blob: 26c21c6d70faeb0c72d2e708455a2b4a9c591152 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2011 Michal Simek <monstr@monstr.eu>
* Copyright (C) 2011 PetaLogix
* Copyright (C) 2010 Xilinx, Inc. All rights reserved.
*/
#include <config.h>
#include <common.h>
#include <dm.h>
#include <net.h>
#include <malloc.h>
#include <asm/io.h>
#include <phy.h>
#include <miiphy.h>
#include <wait_bit.h>
DECLARE_GLOBAL_DATA_PTR;
/* Link setup */
#define XAE_EMMC_LINKSPEED_MASK 0xC0000000 /* Link speed */
#define XAE_EMMC_LINKSPD_10 0x00000000 /* Link Speed mask for 10 Mbit */
#define XAE_EMMC_LINKSPD_100 0x40000000 /* Link Speed mask for 100 Mbit */
#define XAE_EMMC_LINKSPD_1000 0x80000000 /* Link Speed mask for 1000 Mbit */
/* Interrupt Status/Enable/Mask Registers bit definitions */
#define XAE_INT_RXRJECT_MASK 0x00000008 /* Rx frame rejected */
#define XAE_INT_MGTRDY_MASK 0x00000080 /* MGT clock Lock */
/* Receive Configuration Word 1 (RCW1) Register bit definitions */
#define XAE_RCW1_RX_MASK 0x10000000 /* Receiver enable */
/* Transmitter Configuration (TC) Register bit definitions */
#define XAE_TC_TX_MASK 0x10000000 /* Transmitter enable */
#define XAE_UAW1_UNICASTADDR_MASK 0x0000FFFF
/* MDIO Management Configuration (MC) Register bit definitions */
#define XAE_MDIO_MC_MDIOEN_MASK 0x00000040 /* MII management enable*/
/* MDIO Management Control Register (MCR) Register bit definitions */
#define XAE_MDIO_MCR_PHYAD_MASK 0x1F000000 /* Phy Address Mask */
#define XAE_MDIO_MCR_PHYAD_SHIFT 24 /* Phy Address Shift */
#define XAE_MDIO_MCR_REGAD_MASK 0x001F0000 /* Reg Address Mask */
#define XAE_MDIO_MCR_REGAD_SHIFT 16 /* Reg Address Shift */
#define XAE_MDIO_MCR_OP_READ_MASK 0x00008000 /* Op Code Read Mask */
#define XAE_MDIO_MCR_OP_WRITE_MASK 0x00004000 /* Op Code Write Mask */
#define XAE_MDIO_MCR_INITIATE_MASK 0x00000800 /* Ready Mask */
#define XAE_MDIO_MCR_READY_MASK 0x00000080 /* Ready Mask */
#define XAE_MDIO_DIV_DFT 29 /* Default MDIO clock divisor */
#define XAXIDMA_BD_STS_ACTUAL_LEN_MASK 0x007FFFFF /* Actual len */
/* DMA macros */
/* Bitmasks of XAXIDMA_CR_OFFSET register */
#define XAXIDMA_CR_RUNSTOP_MASK 0x00000001 /* Start/stop DMA channel */
#define XAXIDMA_CR_RESET_MASK 0x00000004 /* Reset DMA engine */
/* Bitmasks of XAXIDMA_SR_OFFSET register */
#define XAXIDMA_HALTED_MASK 0x00000001 /* DMA channel halted */
/* Bitmask for interrupts */
#define XAXIDMA_IRQ_IOC_MASK 0x00001000 /* Completion intr */
#define XAXIDMA_IRQ_DELAY_MASK 0x00002000 /* Delay interrupt */
#define XAXIDMA_IRQ_ALL_MASK 0x00007000 /* All interrupts */
/* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */
#define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */
