| // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause |
| /* |
| * Copyright (C) 2019, STMicroelectronics - All Rights Reserved |
| */ |
| #include <common.h> |
| #include <console.h> |
| #include <clk.h> |
| #include <ram.h> |
| #include <reset.h> |
| #include <asm/io.h> |
| |
| #include "stm32mp1_ddr_regs.h" |
| #include "stm32mp1_ddr.h" |
| #include "stm32mp1_tests.h" |
| |
| #define MAX_DQS_PHASE_IDX _144deg |
| #define MAX_DQS_UNIT_IDX 7 |
| #define MAX_GSL_IDX 5 |
| #define MAX_GPS_IDX 3 |
| |
| /* Number of bytes used in this SW. ( min 1--> max 4). */ |
| #define NUM_BYTES 4 |
| |
| enum dqs_phase_enum { |
| _36deg = 0, |
| _54deg = 1, |
| _72deg = 2, |
| _90deg = 3, |
| _108deg = 4, |
| _126deg = 5, |
| _144deg = 6 |
| }; |
| |
| /* BIST Result struct */ |
| struct BIST_result { |
| /* Overall test result: |
| * 0 Fail (any bit failed) , |
| * 1 Success (All bits success) |
| */ |
| bool test_result; |
| /* 1: true, all fail / 0: False, not all bits fail */ |
| bool all_bits_fail; |
| bool bit_i_test_result[8]; /* 0 fail / 1 success */ |
| }; |
| |
| /* a struct that defines tuning parameters of a byte. */ |
| struct tuning_position { |
| u8 phase; /* DQS phase */ |
| u8 unit; /* DQS unit delay */ |
| u32 bits_delay; /* Bits deskew in this byte */ |
| }; |
| |
| /* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */ |
| const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12}; |
| |
| static u8 BIST_error_max = 1; |
| static u32 BIST_seed = 0x1234ABCD; |
| |
| static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl) |
| { |
| u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK; |
| u8 nb_bytes = NUM_BYTES; |
| |
| switch (data_bus) { |
| case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF: |
| nb_bytes /= 2; |
| break; |
| case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER: |
| nb_bytes /= 4; |
| break; |
| default: |
| break; |
| } |
| |
| return nb_bytes; |
| } |
| |
| static void itm_soft_reset(struct stm32mp1_ddrphy *phy) |
| { |
| stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); |
| } |
| |
| /* Read DQ unit delay register and provides the retrieved value for DQS |
| * We are assuming that we have the same delay when clocking |
| * by DQS and when clocking by DQSN |
| */ |
| static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit) |
| { |
| u32 index; |
| u32 addr = DXNDQTR(phy, byte); |
| |
| /* We are assuming that we have the same delay when clocking by DQS |
| * and when clocking by DQSN : use only the low bits |
| */ |
| index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)) |
| & DDRPHYC_DXNDQTR_DQDLY_LOW_MASK; |
| |
| pr_debug("%s: [%x]: %x => DQ unit index = %x\n", |
| __func__, addr, readl(addr), index); |
| |
| return index; |
| } |
| |
| /* Sets the DQS phase delay for a byte lane. |
| *phase delay is specified by giving the index of the desired delay |
| * in the dx_dll_phase array. |
| */ |
| static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx) |
| { |
| u8 sdphase_val = 0; |
| |
| /* Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */ |
| sdphase_val = dx_dll_phase[phase_idx]; |
| clrsetbits_le32(DXNDLLCR(phy, byte), |
| DDRPHYC_DXNDLLCR_SDPHASE_MASK, |
| sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT); |
| } |
| |
| /* Sets the DQS unit delay for a byte lane. |
| * unit delay is specified by giving the index of the desired delay |
| * for dgsdly and dqsndly (same value). |
| */ |
| static void DQS_unit_delay(struct stm32mp1_ddrphy *phy, |
| u8 byte, u8 unit_dly_idx) |
| { |
| /* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */ |
| clrsetbits_le32(DXNDQSTR(phy, byte), |
| DDRPHYC_DXNDQSTR_DQSDLY_MASK | |
| DDRPHYC_DXNDQSTR_DQSNDLY_MASK, |
| (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) | |
| (unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT)); |
| |
| /* After changing this value, an ITM soft reset (PIR.ITMSRST=1, |
| * plus PIR.INIT=1) must be issued. |
| */ |
| stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST); |
| } |
| |
| /* Sets the DQ unit delay for a bit line in particular byte lane. |
| * unit delay is specified by giving the desired delay |
| */ |
| static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy, |
| u8 byte, u8 bit, |
| u8 dq_delay_index) |
| { |
| u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2); |
| |
| /* same value on delay for clock DQ an DQS_b */ |
| clrsetbits_le32(DXNDQTR(phy, byte), |
| DDRPHYC_DXNDQTR_DQDLY_MASK |
| << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit), |
| dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit)); |
| } |
| |
| static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy, |
