| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2022 Sean Anderson <sean.anderson@seco.com> |
| * |
| * This driver supports the Security Fuse Processor device found on some |
| * Layerscape processors. At the moment, we only support a few processors. |
| * This driver was written with reference to the Layerscape SDK User |
| * Guide [1] and the ATF SFP driver [2]. |
| * |
| * [1] https://docs.nxp.com/bundle/GUID-487B2E69-BB19-42CB-AC38-7EF18C0FE3AE/page/GUID-27FC40AD-3321-4A82-B29E-7BB49EE94F23.html |
| * [2] https://source.codeaurora.org/external/qoriq/qoriq-components/atf/tree/drivers/nxp/sfp?h=github.com/master |
| */ |
| |
| #define LOG_CATEGORY UCLASS_MISC |
| #include <common.h> |
| #include <clk.h> |
| #include <fuse.h> |
| #include <misc.h> |
| #include <asm/io.h> |
| #include <dm/device_compat.h> |
| #include <dm/read.h> |
| #include <linux/bitfield.h> |
| #include <power/regulator.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define SFP_INGR 0x20 |
| #define SFP_SVHESR 0x24 |
| #define SFP_SFPCR 0x28 |
| |
| #define SFP_START 0x200 |
| #define SFP_END 0x284 |
| #define SFP_SIZE (SFP_END - SFP_START + 4) |
| |
| #define SFP_INGR_ERR BIT(8) |
| #define SFP_INGR_INST GENMASK(7, 0) |
| |
| #define SFP_INGR_READFB 0x01 |
| #define SFP_INGR_PROGFB 0x02 |
| |
| #define SFP_SFPCR_PPW GENMASK(15, 0) |
| |
| enum ls2_sfp_ioctl { |
| LS2_SFP_IOCTL_READ, |
| LS2_SFP_IOCTL_PROG, |
| }; |
| |
| /** |
| * struct ls2_sfp_priv - private data for LS2 SFP |
| * @base: Base address of SFP |
| * @supply: The (optional) supply for TA_PROG_SFP |
| * @programmed: Whether we've already programmed the fuses since the last |
| * reset. The SFP has a *very* limited amount of programming |
| * cycles (two to six, depending on the model), so we try and |
| * prevent accidentally performing additional programming |
| * cycles. |
| * @dirty: Whether the mirror registers have been written to (overridden) |
| * since we've last read the fuses (either as part of the reset |
| * process or using a READFB instruction). There is a much larger, |
| * but still finite, limit on the number of SFP read cycles (around |
| * 300,000), so we try and minimize reads as well. |
| */ |
| struct ls2_sfp_priv { |
| void __iomem *base; |
| struct udevice *supply; |
| bool programmed, dirty; |
| }; |
| |
| static u32 ls2_sfp_readl(struct ls2_sfp_priv *priv, ulong off) |
| { |
| u32 val = be32_to_cpu(readl(priv->base + off)); |
| |
| log_debug("%08x = readl(%p)\n", val, priv->base + off); |
| return val; |
| } |
| |
| static void ls2_sfp_writel(struct ls2_sfp_priv *priv, ulong val, ulong off) |
| { |
| log_debug("writel(%08lx, %p)\n", val, priv->base + off); |
| writel(cpu_to_be32(val), priv->base + off); |
| } |
| |
| static bool ls2_sfp_validate(struct udevice *dev, int offset, int size) |
| { |
| if (offset < 0 || size < 0) { |
| dev_notice(dev, "size and offset must be positive\n"); |
| return false; |
| } |
| |
| if (offset & 3 || size & 3) { |
