| /* |
| * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> |
| * Rohit Choraria <rohitkc@ti.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/errno.h> |
| #include <asm/arch/mem.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/omap_gpmc.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/bch.h> |
| #include <linux/compiler.h> |
| #include <nand.h> |
| #ifdef CONFIG_AM33XX |
| #include <asm/arch/elm.h> |
| #endif |
| |
| static uint8_t cs; |
| static __maybe_unused struct nand_ecclayout hw_nand_oob = |
| GPMC_NAND_HW_ECC_LAYOUT; |
| static __maybe_unused struct nand_ecclayout hw_bch8_nand_oob = |
| GPMC_NAND_HW_BCH8_ECC_LAYOUT; |
| |
| /* |
| * omap_nand_hwcontrol - Set the address pointers corretly for the |
| * following address/data/command operation |
| */ |
| static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, |
| uint32_t ctrl) |
| { |
| register struct nand_chip *this = mtd->priv; |
| |
| /* |
| * Point the IO_ADDR to DATA and ADDRESS registers instead |
| * of chip address |
| */ |
| switch (ctrl) { |
| case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| break; |
| case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; |
| break; |
| case NAND_CTRL_CHANGE | NAND_NCE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| break; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| #ifdef CONFIG_SPL_BUILD |
| /* Check wait pin as dev ready indicator */ |
| int omap_spl_dev_ready(struct mtd_info *mtd) |
| { |
| return gpmc_cfg->status & (1 << 8); |
| } |
| #endif |
| |
| /* |
| * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in |
| * GPMC controller |
| * @mtd: MTD device structure |
| * |
| */ |
| static void __maybe_unused omap_hwecc_init(struct nand_chip *chip) |
| { |
| /* |
| * Init ECC Control Register |
| * Clear all ECC | Enable Reg1 |
| */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config); |
| } |
| |
| /* |
| * gen_true_ecc - This function will generate true ECC value, which |
| * can be used when correcting data read from NAND flash memory core |
| * |
| * @ecc_buf: buffer to store ecc code |
| * |
| * @return: re-formatted ECC value |
| */ |
| static uint32_t gen_true_ecc(uint8_t *ecc_buf) |
| { |
| return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | |
| ((ecc_buf[2] & 0x0F) << 8); |
| } |
| |
| /* |
| * omap_correct_data - Compares the ecc read from nand spare area with ECC |
| * registers values and corrects one bit error if it has occured |
| * Further details can be had from OMAP TRM and the following selected links: |
| * http://en.wikipedia.org/wiki/Hamming_code |
| * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf |
| * |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from ECC registers |
| * |
| * @return 0 if data is OK or corrected, else returns -1 |
| */ |
| static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| uint32_t orig_ecc, new_ecc, res, hm; |
| uint16_t parity_bits, byte; |
| uint8_t bit; |
| |
| /* Regenerate the orginal ECC */ |
| orig_ecc = gen_true_ecc(read_ecc); |
| new_ecc = gen_true_ecc(calc_ecc); |
| /* Get the XOR of real ecc */ |
| res = orig_ecc ^ new_ecc; |
| if (res) { |
| /* Get the hamming width */ |
| hm = hweight32(res); |
| /* Single bit errors can be corrected! */ |
| if (hm == 12) { |
| /* Correctable data! */ |
| parity_bits = res >> 16; |
| bit = (parity_bits & 0x7); |
| byte = (parity_bits >> 3) & 0x1FF; |
| /* Flip the bit to correct */ |
| dat[byte] ^= (0x1 << bit); |
| } else if (hm == 1) { |
| printf("Error: Ecc is wrong\n"); |
| /* ECC itself is corrupted */ |
| return 2; |
| } else { |
| /* |
| * hm distance != parity pairs OR one, could mean 2 bit |
| * error OR potentially be on a blank page.. |
| * orig_ecc: contains spare area data from nand flash. |
| * new_ecc: generated ecc while reading data area. |
| * Note: if the ecc = 0, all data bits from which it was |
