626 | &RtcTime
|
| 627 | );
|
| 628 | if (!EFI_ERROR (Status)) {
|
| 629 | //
|
| 630 | // The alarm variable exists. In this case, we read variable to get info.
|
| 631 | //
|
| 632 | Time->Day = RtcTime.Day;
|
| 633 | Time->Month = RtcTime.Month;
|
| 634 | Time->Year = RtcTime.Year;
|
| 635 | }
|
| 636 |
|
| 637 | //
|
| 638 | // Release RTC Lock.
|
| 639 | //
|
| 640 | if (!EfiAtRuntime ()) {
|
| 641 | EfiReleaseLock (&Global->RtcLock);
|
| 642 | }
|
| 643 |
|
| 644 | //
|
| 645 | // Make sure all field values are in correct range
|
| 646 | //
|
| 647 | Status = ConvertRtcTimeToEfiTime (Time, Century, RegisterB);
|
| 648 | if (!EFI_ERROR (Status)) {
|
| 649 | Status = RtcTimeFieldsValid (Time);
|
| 650 | }
|
| 651 | if (EFI_ERROR (Status)) {
|
| 652 | return EFI_DEVICE_ERROR;
|
| 653 | }
|
| 654 |
|
| 655 | return EFI_SUCCESS;
|
| 656 | }
|
| 657 |
|
| 658 | /**
|
| 659 | Sets the system wakeup alarm clock time.
|
| 660 |
|
| 661 | @param Enabled Enable or disable the wakeup alarm.
|
| 662 | @param Time If Enable is TRUE, the time to set the wakeup alarm for.
|
| 663 | If Enable is FALSE, then this parameter is optional, and may be NULL.
|
| 664 | @param Global For global use inside this module.
|
| 665 |
|
| 666 | @retval EFI_SUCCESS If Enable is TRUE, then the wakeup alarm was enabled.
|
| 667 | If Enable is FALSE, then the wakeup alarm was disabled.
|
| 668 | @retval EFI_INVALID_PARAMETER A time field is out of range.
|
| 669 | @retval EFI_DEVICE_ERROR The wakeup time could not be set due to a hardware error.
|
| 670 | @retval EFI_UNSUPPORTED A wakeup timer is not supported on this platform.
|
| 671 |
|
| 672 | **/
|
| 673 | EFI_STATUS
|
| 674 | PcRtcSetWakeupTime (
|
| 675 | IN BOOLEAN Enable,
|
| 676 | IN EFI_TIME *Time, OPTIONAL
|
| 677 | IN PC_RTC_MODULE_GLOBALS *Global
|
| 678 | )
|
| 679 | {
|
| 680 | EFI_STATUS Status;
|
| 681 | EFI_TIME RtcTime;
|
| 682 | RTC_REGISTER_B RegisterB;
|
| 683 | UINT8 Century;
|
| 684 | EFI_TIME_CAPABILITIES Capabilities;
|
| 685 |
|
| 686 | ZeroMem (&RtcTime, sizeof (RtcTime));
|
| 687 |
|
| 688 | if (Enable) {
|
| 689 |
|
| 690 | if (Time == NULL) {
|
| 691 | return EFI_INVALID_PARAMETER;
|
| 692 | }
|
| 693 | //
|
| 694 | // Make sure that the time fields are valid
|
| 695 | //
|
| 696 | Status = RtcTimeFieldsValid (Time);
|
| 697 | if (EFI_ERROR (Status)) {
|
| 698 | return EFI_INVALID_PARAMETER;
|
| 699 | }
|
| 700 | //
|
| 701 | // Just support set alarm time within 24 hours
|
| 702 | //
|
| 703 | PcRtcGetTime (&RtcTime, &Capabilities, Global);
|
| 704 | Status = RtcTimeFieldsValid (&RtcTime);
|
| 705 | if (EFI_ERROR (Status)) {
|
| 706 | return EFI_DEVICE_ERROR;
|
| 707 | }
|
| 708 | if (!IsWithinOneDay (&RtcTime, Time)) {
|
| 709 | return EFI_UNSUPPORTED;
|
| 710 | }
|
| 711 | //
|
| 712 | // Make a local copy of the time and date
