| /* |
| * (C) Copyright 2006 |
| * Heiko Schocher, DENX Software Engineering, hs@denx.de |
| * |
| * (C) Copyright 2006 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| |
| #if defined(CONFIG_CMD_NAND) |
| |
| #include <asm/processor.h> |
| #include <nand.h> |
| |
| struct alpr_ndfc_regs { |
| u8 cmd[4]; |
| u8 addr_wait; |
| u8 term; |
| u8 dummy; |
| u8 dummy2; |
| u8 data; |
| }; |
| |
| static u8 hwctl; |
| static struct alpr_ndfc_regs *alpr_ndfc = NULL; |
| |
| #define readb(addr) (u8)(*(volatile u8 *)(addr)) |
| #define writeb(d,addr) *(volatile u8 *)(addr) = ((u8)(d)) |
| |
| /* |
| * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to |
| * the NAND devices. The NDFC has command, address and data registers that |
| * when accessed will set up the NAND flash pins appropriately. We'll use the |
| * hwcontrol function to save the configuration in a global variable. |
| * We can then use this information in the read and write functions to |
| * determine which NDFC register to access. |
| * |
| * There are 2 NAND devices on the board, a Hynix HY27US08561A (1 GByte). |
| */ |
| static void alpr_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| if ( ctrl & NAND_CLE ) |
| hwctl |= 0x1; |
| else |
| hwctl &= ~0x1; |
| if ( ctrl & NAND_ALE ) |
| hwctl |= 0x2; |
| else |
| hwctl &= ~0x2; |
| if ( (ctrl & NAND_NCE) != NAND_NCE) |
| writeb(0x00, &(alpr_ndfc->term)); |
| } |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| static u_char alpr_nand_read_byte(struct mtd_info *mtd) |
| { |
| return readb(&(alpr_ndfc->data)); |
| } |
| |
| static void alpr_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| struct nand_chip *nand = mtd->priv; |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (hwctl & 0x1) |
| /* |
| * IO_ADDR_W used as CMD[i] reg to support multiple NAND |
| * chips. |
| */ |
| writeb(buf[i], nand->IO_ADDR_W); |
| else if (hwctl & 0x2) |
| writeb(buf[i], &(alpr_ndfc->addr_wait)); |
| else |
| writeb(buf[i], &(alpr_ndfc->data)); |
| } |
| } |
| |
| static void alpr_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| buf[i] = readb(&(alpr_ndfc->data)); |
| } |
| } |
| |
| static int alpr_nand_dev_ready(struct mtd_info *mtd) |
| { |
| /* |
| * Blocking read to wait for NAND to be ready |
| */ |
| (void)readb(&(alpr_ndfc->addr_wait)); |
| |
| /* |
| * Return always true |
| */ |
| return 1; |
| } |
| |
| int board_nand_init(struct nand_chip *nand) |
| { |
| alpr_ndfc = (struct alpr_ndfc_regs *)CONFIG_SYS_NAND_BASE; |
| |
| nand->ecc.mode = NAND_ECC_SOFT; |
| |
| /* Reference hardware control function */ |
| nand->cmd_ctrl = alpr_nand_hwcontrol; |
| nand->read_byte = alpr_nand_read_byte; |
| nand->write_buf = alpr_nand_write_buf; |
| nand->read_buf = alpr_nand_read_buf; |
| nand->dev_ready = alpr_nand_dev_ready; |
| |
| return 0; |
| } |
| #endif |