#define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */
#define DMAALIGN 128
static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN)));
/* Reflect dma offsets */
struct axidma_reg {
u32 control; /* DMACR */
u32 status; /* DMASR */
u32 current; /* CURDESC low 32 bit */
u32 current_hi; /* CURDESC high 32 bit */
u32 tail; /* TAILDESC low 32 bit */
u32 tail_hi; /* TAILDESC high 32 bit */
};
/* Private driver structures */
struct axidma_priv {
struct axidma_reg *dmatx;
struct axidma_reg *dmarx;
int phyaddr;
struct axi_regs *iobase;
phy_interface_t interface;
struct phy_device *phydev;
struct mii_dev *bus;
u8 eth_hasnobuf;
};
/* BD descriptors */
struct axidma_bd {
u32 next; /* Next descriptor pointer */
u32 reserved1;
u32 phys; /* Buffer address */
u32 reserved2;
u32 reserved3;
u32 reserved4;
u32 cntrl; /* Control */
u32 status; /* Status */
u32 app0;
u32 app1; /* TX start << 16 | insert */
u32 app2; /* TX csum seed */
u32 app3;
u32 app4;
u32 sw_id_offset;
u32 reserved5;
u32 reserved6;
};
/* Static BDs - driver uses only one BD */
static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN)));
static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN)));
struct axi_regs {
u32 reserved[3];
u32 is; /* 0xC: Interrupt status */
u32 reserved2;
u32 ie; /* 0x14: Interrupt enable */
u32 reserved3[251];
u32 rcw1; /* 0x404: Rx Configuration Word 1 */
u32 tc; /* 0x408: Tx Configuration */
u32 reserved4;
u32 emmc; /* 0x410: EMAC mode configuration */
u32 reserved5[59];
u32 mdio_mc; /* 0x500: MII Management Config */
u32 mdio_mcr; /* 0x504: MII Management Control */
u32 mdio_mwd; /* 0x508: MII Management Write Data */
u32 mdio_mrd; /* 0x50C: MII Management Read Data */
u32 reserved6[124];
u32 uaw0; /* 0x700: Unicast address word 0 */
u32 uaw1; /* 0x704: Unicast address word 1 */
};
/* Use MII register 1 (MII status register) to detect PHY */
#define PHY_DETECT_REG 1
/*
* Mask used to verify certain PHY features (or register contents)
* in the register above:
* 0x1000: 10Mbps full duplex support
* 0x0800: 10Mbps half duplex support
* 0x0008: Auto-negotiation support
*/
#define PHY_DETECT_MASK 0x1808
static inline int mdio_wait(struct axi_regs *regs)
{
u32 timeout = 200;
/* Wait till MDIO interface is ready to accept a new transaction. */
while (timeout && (!(readl(&regs->mdio_mcr)
& XAE_MDIO_MCR_READY_MASK))) {
timeout--;
udelay(1);
}
if (!timeout) {
printf("%s: Timeout\n", __func__);
return 1;
}
return 0;
}
/**
* axienet_dma_write - Memory mapped Axi DMA register Buffer Descriptor write.
* @bd: pointer to BD descriptor structure
* @desc: Address offset of DMA descriptors
*
* This function writes the value into the corresponding Axi DMA register.
