blob: 8fe643f70b96758b1d8ddeeb78a5f5291d283f03 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017 NXP
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <log.h>
#include <net.h>
#include <netdev.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <hwconfig.h>
#include <fsl_mdio.h>
#include <malloc.h>
#include <phy.h>
#include <fm_eth.h>
#include <i2c.h>
#include <miiphy.h>
#include <fsl-mc/fsl_mc.h>
#include <fsl-mc/ldpaa_wriop.h>
#include <linux/delay.h>
#include "../common/qixis.h"
#include "ls1088a_qixis.h"
#ifndef CONFIG_DM_ETH
#ifdef CONFIG_FSL_MC_ENET
#define SFP_TX 0
/* - In LS1088A A there are only 16 SERDES lanes, spread across 2 SERDES banks.
* Bank 1 -> Lanes A, B, C, D,
* Bank 2 -> Lanes A,B, C, D,
*/
/* Mapping of 8 SERDES lanes to LS1088A QDS board slots. A value of '0' here
* means that the mapping must be determined dynamically, or that the lane
* maps to something other than a board slot.
*/
static u8 lane_to_slot_fsm1[] = {
0, 0, 0, 0, 0, 0, 0, 0
};
/* On the Vitesse VSC8234XHG SGMII riser card there are 4 SGMII PHYs
* housed.
*/
static int xqsgii_riser_phy_addr[] = {
XQSGMII_CARD_PHY1_PORT0_ADDR,
XQSGMII_CARD_PHY2_PORT0_ADDR,
XQSGMII_CARD_PHY3_PORT0_ADDR,
XQSGMII_CARD_PHY4_PORT0_ADDR,
XQSGMII_CARD_PHY3_PORT2_ADDR,
XQSGMII_CARD_PHY1_PORT2_ADDR,
XQSGMII_CARD_PHY4_PORT2_ADDR,
XQSGMII_CARD_PHY2_PORT2_ADDR,
};
static int sgmii_riser_phy_addr[] = {
SGMII_CARD_PORT1_PHY_ADDR,
SGMII_CARD_PORT2_PHY_ADDR,
SGMII_CARD_PORT3_PHY_ADDR,
SGMII_CARD_PORT4_PHY_ADDR,
};
/* Slot2 does not have EMI connections */
#define EMI_NONE 0xFF
#define EMI1_RGMII1 0
#define EMI1_RGMII2 1
#define EMI1_SLOT1 2
static const char * const mdio_names[] = {
"LS1088A_QDS_MDIO0",
"LS1088A_QDS_MDIO1",
"LS1088A_QDS_MDIO2",
DEFAULT_WRIOP_MDIO2_NAME,
};
struct ls1088a_qds_mdio {
u8 muxval;
struct mii_dev *realbus;
};
struct reg_pair {
uint addr;
u8 *val;
};
static void sgmii_configure_repeater(int dpmac)
{
struct mii_dev *bus;
uint8_t a = 0xf;
int i, j, k, ret;
unsigned short value;
const char *dev = "LS1088A_QDS_MDIO2";
int i2c_addr[] = {0x58, 0x59, 0x5a, 0x5b};
int i2c_phy_addr = 0;
int phy_addr = 0;
uint8_t ch_a_eq[] = {0x1, 0x2, 0x3, 0x7};
uint8_t ch_a_ctl2[] = {0x81, 0x82, 0x83, 0x84};
uint8_t ch_b_eq[] = {0x1, 0x2, 0x3, 0x7};
uint8_t ch_b_ctl2[] = {0x81, 0x82, 0x83, 0x84};
u8 reg_val[6] = {0x18, 0x38, 0x4, 0x14, 0xb5, 0x20};
struct reg_pair reg_pair[10] = {
{6, &reg_val[0]}, {4, &reg_val[1]},
{8, &reg_val[2]}, {0xf, NULL},
{0x11, NULL}, {0x16, NULL},
{0x18, NULL}, {0x23, &reg_val[3]},
{0x2d, &reg_val[4]}, {4, &reg_val[5]},
};
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *udev;
#endif
/* Set I2c to Slot 1 */
#if !CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_write(0x77, 0, 0, &a, 1);
#else
ret = i2c_get_chip_for_busnum(0, 0x77, 1, &udev);
if (!ret)
ret = dm_i2c_write(udev, 0, &a, 1);
#endif
if (ret)
goto error;
switch (dpmac) {
case 1:
i2c_phy_addr = i2c_addr[1];
phy_addr = 4;
break;
case 2:
i2c_phy_addr = i2c_addr[0];
phy_addr = 0;
break;
case 3:
i2c_phy_addr = i2c_addr[3];
phy_addr = 0xc;
break;
case 7:
i2c_phy_addr = i2c_addr[2];
phy_addr = 8;
break;
}
/* Check the PHY status */