| * generated are 0xFF. |
| * The 3 byte(24 bits) ecc is generated per 512byte |
| * chunk of a page. If orig_ecc(from spare area) |
| * is 0xFF && new_ecc(computed now from data area)=0x0, |
| * this means that data area is 0xFF and spare area is |
| * 0xFF. A sure sign of a erased page! |
| */ |
| if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) |
| return 0; |
| printf("Error: Bad compare! failed\n"); |
| /* detected 2 bit error */ |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * omap_calculate_ecc - Generate non-inverted ECC bytes. |
| * |
| * Using noninverted ECC can be considered ugly since writing a blank |
| * page ie. padding will clear the ECC bytes. This is no problem as |
| * long nobody is trying to write data on the seemingly unused page. |
| * Reading an erased page will produce an ECC mismatch between |
| * generated and read ECC bytes that has to be dealt with separately. |
| * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC |
| * is used, the result of read will be 0x0 while the ECC offsets of the |
| * spare area will be 0xFF which will result in an ECC mismatch. |
| * @mtd: MTD structure |
| * @dat: unused |
| * @ecc_code: ecc_code buffer |
| */ |
| static int __maybe_unused omap_calculate_ecc(struct mtd_info *mtd, |
| const uint8_t *dat, uint8_t *ecc_code) |
| { |
| u_int32_t val; |
| |
| /* Start Reading from HW ECC1_Result = 0x200 */ |
| val = readl(&gpmc_cfg->ecc1_result); |
| |
| ecc_code[0] = val & 0xFF; |
| ecc_code[1] = (val >> 16) & 0xFF; |
| ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); |
| |
| /* |
| * Stop reading anymore ECC vals and clear old results |
| * enable will be called if more reads are required |
| */ |
| writel(0x000, &gpmc_cfg->ecc_config); |
| |
| return 0; |
| } |
| |
| /* |
| * omap_enable_ecc - This function enables the hardware ecc functionality |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| static void __maybe_unused omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) |
| { |
| struct nand_chip *chip = mtd->priv; |
| uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1; |
| |
| switch (mode) { |
| case NAND_ECC_READ: |
| case NAND_ECC_WRITE: |
| /* Clear the ecc result registers, select ecc reg as 1 */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| |
| /* |
| * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes |
| * tell all regs to generate size0 sized regs |
| * we just have a single ECC engine for all CS |
| */ |
| writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, |
| &gpmc_cfg->ecc_size_config); |
| val = (dev_width << 7) | (cs << 1) | (0x1); |
| writel(val, &gpmc_cfg->ecc_config); |
| break; |
| default: |
| printf("Error: Unrecognized Mode[%d]!\n", mode); |
| break; |
| } |
| } |
| |
| /* |
| * Generic BCH interface |
| */ |
| struct nand_bch_priv { |
| uint8_t mode; |
| uint8_t type; |
| uint8_t nibbles; |
| struct bch_control *control; |
| }; |
| |
| /* bch types */ |
| #define ECC_BCH4 0 |
| #define ECC_BCH8 1 |
| #define ECC_BCH16 2 |
| |
| /* GPMC ecc engine settings */ |
| #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ |
| #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ |
| |
| /* BCH nibbles for diff bch levels */ |
| #define NAND_ECC_HW_BCH ((uint8_t)(NAND_ECC_HW_OOB_FIRST) + 1) |
| #define ECC_BCH4_NIBBLES 13 |
| #define ECC_BCH8_NIBBLES 26 |
| #define ECC_BCH16_NIBBLES 52 |
| |
| /* |
| * This can be a single instance cause all current users have only one NAND |
| * with nearly the same setup (BCH8, some with ELM and others with sw BCH |
| * library). |
| * When some users with other BCH strength will exists this have to change! |
| */ |
| static __maybe_unused struct nand_bch_priv bch_priv = { |
| .mode = NAND_ECC_HW_BCH, |
| .type = ECC_BCH8, |
| .nibbles = ECC_BCH8_NIBBLES, |
| .control = NULL |
| }; |
| |
| /* |
| * omap_hwecc_init_bch - Initialize the BCH Hardware ECC for NAND flash in |