| u8 byte, u8 r0dgsl_idx) |
| { |
| clrsetbits_le32(DXNDQSTR(phy, byte), |
| DDRPHYC_DXNDQSTR_R0DGSL_MASK, |
| r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT); |
| } |
| |
| static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy, |
| u8 byte, u8 r0dgps_idx) |
| { |
| clrsetbits_le32(DXNDQSTR(phy, byte), |
| DDRPHYC_DXNDQSTR_R0DGPS_MASK, |
| r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT); |
| } |
| |
| /* Basic BIST configuration for data lane tests. */ |
| static void config_BIST(struct stm32mp1_ddrphy *phy) |
| { |
| /* Selects the SDRAM bank address to be used during BIST. */ |
| u32 bbank = 0; |
| /* Selects the SDRAM row address to be used during BIST. */ |
| u32 brow = 0; |
| /* Selects the SDRAM column address to be used during BIST. */ |
| u32 bcol = 0; |
| /* Selects the value by which the SDRAM address is incremented |
| * for each write/read access. |
| */ |
| u32 bainc = 0x00000008; |
| /* Specifies the maximum SDRAM rank to be used during BIST. |
| * The default value is set to maximum ranks minus 1. |
| * must be 0 with single rank |
| */ |
| u32 bmrank = 0; |
| /* Selects the SDRAM rank to be used during BIST. |
| * must be 0 with single rank |
| */ |
| u32 brank = 0; |
| /* Specifies the maximum SDRAM bank address to be used during |
| * BIST before the address & increments to the next rank. |
| */ |
| u32 bmbank = 1; |
| /* Specifies the maximum SDRAM row address to be used during |
| * BIST before the address & increments to the next bank. |
| */ |
| u32 bmrow = 0x7FFF; /* To check */ |
| /* Specifies the maximum SDRAM column address to be used during |
| * BIST before the address & increments to the next row. |
| */ |
| u32 bmcol = 0x3FF; /* To check */ |
| u32 bmode_conf = 0x00000001; /* DRam mode */ |
| u32 bdxen_conf = 0x00000001; /* BIST on Data byte */ |
| u32 bdpat_conf = 0x00000002; /* Select LFSR pattern */ |
| |
| /*Setup BIST for DRAM mode, and LFSR-random data pattern.*/ |
| /*Write BISTRR.BMODE = 1?b1;*/ |
| /*Write BISTRR.BDXEN = 1?b1;*/ |
| /*Write BISTRR.BDPAT = 2?b10;*/ |
| |
| /* reset BIST */ |
| writel(0x3, &phy->bistrr); |
| |
| writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17), |
| &phy->bistrr); |
| |
| /*Setup BIST Word Count*/ |
| /*Write BISTWCR.BWCNT = 16?b0008;*/ |
| writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */ |
| |
| writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0); |
| writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1); |
| |
| /* To check this line : */ |
| writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2); |
| } |
| |
| /* Select the Byte lane to be tested by BIST. */ |
| static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8) |
| { |
| clrsetbits_le32(&phy->bistrr, |
| DDRPHYC_BISTRR_BDXSEL_MASK, |
| datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT); |
| |
| /*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/ |
| /* Write BISTRR.BDXSEL = datx8; */ |
| } |
| |
| /* Perform BIST Write_Read test on a byte lane and return test result. */ |
| static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte, |
| struct BIST_result *bist) |
| { |
| bool result = true; /* BIST_SUCCESS */ |
| u32 cnt = 0; |
| u32 error = 0; |
| |
| bist->test_result = true; |
| |
| run: |
| itm_soft_reset(phy); |
| |
| /*Perform BIST Reset*/ |
| /* Write BISTRR.BINST = 3?b011; */ |
| clrsetbits_le32(&phy->bistrr, |
| 0x00000007, |
| 0x00000003); |
| |
| /*Re-seed LFSR*/ |
| /* Write BISTLSR.SEED = 32'h1234ABCD; */ |
| if (BIST_seed) |
| writel(BIST_seed, &phy->bistlsr); |
| else |
| writel(rand(), &phy->bistlsr); |
| |
| /* some delay to reset BIST */ |
| mdelay(1); |
| |
| /*Perform BIST Run*/ |
| clrsetbits_le32(&phy->bistrr, |
| 0x00000007, |
| 0x00000001); |
| /* Write BISTRR.BINST = 3?b001; */ |
| |
| /* Wait for a number of CTL clocks before reading BIST register*/ |
| /* Wait 300 ctl_clk cycles; ... IS it really needed?? */ |
| /* Perform BIST Instruction Stop*/ |
| /* Write BISTRR.BINST = 3?b010;*/ |
| |
| /* poll on BISTGSR.BDONE. If 0, wait. ++TODO Add timeout */ |
| while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE)) |
| ; |
| |
| /*Check if received correct number of words*/ |
| /* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */ |
| if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) == |
| readl(&phy->bistwcr)) { |
| /*Determine if there is a data comparison error*/ |
| /* if (Read BISTGSR.BDXERR = 1?b0) */ |
| if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR) |
| result = false; /* BIST_FAIL; */ |
| else |
| result = true; /* BIST_SUCCESS; */ |
| } else { |
| result = false; /* BIST_FAIL; */ |
| } |
| |