ret = miiphy_set_current_dev(dev);
if (ret > 0)
goto error;
bus = mdio_get_current_dev();
debug("Reading from bus %s\n", bus->name);
ret = miiphy_write(dev, phy_addr, 0x1f, 3);
if (ret > 0)
goto error;
mdelay(10);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
if (ret > 0)
goto error;
mdelay(10);
if ((value & 0xfff) == 0x401) {
miiphy_write(dev, phy_addr, 0x1f, 0);
printf("DPMAC %d:PHY is ..... Configured\n", dpmac);
return;
}
#if CONFIG_IS_ENABLED(DM_I2C)
i2c_get_chip_for_busnum(0, i2c_phy_addr, 1, &udev);
#endif
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
reg_pair[3].val = &ch_a_eq[i];
reg_pair[4].val = &ch_a_ctl2[j];
reg_pair[5].val = &ch_b_eq[i];
reg_pair[6].val = &ch_b_ctl2[j];
for (k = 0; k < 10; k++) {
#if !CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_write(i2c_phy_addr,
reg_pair[k].addr,
1, reg_pair[k].val, 1);
#else
ret = i2c_get_chip_for_busnum(0,
i2c_phy_addr,
1, &udev);
if (!ret)
ret = dm_i2c_write(udev,
reg_pair[k].addr,
reg_pair[k].val, 1);
#endif
if (ret)
goto error;
}
mdelay(100);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
if (ret > 0)
goto error;
mdelay(100);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
if (ret > 0)
goto error;
if ((value & 0xfff) == 0x401) {
printf("DPMAC %d :PHY is configured ",
dpmac);
printf("after setting repeater 0x%x\n",
value);
i = 5;
j = 5;
} else {
printf("DPMAC %d :PHY is failed to ",
dpmac);
printf("configure the repeater 0x%x\n", value);
}
}
}
miiphy_write(dev, phy_addr, 0x1f, 0);
error:
if (ret)
printf("DPMAC %d ..... FAILED to configure PHY\n", dpmac);
return;
}
static void qsgmii_configure_repeater(int dpmac)
{
uint8_t a = 0xf;
int i, j, k;
int i2c_phy_addr = 0;
int phy_addr = 0;
int i2c_addr[] = {0x58, 0x59, 0x5a, 0x5b};
uint8_t ch_a_eq[] = {0x1, 0x2, 0x3, 0x7};
uint8_t ch_a_ctl2[] = {0x81, 0x82, 0x83, 0x84};
uint8_t ch_b_eq[] = {0x1, 0x2, 0x3, 0x7};
uint8_t ch_b_ctl2[] = {0x81, 0x82, 0x83, 0x84};
u8 reg_val[6] = {0x18, 0x38, 0x4, 0x14, 0xb5, 0x20};
struct reg_pair reg_pair[10] = {
{6, &reg_val[0]}, {4, &reg_val[1]},
{8, &reg_val[2]}, {0xf, NULL},
{0x11, NULL}, {0x16, NULL},
{0x18, NULL}, {0x23, &reg_val[3]},
{0x2d, &reg_val[4]}, {4, &reg_val[5]},
};
const char *dev = mdio_names[EMI1_SLOT1];
int ret = 0;
unsigned short value;
#if CONFIG_IS_ENABLED(DM_I2C)
struct udevice *udev;
#endif
/* Set I2c to Slot 1 */
#if !CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_write(0x77, 0, 0, &a, 1);
#else
ret = i2c_get_chip_for_busnum(0, 0x77, 1, &udev);
if (!ret)
ret = dm_i2c_write(udev, 0, &a, 1);
#endif
if (ret)
goto error;
switch (dpmac) {
case 7:
case 8:
case 9:
case 10:
i2c_phy_addr = i2c_addr[2];
phy_addr = 8;
break;
case 3:
case 4:
case 5:
case 6:
i2c_phy_addr = i2c_addr[3];
phy_addr = 0xc;
break;
}
/* Check the PHY status */
ret = miiphy_set_current_dev(dev);
ret = miiphy_write(dev, phy_addr, 0x1f, 3);
mdelay(10);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
mdelay(10);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
mdelay(10);
if ((value & 0xf) == 0xf) {
miiphy_write(dev, phy_addr, 0x1f, 0);
printf("DPMAC %d :PHY is ..... Configured\n", dpmac);
return;
}
#if CONFIG_IS_ENABLED(DM_I2C)