|
| 713 | //
|
| 714 | CopyMem (&RtcTime, Time, sizeof (EFI_TIME));
|
| 715 |
|
| 716 | }
|
| 717 | //
|
| 718 | // Acquire RTC Lock to make access to RTC atomic
|
| 719 | //
|
| 720 | if (!EfiAtRuntime ()) {
|
| 721 | EfiAcquireLock (&Global->RtcLock);
|
| 722 | }
|
| 723 | //
|
| 724 | // Wait for up to 0.1 seconds for the RTC to be updated
|
| 725 | //
|
| 726 | Status = RtcWaitToUpdate (PcdGet32 (PcdRealTimeClockUpdateTimeout));
|
| 727 | if (EFI_ERROR (Status)) {
|
| 728 | if (!EfiAtRuntime ()) {
|
| 729 | EfiReleaseLock (&Global->RtcLock);
|
| 730 | }
|
| 731 | return EFI_DEVICE_ERROR;
|
| 732 | }
|
| 733 | //
|
| 734 | // Read Register B
|
| 735 | //
|
| 736 | RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);
|
| 737 |
|
| 738 | if (Enable) {
|
| 739 | ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);
|
| 740 | } else {
|
| 741 | //
|
| 742 | // if the alarm is disable, record the current setting.
|
| 743 | //
|
| 744 | RtcTime.Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
|
| 745 | RtcTime.Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
|
| 746 | RtcTime.Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM);
|
| 747 | RtcTime.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
|
| 748 | RtcTime.Month = RtcRead (RTC_ADDRESS_MONTH);
|
| 749 | RtcTime.Year = RtcRead (RTC_ADDRESS_YEAR);
|
| 750 | RtcTime.TimeZone = Global->SavedTimeZone;
|
| 751 | RtcTime.Daylight = Global->Daylight;
|
| 752 | }
|
| 753 |
|
| 754 | //
|
| 755 | // Set the Y/M/D info to variable as it has no corresponding hw registers.
|
| 756 | //
|
| 757 | Status = EfiSetVariable (
|
| 758 | L"RTCALARM",
|
| 759 | &gEfiCallerIdGuid,
|
| 760 | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_NON_VOLATILE,
|
| 761 | sizeof (RtcTime),
|
| 762 | &RtcTime
|
| 763 | );
|
| 764 | if (EFI_ERROR (Status)) {
|
| 765 | if (!EfiAtRuntime ()) {
|
| 766 | EfiReleaseLock (&Global->RtcLock);
|
| 767 | }
|
| 768 | return EFI_DEVICE_ERROR;
|
| 769 | }
|
| 770 |
|
| 771 | //
|
| 772 | // Inhibit updates of the RTC
|
| 773 | //
|
| 774 | RegisterB.Bits.Set = 1;
|
| 775 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 776 |
|
| 777 | if (Enable) {
|
| 778 | //
|
| 779 | // Set RTC alarm time
|
| 780 | //
|
| 781 | RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second);
|
| 782 | RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute);
|
| 783 | RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour);
|
| 784 |
|
| 785 | RegisterB.Bits.Aie = 1;
|
| 786 |
|
| 787 | } else {
|
| 788 | RegisterB.Bits.Aie = 0;
|
| 789 | }
|
| 790 | //
|
| 791 | // Allow updates of the RTC registers
|
| 792 | //
|
| 793 | RegisterB.Bits.Set = 0;
|
| 794 | RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);
|
| 795 |
|
| 796 | //
|
| 797 | // Release RTC Lock.