| /* loop while success */ |
| cnt++; |
| if (result && cnt != 1000) |
| goto run; |
| |
| if (!result) |
| error++; |
| |
| if (error < BIST_error_max) { |
| if (cnt != 1000) |
| goto run; |
| bist->test_result = true; |
| } else { |
| bist->test_result = false; |
| } |
| } |
| |
| /* After running the deskew algo, this function applies the new DQ delays |
| * by reading them from the array "deskew_delay"and writing in PHY registers. |
| * The bits that are not deskewed parfectly (too much skew on them, |
| * or data eye very wide) are marked in the array deskew_non_converge. |
| */ |
| static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte, |
| u8 deskew_delay[NUM_BYTES][8], |
| u8 deskew_non_converge[NUM_BYTES][8]) |
| { |
| u8 bit_i; |
| u8 index; |
| |
| for (bit_i = 0; bit_i < 8; bit_i++) { |
| set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]); |
| index = DQ_unit_index(phy, byte, bit_i); |
| pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]", |
| byte, bit_i, deskew_delay[byte][bit_i], |
| index, index - 3); |
| printf("Byte %d, bit %d, DQ delay = %d", |
| byte, bit_i, deskew_delay[byte][bit_i]); |
| if (deskew_non_converge[byte][bit_i] == 1) |
| pr_debug(" - not converged : still more skew"); |
| printf("\n"); |
| } |
| } |
| |
| /* DQ Bit de-skew algorithm. |
| * Deskews data lines as much as possible. |
| * 1. Add delay to DQS line until finding the failure |
| * (normally a hold time violation) |
| * 2. Reduce DQS line by small steps until finding the very first time |
| * we go back to "Pass" condition. |
| * 3. For each DQ line, Reduce DQ delay until finding the very first failure |
| * (normally a hold time fail) |
| * 4. When all bits are at their first failure delay, we can consider them |
| * aligned. |
| * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions |
| * at any step) |
| * TODO Provide a return Status. Improve doc |
| */ |
| static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, char *string) |
| { |
| /* New DQ delay value (index), set during Deskew algo */ |
| u8 deskew_delay[NUM_BYTES][8]; |
| /*If there is still skew on a bit, mark this bit. */ |
| u8 deskew_non_converge[NUM_BYTES][8]; |
| struct BIST_result result; |
| s8 dqs_unit_delay_index = 0; |
| u8 datx8 = 0; |
| u8 bit_i = 0; |
| s8 phase_idx = 0; |
| s8 bit_i_delay_index = 0; |
| u8 success = 0; |
| struct tuning_position last_right_ok; |
| u8 force_stop = 0; |
| u8 fail_found; |
| u8 error = 0; |
| u8 nb_bytes = get_nb_bytes(ctl); |
| /* u8 last_pass_dqs_unit = 0; */ |
| |
| memset(deskew_delay, 0, sizeof(deskew_delay)); |
| memset(deskew_non_converge, 0, sizeof(deskew_non_converge)); |
| |
| /*Disable DQS Drift Compensation*/ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| /*Disable all bytes*/ |
| /* Disable automatic power down of DLL and IOs when disabling |
| * a byte (To avoid having to add programming and delay |
| * for a DLL re-lock when later re-enabling a disabled Byte Lane) |
| */ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| |
| /* Disable all data bytes */ |
| clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| |
| /* Config the BIST block */ |
| config_BIST(phy); |
| pr_debug("BIST Config done.\n"); |
| |
| /* Train each byte */ |
| for (datx8 = 0; datx8 < nb_bytes; datx8++) { |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| datx8 + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| pr_debug("\n======================\n"); |
| pr_debug("Start deskew byte %d .\n", datx8); |
| pr_debug("======================\n"); |
| /* Enable Byte (DXNGCR, bit DXEN) */ |
| setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); |
| |
| /* Select the byte lane for comparison of read data */ |
| BIST_datx8_sel(phy, datx8); |
| |
| /* Set all DQDLYn to maximum value. All bits within the byte |
| * will be delayed with DQSTR = 2 instead of max = 3 |
| * to avoid inter bits fail influence |
| */ |
| writel(0xAAAAAAAA, DXNDQTR(phy, datx8)); |
| |
| /* Set the DQS phase delay to 90 DEG (default). |
| * What is defined here is the index of the desired config |
| * in the PHASE array. |
| */ |
| phase_idx = _90deg; |
| |
| /* Set DQS unit delay to the max value. */ |
| dqs_unit_delay_index = MAX_DQS_UNIT_IDX; |
| DQS_unit_delay(phy, datx8, dqs_unit_delay_index); |
| DQS_phase_delay(phy, datx8, phase_idx); |
| |
| /* Issue a DLL soft reset */ |
| clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); |
| setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST); |
| |
| /* Test this typical init condition */ |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| |
| /* If the test pass in this typical condition, |
| * start the algo with it. |