i2c_get_chip_for_busnum(0, i2c_phy_addr, 1, &udev);
#endif
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
reg_pair[3].val = &ch_a_eq[i];
reg_pair[4].val = &ch_a_ctl2[j];
reg_pair[5].val = &ch_b_eq[i];
reg_pair[6].val = &ch_b_ctl2[j];
for (k = 0; k < 10; k++) {
#if !CONFIG_IS_ENABLED(DM_I2C)
ret = i2c_write(i2c_phy_addr,
reg_pair[k].addr,
1, reg_pair[k].val, 1);
#else
ret = i2c_get_chip_for_busnum(0,
i2c_addr[dpmac],
1, &udev);
if (!ret)
ret = dm_i2c_write(udev,
reg_pair[k].addr,
reg_pair[k].val, 1);
#endif
if (ret)
goto error;
}
ret = miiphy_read(dev, phy_addr, 0x11, &value);
if (ret > 0)
goto error;
mdelay(1);
ret = miiphy_read(dev, phy_addr, 0x11, &value);
if (ret > 0)
goto error;
mdelay(10);
if ((value & 0xf) == 0xf) {
miiphy_write(dev, phy_addr, 0x1f, 0);
printf("DPMAC %d :PHY is ..... Configured\n",
dpmac);
return;
}
}
}
error:
printf("DPMAC %d :PHY ..... FAILED to configure PHY\n", dpmac);
return;
}
static const char *ls1088a_qds_mdio_name_for_muxval(u8 muxval)
{
return mdio_names[muxval];
}
struct mii_dev *mii_dev_for_muxval(u8 muxval)
{
struct mii_dev *bus;
const char *name = ls1088a_qds_mdio_name_for_muxval(muxval);
if (!name) {
printf("No bus for muxval %x\n", muxval);
return NULL;
}
bus = miiphy_get_dev_by_name(name);
if (!bus) {
printf("No bus by name %s\n", name);
return NULL;
}
return bus;
}
static void ls1088a_qds_enable_SFP_TX(u8 muxval)
{
u8 brdcfg9;
brdcfg9 = QIXIS_READ(brdcfg[9]);
brdcfg9 &= ~BRDCFG9_SFPTX_MASK;
brdcfg9 |= (muxval << BRDCFG9_SFPTX_SHIFT);
QIXIS_WRITE(brdcfg[9], brdcfg9);
}
static void ls1088a_qds_mux_mdio(u8 muxval)
{
u8 brdcfg4;
if (muxval <= 5) {
brdcfg4 = QIXIS_READ(brdcfg[4]);
brdcfg4 &= ~BRDCFG4_EMISEL_MASK;
brdcfg4 |= (muxval << BRDCFG4_EMISEL_SHIFT);
QIXIS_WRITE(brdcfg[4], brdcfg4);
}
}
static int ls1088a_qds_mdio_read(struct mii_dev *bus, int addr,
int devad, int regnum)
{
struct ls1088a_qds_mdio *priv = bus->priv;
ls1088a_qds_mux_mdio(priv->muxval);
return priv->realbus->read(priv->realbus, addr, devad, regnum);
}
static int ls1088a_qds_mdio_write(struct mii_dev *bus, int addr, int devad,
int regnum, u16 value)
{
struct ls1088a_qds_mdio *priv = bus->priv;
ls1088a_qds_mux_mdio(priv->muxval);
return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
}
static int ls1088a_qds_mdio_reset(struct mii_dev *bus)
{
struct ls1088a_qds_mdio *priv = bus->priv;
return priv->realbus->reset(priv->realbus);
}
static int ls1088a_qds_mdio_init(char *realbusname, u8 muxval)
{
struct ls1088a_qds_mdio *pmdio;
struct mii_dev *bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate ls1088a_qds MDIO bus\n");
return -1;
}
pmdio = malloc(sizeof(*pmdio));
if (!pmdio) {
printf("Failed to allocate ls1088a_qds private data\n");
free(bus);
return -1;
}
bus->read = ls1088a_qds_mdio_read;
bus->write = ls1088a_qds_mdio_write;
bus->reset = ls1088a_qds_mdio_reset;
sprintf(bus->name, ls1088a_qds_mdio_name_for_muxval(muxval));
pmdio->realbus = miiphy_get_dev_by_name(realbusname);
if (!pmdio->realbus) {
printf("No bus with name %s\n", realbusname);
free(bus);
free(pmdio);
return -1;
}
pmdio->muxval = muxval;
bus->priv = pmdio;
return mdio_register(bus);
}
/*
* Initialize the dpmac_info array.