|
| 798 | //
|
| 799 | if (!EfiAtRuntime ()) {
|
| 800 | EfiReleaseLock (&Global->RtcLock);
|
| 801 | }
|
| 802 | return EFI_SUCCESS;
|
| 803 | }
|
| 804 |
|
| 805 |
|
| 806 | /**
|
| 807 | Checks an 8-bit BCD value, and converts to an 8-bit value if valid.
|
| 808 |
|
| 809 | This function checks the 8-bit BCD value specified by Value.
|
| 810 | If valid, the function converts it to an 8-bit value and returns it.
|
| 811 | Otherwise, return 0xff.
|
| 812 |
|
| 813 | @param Value The 8-bit BCD value to check and convert
|
| 814 |
|
| 815 | @return The 8-bit value converted. Or 0xff if Value is invalid.
|
| 816 |
|
| 817 | **/
|
| 818 | UINT8
|
| 819 | CheckAndConvertBcd8ToDecimal8 (
|
| 820 | IN UINT8 Value
|
| 821 | )
|
| 822 | {
|
| 823 | if ((Value < 0xa0) && ((Value & 0xf) < 0xa)) {
|
| 824 | return BcdToDecimal8 (Value);
|
| 825 | }
|
| 826 |
|
| 827 | return 0xff;
|
| 828 | }
|
| 829 |
|
| 830 | /**
|
| 831 | Converts time read from RTC to EFI_TIME format defined by UEFI spec.
|
| 832 |
|
| 833 | This function converts raw time data read from RTC to the EFI_TIME format
|
| 834 | defined by UEFI spec.
|
| 835 | If data mode of RTC is BCD, then converts it to decimal,
|
| 836 | If RTC is in 12-hour format, then converts it to 24-hour format.
|
| 837 |
|
| 838 | @param Time On input, the time data read from RTC to convert
|
| 839 | On output, the time converted to UEFI format
|
| 840 | @param Century Value of century read from RTC.
|
| 841 | @param RegisterB Value of Register B of RTC, indicating data mode
|
| 842 | and hour format.
|
| 843 |
|
| 844 | @retval EFI_INVALID_PARAMETER Parameters passed in are invalid.
|
| 845 | @retval EFI_SUCCESS Convert RTC time to EFI time successfully.
|
| 846 |
|
| 847 | **/
|
| 848 | EFI_STATUS
|
| 849 | ConvertRtcTimeToEfiTime (
|
| 850 | IN OUT EFI_TIME *Time,
|
| 851 | IN UINT8 Century,
|
| 852 | IN RTC_REGISTER_B RegisterB
|
| 853 | )
|
| 854 | {
|
| 855 | BOOLEAN IsPM;
|
| 856 |
|
| 857 | if ((Time->Hour & 0x80) != 0) {
|
| 858 | IsPM = TRUE;
|
| 859 | } else {
|
| 860 | IsPM = FALSE;
|
| 861 | }
|
| 862 |
|
| 863 | Time->Hour = (UINT8) (Time->Hour & 0x7f);
|
| 864 |
|
| 865 | if (RegisterB.Bits.Dm == 0) {
|
| 866 | Time->Year = CheckAndConvertBcd8ToDecimal8 ((UINT8) Time->Year);
|
| 867 | Time->Month = CheckAndConvertBcd8ToDecimal8 (Time->Month);
|
| 868 | Time->Day = CheckAndConvertBcd8ToDecimal8 (Time->Day);
|
| 869 | Time->Hour = CheckAndConvertBcd8ToDecimal8 (Time->Hour);
|
| 870 | Time->Minute = CheckAndConvertBcd8ToDecimal8 (Time->Minute);
|
| 871 | Time->Second = CheckAndConvertBcd8ToDecimal8 (Time->Second);
|
| 872 | }
|
| 873 | Century = CheckAndConvertBcd8ToDecimal8 (Century);
|
| 874 |
|
| 875 | if (Time->Year == 0xff || Time->Month == 0xff || Time->Day == 0xff ||
|
| 876 | Time->Hour == 0xff || Time->Minute == 0xff || Time->Second == 0xff ||
|
| 877 | Century == 0xff) {
|
| 878 | return EFI_INVALID_PARAMETER;
|
| 879 | }
|
| 880 |
|