| * Else, look for Pass init condition |
| */ |
| if (!success) { |
| pr_debug("Fail at init condtion. Let's look for a good init condition.\n"); |
| success = 0; /* init */ |
| /* Make sure we start with a PASS condition before |
| * looking for a fail condition. |
| * Find the first PASS PHASE condition |
| */ |
| |
| /* escape if we find a PASS */ |
| pr_debug("increase Phase idx\n"); |
| while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) { |
| DQS_phase_delay(phy, datx8, phase_idx); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| phase_idx++; |
| } |
| /* if ended with success |
| * ==>> Restore the fist success condition |
| */ |
| if (success) |
| phase_idx--; /* because it ended with ++ */ |
| } |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| datx8 + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| /* We couldn't find a successful condition, its seems |
| * we have hold violation, lets try reduce DQS_unit Delay |
| */ |
| if (!success) { |
| /* We couldn't find a successful condition, its seems |
| * we have hold violation, lets try reduce DQS_unit |
| * Delay |
| */ |
| pr_debug("Still fail. Try decrease DQS Unit delay\n"); |
| |
| phase_idx = 0; |
| dqs_unit_delay_index = 0; |
| DQS_phase_delay(phy, datx8, phase_idx); |
| |
| /* escape if we find a PASS */ |
| while (!success && |
| (dqs_unit_delay_index <= |
| MAX_DQS_UNIT_IDX)) { |
| DQS_unit_delay(phy, datx8, |
| dqs_unit_delay_index); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| dqs_unit_delay_index++; |
| } |
| if (success) { |
| /* Restore the first success condition*/ |
| dqs_unit_delay_index--; |
| /* last_pass_dqs_unit = dqs_unit_delay_index;*/ |
| DQS_unit_delay(phy, datx8, |
| dqs_unit_delay_index); |
| } else { |
| /* No need to continue, |
| * there is no pass region. |
| */ |
| force_stop = 1; |
| } |
| } |
| |
| /* There is an initial PASS condition |
| * Look for the first failing condition by PHASE stepping. |
| * This part of the algo can finish without converging. |
| */ |
| if (force_stop) { |
| printf("Result: Failed "); |
| printf("[Cannot Deskew lines, "); |
| printf("there is no PASS region]\n"); |
| error++; |
| continue; |
| } |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| datx8 + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| |
| pr_debug("there is a pass region for phase idx %d\n", |
| phase_idx); |
| pr_debug("Step1: Find the first failing condition\n"); |
| /* Look for the first failing condition by PHASE stepping. |
| * This part of the algo can finish without converging. |
| */ |
| |
| /* escape if we find a fail (hold time violation) |
| * condition at any bit or if out of delay range. |
| */ |
| while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) { |
| DQS_phase_delay(phy, datx8, phase_idx); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| phase_idx++; |
| } |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| datx8 + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| |
| /* if the loop ended with a failing condition at any bit, |
| * lets look for the first previous success condition by unit |
| * stepping (minimal delay) |
| */ |
| if (!success) { |
| pr_debug("Fail region (PHASE) found phase idx %d\n", |
| phase_idx); |
| pr_debug("Let's look for first success by DQS Unit steps\n"); |
| /* This part, the algo always converge */ |
| phase_idx--; |
| |
| /* escape if we find a success condition |
| * or if out of delay range. |
| */ |
| while (!success && dqs_unit_delay_index >= 0) { |
| DQS_unit_delay(phy, datx8, |
| dqs_unit_delay_index); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| dqs_unit_delay_index--; |
| } |
| /* if the loop ended with a success condition, |
| * the last delay Right OK (before hold violation) |
| * condition is then defined as following: |
| */ |
| if (success) { |
| /* Hold the dely parameters of the the last |
| * delay Right OK condition. |
| * -1 to get back to current condition |
| */ |
| last_right_ok.phase = phase_idx; |
| /*+1 to get back to current condition */ |
| last_right_ok.unit = dqs_unit_delay_index + 1; |
| last_right_ok.bits_delay = 0xFFFFFFFF; |
| pr_debug("Found %d\n", dqs_unit_delay_index); |
| } else { |
| /* the last OK condition is then with the |
| * previous phase_idx. |
| * -2 instead of -1 because at the last |
| * iteration of the while(), |
| * we incremented phase_idx |
| */ |
| last_right_ok.phase = phase_idx - 1; |
| /* Nominal+1. Because we want the previous |
| * delay after reducing the phase delay. |
| */ |
| last_right_ok.unit = 1; |
| last_right_ok.bits_delay = 0xFFFFFFFF; |
| pr_debug("Not Found : try previous phase %d\n", |
| phase_idx - 1); |