*
*/
static void initialize_dpmac_to_slot(void)
{
struct ccsr_gur __iomem *gur = (void *)CFG_SYS_FSL_GUTS_ADDR;
u32 serdes1_prtcl, cfg;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
serdes1_prtcl = serdes_get_number(FSL_SRDS_1, cfg);
switch (serdes1_prtcl) {
case 0x12:
printf("qds: WRIOP: Supported SerDes1 Protocol 0x%02x\n",
serdes1_prtcl);
lane_to_slot_fsm1[0] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[1] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[2] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[3] = EMI1_SLOT1 - 1;
break;
case 0x15:
case 0x1D:
printf("qds: WRIOP: Supported SerDes1 Protocol 0x%02x\n",
serdes1_prtcl);
lane_to_slot_fsm1[0] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[1] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[2] = EMI_NONE;
lane_to_slot_fsm1[3] = EMI_NONE;
break;
case 0x1E:
printf("qds: WRIOP: Supported SerDes1 Protocol 0x%02x\n",
serdes1_prtcl);
lane_to_slot_fsm1[0] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[1] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[2] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[3] = EMI_NONE;
break;
case 0x3A:
printf("qds: WRIOP: Supported SerDes1 Protocol 0x%02x\n",
serdes1_prtcl);
lane_to_slot_fsm1[0] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[1] = EMI_NONE;
lane_to_slot_fsm1[2] = EMI1_SLOT1 - 1;
lane_to_slot_fsm1[3] = EMI1_SLOT1 - 1;
break;
default:
printf("%s qds: WRIOP: Unsupported SerDes1 Protocol 0x%02x\n",
__func__, serdes1_prtcl);
break;
}
}
void ls1088a_handle_phy_interface_sgmii(int dpmac_id)
{
struct mii_dev *bus;
struct ccsr_gur __iomem *gur = (void *)CFG_SYS_FSL_GUTS_ADDR;
u32 serdes1_prtcl, cfg;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
serdes1_prtcl = serdes_get_number(FSL_SRDS_1, cfg);
int *riser_phy_addr;
char *env_hwconfig = env_get("hwconfig");
if (hwconfig_f("xqsgmii", env_hwconfig))
riser_phy_addr = &xqsgii_riser_phy_addr[0];
else
riser_phy_addr = &sgmii_riser_phy_addr[0];
switch (serdes1_prtcl) {
case 0x12:
case 0x15:
case 0x1E:
case 0x3A:
switch (dpmac_id) {
case 1:
wriop_set_phy_address(dpmac_id, 0, riser_phy_addr[1]);
break;
case 2:
wriop_set_phy_address(dpmac_id, 0, riser_phy_addr[0]);
break;
case 3:
wriop_set_phy_address(dpmac_id, 0, riser_phy_addr[3]);
break;
case 7:
wriop_set_phy_address(dpmac_id, 0, riser_phy_addr[2]);
break;
default:
printf("WRIOP: Wrong DPMAC%d set to SGMII", dpmac_id);
break;
}
break;
default:
printf("%s qds: WRIOP: Unsupported SerDes1 Protocol 0x%02x\n",
__func__, serdes1_prtcl);
return;
}
dpmac_info[dpmac_id].board_mux = EMI1_SLOT1;
bus = mii_dev_for_muxval(EMI1_SLOT1);
wriop_set_mdio(dpmac_id, bus);
}
void ls1088a_handle_phy_interface_qsgmii(int dpmac_id)
{
struct mii_dev *bus;
struct ccsr_gur __iomem *gur = (void *)CFG_SYS_FSL_GUTS_ADDR;
u32 serdes1_prtcl, cfg;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