| 881 | Time->Year = (UINT16) (Century * 100 + Time->Year);
|
| 882 |
|
| 883 | //
|
| 884 | // If time is in 12 hour format, convert it to 24 hour format
|
| 885 | //
|
| 886 | if (RegisterB.Bits.Mil == 0) {
|
| 887 | if (IsPM && Time->Hour < 12) {
|
| 888 | Time->Hour = (UINT8) (Time->Hour + 12);
|
| 889 | }
|
| 890 |
|
| 891 | if (!IsPM && Time->Hour == 12) {
|
| 892 | Time->Hour = 0;
|
| 893 | }
|
| 894 | }
|
| 895 |
|
| 896 | Time->Nanosecond = 0;
|
| 897 |
|
| 898 | return EFI_SUCCESS;
|
| 899 | }
|
| 900 |
|
| 901 | /**
|
| 902 | Wait for a period for the RTC to be ready.
|
| 903 |
|
| 904 | @param Timeout Tell how long it should take to wait.
|
| 905 |
|
| 906 | @retval EFI_DEVICE_ERROR RTC device error.
|
| 907 | @retval EFI_SUCCESS RTC is updated and ready.
|
| 908 | **/
|
| 909 | EFI_STATUS
|
| 910 | RtcWaitToUpdate (
|
| 911 | UINTN Timeout
|
| 912 | )
|
| 913 | {
|
| 914 | RTC_REGISTER_A RegisterA;
|
| 915 | RTC_REGISTER_D RegisterD;
|
| 916 |
|
| 917 | //
|
| 918 | // See if the RTC is functioning correctly
|
| 919 | //
|
| 920 | RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
|
| 921 |
|
| 922 | if (RegisterD.Bits.Vrt == 0) {
|
| 923 | return EFI_DEVICE_ERROR;
|
| 924 | }
|
| 925 | //
|
| 926 | // Wait for up to 0.1 seconds for the RTC to be ready.
|
| 927 | //
|
| 928 | Timeout = (Timeout / 10) + 1;
|
| 929 | RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
|
| 930 | while (RegisterA.Bits.Uip == 1 && Timeout > 0) {
|
| 931 | MicroSecondDelay (10);
|
| 932 | RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
|
| 933 | Timeout--;
|
| 934 | }
|
| 935 |
|
| 936 | RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
|
| 937 | if (Timeout == 0 || RegisterD.Bits.Vrt == 0) {
|
| 938 | return EFI_DEVICE_ERROR;
|
| 939 | }
|
| 940 |
|
| 941 | return EFI_SUCCESS;
|
| 942 | }
|
| 943 |
|
| 944 | /**
|
| 945 | See if all fields of a variable of EFI_TIME type is correct.
|
| 946 |
|
| 947 | @param Time The time to be checked.
|
| 948 |
|
| 949 | @retval EFI_INVALID_PARAMETER Some fields of Time are not correct.
|
| 950 | @retval EFI_SUCCESS Time is a valid EFI_TIME variable.
|
| 951 |
|
| 952 | **/
|
| 953 | EFI_STATUS
|
| 954 | RtcTimeFieldsValid (
|
| 955 | IN EFI_TIME *Time
|
| 956 | )
|
| 957 | {
|
| 958 | if (Time->Year < PcdGet16 (PcdMinimalValidYear) ||
|
| 959 | Time->Year > PcdGet16 (PcdMaximalValidYear) ||
|
| 960 | Time->Month < 1 ||
|
| 961 | Time->Month > 12 ||
|
| 962 | (!DayValid (Time)) ||
|
| 963 | Time->Hour > 23 ||
|
| 964 | Time->Minute > 59 ||
|
| 965 | Time->Second > 59 ||
|
| 966 | Time->Nanosecond > 999999999 ||
|
| 967 | (!(Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE || (Time->TimeZone >= -1440 && Time->TimeZone <= 1440))) ||
|
| 968 | ((Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT))) != 0)) {
|
| 969 | return EFI_INVALID_PARAMETER;
|
| 970 | }
|
| 971 |
|
| 972 | return EFI_SUCCESS;
|
| 973 | }
|
| 974 |
|
| 975 | /**
|
| 976 | See if field Day of an EFI_TIME is correct.