| * GPMC controller |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| __maybe_unused |
| static void omap_hwecc_init_bch(struct nand_chip *chip, int32_t mode) |
| { |
| uint32_t val; |
| uint32_t dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1; |
| #ifdef CONFIG_AM33XX |
| uint32_t unused_length = 0; |
| #endif |
| uint32_t wr_mode = BCH_WRAPMODE_6; |
| struct nand_bch_priv *bch = chip->priv; |
| |
| /* Clear the ecc result registers, select ecc reg as 1 */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| |
| #ifdef CONFIG_AM33XX |
| wr_mode = BCH_WRAPMODE_1; |
| |
| switch (bch->nibbles) { |
| case ECC_BCH4_NIBBLES: |
| unused_length = 3; |
| break; |
| case ECC_BCH8_NIBBLES: |
| unused_length = 2; |
| break; |
| case ECC_BCH16_NIBBLES: |
| unused_length = 0; |
| break; |
| } |
| |
| /* |
| * This is ecc_size_config for ELM mode. |
| * Here we are using different settings for read and write access and |
| * also depending on BCH strength. |
| */ |
| switch (mode) { |
| case NAND_ECC_WRITE: |
| /* write access only setup eccsize1 config */ |
| val = ((unused_length + bch->nibbles) << 22); |
| break; |
| |
| case NAND_ECC_READ: |
| default: |
| /* |
| * by default eccsize0 selected for ecc1resultsize |
| * eccsize0 config. |
| */ |
| val = (bch->nibbles << 12); |
| /* eccsize1 config */ |
| val |= (unused_length << 22); |
| break; |
| } |
| #else |
| /* |
| * This ecc_size_config setting is for BCH sw library. |
| * |
| * Note: we only support BCH8 currently with BCH sw library! |
| * Should be really easy to adobt to BCH4, however some omap3 have |
| * flaws with BCH4. |
| * |
| * Here we are using wrapping mode 6 both for reading and writing, with: |
| * size0 = 0 (no additional protected byte in spare area) |
| * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) |
| */ |
| val = (32 << 22) | (0 << 12); |
| #endif |
| /* ecc size configuration */ |
| writel(val, &gpmc_cfg->ecc_size_config); |
| |
| /* |
| * Configure the ecc engine in gpmc |
| * We assume 512 Byte sector pages for access to NAND. |
| */ |
| val = (1 << 16); /* enable BCH mode */ |
| val |= (bch->type << 12); /* setup BCH type */ |
| val |= (wr_mode << 8); /* setup wrapping mode */ |
| val |= (dev_width << 7); /* setup device width (16 or 8 bit) */ |
| val |= (cs << 1); /* setup chip select to work on */ |
| debug("set ECC_CONFIG=0x%08x\n", val); |
| writel(val, &gpmc_cfg->ecc_config); |
| } |
| |
| /* |
| * omap_enable_ecc_bch - This function enables the bch h/w ecc functionality |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| __maybe_unused |
| static void omap_enable_ecc_bch(struct mtd_info *mtd, int32_t mode) |
| { |
| struct nand_chip *chip = mtd->priv; |
| |
| omap_hwecc_init_bch(chip, mode); |
| /* enable ecc */ |
| writel((readl(&gpmc_cfg->ecc_config) | 0x1), &gpmc_cfg->ecc_config); |
| } |
| |
| /* |
| * omap_ecc_disable - Disable H/W ECC calculation |
| * |
| * @mtd: MTD device structure |
| */ |
| static void __maybe_unused omap_ecc_disable(struct mtd_info *mtd) |
| { |
| writel((readl(&gpmc_cfg->ecc_config) & ~0x1), &gpmc_cfg->ecc_config); |
| } |
| |
| /* |
| * BCH8 support (needs ELM and thus AM33xx-only) |
| */ |
| #ifdef CONFIG_AM33XX |
| /* |
| * omap_read_bch8_result - Read BCH result for BCH8 level |
| * |
| * @mtd: MTD device structure |
| * @big_endian: When set read register 3 first |
| * @ecc_code: Read syndrome from BCH result registers |
| */ |
| static void omap_read_bch8_result(struct mtd_info *mtd, uint8_t big_endian, |
| uint8_t *ecc_code) |
| { |
| uint32_t *ptr; |
| int8_t i = 0, j; |
| |
| if (big_endian) { |
| ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3]; |
| ecc_code[i++] = readl(ptr) & 0xFF; |
| ptr--; |
| for (j = 0; j < 3; j++) { |
| ecc_code[i++] = (readl(ptr) >> 24) & 0xFF; |
| ecc_code[i++] = (readl(ptr) >> 16) & 0xFF; |
