blob: acd13105dd55e729d9977b85ac9c2bf13462d9b0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2006 Freescale Semiconductor, Inc.
* Dave Liu <daveliu@freescale.com>
*
* Copyright (C) 2007 Logic Product Development, Inc.
* Peter Barada <peterb@logicpd.com>
*
* Copyright (C) 2007 MontaVista Software, Inc.
* Anton Vorontsov <avorontsov@ru.mvista.com>
*
* (C) Copyright 2008 - 2010
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*/
#include <common.h>
#include <env.h>
#include <event.h>
#include <fdt_support.h>
#include <init.h>
#include <ioports.h>
#include <log.h>
#include <mpc83xx.h>
#include <i2c.h>
#include <miiphy.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <pci.h>
#include <linux/delay.h>
#include <linux/libfdt.h>
#include <post.h>
#include "../common/common.h"
DECLARE_GLOBAL_DATA_PTR;
#if CONFIG_IS_ENABLED(TARGET_KMCOGE5NE) || CONFIG_IS_ENABLED(TARGET_KMETER1)
#define CFG_SYS_DDR_MODE 0x47860452
#define CFG_SYS_DDR_INTERVAL (\
(0x080 << SDRAM_INTERVAL_BSTOPRE_SHIFT) | \
(0x203 << SDRAM_INTERVAL_REFINT_SHIFT))
#define CFG_SYS_DDR_TIMING_0 (\
(2 << TIMING_CFG0_MRS_CYC_SHIFT) | \
(8 << TIMING_CFG0_ODT_PD_EXIT_SHIFT) | \
(6 << TIMING_CFG0_PRE_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_ACT_PD_EXIT_SHIFT) | \
(0 << TIMING_CFG0_WWT_SHIFT) | \
(0 << TIMING_CFG0_RRT_SHIFT) | \
(0 << TIMING_CFG0_WRT_SHIFT) | \
(0 << TIMING_CFG0_RWT_SHIFT))
#define CFG_SYS_DDR_TIMING_1 ((TIMING_CFG1_CASLAT_50) | \
(2 << TIMING_CFG1_WRTORD_SHIFT) | \
(2 << TIMING_CFG1_ACTTOACT_SHIFT) | \
(3 << TIMING_CFG1_WRREC_SHIFT) | \
(7 << TIMING_CFG1_REFREC_SHIFT) | \
(3 << TIMING_CFG1_ACTTORW_SHIFT) | \
(8 << TIMING_CFG1_ACTTOPRE_SHIFT) | \
(3 << TIMING_CFG1_PRETOACT_SHIFT))
#define CFG_SYS_DDR_TIMING_2 (\
(0xa << TIMING_CFG2_FOUR_ACT_SHIFT) | \
(3 << TIMING_CFG2_CKE_PLS_SHIFT) | \
(2 << TIMING_CFG2_WR_DATA_DELAY_SHIFT) | \
(2 << TIMING_CFG2_RD_TO_PRE_SHIFT) | \
(4 << TIMING_CFG2_WR_LAT_DELAY_SHIFT) | \
(5 << TIMING_CFG2_CPO_SHIFT) | \
(0 << TIMING_CFG2_ADD_LAT_SHIFT))
#define CFG_SYS_DDR_TIMING_3 0x00000000
#else
#define CFG_SYS_DDR_MODE 0x47860242
#define CFG_SYS_DDR_INTERVAL ((0x064 << SDRAM_INTERVAL_BSTOPRE_SHIFT) | \
(0x200 << SDRAM_INTERVAL_REFINT_SHIFT))
#define CFG_SYS_DDR_TIMING_0 ((2 << TIMING_CFG0_MRS_CYC_SHIFT) | \
(8 << TIMING_CFG0_ODT_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_PRE_PD_EXIT_SHIFT) | \
(2 << TIMING_CFG0_ACT_PD_EXIT_SHIFT) | \
(0 << TIMING_CFG0_WWT_SHIFT) | \
(0 << TIMING_CFG0_RRT_SHIFT) | \
(0 << TIMING_CFG0_WRT_SHIFT) | \
(0 << TIMING_CFG0_RWT_SHIFT))
#define CFG_SYS_DDR_TIMING_1 ((TIMING_CFG1_CASLAT_40) | \
(2 << TIMING_CFG1_WRTORD_SHIFT) | \
(2 << TIMING_CFG1_ACTTOACT_SHIFT) | \
(3 << TIMING_CFG1_WRREC_SHIFT) | \
(7 << TIMING_CFG1_REFREC_SHIFT) | \
(3 << TIMING_CFG1_ACTTORW_SHIFT) | \
(7 << TIMING_CFG1_ACTTOPRE_SHIFT) | \
(3 << TIMING_CFG1_PRETOACT_SHIFT))