|
| 977 |
|
| 978 | @param Time Its Day field is to be checked.
|
| 979 |
|
| 980 | @retval TRUE Day field of Time is correct.
|
| 981 | @retval FALSE Day field of Time is NOT correct.
|
| 982 | **/
|
| 983 | BOOLEAN
|
| 984 | DayValid (
|
| 985 | IN EFI_TIME *Time
|
| 986 | )
|
| 987 | {
|
| 988 | INTN DayOfMonth[12];
|
| 989 |
|
| 990 | DayOfMonth[0] = 31;
|
| 991 | DayOfMonth[1] = 29;
|
| 992 | DayOfMonth[2] = 31;
|
| 993 | DayOfMonth[3] = 30;
|
| 994 | DayOfMonth[4] = 31;
|
| 995 | DayOfMonth[5] = 30;
|
| 996 | DayOfMonth[6] = 31;
|
| 997 | DayOfMonth[7] = 31;
|
| 998 | DayOfMonth[8] = 30;
|
| 999 | DayOfMonth[9] = 31;
|
| 1000 | DayOfMonth[10] = 30;
|
| 1001 | DayOfMonth[11] = 31;
|
| 1002 |
|
| 1003 | //
|
| 1004 | // The validity of Time->Month field should be checked before
|
| 1005 | //
|
| 1006 | ASSERT (Time->Month >=1);
|
| 1007 | ASSERT (Time->Month <=12);
|
| 1008 | if (Time->Day < 1 ||
|
| 1009 | Time->Day > DayOfMonth[Time->Month - 1] ||
|
| 1010 | (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
|
| 1011 | ) {
|
| 1012 | return FALSE;
|
| 1013 | }
|
| 1014 |
|
| 1015 | return TRUE;
|
| 1016 | }
|
| 1017 |
|
| 1018 | /**
|
| 1019 | Check if it is a leap year.
|
| 1020 |
|
| 1021 | @param Time The time to be checked.
|
| 1022 |
|
| 1023 | @retval TRUE It is a leap year.
|
| 1024 | @retval FALSE It is NOT a leap year.
|
| 1025 | **/
|
| 1026 | BOOLEAN
|
| 1027 | IsLeapYear (
|
| 1028 | IN EFI_TIME *Time
|
| 1029 | )
|
| 1030 | {
|
| 1031 | if (Time->Year % 4 == 0) {
|
| 1032 | if (Time->Year % 100 == 0) {
|
| 1033 | if (Time->Year % 400 == 0) {
|
| 1034 | return TRUE;
|
| 1035 | } else {
|
| 1036 | return FALSE;
|
| 1037 | }
|
| 1038 | } else {
|
| 1039 | return TRUE;
|
| 1040 | }
|
| 1041 | } else {
|
| 1042 | return FALSE;
|
| 1043 | }
|
| 1044 | }
|
| 1045 |
|
| 1046 | /**
|
| 1047 | Converts time from EFI_TIME format defined by UEFI spec to RTC's.
|
| 1048 |
|
| 1049 | This function converts time from EFI_TIME format defined by UEFI spec to RTC's.
|
| 1050 | If data mode of RTC is BCD, then converts EFI_TIME to it.
|
| 1051 | If RTC is in 12-hour format, then converts EFI_TIME to it.