| dev_notice(dev, "size and offset must be multiples of 4\n"); |
| return false; |
| } |
| |
| if (offset + size > SFP_SIZE) { |
| dev_notice(dev, "size + offset must be <= %#x\n", SFP_SIZE); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int ls2_sfp_read(struct udevice *dev, int offset, void *buf_bytes, |
| int size) |
| { |
| int i; |
| struct ls2_sfp_priv *priv = dev_get_priv(dev); |
| u32 *buf = buf_bytes; |
| |
| if (!ls2_sfp_validate(dev, offset, size)) |
| return -EINVAL; |
| |
| for (i = 0; i < size; i += 4) |
| buf[i >> 2] = ls2_sfp_readl(priv, SFP_START + offset + i); |
| |
| return size; |
| } |
| |
| static int ls2_sfp_write(struct udevice *dev, int offset, |
| const void *buf_bytes, int size) |
| { |
| int i; |
| struct ls2_sfp_priv *priv = dev_get_priv(dev); |
| const u32 *buf = buf_bytes; |
| |
| if (!ls2_sfp_validate(dev, offset, size)) |
| return -EINVAL; |
| |
| for (i = 0; i < size; i += 4) |
| ls2_sfp_writel(priv, buf[i >> 2], SFP_START + offset + i); |
| |
| priv->dirty = true; |
| return size; |
| } |
| |
| static int ls2_sfp_check_secret(struct udevice *dev) |
| { |
| struct ls2_sfp_priv *priv = dev_get_priv(dev); |
| u32 svhesr = ls2_sfp_readl(priv, SFP_SVHESR); |
| |
| if (svhesr) { |
| dev_warn(dev, "secret value hamming error not zero: %08x\n", |
| svhesr); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static int ls2_sfp_transaction(struct ls2_sfp_priv *priv, ulong inst) |
| { |
| u32 ingr; |
| |
| ls2_sfp_writel(priv, inst, SFP_INGR); |
| |
| do { |
| ingr = ls2_sfp_readl(priv, SFP_INGR); |
| } while (FIELD_GET(SFP_INGR_INST, ingr)); |
| |
| return FIELD_GET(SFP_INGR_ERR, ingr) ? -EIO : 0; |
| } |
| |
| static int ls2_sfp_ioctl(struct udevice *dev, unsigned long request, void *buf) |
| { |
| int ret; |
| struct ls2_sfp_priv *priv = dev_get_priv(dev); |
| |
| switch (request) { |
| case LS2_SFP_IOCTL_READ: |
| if (!priv->dirty) { |
| dev_dbg(dev, "ignoring read request, since fuses are not dirty\n"); |
| return 0; |
| } |
| |
| ret = ls2_sfp_transaction(priv, SFP_INGR_READFB); |
| if (ret) { |
| dev_err(dev, "error reading fuses\n"); |
| return ret; |
| } |
| |
| ls2_sfp_check_secret(dev); |
| priv->dirty = false; |
| return 0; |
| case LS2_SFP_IOCTL_PROG: |
| if (priv->programmed) { |
| dev_warn(dev, "fuses already programmed\n"); |
| return -EPERM; |
| } |
| |
| ret = ls2_sfp_check_secret(dev); |
| if (ret) |
| return ret; |
| |
| if (priv->supply) { |
| ret = regulator_set_enable(priv->supply, true); |
| if (ret) |
| return ret; |
| } |
| |
| ret = ls2_sfp_transaction(priv, SFP_INGR_PROGFB); |
| priv->programmed = true; |
| if (priv->supply) |
| regulator_set_enable(priv->supply, false); |
| |
| if (ret) |
| dev_err(dev, "error programming fuses\n"); |
| return ret; |
| default: |
| dev_dbg(dev, "unknown ioctl %lu\n", request); |
| return -EINVAL; |
| } |
| } |
| |
| static const struct misc_ops ls2_sfp_ops = { |
| .read = ls2_sfp_read, |
| .write = ls2_sfp_write, |
| .ioctl = ls2_sfp_ioctl, |
| }; |
| |