*/
static inline void axienet_dma_write(struct axidma_bd *bd, u32 *desc)
{
#if defined(CONFIG_PHYS_64BIT)
writeq(bd, desc);
#else
writel((u32)bd, desc);
#endif
}
static u32 phyread(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
u16 *val)
{
struct axi_regs *regs = priv->iobase;
u32 mdioctrlreg = 0;
if (mdio_wait(regs))
return 1;
mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
XAE_MDIO_MCR_PHYAD_MASK) |
((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
& XAE_MDIO_MCR_REGAD_MASK) |
XAE_MDIO_MCR_INITIATE_MASK |
XAE_MDIO_MCR_OP_READ_MASK;
writel(mdioctrlreg, &regs->mdio_mcr);
if (mdio_wait(regs))
return 1;
/* Read data */
*val = readl(&regs->mdio_mrd);
return 0;
}
static u32 phywrite(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
u32 data)
{
struct axi_regs *regs = priv->iobase;
u32 mdioctrlreg = 0;
if (mdio_wait(regs))
return 1;
mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
XAE_MDIO_MCR_PHYAD_MASK) |
((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
& XAE_MDIO_MCR_REGAD_MASK) |
XAE_MDIO_MCR_INITIATE_MASK |
XAE_MDIO_MCR_OP_WRITE_MASK;
/* Write data */
writel(data, &regs->mdio_mwd);
writel(mdioctrlreg, &regs->mdio_mcr);
if (mdio_wait(regs))
return 1;
return 0;
}
static int axiemac_phy_init(struct udevice *dev)
{
u16 phyreg;
u32 i, ret;
struct axidma_priv *priv = dev_get_priv(dev);
struct axi_regs *regs = priv->iobase;
struct phy_device *phydev;
u32 supported = SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full;
/* Set default MDIO divisor */
writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
if (priv->phyaddr == -1) {
/* Detect the PHY address */
for (i = 31; i >= 0; i--) {
ret = phyread(priv, i, PHY_DETECT_REG, &phyreg);
if (!ret && (phyreg != 0xFFFF) &&
((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
/* Found a valid PHY address */
priv->phyaddr = i;
debug("axiemac: Found valid phy address, %x\n",
i);
break;
}
}
}
/* Interface - look at tsec */
phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
phydev->supported &= supported;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
return 0;
}
/* Setting axi emac and phy to proper setting */
static int setup_phy(struct udevice *dev)
{
u16 temp;
u32 speed, emmc_reg, ret;
struct axidma_priv *priv = dev_get_priv(dev);
struct axi_regs *regs = priv->iobase;
struct phy_device *phydev = priv->phydev;
if (priv->interface == PHY_INTERFACE_MODE_SGMII) {
/*
* In SGMII cases the isolate bit might set
* after DMA and ethernet resets and hence
* check and clear if set.
*/
ret = phyread(priv, priv->phyaddr, MII_BMCR, &temp);
if (ret)
return 0;
if (temp & BMCR_ISOLATE) {
temp &= ~BMCR_ISOLATE;
ret = phywrite(priv, priv->phyaddr, MII_BMCR, temp);
if (ret)
return 0;
}
}
if (phy_startup(phydev)) {
printf("axiemac: could not initialize PHY %s\n",
phydev->dev->name);
return 0;
}
if (!phydev->link) {
printf("%s: No link.\n", phydev->dev->name);
return 0;
}
switch (phydev->speed) {
case 1000:
speed = XAE_EMMC_LINKSPD_1000;
break;
case 100:
speed = XAE_EMMC_LINKSPD_100;
break;
case 10:
speed = XAE_EMMC_LINKSPD_10;
break;
default:
return 0;
}
/* Setup the emac for the phy speed */
emmc_reg = readl(&regs->emmc);
emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
emmc_reg |= speed;
/* Write new speed setting out to Axi Ethernet */
writel(emmc_reg, &regs->emmc);
/*
* Setting the operating speed of the MAC needs a delay. There
* doesn't seem to be register to poll, so please consider this
* during your application design.
*/
udelay(1);
return 1;
}
/* STOP DMA transfers */
static void axiemac_stop(struct udevice *dev)
{
struct axidma_priv *priv = dev_get_priv(dev);
u32 temp;
/* Stop the hardware */
temp = readl(&priv->dmatx->control);
temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
writel(temp, &priv->dmatx->control);
temp = readl(&priv->dmarx->control);
temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
writel(temp, &priv->dmarx->control);
debug("axiemac: Halted\n");
}
static int axi_ethernet_init(struct axidma_priv *priv)
{
struct axi_regs *regs = priv->iobase;
int err;
/*
* Check the status of the MgtRdy bit in the interrupt status
* registers. This must be done to allow the MGT clock to become stable
* for the Sgmii and 1000BaseX PHY interfaces. No other register reads
* will be valid until this bit is valid.