|
| 1052 |
|
| 1053 | @param Time On input, the time data read from UEFI to convert
|
| 1054 | On output, the time converted to RTC format
|
| 1055 | @param RegisterB Value of Register B of RTC, indicating data mode
|
| 1056 | @param Century It is set according to EFI_TIME Time.
|
| 1057 |
|
| 1058 | **/
|
| 1059 | VOID
|
| 1060 | ConvertEfiTimeToRtcTime (
|
| 1061 | IN OUT EFI_TIME *Time,
|
| 1062 | IN RTC_REGISTER_B RegisterB,
|
| 1063 | OUT UINT8 *Century
|
| 1064 | )
|
| 1065 | {
|
| 1066 | BOOLEAN IsPM;
|
| 1067 |
|
| 1068 | IsPM = TRUE;
|
| 1069 | //
|
| 1070 | // Adjust hour field if RTC is in 12 hour mode
|
| 1071 | //
|
| 1072 | if (RegisterB.Bits.Mil == 0) {
|
| 1073 | if (Time->Hour < 12) {
|
| 1074 | IsPM = FALSE;
|
| 1075 | }
|
| 1076 |
|
| 1077 | if (Time->Hour >= 13) {
|
| 1078 | Time->Hour = (UINT8) (Time->Hour - 12);
|
| 1079 | } else if (Time->Hour == 0) {
|
| 1080 | Time->Hour = 12;
|
| 1081 | }
|
| 1082 | }
|
| 1083 | //
|
| 1084 | // Set the Time/Date/Daylight Savings values.
|
| 1085 | //
|
| 1086 | *Century = DecimalToBcd8 ((UINT8) (Time->Year / 100));
|
| 1087 |
|
| 1088 | Time->Year = (UINT16) (Time->Year % 100);
|
| 1089 |
|
| 1090 | if (RegisterB.Bits.Dm == 0) {
|
| 1091 | Time->Year = DecimalToBcd8 ((UINT8) Time->Year);
|
| 1092 | Time->Month = DecimalToBcd8 (Time->Month);
|
| 1093 | Time->Day = DecimalToBcd8 (Time->Day);
|
| 1094 | Time->Hour = DecimalToBcd8 (Time->Hour);
|
| 1095 | Time->Minute = DecimalToBcd8 (Time->Minute);
|
| 1096 | Time->Second = DecimalToBcd8 (Time->Second);
|
| 1097 | }
|
| 1098 | //
|
| 1099 | // If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field.
|
| 1100 | //
|
| 1101 | if (RegisterB.Bits.Mil == 0 && IsPM) {
|
| 1102 | Time->Hour = (UINT8) (Time->Hour | 0x80);
|
| 1103 | }
|
| 1104 | }
|
| 1105 |
|
| 1106 | /**
|
| 1107 | Compare the Hour, Minute and Second of the From time and the To time.
|
| 1108 |
|
| 1109 | Only compare H/M/S in EFI_TIME and ignore other fields here.
|
| 1110 |
|
| 1111 | @param From the first time
|
| 1112 | @param To the second time
|
| 1113 |
|
| 1114 | @return >0 The H/M/S of the From time is later than those of To time
|
| 1115 | @return ==0 The H/M/S of the From time is same as those of To time
|
| 1116 | @return <0 The H/M/S of the From time is earlier than those of To time
|
| 1117 | **/
|
| 1118 | INTN
|
| 1119 | CompareHMS (
|
| 1120 | IN EFI_TIME *From,
|
| 1121 | IN EFI_TIME *To
|
| 1122 | )
|
| 1123 | {
|
| 1124 | if ((From->Hour > To->Hour) ||
|
| 1125 | ((From->Hour == To->Hour) && (From->Minute > To->Minute)) ||
|
| 1126 | ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second > To->Second))) {
|
| 1127 | return 1;
|
| 1128 | } else if ((From->Hour == To->Hour) && (From->Minute == To->Minute) && (From->Second == To->Second)) {
|
| 1129 | return 0;
|
| 1130 | } else {
|
| 1131 | return -1;
|
| 1132 | }
|
| 1133 | }
|
| 1134 |
|
| 1135 | /**
|
| 1136 | To check if second date is later than first date within 24 hours.
