| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2013, Google Inc. |
| */ |
| |
| #ifndef USE_HOSTCC |
| #include <common.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/errno.h> |
| #include <asm/types.h> |
| #include <asm/unaligned.h> |
| #else |
| #include "fdt_host.h" |
| #include "mkimage.h" |
| #include <fdt_support.h> |
| #endif |
| #include <u-boot/rsa.h> |
| #include <u-boot/rsa-mod-exp.h> |
| |
| #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) |
| |
| #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) |
| #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) |
| |
| static inline uint64_t fdt64_to_cpup(const void *p) |
| { |
| fdt64_t w; |
| |
| memcpy(&w, p, sizeof(w)); |
| return fdt64_to_cpu(w); |
| } |
| |
| /* Default public exponent for backward compatibility */ |
| #define RSA_DEFAULT_PUBEXP 65537 |
| |
| /** |
| * subtract_modulus() - subtract modulus from the given value |
| * |
| * @key: Key containing modulus to subtract |
| * @num: Number to subtract modulus from, as little endian word array |
| */ |
| static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) |
| { |
| int64_t acc = 0; |
| uint i; |
| |
| for (i = 0; i < key->len; i++) { |
| acc += (uint64_t)num[i] - key->modulus[i]; |
| num[i] = (uint32_t)acc; |
| acc >>= 32; |
| } |
| } |
| |
| /** |
| * greater_equal_modulus() - check if a value is >= modulus |
| * |
| * @key: Key containing modulus to check |
| * @num: Number to check against modulus, as little endian word array |
| * @return 0 if num < modulus, 1 if num >= modulus |
| */ |
| static int greater_equal_modulus(const struct rsa_public_key *key, |
| uint32_t num[]) |
| { |
| int i; |
| |
| for (i = (int)key->len - 1; i >= 0; i--) { |
| if (num[i] < key->modulus[i]) |
| return 0; |
| if (num[i] > key->modulus[i]) |
| return 1; |
| } |
| |
| return 1; /* equal */ |
| } |
| |
| /** |
| * montgomery_mul_add_step() - Perform montgomery multiply-add step |
| * |
| * Operation: montgomery result[] += a * b[] / n0inv % modulus |
| * |
| * @key: RSA key |
| * @result: Place to put result, as little endian word array |
| * @a: Multiplier |
| * @b: Multiplicand, as little endian word array |
| */ |
| static void montgomery_mul_add_step(const struct rsa_public_key *key, |
| uint32_t result[], const uint32_t a, const uint32_t b[]) |
| { |
| uint64_t acc_a, acc_b; |
| uint32_t d0; |
| uint i; |
| |
| acc_a = (uint64_t)a * b[0] + result[0]; |
| d0 = (uint32_t)acc_a * key->n0inv; |
| acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; |
| for (i = 1; i < key->len; i++) { |
| acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; |
| acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + |
| (uint32_t)acc_a; |
| result[i - 1] = (uint32_t)acc_b; |
| } |
| |
| acc_a = (acc_a >> 32) + (acc_b >> 32); |
| |
| result[i - 1] = (uint32_t)acc_a; |
| |
| if (acc_a >> 32) |
| subtract_modulus(key, result); |
| } |
| |
| /** |
| * montgomery_mul() - Perform montgomery mutitply |
| * |
| * Operation: montgomery result[] = a[] * b[] / n0inv % modulus |
| * |
| * @key: RSA key |
| * @result: Place to put result, as little endian word array |
| * @a: Multiplier, as little endian word array |
| * @b: Multiplicand, as little endian word array |
| */ |
| static void montgomery_mul(const struct rsa_public_key *key, |
| uint32_t result[], uint32_t a[], const uint32_t b[]) |
| { |
| uint i; |
| |
| for (i = 0; i < key->len; ++i) |
| result[i] = 0; |
| for (i = 0; i < key->len; ++i) |
| montgomery_mul_add_step(key, result, a[i], b); |
| } |
| |
| /** |
| * num_pub_exponent_bits() - Number of bits in the public exponent |
| * |
| * @key: RSA key |
| * @num_bits: Storage for the number of public exponent bits |
| */ |
| static int num_public_exponent_bits(const struct rsa_public_key *key, |
| int *num_bits) |
| { |
| uint64_t exponent; |
| int exponent_bits; |
| const uint max_bits = (sizeof(exponent) * 8); |
| |
| exponent = key->exponent; |
| exponent_bits = 0; |
| |
| if (!exponent) { |
| *num_bits = exponent_bits; |
| return 0; |
| } |
| |
| for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) |
| if (!(exponent >>= 1)) { |
| *num_bits = exponent_bits; |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * is_public_exponent_bit_set() - Check if a bit in the public exponent is set |
| * |
| * @key: RSA key |
| * @pos: The bit position to check |
| */ |
| static int is_public_exponent_bit_set(const struct rsa_public_key *key, |
| int pos) |
| { |
| return key->exponent & (1ULL << pos); |
| } |
| |
| /** |
| * pow_mod() - in-place public exponentiation |
| * |
| * @key: RSA key |
| * @inout: Big-endian word array containing value and result |
| */ |
| static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) |
| { |
| uint32_t *result, *ptr; |
| uint i; |
| int j, k; |
| |
| /* Sanity check for stack size - key->len is in 32-bit words */ |
| if (key->len > RSA_MAX_KEY_BITS / 32) { |