* The bit is always a 1 for all other PHY interfaces.
* Interrupt status and enable registers are not available in non
* processor mode and hence bypass in this mode
*/
if (!priv->eth_hasnobuf) {
err = wait_for_bit_le32(&regs->is, XAE_INT_MGTRDY_MASK,
true, 200, false);
if (err) {
printf("%s: Timeout\n", __func__);
return 1;
}
/*
* Stop the device and reset HW
* Disable interrupts
*/
writel(0, &regs->ie);
}
/* Disable the receiver */
writel(readl(&regs->rcw1) & ~XAE_RCW1_RX_MASK, &regs->rcw1);
/*
* Stopping the receiver in mid-packet causes a dropped packet
* indication from HW. Clear it.
*/
if (!priv->eth_hasnobuf) {
/* Set the interrupt status register to clear the interrupt */
writel(XAE_INT_RXRJECT_MASK, &regs->is);
}
/* Setup HW */
/* Set default MDIO divisor */
writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
debug("axiemac: InitHw done\n");
return 0;
}
static int axiemac_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct axidma_priv *priv = dev_get_priv(dev);
struct axi_regs *regs = priv->iobase;
/* Set the MAC address */
int val = ((pdata->enetaddr[3] << 24) | (pdata->enetaddr[2] << 16) |
(pdata->enetaddr[1] << 8) | (pdata->enetaddr[0]));
writel(val, &regs->uaw0);
val = (pdata->enetaddr[5] << 8) | pdata->enetaddr[4];
val |= readl(&regs->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK;
writel(val, &regs->uaw1);
return 0;
}
/* Reset DMA engine */
static void axi_dma_init(struct axidma_priv *priv)
{
u32 timeout = 500;
/* Reset the engine so the hardware starts from a known state */
writel(XAXIDMA_CR_RESET_MASK, &priv->dmatx->control);
writel(XAXIDMA_CR_RESET_MASK, &priv->dmarx->control);
/* At the initialization time, hardware should finish reset quickly */
while (timeout--) {
/* Check transmit/receive channel */
/* Reset is done when the reset bit is low */
if (!((readl(&priv->dmatx->control) |
readl(&priv->dmarx->control))
& XAXIDMA_CR_RESET_MASK)) {
break;
}
}
if (!timeout)
printf("%s: Timeout\n", __func__);
}
static int axiemac_start(struct udevice *dev)
{
struct axidma_priv *priv = dev_get_priv(dev);
struct axi_regs *regs = priv->iobase;
u32 temp;
debug("axiemac: Init started\n");
/*
* Initialize AXIDMA engine. AXIDMA engine must be initialized before
* AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is
* reset, and since AXIDMA reset line is connected to AxiEthernet, this
* would ensure a reset of AxiEthernet.