| ecc_code[i++] = (readl(ptr) >> 8) & 0xFF; |
| ecc_code[i++] = readl(ptr) & 0xFF; |
| ptr--; |
| } |
| } else { |
| ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[0]; |
| for (j = 0; j < 3; j++) { |
| ecc_code[i++] = readl(ptr) & 0xFF; |
| ecc_code[i++] = (readl(ptr) >> 8) & 0xFF; |
| ecc_code[i++] = (readl(ptr) >> 16) & 0xFF; |
| ecc_code[i++] = (readl(ptr) >> 24) & 0xFF; |
| ptr++; |
| } |
| ecc_code[i++] = readl(ptr) & 0xFF; |
| ecc_code[i++] = 0; /* 14th byte is always zero */ |
| } |
| } |
| |
| /* |
| * omap_rotate_ecc_bch - Rotate the syndrome bytes |
| * |
| * @mtd: MTD device structure |
| * @calc_ecc: ECC read from ECC registers |
| * @syndrome: Rotated syndrome will be retuned in this array |
| * |
| */ |
| static void omap_rotate_ecc_bch(struct mtd_info *mtd, uint8_t *calc_ecc, |
| uint8_t *syndrome) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *bch = chip->priv; |
| uint8_t n_bytes = 0; |
| int8_t i, j; |
| |
| switch (bch->type) { |
| case ECC_BCH4: |
| n_bytes = 8; |
| break; |
| |
| case ECC_BCH16: |
| n_bytes = 28; |
| break; |
| |
| case ECC_BCH8: |
| default: |
| n_bytes = 13; |
| break; |
| } |
| |
| for (i = 0, j = (n_bytes-1); i < n_bytes; i++, j--) |
| syndrome[i] = calc_ecc[j]; |
| } |
| |
| /* |
| * omap_calculate_ecc_bch - Read BCH ECC result |
| * |
| * @mtd: MTD structure |
| * @dat: unused |
| * @ecc_code: ecc_code buffer |
| */ |
| static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat, |
| uint8_t *ecc_code) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *bch = chip->priv; |
| uint8_t big_endian = 1; |
| int8_t ret = 0; |
| |
| if (bch->type == ECC_BCH8) |
| omap_read_bch8_result(mtd, big_endian, ecc_code); |
| else /* BCH4 and BCH16 currently not supported */ |
| ret = -1; |
| |
| /* |
| * Stop reading anymore ECC vals and clear old results |
| * enable will be called if more reads are required |
| */ |
| omap_ecc_disable(mtd); |
| |
| return ret; |
| } |
| |
| /* |
| * omap_fix_errors_bch - Correct bch error in the data |
| * |
| * @mtd: MTD device structure |
| * @data: Data read from flash |
| * @error_count:Number of errors in data |
| * @error_loc: Locations of errors in the data |
| * |
| */ |
| static void omap_fix_errors_bch(struct mtd_info *mtd, uint8_t *data, |
| uint32_t error_count, uint32_t *error_loc) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *bch = chip->priv; |
| uint8_t count = 0; |
| uint32_t error_byte_pos; |
| uint32_t error_bit_mask; |
| uint32_t last_bit = (bch->nibbles * 4) - 1; |
| |
| /* Flip all bits as specified by the error location array. */ |
| /* FOR( each found error location flip the bit ) */ |
| for (count = 0; count < error_count; count++) { |
| if (error_loc[count] > last_bit) { |
| /* Remove the ECC spare bits from correction. */ |
| error_loc[count] -= (last_bit + 1); |
| /* Offset bit in data region */ |
| error_byte_pos = ((512 * 8) - |
| (error_loc[count]) - 1) / 8; |
| /* Error Bit mask */ |
| error_bit_mask = 0x1 << (error_loc[count] % 8); |
| /* Toggle the error bit to make the correction. */ |
| data[error_byte_pos] ^= error_bit_mask; |
| } |
| } |
| } |
| |
| /* |
| * omap_correct_data_bch - Compares the ecc read from nand spare area |
| * with ECC registers values and corrects one bit error if it has occured |
| * |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash (ignored) |
| * @calc_ecc: ecc read from ECC registers |
| * |
| * @return 0 if data is OK or corrected, else returns -1 |
| */ |
| static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *bch = chip->priv; |
| uint8_t syndrome[28]; |
| uint32_t error_count = 0; |
| uint32_t error_loc[8]; |
| uint32_t i, ecc_flag; |
| |
| ecc_flag = 0; |
| for (i = 0; i < chip->ecc.bytes; i++) |
| if (read_ecc[i] != 0xff) |
| ecc_flag = 1; |
| |
| if (!ecc_flag) |
| return 0; |
| |
| elm_reset(); |
| elm_config((enum bch_level)(bch->type)); |