serdes1_prtcl = serdes_get_number(FSL_SRDS_1, cfg);
switch (serdes1_prtcl) {
case 0x1D:
case 0x1E:
switch (dpmac_id) {
case 3:
case 4:
case 5:
case 6:
wriop_set_phy_address(dpmac_id, 0, dpmac_id + 9);
break;
case 7:
case 8:
case 9:
case 10:
wriop_set_phy_address(dpmac_id, 0, dpmac_id + 1);
break;
}
dpmac_info[dpmac_id].board_mux = EMI1_SLOT1;
bus = mii_dev_for_muxval(EMI1_SLOT1);
wriop_set_mdio(dpmac_id, bus);
break;
default:
printf("qds: WRIOP: Unsupported SerDes Protocol 0x%02x\n",
serdes1_prtcl);
break;
}
}
void ls1088a_handle_phy_interface_xsgmii(int i)
{
struct ccsr_gur __iomem *gur = (void *)CFG_SYS_FSL_GUTS_ADDR;
u32 serdes1_prtcl, cfg;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
serdes1_prtcl = serdes_get_number(FSL_SRDS_1, cfg);
switch (serdes1_prtcl) {
case 0x15:
case 0x1D:
case 0x1E:
wriop_set_phy_address(i, 0, i + 26);
ls1088a_qds_enable_SFP_TX(SFP_TX);
break;
default:
printf("qds: WRIOP: Unsupported SerDes Protocol 0x%02x\n",
serdes1_prtcl);
break;
}
}
static void ls1088a_handle_phy_interface_rgmii(int dpmac_id)
{
struct ccsr_gur __iomem *gur = (void *)CFG_SYS_FSL_GUTS_ADDR;
u32 serdes1_prtcl, cfg;
struct mii_dev *bus;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
serdes1_prtcl = serdes_get_number(FSL_SRDS_1, cfg);
switch (dpmac_id) {
case 4:
wriop_set_phy_address(dpmac_id, 0, RGMII_PHY1_ADDR);
dpmac_info[dpmac_id].board_mux = EMI1_RGMII1;
bus = mii_dev_for_muxval(EMI1_RGMII1);
wriop_set_mdio(dpmac_id, bus);
break;
case 5:
wriop_set_phy_address(dpmac_id, 0, RGMII_PHY2_ADDR);
dpmac_info[dpmac_id].board_mux = EMI1_RGMII2;
bus = mii_dev_for_muxval(EMI1_RGMII2);
wriop_set_mdio(dpmac_id, bus);
break;
default:
printf("qds: WRIOP: Unsupported RGMII SerDes Protocol 0x%02x\n",
serdes1_prtcl);
break;
}
}
#endif
int board_eth_init(struct bd_info *bis)
{
int error = 0, i;
#ifdef CONFIG_FSL_MC_ENET
struct memac_mdio_info *memac_mdio0_info;
char *env_hwconfig = env_get("hwconfig");
initialize_dpmac_to_slot();
memac_mdio0_info = (struct memac_mdio_info *)malloc(
sizeof(struct memac_mdio_info));
memac_mdio0_info->regs =
(struct memac_mdio_controller *)
CFG_SYS_FSL_WRIOP1_MDIO1;
memac_mdio0_info->name = DEFAULT_WRIOP_MDIO1_NAME;
/* Register the real MDIO1 bus */
fm_memac_mdio_init(bis, memac_mdio0_info);
/* Register the muxing front-ends to the MDIO buses */
ls1088a_qds_mdio_init(DEFAULT_WRIOP_MDIO1_NAME, EMI1_RGMII1);
ls1088a_qds_mdio_init(DEFAULT_WRIOP_MDIO1_NAME, EMI1_RGMII2);
ls1088a_qds_mdio_init(DEFAULT_WRIOP_MDIO1_NAME, EMI1_SLOT1);
for (i = WRIOP1_DPMAC1; i < NUM_WRIOP_PORTS; i++) {
switch (wriop_get_enet_if(i)) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
ls1088a_handle_phy_interface_rgmii(i);
break;
case PHY_INTERFACE_MODE_QSGMII:
ls1088a_handle_phy_interface_qsgmii(i);
break;
case PHY_INTERFACE_MODE_SGMII:
ls1088a_handle_phy_interface_sgmii(i);