| |
| DQS_phase_delay(phy, datx8, phase_idx - 1); |
| dqs_unit_delay_index = 0; |
| success = true; |
| while (success && |
| (dqs_unit_delay_index < |
| MAX_DQS_UNIT_IDX)) { |
| DQS_unit_delay(phy, datx8, |
| dqs_unit_delay_index); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| dqs_unit_delay_index++; |
| pr_debug("dqs_unit_delay_index = %d, result = %d\n", |
| dqs_unit_delay_index, success); |
| } |
| |
| if (!success) { |
| last_right_ok.unit = |
| dqs_unit_delay_index - 1; |
| } else { |
| last_right_ok.unit = 0; |
| pr_debug("ERROR: failed region not FOUND"); |
| } |
| } |
| } else { |
| /* we can't find a failing condition at all bits |
| * ==> Just hold the last test condition |
| * (the max DQS delay) |
| * which is the most likely, |
| * the closest to a hold violation |
| * If we can't find a Fail condition after |
| * the Pass region, stick at this position |
| * In order to have max chances to find a fail |
| * when reducing DQ delays. |
| */ |
| last_right_ok.phase = MAX_DQS_PHASE_IDX; |
| last_right_ok.unit = MAX_DQS_UNIT_IDX; |
| last_right_ok.bits_delay = 0xFFFFFFFF; |
| pr_debug("Can't find the a fail condition\n"); |
| } |
| |
| /* step 2: |
| * if we arrive at this stage, it means that we found the last |
| * Right OK condition (by tweeking the DQS delay). Or we simply |
| * pushed DQS delay to the max |
| * This means that by reducing the delay on some DQ bits, |
| * we should find a failing condition. |
| */ |
| printf("Byte %d, DQS unit = %d, phase = %d\n", |
| datx8, last_right_ok.unit, last_right_ok.phase); |
| pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n", |
| last_right_ok.unit, last_right_ok.phase, |
| last_right_ok.bits_delay); |
| |
| /* Restore the last_right_ok condtion. */ |
| DQS_unit_delay(phy, datx8, last_right_ok.unit); |
| DQS_phase_delay(phy, datx8, last_right_ok.phase); |
| writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8)); |
| |
| /* train each bit |
| * reduce delay on each bit, and perform a write/read test |
| * and stop at the very first time it fails. |
| * the goal is the find the first failing condition |
| * for each bit. |
| * When we achieve this condition< for all the bits, |
| * we are sure they are aligned (+/- step resolution) |
| */ |
| fail_found = 0; |
| for (bit_i = 0; bit_i < 8; bit_i++) { |
| if (ctrlc()) { |
| sprintf(string, |
| "interrupted at byte %d/%d, error=%d", |
| datx8 + 1, nb_bytes, error); |
| return error; |
| } |
| pr_debug("deskewing bit %d:\n", bit_i); |
| success = 1; /* init */ |
| /* Set all DQDLYn to maximum value. |
| * Only bit_i will be down-delayed |
| * ==> if we have a fail, it will be definitely |
| * from bit_i |
| */ |
| writel(0xFFFFFFFF, DXNDQTR(phy, datx8)); |
| /* Arriving at this stage, |
| * we have a success condition with delay = 3; |
| */ |
| bit_i_delay_index = 3; |
| |
| /* escape if bit delay is out of range or |
| * if a fatil occurs |
| */ |
| while ((bit_i_delay_index >= 0) && success) { |
| set_DQ_unit_delay(phy, datx8, |
| bit_i, |
| bit_i_delay_index); |
| BIST_test(phy, datx8, &result); |
| success = result.test_result; |
| bit_i_delay_index--; |
| } |
| |
| /* if escape with a fail condition |
| * ==> save this position for bit_i |
| */ |
| if (!success) { |
| /* save the delay position. |
| * Add 1 because the while loop ended with a --, |
| * and that we need to hold the last success |
| * delay |
| */ |
| deskew_delay[datx8][bit_i] = |
| bit_i_delay_index + 2; |
| if (deskew_delay[datx8][bit_i] > 3) |
| deskew_delay[datx8][bit_i] = 3; |
| |
| /* A flag that states we found at least a fail |
| * at one bit. |
| */ |
| fail_found = 1; |
| pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n", |
| bit_i, bit_i_delay_index + 1, |
| datx8, bit_i, |
| deskew_delay[datx8][bit_i]); |
| } else { |
| /* if we can find a success condition by |
| * back-delaying this bit, just set the delay |
| * to 0 (the best deskew |
| * possible) and mark the bit. |
| */ |
| deskew_delay[datx8][bit_i] = 0; |
| /* set a flag that will be used later |
| * in the report. |
| */ |
| deskew_non_converge[datx8][bit_i] = 1; |
| pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n", |
| bit_i, datx8, bit_i, |
| deskew_delay[datx8][bit_i]); |
| } |
| } |
| pr_debug("**********byte %d tuning complete************\n", |
| datx8); |
| /* If we can't find any failure by back delaying DQ lines, |
| * hold the default values |
| */ |
| if (!fail_found) { |
| for (bit_i = 0; bit_i < 8; bit_i++) |
| deskew_delay[datx8][bit_i] = 0; |
| pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n"); |
| } |
| |
| apply_deskew_results(phy, datx8, deskew_delay, |
| deskew_non_converge); |