| |
| /* |
| * while reading ECC result we read it in big endian. |
| * Hence while loading to ELM we have rotate to get the right endian. |
| */ |
| omap_rotate_ecc_bch(mtd, calc_ecc, syndrome); |
| |
| /* use elm module to check for errors */ |
| if (elm_check_error(syndrome, bch->nibbles, &error_count, |
| error_loc) != 0) { |
| printf("ECC: uncorrectable.\n"); |
| return -1; |
| } |
| |
| /* correct bch error */ |
| if (error_count > 0) |
| omap_fix_errors_bch(mtd, dat, error_count, error_loc); |
| |
| return 0; |
| } |
| |
| /** |
| * omap_read_page_bch - hardware ecc based page read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @page: page number to read |
| * |
| */ |
| static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *oob = chip->oob_poi; |
| uint32_t data_pos; |
| uint32_t oob_pos; |
| |
| data_pos = 0; |
| /* oob area start */ |
| oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; |
| oob += chip->ecc.layout->eccpos[0]; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize, |
| oob += eccbytes) { |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| /* read data */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, page); |
| chip->read_buf(mtd, p, eccsize); |
| |
| /* read respective ecc from oob area */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, page); |
| chip->read_buf(mtd, oob, eccbytes); |
| /* read syndrome */ |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| data_pos += eccsize; |
| oob_pos += eccbytes; |
| } |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| return 0; |
| } |
| #endif /* CONFIG_AM33XX */ |
| |
| /* |
| * OMAP3 BCH8 support (with BCH library) |
| */ |
| #ifdef CONFIG_NAND_OMAP_BCH8 |
| /* |
| * omap_calculate_ecc_bch - Read BCH ECC result |
| * |
| * @mtd: MTD device structure |
| * @dat: The pointer to data on which ecc is computed (unused here) |
| * @ecc: The ECC output buffer |
| */ |
| static int omap_calculate_ecc_bch(struct mtd_info *mtd, const uint8_t *dat, |
| uint8_t *ecc) |
| { |
| int ret = 0; |
| size_t i; |
| unsigned long nsectors, val1, val2, val3, val4; |
| |
| nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1; |
| |
| for (i = 0; i < nsectors; i++) { |
| /* Read hw-computed remainder */ |
| val1 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[0]); |
| val2 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[1]); |
| val3 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[2]); |
| val4 = readl(&gpmc_cfg->bch_result_0_3[i].bch_result_x[3]); |
| |
| /* |
| * Add constant polynomial to remainder, in order to get an ecc |
| * sequence of 0xFFs for a buffer filled with 0xFFs. |
| */ |
| *ecc++ = 0xef ^ (val4 & 0xFF); |
| *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF); |
| *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF); |
| *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF); |
| *ecc++ = 0xed ^ (val3 & 0xFF); |
| *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF); |
| *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF); |
| *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF); |
| *ecc++ = 0x97 ^ (val2 & 0xFF); |
| *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF); |
| *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF); |
| *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF); |
| *ecc++ = 0xb5 ^ (val1 & 0xFF); |
| } |
| |
| /* |
| * Stop reading anymore ECC vals and clear old results |
| * enable will be called if more reads are required |
| */ |
| omap_ecc_disable(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * omap_correct_data_bch - Decode received data and correct errors |
| * @mtd: MTD device structure |
| * @data: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from HW ECC registers |
| */ |
| static int omap_correct_data_bch(struct mtd_info *mtd, u_char *data, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| int i, count; |