*/
axi_dma_init(priv);
/* Initialize AxiEthernet hardware. */
if (axi_ethernet_init(priv))
return -1;
/* Disable all RX interrupts before RxBD space setup */
temp = readl(&priv->dmarx->control);
temp &= ~XAXIDMA_IRQ_ALL_MASK;
writel(temp, &priv->dmarx->control);
/* Start DMA RX channel. Now it's ready to receive data.*/
axienet_dma_write(&rx_bd, &priv->dmarx->current);
/* Setup the BD. */
memset(&rx_bd, 0, sizeof(rx_bd));
rx_bd.next = (u32)&rx_bd;
rx_bd.phys = (u32)&rxframe;
rx_bd.cntrl = sizeof(rxframe);
/* Flush the last BD so DMA core could see the updates */
flush_cache((u32)&rx_bd, sizeof(rx_bd));
/* It is necessary to flush rxframe because if you don't do it
* then cache can contain uninitialized data */
flush_cache((u32)&rxframe, sizeof(rxframe));
/* Start the hardware */
temp = readl(&priv->dmarx->control);
temp |= XAXIDMA_CR_RUNSTOP_MASK;
writel(temp, &priv->dmarx->control);
/* Rx BD is ready - start */
axienet_dma_write(&rx_bd, &priv->dmarx->tail);
/* Enable TX */
writel(XAE_TC_TX_MASK, &regs->tc);
/* Enable RX */
writel(XAE_RCW1_RX_MASK, &regs->rcw1);
/* PHY setup */
if (!setup_phy(dev)) {
axiemac_stop(dev);
return -1;
}
debug("axiemac: Init complete\n");
return 0;
}
static int axiemac_send(struct udevice *dev, void *ptr, int len)
{
struct axidma_priv *priv = dev_get_priv(dev);
u32 timeout;
if (len > PKTSIZE_ALIGN)
len = PKTSIZE_ALIGN;
/* Flush packet to main memory to be trasfered by DMA */
flush_cache((u32)ptr, len);
/* Setup Tx BD */
memset(&tx_bd, 0, sizeof(tx_bd));
/* At the end of the ring, link the last BD back to the top */
tx_bd.next = (u32)&tx_bd;
tx_bd.phys = (u32)ptr;
/* Save len */
tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK |
XAXIDMA_BD_CTRL_TXEOF_MASK;
/* Flush the last BD so DMA core could see the updates */
flush_cache((u32)&tx_bd, sizeof(tx_bd));
if (readl(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) {
u32 temp;
axienet_dma_write(&tx_bd, &priv->dmatx->current);
/* Start the hardware */
temp = readl(&priv->dmatx->control);
temp |= XAXIDMA_CR_RUNSTOP_MASK;
writel(temp, &priv->dmatx->control);
}
/* Start transfer */
axienet_dma_write(&tx_bd, &priv->dmatx->tail);
/* Wait for transmission to complete */
debug("axiemac: Waiting for tx to be done\n");
timeout = 200;
while (timeout && (!(readl(&priv->dmatx->status) &
(XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))) {
timeout--;
udelay(1);
}
if (!timeout) {
printf("%s: Timeout\n", __func__);
return 1;
}
debug("axiemac: Sending complete\n");
return 0;
}
static int isrxready(struct axidma_priv *priv)
{
u32 status;
/* Read pending interrupts */
status = readl(&priv->dmarx->status);
/* Acknowledge pending interrupts */
writel(status & XAXIDMA_IRQ_ALL_MASK, &priv->dmarx->status);
/*
* If Reception done interrupt is asserted, call RX call back function
* to handle the processed BDs and then raise the according flag.