| /* Restore nominal value for DQS delay */ |
| DQS_phase_delay(phy, datx8, 3); |
| DQS_unit_delay(phy, datx8, 3); |
| /* disable byte after byte bits deskew */ |
| clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN); |
| } /* end of byte deskew */ |
| |
| /* re-enable all data bytes */ |
| setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| |
| if (error) { |
| sprintf(string, "error = %d", error); |
| return TEST_FAILED; |
| } |
| |
| return TEST_PASSED; |
| } /* end function */ |
| |
| /* Trim DQS timings and set it in the centre of data eye. |
| * Look for a PPPPF region, then look for a FPPP region and finally select |
| * the mid of the FPPPPPF region |
| */ |
| static enum test_result eye_training(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, char *string) |
| { |
| /*Stores the DQS trim values (PHASE index, unit index) */ |
| u8 eye_training_val[NUM_BYTES][2]; |
| u8 byte = 0; |
| struct BIST_result result; |
| s8 dqs_unit_delay_index = 0; |
| s8 phase_idx = 0; |
| s8 dqs_unit_delay_index_pass = 0; |
| s8 phase_idx_pass = 0; |
| u8 success = 0; |
| u8 left_phase_bound_found, right_phase_bound_found; |
| u8 left_unit_bound_found, right_unit_bound_found; |
| u8 left_bound_found, right_bound_found; |
| struct tuning_position left_bound, right_bound; |
| u8 error = 0; |
| u8 nb_bytes = get_nb_bytes(ctl); |
| |
| /*Disable DQS Drift Compensation*/ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| /*Disable all bytes*/ |
| /* Disable automatic power down of DLL and IOs when disabling a byte |
| * (To avoid having to add programming and delay |
| * for a DLL re-lock when later re-enabling a disabled Byte Lane) |
| */ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| |
| /*Disable all data bytes */ |
| clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| |
| /* Config the BIST block */ |
| config_BIST(phy); |
| |
| for (byte = 0; byte < nb_bytes; byte++) { |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| byte + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| right_bound.phase = 0; |
| right_bound.unit = 0; |
| |
| left_bound.phase = 0; |
| left_bound.unit = 0; |
| |
| left_phase_bound_found = 0; |
| right_phase_bound_found = 0; |
| |
| left_unit_bound_found = 0; |
| right_unit_bound_found = 0; |
| |
| left_bound_found = 0; |
| right_bound_found = 0; |
| |
| /* Enable Byte (DXNGCR, bit DXEN) */ |
| setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); |
| |
| /* Select the byte lane for comparison of read data */ |
| BIST_datx8_sel(phy, byte); |
| |
| /* Set DQS phase delay to the nominal value. */ |
| phase_idx = _90deg; |
| phase_idx_pass = phase_idx; |
| |
| /* Set DQS unit delay to the nominal value. */ |
| dqs_unit_delay_index = 3; |
| dqs_unit_delay_index_pass = dqs_unit_delay_index; |
| success = 0; |
| |
| pr_debug("STEP0: Find Init delay\n"); |
| /* STEP0: Find Init delay: a delay that put the system |
| * in a "Pass" condition then (TODO) update |
| * dqs_unit_delay_index_pass & phase_idx_pass |
| */ |
| DQS_unit_delay(phy, byte, dqs_unit_delay_index); |
| DQS_phase_delay(phy, byte, phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| /* If we have a fail in the nominal condition */ |
| if (!success) { |
| /* Look at the left */ |
| while (phase_idx >= 0 && !success) { |
| phase_idx--; |
| DQS_phase_delay(phy, byte, phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| } |
| } |
| if (!success) { |
| /* if we can't find pass condition, |
| * then look at the right |
| */ |
| phase_idx = _90deg; |
| while (phase_idx <= MAX_DQS_PHASE_IDX && |
| !success) { |
| phase_idx++; |
| DQS_phase_delay(phy, byte, |
| phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| } |
| } |
| /* save the pass condition */ |
| if (success) { |
| phase_idx_pass = phase_idx; |
| } else { |
| printf("Result: Failed "); |
| printf("[Cannot DQS timings, "); |
| printf("there is no PASS region]\n"); |
| error++; |
| continue; |
| } |
| |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| byte + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| pr_debug("STEP1: Find LEFT PHASE DQS Bound\n"); |
| /* STEP1: Find LEFT PHASE DQS Bound */ |
| while ((phase_idx >= 0) && |
| (phase_idx <= MAX_DQS_PHASE_IDX) && |
| !left_phase_bound_found) { |
| DQS_unit_delay(phy, byte, |
| dqs_unit_delay_index); |
| DQS_phase_delay(phy, byte, |
| phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| |
| /*TODO: Manage the case were at the beginning |
| * there is already a fail |
| */ |
| if (!success) { |
| /* the last pass condition */ |
| left_bound.phase = ++phase_idx; |
| left_phase_bound_found = 1; |
| } else if (success) { |
| phase_idx--; |
| } |
| } |