| /* cannot correct more than 8 errors */ |
| unsigned int errloc[8]; |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *chip_priv = chip->priv; |
| struct bch_control *bch = chip_priv->control; |
| |
| count = decode_bch(bch, NULL, 512, read_ecc, calc_ecc, NULL, errloc); |
| if (count > 0) { |
| /* correct errors */ |
| for (i = 0; i < count; i++) { |
| /* correct data only, not ecc bytes */ |
| if (errloc[i] < 8*512) |
| data[errloc[i]/8] ^= 1 << (errloc[i] & 7); |
| printf("corrected bitflip %u\n", errloc[i]); |
| #ifdef DEBUG |
| puts("read_ecc: "); |
| /* |
| * BCH8 have 13 bytes of ECC; BCH4 needs adoption |
| * here! |
| */ |
| for (i = 0; i < 13; i++) |
| printf("%02x ", read_ecc[i]); |
| puts("\n"); |
| puts("calc_ecc: "); |
| for (i = 0; i < 13; i++) |
| printf("%02x ", calc_ecc[i]); |
| puts("\n"); |
| #endif |
| } |
| } else if (count < 0) { |
| puts("ecc unrecoverable error\n"); |
| } |
| return count; |
| } |
| |
| /** |
| * omap_free_bch - Release BCH ecc resources |
| * @mtd: MTD device structure |
| */ |
| static void __maybe_unused omap_free_bch(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_bch_priv *chip_priv = chip->priv; |
| struct bch_control *bch = NULL; |
| |
| if (chip_priv) |
| bch = chip_priv->control; |
| |
| if (bch) { |
| free_bch(bch); |
| chip_priv->control = NULL; |
| } |
| } |
| #endif /* CONFIG_NAND_OMAP_BCH8 */ |
| |
| #ifndef CONFIG_SPL_BUILD |
| /* |
| * omap_nand_switch_ecc - switch the ECC operation between different engines |
| * (h/w and s/w) and different algorithms (hamming and BCHx) |
| * |
| * @hardware - true if one of the HW engines should be used |
| * @eccstrength - the number of bits that could be corrected |
| * (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16) |
| */ |
| void omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength) |
| { |
| struct nand_chip *nand; |
| struct mtd_info *mtd; |
| |
| if (nand_curr_device < 0 || |
| nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE || |
| !nand_info[nand_curr_device].name) { |
| printf("Error: Can't switch ecc, no devices available\n"); |
| return; |
| } |
| |
| mtd = &nand_info[nand_curr_device]; |
| nand = mtd->priv; |
| |
| nand->options |= NAND_OWN_BUFFERS; |
| |
| /* Reset ecc interface */ |
| nand->ecc.mode = NAND_ECC_NONE; |
| nand->ecc.read_page = NULL; |
| nand->ecc.write_page = NULL; |
| nand->ecc.read_oob = NULL; |
| nand->ecc.write_oob = NULL; |
| nand->ecc.hwctl = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.calculate = NULL; |
| |
| /* Setup the ecc configurations again */ |
| if (hardware) { |
| if (eccstrength == 1) { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_nand_oob; |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 3; |
| nand->ecc.hwctl = omap_enable_hwecc; |
| nand->ecc.correct = omap_correct_data; |
| nand->ecc.calculate = omap_calculate_ecc; |
| omap_hwecc_init(nand); |
| printf("1-bit hamming HW ECC selected\n"); |
| } |
| #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8) |
| else if (eccstrength == 8) { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_bch8_nand_oob; |
| nand->ecc.size = 512; |
| #ifdef CONFIG_AM33XX |
| nand->ecc.bytes = 14; |
| nand->ecc.read_page = omap_read_page_bch; |
| #else |
| nand->ecc.bytes = 13; |
| #endif |
| nand->ecc.hwctl = omap_enable_ecc_bch; |
| nand->ecc.correct = omap_correct_data_bch; |
| nand->ecc.calculate = omap_calculate_ecc_bch; |
| omap_hwecc_init_bch(nand, NAND_ECC_READ); |
| printf("8-bit BCH HW ECC selected\n"); |
| } |
| #endif |
| } else { |
| nand->ecc.mode = NAND_ECC_SOFT; |
| /* Use mtd default settings */ |
| nand->ecc.layout = NULL; |
| nand->ecc.size = 0; |
| printf("SW ECC selected\n"); |
| } |
| |
| /* Update NAND handling after ECC mode switch */ |
| nand_scan_tail(mtd); |
| |
| nand->options &= ~NAND_OWN_BUFFERS; |
| } |
| #endif /* CONFIG_SPL_BUILD */ |
