Vishal Bhoj | 82c8071 | 2015-12-15 21:13:33 +0530 | [diff] [blame^] | 1 | /** @file
|
| 2 | Timer Library functions built upon local APIC on IA32/x64.
|
| 3 |
|
| 4 | This library uses the local APIC library so that it supports x2APIC mode.
|
| 5 |
|
| 6 | Copyright (c) 2010 - 2013, Intel Corporation. All rights reserved.<BR>
|
| 7 | This program and the accompanying materials
|
| 8 | are licensed and made available under the terms and conditions of the BSD License
|
| 9 | which accompanies this distribution. The full text of the license may be found at
|
| 10 | http://opensource.org/licenses/bsd-license.php.
|
| 11 |
|
| 12 | THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
| 13 | WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
| 14 |
|
| 15 | **/
|
| 16 |
|
| 17 | #include <Base.h>
|
| 18 | #include <Library/TimerLib.h>
|
| 19 | #include <Library/BaseLib.h>
|
| 20 | #include <Library/PcdLib.h>
|
| 21 | #include <Library/DebugLib.h>
|
| 22 | #include <Library/LocalApicLib.h>
|
| 23 |
|
| 24 | /**
|
| 25 | Internal function to return the frequency of the local APIC timer.
|
| 26 |
|
| 27 | @return The frequency of the timer in Hz.
|
| 28 |
|
| 29 | **/
|
| 30 | UINT32
|
| 31 | EFIAPI
|
| 32 | InternalX86GetTimerFrequency (
|
| 33 | VOID
|
| 34 | )
|
| 35 | {
|
| 36 | UINTN Divisor;
|
| 37 |
|
| 38 | GetApicTimerState (&Divisor, NULL, NULL);
|
| 39 | return PcdGet32(PcdFSBClock) / (UINT32)Divisor;
|
| 40 | }
|
| 41 |
|
| 42 | /**
|
| 43 | Stalls the CPU for at least the given number of ticks.
|
| 44 |
|
| 45 | Stalls the CPU for at least the given number of ticks. It's invoked by
|
| 46 | MicroSecondDelay() and NanoSecondDelay().
|
| 47 |
|
| 48 | @param Delay A period of time to delay in ticks.
|
| 49 |
|
| 50 | **/
|
| 51 | VOID
|
| 52 | EFIAPI
|
| 53 | InternalX86Delay (
|
| 54 | IN UINT32 Delay
|
| 55 | )
|
| 56 | {
|
| 57 | INT32 Ticks;
|
| 58 | UINT32 Times;
|
| 59 | UINT32 InitCount;
|
| 60 | UINT32 StartTick;
|
| 61 |
|
| 62 | //
|
| 63 | // In case Delay is too larger, separate it into several small delay slot.
|
| 64 | // Devided Delay by half value of Init Count is to avoid Delay close to
|
| 65 | // the Init Count, timeout maybe missing if the time consuming between 2
|
| 66 | // GetApicTimerCurrentCount() invoking is larger than the time gap between
|
| 67 | // Delay and the Init Count.
|
| 68 | //
|
| 69 | InitCount = GetApicTimerInitCount ();
|
| 70 | Times = Delay / (InitCount / 2);
|
| 71 | Delay = Delay % (InitCount / 2);
|
| 72 |
|
| 73 | //
|
| 74 | // Get Start Tick and do delay
|
| 75 | //
|
| 76 | StartTick = GetApicTimerCurrentCount ();
|
| 77 | do {
|
| 78 | //
|
| 79 | // Wait until time out by Delay value
|
| 80 | //
|
| 81 | do {
|
| 82 | CpuPause ();
|
| 83 | //
|
| 84 | // Get Ticks from Start to Current.
|
| 85 | //
|
| 86 | Ticks = StartTick - GetApicTimerCurrentCount ();
|
| 87 | //
|
| 88 | // Ticks < 0 means Timer wrap-arounds happens.
|
| 89 | //
|
| 90 | if (Ticks < 0) {
|
| 91 | Ticks += InitCount;
|
| 92 | }
|
| 93 | } while ((UINT32)Ticks < Delay);
|
| 94 |
|
| 95 | //
|
| 96 | // Update StartTick and Delay for next delay slot
|
| 97 | //
|
| 98 | StartTick -= (StartTick > Delay) ? Delay : (Delay - InitCount);
|
| 99 | Delay = InitCount / 2;
|
| 100 | } while (Times-- > 0);
|
| 101 | }
|
| 102 |
|
| 103 | /**
|
| 104 | Stalls the CPU for at least the given number of microseconds.
|
| 105 |
|
| 106 | Stalls the CPU for the number of microseconds specified by MicroSeconds.
|
| 107 |
|
| 108 | @param MicroSeconds The minimum number of microseconds to delay.
|
| 109 |
|
| 110 | @return The value of MicroSeconds inputted.
|
| 111 |
|
| 112 | **/
|
| 113 | UINTN
|
| 114 | EFIAPI
|
| 115 | MicroSecondDelay (
|
| 116 | IN UINTN MicroSeconds
|
| 117 | )
|
| 118 | {
|
| 119 | InternalX86Delay (
|
| 120 | (UINT32)DivU64x32 (
|
| 121 | MultU64x64 (
|
| 122 | InternalX86GetTimerFrequency (),
|
| 123 | MicroSeconds
|
| 124 | ),
|
| 125 | 1000000u
|
| 126 | )
|
| 127 | );
|
| 128 | return MicroSeconds;
|
| 129 | }
|
| 130 |
|
| 131 | /**
|
| 132 | Stalls the CPU for at least the given number of nanoseconds.