| static int ls2_sfp_probe(struct udevice *dev) |
| { |
| int ret; |
| struct clk clk; |
| struct ls2_sfp_priv *priv = dev_get_priv(dev); |
| ulong rate; |
| |
| priv->base = dev_read_addr_ptr(dev); |
| if (!priv->base) { |
| dev_dbg(dev, "could not read register base\n"); |
| return -EINVAL; |
| } |
| |
| ret = device_get_supply_regulator(dev, "ta-sfp-prog-supply", &priv->supply); |
| if (ret && ret != -ENODEV && ret != -ENOSYS) { |
| dev_dbg(dev, "problem getting supply (err %d)\n", ret); |
| return ret; |
| } |
| |
| ret = clk_get_by_name(dev, "sfp", &clk); |
| if (ret == -ENOSYS) { |
| rate = gd->bus_clk / 4; |
| } else if (ret) { |
| dev_dbg(dev, "could not get clock (err %d)\n", ret); |
| return ret; |
| } else { |
| ret = clk_enable(&clk); |
| if (ret) { |
| dev_dbg(dev, "could not enable clock (err %d)\n", ret); |
| return ret; |
| } |
| |
| rate = clk_get_rate(&clk); |
| clk_free(&clk); |
| if (!rate || IS_ERR_VALUE(rate)) { |
| ret = rate ? rate : -ENOENT; |
| dev_dbg(dev, "could not get clock rate (err %d)\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| /* sfp clock in MHz * 12 */ |
| ls2_sfp_writel(priv, FIELD_PREP(SFP_SFPCR_PPW, rate * 12 / 1000000), |
| SFP_SFPCR); |
| |
| ls2_sfp_check_secret(dev); |
| return 0; |
| } |
| |
| static const struct udevice_id ls2_sfp_ids[] = { |
| { .compatible = "fsl,ls1021a-sfp" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(ls2_sfp) = { |
| .name = "ls2_sfp", |
| .id = UCLASS_MISC, |
| .of_match = ls2_sfp_ids, |
| .probe = ls2_sfp_probe, |
| .ops = &ls2_sfp_ops, |
| .priv_auto = sizeof(struct ls2_sfp_priv), |
| }; |
| |
| static int ls2_sfp_device(struct udevice **dev) |
| { |
| int ret = uclass_get_device_by_driver(UCLASS_MISC, |
| DM_DRIVER_GET(ls2_sfp), dev); |
| |
| if (ret) |
| log_debug("device not found (err %d)\n", ret); |
| return ret; |
| } |
| |
| int fuse_read(u32 bank, u32 word, u32 *val) |
| { |
| int ret; |
| struct udevice *dev; |
| |
| ret = ls2_sfp_device(&dev); |
| if (ret) |
| return ret; |
| |
| ret = misc_ioctl(dev, LS2_SFP_IOCTL_READ, NULL); |
| if (ret) |
| return ret; |
| |
| ret = misc_read(dev, word << 2, val, sizeof(*val)); |
| return ret < 0 ? ret : 0; |
| } |
| |
| int fuse_sense(u32 bank, u32 word, u32 *val) |
| { |
| int ret; |
| struct udevice *dev; |
| |
| ret = ls2_sfp_device(&dev); |
| if (ret) |
| return ret; |
| |
| ret = misc_read(dev, word << 2, val, sizeof(*val)); |
| return ret < 0 ? ret : 0; |
| } |
| |
| int fuse_prog(u32 bank, u32 word, u32 val) |
| { |
| int ret; |
| struct udevice *dev; |
| |
| ret = ls2_sfp_device(&dev); |
| if (ret) |
| return ret; |
| |
| ret = misc_write(dev, word << 2, &val, sizeof(val)); |
| if (ret < 0) |
| return ret; |
| |
| return misc_ioctl(dev, LS2_SFP_IOCTL_PROG, NULL); |
| } |
| |
| int fuse_override(u32 bank, u32 word, u32 val) |
| { |
| int ret; |
| struct udevice *dev; |
| |
| ret = ls2_sfp_device(&dev); |
| if (ret) |
| return ret; |
| |
| ret = misc_write(dev, word << 2, &val, sizeof(val)); |
| return ret < 0 ? ret : 0; |
| } |