break;
case PHY_INTERFACE_MODE_XGMII:
ls1088a_handle_phy_interface_xsgmii(i);
break;
default:
break;
if (i == 16)
i = NUM_WRIOP_PORTS;
}
}
error = cpu_eth_init(bis);
if (hwconfig_f("xqsgmii", env_hwconfig)) {
for (i = WRIOP1_DPMAC1; i < NUM_WRIOP_PORTS; i++) {
switch (wriop_get_enet_if(i)) {
case PHY_INTERFACE_MODE_QSGMII:
qsgmii_configure_repeater(i);
break;
case PHY_INTERFACE_MODE_SGMII:
sgmii_configure_repeater(i);
break;
default:
break;
}
if (i == 16)
i = NUM_WRIOP_PORTS;
}
}
#endif
error = pci_eth_init(bis);
return error;
}
#endif // !CONFIG_DM_ETH
#if defined(CONFIG_RESET_PHY_R)
void reset_phy(void)
{
mc_env_boot();
}
#endif /* CONFIG_RESET_PHY_R */
#if defined(CONFIG_DM_ETH) && defined(CONFIG_MULTI_DTB_FIT)
/* Structure to hold SERDES protocols supported in case of
* CONFIG_DM_ETH enabled (network interfaces are described in the DTS).
*
* @serdes_block: the index of the SERDES block
* @serdes_protocol: the decimal value of the protocol supported
* @dts_needed: DTS notes describing the current configuration are needed
*
* When dts_needed is true, the board_fit_config_name_match() function
* will try to exactly match the current configuration of the block with a DTS
* name provided.
*/
static struct serdes_configuration {
u8 serdes_block;
u32 serdes_protocol;
bool dts_needed;
} supported_protocols[] = {
/* Serdes block #1 */
{1, 21, true},
{1, 29, true},
};
#define SUPPORTED_SERDES_PROTOCOLS ARRAY_SIZE(supported_protocols)
static bool protocol_supported(u8 serdes_block, u32 protocol)
{
struct serdes_configuration serdes_conf;
int i;
for (i = 0; i < SUPPORTED_SERDES_PROTOCOLS; i++) {
serdes_conf = supported_protocols[i];
if (serdes_conf.serdes_block == serdes_block &&
serdes_conf.serdes_protocol == protocol)
return true;
}
return false;
}
static void get_str_protocol(u8 serdes_block, u32 protocol, char *str)
{
struct serdes_configuration serdes_conf;
int i;
for (i = 0; i < SUPPORTED_SERDES_PROTOCOLS; i++) {
serdes_conf = supported_protocols[i];
if (serdes_conf.serdes_block == serdes_block &&
serdes_conf.serdes_protocol == protocol) {
if (serdes_conf.dts_needed == true)
sprintf(str, "%u", protocol);
else
sprintf(str, "x");
return;
}
}
}
int board_fit_config_name_match(const char *name)
{
struct ccsr_gur *gur = (void *)(CFG_SYS_FSL_GUTS_ADDR);
char expected_dts[100];
char srds_s1_str[2];
u32 srds_s1, cfg;
cfg = in_le32(&gur->rcwsr[FSL_CHASSIS3_SRDS1_REGSR - 1]) &
FSL_CHASSIS3_SRDS1_PRTCL_MASK;
cfg >>= FSL_CHASSIS3_SRDS1_PRTCL_SHIFT;
srds_s1 = serdes_get_number(FSL_SRDS_1, cfg);
/* Check for supported protocols. The default DTS will be used
* in this case
*/
if (!protocol_supported(1, srds_s1))
return -1;
get_str_protocol(1, srds_s1, srds_s1_str);
sprintf(expected_dts, "fsl-ls1088a-qds-%s-x", srds_s1_str);
if (!strcmp(name, expected_dts))
return 0;
return -1;
}
#endif