| if (!left_phase_bound_found) { |
| left_bound.phase = 0; |
| phase_idx = 0; |
| } |
| /* If not found, lets take 0 */ |
| |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| byte + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| pr_debug("STEP2: Find UNIT left bound\n"); |
| /* STEP2: Find UNIT left bound */ |
| while ((dqs_unit_delay_index >= 0) && |
| !left_unit_bound_found) { |
| DQS_unit_delay(phy, byte, |
| dqs_unit_delay_index); |
| DQS_phase_delay(phy, byte, phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| if (!success) { |
| left_bound.unit = |
| ++dqs_unit_delay_index; |
| left_unit_bound_found = 1; |
| left_bound_found = 1; |
| } else if (success) { |
| dqs_unit_delay_index--; |
| } |
| } |
| |
| /* If not found, lets take 0 */ |
| if (!left_unit_bound_found) |
| left_bound.unit = 0; |
| |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| byte + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| pr_debug("STEP3: Find PHase right bound\n"); |
| /* STEP3: Find PHase right bound, start with "pass" |
| * condition |
| */ |
| |
| /* Set DQS phase delay to the pass value. */ |
| phase_idx = phase_idx_pass; |
| |
| /* Set DQS unit delay to the pass value. */ |
| dqs_unit_delay_index = dqs_unit_delay_index_pass; |
| |
| while ((phase_idx <= MAX_DQS_PHASE_IDX) && |
| !right_phase_bound_found) { |
| DQS_unit_delay(phy, byte, |
| dqs_unit_delay_index); |
| DQS_phase_delay(phy, byte, phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| if (!success) { |
| /* the last pass condition */ |
| right_bound.phase = --phase_idx; |
| right_phase_bound_found = 1; |
| } else if (success) { |
| phase_idx++; |
| } |
| } |
| |
| /* If not found, lets take the max value */ |
| if (!right_phase_bound_found) { |
| right_bound.phase = MAX_DQS_PHASE_IDX; |
| phase_idx = MAX_DQS_PHASE_IDX; |
| } |
| |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d, error=%d", |
| byte + 1, nb_bytes, error); |
| return TEST_FAILED; |
| } |
| pr_debug("STEP4: Find UNIT right bound\n"); |
| /* STEP4: Find UNIT right bound */ |
| while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) && |
| !right_unit_bound_found) { |
| DQS_unit_delay(phy, byte, |
| dqs_unit_delay_index); |
| DQS_phase_delay(phy, byte, phase_idx); |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| if (!success) { |
| right_bound.unit = |
| --dqs_unit_delay_index; |
| right_unit_bound_found = 1; |
| right_bound_found = 1; |
| } else if (success) { |
| dqs_unit_delay_index++; |
| } |
| } |
| /* If not found, lets take the max value */ |
| if (!right_unit_bound_found) |
| right_bound.unit = MAX_DQS_UNIT_IDX; |
| |
| /* If we found a regular FAil Pass FAil pattern |
| * FFPPPPPPFF |
| * OR PPPPPFF Or FFPPPPP |
| */ |
| |
| if (left_bound_found || right_bound_found) { |
| eye_training_val[byte][0] = (right_bound.phase + |
| left_bound.phase) / 2; |
| eye_training_val[byte][1] = (right_bound.unit + |
| left_bound.unit) / 2; |
| |
| /* If we already lost 1/2PHASE Tuning, |
| * let's try to recover by ++ on unit |
| */ |
| if (((right_bound.phase + left_bound.phase) % 2 == 1) && |
| eye_training_val[byte][1] != MAX_DQS_UNIT_IDX) |
| eye_training_val[byte][1]++; |
| pr_debug("** found phase : %d - %d & unit %d - %d\n", |
| right_bound.phase, left_bound.phase, |
| right_bound.unit, left_bound.unit); |
| pr_debug("** calculating mid region: phase: %d unit: %d (nominal is 3)\n", |
| eye_training_val[byte][0], |
| eye_training_val[byte][1]); |
| } else { |
| /* PPPPPPPPPP, we're already good. |
| * Set nominal values. |
| */ |
| eye_training_val[byte][0] = 3; |
| eye_training_val[byte][1] = 3; |
| } |
| DQS_phase_delay(phy, byte, eye_training_val[byte][0]); |
| DQS_unit_delay(phy, byte, eye_training_val[byte][1]); |
| |
| printf("Byte %d, DQS unit = %d, phase = %d\n", |
| byte, |
| eye_training_val[byte][1], |
| eye_training_val[byte][0]); |
| } |
| |
| if (error) { |
| sprintf(string, "error = %d", error); |
| return TEST_FAILED; |
| } |
| |
| return TEST_PASSED; |
| } |
| |
| static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte) |
| { |
| u8 i = 0; |
| |
| printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n ", |
| byte); |
| |
| for (i = 0; i < 8; i++) |
| printf("%d ", DQ_unit_index(phy, byte, i)); |
| printf("\n"); |
| |
| printf("dxndllcr: [%08x] val:%08x\n", |
| DXNDLLCR(phy, byte), |
| readl(DXNDLLCR(phy, byte))); |
| printf("dxnqdstr: [%08x] val:%08x\n", |
| DXNDQSTR(phy, byte), |
| readl(DXNDQSTR(phy, byte))); |
| printf("dxndqtr: [%08x] val:%08x\n", |
| DXNDQTR(phy, byte), |
| readl(DXNDQTR(phy, byte))); |
| } |
| |
| /* analyse the dgs gating log table, and determine the midpoint.*/ |