| |
| /* |
| * Board-specific NAND initialization. The following members of the |
| * argument are board-specific: |
| * - IO_ADDR_R: address to read the 8 I/O lines of the flash device |
| * - IO_ADDR_W: address to write the 8 I/O lines of the flash device |
| * - cmd_ctrl: hardwarespecific function for accesing control-lines |
| * - waitfunc: hardwarespecific function for accesing device ready/busy line |
| * - ecc.hwctl: function to enable (reset) hardware ecc generator |
| * - ecc.mode: mode of ecc, see defines |
| * - chip_delay: chip dependent delay for transfering data from array to |
| * read regs (tR) |
| * - options: various chip options. They can partly be set to inform |
| * nand_scan about special functionality. See the defines for further |
| * explanation |
| */ |
| int board_nand_init(struct nand_chip *nand) |
| { |
| int32_t gpmc_config = 0; |
| cs = 0; |
| |
| /* |
| * xloader/Uboot's gpmc configuration would have configured GPMC for |
| * nand type of memory. The following logic scans and latches on to the |
| * first CS with NAND type memory. |
| * TBD: need to make this logic generic to handle multiple CS NAND |
| * devices. |
| */ |
| while (cs < GPMC_MAX_CS) { |
| /* Check if NAND type is set */ |
| if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { |
| /* Found it!! */ |
| break; |
| } |
| cs++; |
| } |
| if (cs >= GPMC_MAX_CS) { |
| printf("NAND: Unable to find NAND settings in " |
| "GPMC Configuration - quitting\n"); |
| return -ENODEV; |
| } |
| |
| gpmc_config = readl(&gpmc_cfg->config); |
| /* Disable Write protect */ |
| gpmc_config |= 0x10; |
| writel(gpmc_config, &gpmc_cfg->config); |
| |
| nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| |
| nand->cmd_ctrl = omap_nand_hwcontrol; |
| nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR; |
| /* If we are 16 bit dev, our gpmc config tells us that */ |
| if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000) |
| nand->options |= NAND_BUSWIDTH_16; |
| |
| nand->chip_delay = 100; |
| |
| #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8) |
| #ifdef CONFIG_AM33XX |
| /* AM33xx uses the ELM */ |
| /* required in case of BCH */ |
| elm_init(); |
| #else |
| /* |
| * Whereas other OMAP based SoC do not have the ELM, they use the BCH |
| * SW library. |
| */ |
| bch_priv.control = init_bch(13, 8, 0x201b /* hw polynominal */); |
| if (!bch_priv.control) { |
| puts("Could not init_bch()\n"); |
| return -ENODEV; |
| } |
| #endif |
| /* BCH info that will be correct for SPL or overridden otherwise. */ |
| nand->priv = &bch_priv; |
| #endif |
| |
| /* Default ECC mode */ |
| #if defined(CONFIG_AM33XX) || defined(CONFIG_NAND_OMAP_BCH8) |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_bch8_nand_oob; |
| nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; |
| nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; |
| nand->ecc.hwctl = omap_enable_ecc_bch; |
| nand->ecc.correct = omap_correct_data_bch; |
| nand->ecc.calculate = omap_calculate_ecc_bch; |
| #ifdef CONFIG_AM33XX |
| nand->ecc.read_page = omap_read_page_bch; |
| #endif |
| omap_hwecc_init_bch(nand, NAND_ECC_READ); |
| #else |
| #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_NAND_SOFTECC) |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #else |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_nand_oob; |
| nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; |
| nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; |
| nand->ecc.hwctl = omap_enable_hwecc; |
| nand->ecc.correct = omap_correct_data; |
| nand->ecc.calculate = omap_calculate_ecc; |
| omap_hwecc_init(nand); |
| #endif |
| #endif |
| |
| #ifdef CONFIG_SPL_BUILD |
| if (nand->options & NAND_BUSWIDTH_16) |
| nand->read_buf = nand_read_buf16; |
| else |
| nand->read_buf = nand_read_buf; |
| nand->dev_ready = omap_spl_dev_ready; |
| #endif |
| |
| return 0; |
| } |