#define CFG_SYS_DDR_TIMING_2 ((8 << TIMING_CFG2_FOUR_ACT_SHIFT) | \
(3 << TIMING_CFG2_CKE_PLS_SHIFT) | \
(2 << TIMING_CFG2_WR_DATA_DELAY_SHIFT) | \
(2 << TIMING_CFG2_RD_TO_PRE_SHIFT) | \
(3 << TIMING_CFG2_WR_LAT_DELAY_SHIFT) | \
(0 << TIMING_CFG2_ADD_LAT_SHIFT) | \
(5 << TIMING_CFG2_CPO_SHIFT))
#define CFG_SYS_DDR_TIMING_3 0x00000000
#define CFG_SYS_DDR_CS0_CONFIG (CSCONFIG_EN | CSCONFIG_AP | \
CSCONFIG_ODT_WR_CFG | \
CSCONFIG_ROW_BIT_13 | \
CSCONFIG_COL_BIT_10)
#endif
#define CFG_SYS_DDR_SDRAM_CFG (SDRAM_CFG_SDRAM_TYPE_DDR2 | \
SDRAM_CFG_32_BE | \
SDRAM_CFG_SREN | \
SDRAM_CFG_HSE)
#define CFG_SYS_DDR_CLK_CNTL (DDR_SDRAM_CLK_CNTL_CLK_ADJUST_05)
#define CFG_SYS_DDR_SDRAM_CFG2 0x00401000
#define CFG_SYS_DDR_CS0_BNDS 0x0000007f
#define CFG_SYS_DDR_MODE2 0x8080c000
#define CFG_SYS_SDRAM_SIZE 0x80000000 /* 2048 MiB */
static uchar ivm_content[CONFIG_SYS_IVM_EEPROM_MAX_LEN];
static int piggy_present(void)
{
struct km_bec_fpga __iomem *base =
(struct km_bec_fpga __iomem *)CFG_SYS_KMBEC_FPGA_BASE;
return in_8(&base->bprth) & PIGGY_PRESENT;
}
int ethernet_present(void)
{
return piggy_present();
}
int board_early_init_r(void)
{
struct km_bec_fpga *base =
(struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE;
#if defined(CONFIG_ARCH_MPC8360)
unsigned short svid;
/*
* Because of errata in the UCCs, we have to write to the reserved
* registers to slow the clocks down.
*/
svid = SVR_REV(mfspr(SVR));
switch (svid) {
case 0x0020:
/*
* MPC8360ECE.pdf QE_ENET10 table 4:
* IMMR + 0x14A8[4:5] = 11 (clk delay for UCC 2)
* IMMR + 0x14A8[18:19] = 11 (clk delay for UCC 1)
*/
setbits_be32((void *)(CONFIG_SYS_IMMR + 0x14a8), 0x0c003000);
break;
case 0x0021:
/*
* MPC8360ECE.pdf QE_ENET10 table 4:
* IMMR + 0x14AC[24:27] = 1010
*/
clrsetbits_be32((void *)(CONFIG_SYS_IMMR + 0x14ac),
0x00000050, 0x000000a0);
break;
}
#endif
/* enable the PHY on the PIGGY */
setbits_8(&base->pgy_eth, 0x01);
/* enable the Unit LED (green) */
setbits_8(&base->oprth, WRL_BOOT);
/* enable Application Buffer */
setbits_8(&base->oprtl, OPRTL_XBUFENA);
return 0;
}
int misc_init_r(void)
{
ivm_read_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN,
CONFIG_PIGGY_MAC_ADDRESS_OFFSET);
return 0;
}
static int last_stage_init(void)
{
#if defined(CONFIG_TARGET_KMCOGE5NE)
/*
* BFTIC3 on the local bus CS4
*/
struct bfticu_iomap *base = (struct bfticu_iomap *)0xB0000000;
u8 dip_switch = in_8((u8 *)&(base->mswitch)) & BFTICU_DIPSWITCH_MASK;
if (dip_switch != 0) {
/* start bootloader */
puts("DIP: Enabled\n");
env_set("actual_bank", "0");
}
#endif
set_km_env();
return 0;
}
EVENT_SPY_SIMPLE(EVT_LAST_STAGE_INIT, last_stage_init);
static int fixed_sdram(void)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = 0;
u32 ddr_size;
u32 ddr_size_log2;
out_be32(&im->sysconf.ddrlaw[0].ar, (LAWAR_EN | 0x1e));
out_be32(&im->ddr.csbnds[0].csbnds, (CFG_SYS_DDR_CS0_BNDS) | 0x7f);