|
| 133 |
|
| 134 | Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
|
| 135 |
|
| 136 | @param NanoSeconds The minimum number of nanoseconds to delay.
|
| 137 |
|
| 138 | @return The value of NanoSeconds inputted.
|
| 139 |
|
| 140 | **/
|
| 141 | UINTN
|
| 142 | EFIAPI
|
| 143 | NanoSecondDelay (
|
| 144 | IN UINTN NanoSeconds
|
| 145 | )
|
| 146 | {
|
| 147 | InternalX86Delay (
|
| 148 | (UINT32)DivU64x32 (
|
| 149 | MultU64x64 (
|
| 150 | InternalX86GetTimerFrequency (),
|
| 151 | NanoSeconds
|
| 152 | ),
|
| 153 | 1000000000u
|
| 154 | )
|
| 155 | );
|
| 156 | return NanoSeconds;
|
| 157 | }
|
| 158 |
|
| 159 | /**
|
| 160 | Retrieves the current value of a 64-bit free running performance counter.
|
| 161 |
|
| 162 | The counter can either count up by 1 or count down by 1. If the physical
|
| 163 | performance counter counts by a larger increment, then the counter values
|
| 164 | must be translated. The properties of the counter can be retrieved from
|
| 165 | GetPerformanceCounterProperties().
|
| 166 |
|
| 167 | @return The current value of the free running performance counter.
|
| 168 |
|
| 169 | **/
|
| 170 | UINT64
|
| 171 | EFIAPI
|
| 172 | GetPerformanceCounter (
|
| 173 | VOID
|
| 174 | )
|
| 175 | {
|
| 176 | return (UINT64)GetApicTimerCurrentCount ();
|
| 177 | }
|
| 178 |
|
| 179 | /**
|
| 180 | Retrieves the 64-bit frequency in Hz and the range of performance counter
|
| 181 | values.
|
| 182 |
|
| 183 | If StartValue is not NULL, then the value that the performance counter starts
|
| 184 | with immediately after is it rolls over is returned in StartValue. If
|
| 185 | EndValue is not NULL, then the value that the performance counter end with
|
| 186 | immediately before it rolls over is returned in EndValue. The 64-bit
|
| 187 | frequency of the performance counter in Hz is always returned. If StartValue
|
| 188 | is less than EndValue, then the performance counter counts up. If StartValue
|
| 189 | is greater than EndValue, then the performance counter counts down. For
|
| 190 | example, a 64-bit free running counter that counts up would have a StartValue
|
| 191 | of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
|
| 192 | that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
|
| 193 |
|
| 194 | @param StartValue The value the performance counter starts with when it
|
| 195 | rolls over.
|
| 196 | @param EndValue The value that the performance counter ends with before
|
| 197 | it rolls over.
|
| 198 |
|
| 199 | @return The frequency in Hz.
|
| 200 |
|
| 201 | **/
|
| 202 | UINT64
|
| 203 | EFIAPI
|
| 204 | GetPerformanceCounterProperties (
|
| 205 | OUT UINT64 *StartValue, OPTIONAL
|
| 206 | OUT UINT64 *EndValue OPTIONAL
|
| 207 | )
|
| 208 | {
|
| 209 | if (StartValue != NULL) {
|
| 210 | *StartValue = (UINT64)GetApicTimerInitCount ();
|
| 211 | }
|
| 212 |
|
| 213 | if (EndValue != NULL) {
|
| 214 | *EndValue = 0;
|
| 215 | }
|
| 216 |
|
| 217 | return (UINT64) InternalX86GetTimerFrequency ();
|
| 218 | }
|
| 219 |
|
| 220 | /**
|
| 221 | Converts elapsed ticks of performance counter to time in nanoseconds.
|
| 222 |
|
| 223 | This function converts the elapsed ticks of running performance counter to
|
| 224 | time value in unit of nanoseconds.
|
| 225 |
|
| 226 | @param Ticks The number of elapsed ticks of running performance counter.
|
| 227 |
|
| 228 | @return The elapsed time in nanoseconds.
|
| 229 |
|
| 230 | **/
|
| 231 | UINT64
|
| 232 | EFIAPI
|
| 233 | GetTimeInNanoSecond (
|
| 234 | IN UINT64 Ticks
|
| 235 | )
|
| 236 | {
|
| 237 | UINT64 Frequency;
|
| 238 | UINT64 NanoSeconds;
|
| 239 | UINT64 Remainder;
|
| 240 | INTN Shift;
|
| 241 |
|
| 242 | Frequency = GetPerformanceCounterProperties (NULL, NULL);
|
| 243 |
|
| 244 | //
|
| 245 | // Ticks
|
| 246 | // Time = --------- x 1,000,000,000
|
| 247 | // Frequency
|
| 248 | //
|
| 249 | NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);
|
| 250 |
|
| 251 | //
|
| 252 | // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.
|
| 253 | // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,
|
| 254 | // i.e. highest bit set in Remainder should <= 33.
|
| 255 | //
|
| 256 | Shift = MAX (0, HighBitSet64 (Remainder) - 33);
|
| 257 | Remainder = RShiftU64 (Remainder, (UINTN) Shift);
|
| 258 | Frequency = RShiftU64 (Frequency, (UINTN) Shift);
|
| 259 | NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);
|
| 260 |
|
| 261 | return NanoSeconds;
|
| 262 | }
|