| debug("RSA key words %u exceeds maximum %d\n", key->len, |
| RSA_MAX_KEY_BITS / 32); |
| return -EINVAL; |
| } |
| |
| uint32_t val[key->len], acc[key->len], tmp[key->len]; |
| uint32_t a_scaled[key->len]; |
| result = tmp; /* Re-use location. */ |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) |
| val[i] = get_unaligned_be32(ptr); |
| |
| if (0 != num_public_exponent_bits(key, &k)) |
| return -EINVAL; |
| |
| if (k < 2) { |
| debug("Public exponent is too short (%d bits, minimum 2)\n", |
| k); |
| return -EINVAL; |
| } |
| |
| if (!is_public_exponent_bit_set(key, 0)) { |
| debug("LSB of RSA public exponent must be set.\n"); |
| return -EINVAL; |
| } |
| |
| /* the bit at e[k-1] is 1 by definition, so start with: C := M */ |
| montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ |
| /* retain scaled version for intermediate use */ |
| memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); |
| |
| for (j = k - 2; j > 0; --j) { |
| montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| |
| if (is_public_exponent_bit_set(key, j)) { |
| /* acc = tmp * val / R mod n */ |
| montgomery_mul(key, acc, tmp, a_scaled); |
| } else { |
| /* e[j] == 0, copy tmp back to acc for next operation */ |
| memcpy(acc, tmp, key->len * sizeof(acc[0])); |
| } |
| } |
| |
| /* the bit at e[0] is always 1 */ |
| montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ |
| montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ |
| memcpy(result, acc, key->len * sizeof(result[0])); |
| |
| /* Make sure result < mod; result is at most 1x mod too large. */ |
| if (greater_equal_modulus(key, result)) |
| subtract_modulus(key, result); |
| |
| /* Convert to bigendian byte array */ |
| for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) |
| put_unaligned_be32(result[i], ptr); |
| return 0; |
| } |
| |
| static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| dst[i] = fdt32_to_cpu(src[len - 1 - i]); |
| } |
| |
| int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, |
| struct key_prop *prop, uint8_t *out) |
| { |
| struct rsa_public_key key; |
| int ret; |
| |
| if (!prop) { |
| debug("%s: Skipping invalid prop", __func__); |
| return -EBADF; |
| } |
| key.n0inv = prop->n0inv; |
| key.len = prop->num_bits; |
| |
| if (!prop->public_exponent) |
| key.exponent = RSA_DEFAULT_PUBEXP; |
| else |
| key.exponent = fdt64_to_cpup(prop->public_exponent); |
| |
| if (!key.len || !prop->modulus || !prop->rr) { |
| debug("%s: Missing RSA key info", __func__); |
| return -EFAULT; |
| } |
| |
| /* Sanity check for stack size */ |
| if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { |
| debug("RSA key bits %u outside allowed range %d..%d\n", |
| key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); |
| return -EFAULT; |
| } |
| key.len /= sizeof(uint32_t) * 8; |
| uint32_t key1[key.len], key2[key.len]; |
| |
| key.modulus = key1; |
| key.rr = key2; |
| rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); |
| rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); |
| if (!key.modulus || !key.rr) { |
| debug("%s: Out of memory", __func__); |
| return -ENOMEM; |
| } |
| |
| uint32_t buf[sig_len / sizeof(uint32_t)]; |
| |
| memcpy(buf, sig, sig_len); |
| |
| ret = pow_mod(&key, buf); |
| if (ret) |
| return ret; |
| |
| memcpy(out, buf, sig_len); |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_CMD_ZYNQ_RSA) |
| /** |
| * zynq_pow_mod - in-place public exponentiation |
| * |
| * @keyptr: RSA key |
| * @inout: Big-endian word array containing value and result |
| * @return 0 on successful calculation, otherwise failure error code |
| * |
| * FIXME: Use pow_mod() instead of zynq_pow_mod() |
| * pow_mod calculation required for zynq is bit different from |
| * pw_mod above here, hence defined zynq specific routine. |
| */ |
| int zynq_pow_mod(u32 *keyptr, u32 *inout) |
| { |
| u32 *result, *ptr; |
| uint i; |
| struct rsa_public_key *key; |
| u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES]; |
| |
| key = (struct rsa_public_key *)keyptr; |
| |
| /* Sanity check for stack size - key->len is in 32-bit words */ |
| if (key->len > RSA_MAX_KEY_BITS / 32) { |
| debug("RSA key words %u exceeds maximum %d\n", key->len, |
| RSA_MAX_KEY_BITS / 32); |
| return -EINVAL; |
| } |
| |
| result = tmp; /* Re-use location. */ |
| |
| for (i = 0, ptr = inout; i < key->len; i++, ptr++) |
| val[i] = *(ptr); |
| |
| montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ |
| for (i = 0; i < 16; i += 2) { |
| montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ |
| montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ |
| } |
| montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ |
| |
| /* Make sure result < mod; result is at most 1x mod too large. */ |
| if (greater_equal_modulus(key, result)) |
| subtract_modulus(key, result); |
| |
| for (i = 0, ptr = inout; i < key->len; i++, ptr++) |
| *ptr = result[i]; |
| |
| return 0; |
| } |
| #endif |