out_be32(&im->ddr.cs_config[0], CFG_SYS_DDR_CS0_CONFIG);
out_be32(&im->ddr.timing_cfg_0, CFG_SYS_DDR_TIMING_0);
out_be32(&im->ddr.timing_cfg_1, CFG_SYS_DDR_TIMING_1);
out_be32(&im->ddr.timing_cfg_2, CFG_SYS_DDR_TIMING_2);
out_be32(&im->ddr.timing_cfg_3, CFG_SYS_DDR_TIMING_3);
out_be32(&im->ddr.sdram_cfg, CFG_SYS_DDR_SDRAM_CFG);
out_be32(&im->ddr.sdram_cfg2, CFG_SYS_DDR_SDRAM_CFG2);
out_be32(&im->ddr.sdram_mode, CFG_SYS_DDR_MODE);
out_be32(&im->ddr.sdram_mode2, CFG_SYS_DDR_MODE2);
out_be32(&im->ddr.sdram_interval, CFG_SYS_DDR_INTERVAL);
out_be32(&im->ddr.sdram_clk_cntl, CFG_SYS_DDR_CLK_CNTL);
udelay(200);
setbits_be32(&im->ddr.sdram_cfg, SDRAM_CFG_MEM_EN);
disable_addr_trans();
msize = get_ram_size(CFG_SYS_SDRAM_BASE, CFG_SYS_SDRAM_SIZE);
enable_addr_trans();
msize /= (1024 * 1024);
if (CFG_SYS_SDRAM_SIZE >> 20 != msize) {
for (ddr_size = msize << 20, ddr_size_log2 = 0;
(ddr_size > 1);
ddr_size = ddr_size >> 1, ddr_size_log2++)
if (ddr_size & 1)
return -1;
out_be32(&im->sysconf.ddrlaw[0].ar,
(LAWAR_EN | ((ddr_size_log2 - 1) & LAWAR_SIZE)));
out_be32(&im->ddr.csbnds[0].csbnds,
(((msize / 16) - 1) & 0xff));
}
return msize;
}
int dram_init(void)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = 0;
if ((in_be32(&im->sysconf.immrbar) & IMMRBAR_BASE_ADDR) != (u32)im)
return -ENXIO;
out_be32(&im->sysconf.ddrlaw[0].bar,
CFG_SYS_SDRAM_BASE & LAWBAR_BAR);
msize = fixed_sdram();
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
/*
* Initialize DDR ECC byte
*/
ddr_enable_ecc(msize * 1024 * 1024);
#endif
/* return total bus SDRAM size(bytes) -- DDR */
gd->ram_size = msize * 1024 * 1024;
return 0;
}
int checkboard(void)
{
puts("Board: Hitachi " CONFIG_SYS_CONFIG_NAME);
if (piggy_present())
puts(" with PIGGY.");
puts("\n");
return 0;
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
ft_cpu_setup(blob, bd);
return 0;
}
#if defined(CONFIG_HUSH_INIT_VAR)
int hush_init_var(void)
{
ivm_analyze_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN);
return 0;
}
#endif
#if defined(CONFIG_POST)
int post_hotkeys_pressed(void)
{
int testpin = 0;
struct km_bec_fpga *base =
(struct km_bec_fpga *)CFG_SYS_KMBEC_FPGA_BASE;
int testpin_reg = in_8(&base->CFG_TESTPIN_REG);
testpin = (testpin_reg & CFG_TESTPIN_MASK) != 0;
debug("post_hotkeys_pressed: %d\n", !testpin);
return testpin;
}
ulong post_word_load(void)
{
void* addr = (ulong *) (CPM_POST_WORD_ADDR);
debug("post_word_load 0x%08lX: 0x%08X\n", (ulong)addr, in_le32(addr));
return in_le32(addr);
}
void post_word_store(ulong value)
{
void* addr = (ulong *) (CPM_POST_WORD_ADDR);
debug("post_word_store 0x%08lX: 0x%08lX\n", (ulong)addr, value);
out_le32(addr, value);
}
int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
*vstart = CONFIG_SYS_MEMTEST_START;
*size = CONFIG_SYS_MEMTEST_END - CONFIG_SYS_MEMTEST_START;
debug("arch_memory_test_prepare 0x%08X 0x%08X\n", *vstart, *size);
return 0;
}
#endif