*/
if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))
return 1;
return 0;
}
static int axiemac_recv(struct udevice *dev, int flags, uchar **packetp)
{
u32 length;
struct axidma_priv *priv = dev_get_priv(dev);
u32 temp;
/* Wait for an incoming packet */
if (!isrxready(priv))
return -1;
debug("axiemac: RX data ready\n");
/* Disable IRQ for a moment till packet is handled */
temp = readl(&priv->dmarx->control);
temp &= ~XAXIDMA_IRQ_ALL_MASK;
writel(temp, &priv->dmarx->control);
if (!priv->eth_hasnobuf)
length = rx_bd.app4 & 0xFFFF; /* max length mask */
else
length = rx_bd.status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
#ifdef DEBUG
print_buffer(&rxframe, &rxframe[0], 1, length, 16);
#endif
*packetp = rxframe;
return length;
}
static int axiemac_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct axidma_priv *priv = dev_get_priv(dev);
#ifdef DEBUG
/* It is useful to clear buffer to be sure that it is consistent */
memset(rxframe, 0, sizeof(rxframe));
#endif
/* Setup RxBD */
/* Clear the whole buffer and setup it again - all flags are cleared */
memset(&rx_bd, 0, sizeof(rx_bd));
rx_bd.next = (u32)&rx_bd;
rx_bd.phys = (u32)&rxframe;
rx_bd.cntrl = sizeof(rxframe);
/* Write bd to HW */
flush_cache((u32)&rx_bd, sizeof(rx_bd));
/* It is necessary to flush rxframe because if you don't do it
* then cache will contain previous packet */
flush_cache((u32)&rxframe, sizeof(rxframe));
/* Rx BD is ready - start again */
axienet_dma_write(&rx_bd, &priv->dmarx->tail);
debug("axiemac: RX completed, framelength = %d\n", length);
return 0;
}
static int axiemac_miiphy_read(struct mii_dev *bus, int addr,
int devad, int reg)
{
int ret;
u16 value;
ret = phyread(bus->priv, addr, reg, &value);
debug("axiemac: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg,
value, ret);
return value;
}
static int axiemac_miiphy_write(struct mii_dev *bus, int addr, int devad,
int reg, u16 value)
{
debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
return phywrite(bus->priv, addr, reg, value);
}
static int axi_emac_probe(struct udevice *dev)
{
struct axidma_priv *priv = dev_get_priv(dev);
int ret;
priv->bus = mdio_alloc();
priv->bus->read = axiemac_miiphy_read;
priv->bus->write = axiemac_miiphy_write;
priv->bus->priv = priv;
ret = mdio_register_seq(priv->bus, dev->seq);
if (ret)
return ret;
axiemac_phy_init(dev);
return 0;
}
static int axi_emac_remove(struct udevice *dev)
{
struct axidma_priv *priv = dev_get_priv(dev);
free(priv->phydev);
mdio_unregister(priv->bus);
mdio_free(priv->bus);
return 0;
}
static const struct eth_ops axi_emac_ops = {
.start = axiemac_start,
.send = axiemac_send,
.recv = axiemac_recv,
.free_pkt = axiemac_free_pkt,
.stop = axiemac_stop,
.write_hwaddr = axiemac_write_hwaddr,
};
static int axi_emac_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct axidma_priv *priv = dev_get_priv(dev);
int node = dev_of_offset(dev);
int offset = 0;
const char *phy_mode;
pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
priv->iobase = (struct axi_regs *)pdata->iobase;
offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
"axistream-connected");
if (offset <= 0) {
printf("%s: axistream is not found\n", __func__);
return -EINVAL;
}
priv->dmatx = (struct axidma_reg *)fdtdec_get_addr(gd->fdt_blob,
offset, "reg");
if (!priv->dmatx) {
printf("%s: axi_dma register space not found\n", __func__);
return -EINVAL;
}
/* RX channel offset is 0x30 */
priv->dmarx = (struct axidma_reg *)((u32)priv->dmatx + 0x30);
priv->phyaddr = -1;
offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
if (offset > 0)
priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
printf("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
priv->interface = pdata->phy_interface;
priv->eth_hasnobuf = fdtdec_get_bool(gd->fdt_blob, node,
"xlnx,eth-hasnobuf");
printf("AXI EMAC: %lx, phyaddr %d, interface %s\n", (ulong)priv->iobase,
priv->phyaddr, phy_string_for_interface(priv->interface));
return 0;
}
static const struct udevice_id axi_emac_ids[] = {
{ .compatible = "xlnx,axi-ethernet-1.00.a" },
{ }
};
U_BOOT_DRIVER(axi_emac) = {
.name = "axi_emac",
.id = UCLASS_ETH,
.of_match = axi_emac_ids,
.ofdata_to_platdata = axi_emac_ofdata_to_platdata,
.probe = axi_emac_probe,
.remove = axi_emac_remove,
.ops = &axi_emac_ops,
.priv_auto_alloc_size = sizeof(struct axidma_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};