|
| 1137 |
|
| 1138 | @param From the first date
|
| 1139 | @param To the second date
|
| 1140 |
|
| 1141 | @retval TRUE From is previous to To within 24 hours.
|
| 1142 | @retval FALSE From is later, or it is previous to To more than 24 hours.
|
| 1143 | **/
|
| 1144 | BOOLEAN
|
| 1145 | IsWithinOneDay (
|
| 1146 | IN EFI_TIME *From,
|
| 1147 | IN EFI_TIME *To
|
| 1148 | )
|
| 1149 | {
|
| 1150 | UINT8 DayOfMonth[12];
|
| 1151 | BOOLEAN Adjacent;
|
| 1152 |
|
| 1153 | DayOfMonth[0] = 31;
|
| 1154 | DayOfMonth[1] = 29;
|
| 1155 | DayOfMonth[2] = 31;
|
| 1156 | DayOfMonth[3] = 30;
|
| 1157 | DayOfMonth[4] = 31;
|
| 1158 | DayOfMonth[5] = 30;
|
| 1159 | DayOfMonth[6] = 31;
|
| 1160 | DayOfMonth[7] = 31;
|
| 1161 | DayOfMonth[8] = 30;
|
| 1162 | DayOfMonth[9] = 31;
|
| 1163 | DayOfMonth[10] = 30;
|
| 1164 | DayOfMonth[11] = 31;
|
| 1165 |
|
| 1166 | Adjacent = FALSE;
|
| 1167 |
|
| 1168 | //
|
| 1169 | // The validity of From->Month field should be checked before
|
| 1170 | //
|
| 1171 | ASSERT (From->Month >=1);
|
| 1172 | ASSERT (From->Month <=12);
|
| 1173 |
|
| 1174 | if (From->Year == To->Year) {
|
| 1175 | if (From->Month == To->Month) {
|
| 1176 | if ((From->Day + 1) == To->Day) {
|
| 1177 | if ((CompareHMS(From, To) >= 0)) {
|
| 1178 | Adjacent = TRUE;
|
| 1179 | }
|
| 1180 | } else if (From->Day == To->Day) {
|
| 1181 | if ((CompareHMS(From, To) <= 0)) {
|
| 1182 | Adjacent = TRUE;
|
| 1183 | }
|
| 1184 | }
|
| 1185 | } else if (((From->Month + 1) == To->Month) && (To->Day == 1)) {
|
| 1186 | if ((From->Month == 2) && !IsLeapYear(From)) {
|
| 1187 | if (From->Day == 28) {
|
| 1188 | if ((CompareHMS(From, To) >= 0)) {
|
| 1189 | Adjacent = TRUE;
|
| 1190 | }
|
| 1191 | }
|
| 1192 | } else if (From->Day == DayOfMonth[From->Month - 1]) {
|
| 1193 | if ((CompareHMS(From, To) >= 0)) {
|
| 1194 | Adjacent = TRUE;
|
| 1195 | }
|
| 1196 | }
|
| 1197 | }
|
| 1198 | } else if (((From->Year + 1) == To->Year) &&
|
| 1199 | (From->Month == 12) &&
|
| 1200 | (From->Day == 31) &&
|
| 1201 | (To->Month == 1) &&
|
| 1202 | (To->Day == 1)) {
|
| 1203 | if ((CompareHMS(From, To) >= 0)) {
|
| 1204 | Adjacent = TRUE;
|
| 1205 | }
|
| 1206 | }
|
| 1207 |
|
| 1208 | return Adjacent;
|
| 1209 | }
|
| 1210 |
|