| static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte, |
| u8 dqs_gating[NUM_BYTES] |
| [MAX_GSL_IDX + 1] |
| [MAX_GPS_IDX + 1]) |
| { |
| /* stores the dqs gate values (gsl index, gps index) */ |
| u8 dqs_gate_values[NUM_BYTES][2]; |
| u8 gsl_idx, gps_idx = 0; |
| u8 left_bound_idx[2] = {0, 0}; |
| u8 right_bound_idx[2] = {0, 0}; |
| u8 left_bound_found = 0; |
| u8 right_bound_found = 0; |
| u8 intermittent = 0; |
| u8 value; |
| |
| for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { |
| for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { |
| value = dqs_gating[byte][gsl_idx][gps_idx]; |
| if (value == 1 && left_bound_found == 0) { |
| left_bound_idx[0] = gsl_idx; |
| left_bound_idx[1] = gps_idx; |
| left_bound_found = 1; |
| } else if (value == 0 && |
| left_bound_found == 1 && |
| !right_bound_found) { |
| if (gps_idx == 0) { |
| right_bound_idx[0] = gsl_idx - 1; |
| right_bound_idx[1] = MAX_GPS_IDX; |
| } else { |
| right_bound_idx[0] = gsl_idx; |
| right_bound_idx[1] = gps_idx - 1; |
| } |
| right_bound_found = 1; |
| } else if (value == 1 && |
| right_bound_found == 1) { |
| intermittent = 1; |
| } |
| } |
| } |
| |
| /* if only ppppppp is found, there is no mid region. */ |
| if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 && |
| right_bound_idx[0] == 0 && right_bound_idx[1] == 0) |
| intermittent = 1; |
| |
| /*if we found a regular fail pass fail pattern ffppppppff |
| * or pppppff or ffppppp |
| */ |
| if (!intermittent) { |
| /*if we found a regular fail pass fail pattern ffppppppff |
| * or pppppff or ffppppp |
| */ |
| if (left_bound_found || right_bound_found) { |
| pr_debug("idx0(%d): %d %d idx1(%d) : %d %d\n", |
| left_bound_found, |
| right_bound_idx[0], left_bound_idx[0], |
| right_bound_found, |
| right_bound_idx[1], left_bound_idx[1]); |
| dqs_gate_values[byte][0] = |
| (right_bound_idx[0] + left_bound_idx[0]) / 2; |
| dqs_gate_values[byte][1] = |
| (right_bound_idx[1] + left_bound_idx[1]) / 2; |
| /* if we already lost 1/2gsl tuning, |
| * let's try to recover by ++ on gps |
| */ |
| if (((right_bound_idx[0] + |
| left_bound_idx[0]) % 2 == 1) && |
| dqs_gate_values[byte][1] != MAX_GPS_IDX) |
| dqs_gate_values[byte][1]++; |
| /* if we already lost 1/2gsl tuning and gps is on max*/ |
| else if (((right_bound_idx[0] + |
| left_bound_idx[0]) % 2 == 1) && |
| dqs_gate_values[byte][1] == MAX_GPS_IDX) { |
| dqs_gate_values[byte][1] = 0; |
| dqs_gate_values[byte][0]++; |
| } |
| /* if we have gsl left and write limit too close |
| * (difference=1) |
| */ |
| if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) { |
| dqs_gate_values[byte][1] = (left_bound_idx[1] + |
| right_bound_idx[1] + |
| 4) / 2; |
| if (dqs_gate_values[byte][1] >= 4) { |
| dqs_gate_values[byte][0] = |
| right_bound_idx[0]; |
| dqs_gate_values[byte][1] -= 4; |
| } else { |
| dqs_gate_values[byte][0] = |
| left_bound_idx[0]; |
| } |
| } |
| pr_debug("*******calculating mid region: system latency: %d phase: %d********\n", |
| dqs_gate_values[byte][0], |
| dqs_gate_values[byte][1]); |
| pr_debug("*******the nominal values were system latency: 0 phase: 2*******\n"); |
| set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]); |
| set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]); |
| } |
| } else { |
| /* if intermitant, restore defaut values */ |
| pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n"); |
| set_r0dgsl_delay(phy, byte, 0); |
| set_r0dgps_delay(phy, byte, 2); |
| } |
| |
| /* return 0 if intermittent or if both left_bound |
| * and right_bound are not found |
| */ |
| return !(intermittent || (left_bound_found && right_bound_found)); |
| } |
| |
| static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string) |
| { |
| /* stores the log of pass/fail */ |
| u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1]; |
| u8 byte, gsl_idx, gps_idx = 0; |
| struct BIST_result result; |
| u8 success = 0; |
| u8 nb_bytes = get_nb_bytes(ctl); |
| |
| memset(dqs_gating, 0x0, sizeof(dqs_gating)); |
| |
| /*disable dqs drift compensation*/ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); |
| /*disable all bytes*/ |
| /* disable automatic power down of dll and ios when disabling a byte |
| * (to avoid having to add programming and delay |
| * for a dll re-lock when later re-enabling a disabled byte lane) |
| */ |
| clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX); |
| |
| /* disable all data bytes */ |
| clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN); |
| clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN); |
| |
| /* config the bist block */ |
| config_BIST(phy); |
| |
| for (byte = 0; byte < nb_bytes; byte++) { |
| if (ctrlc()) { |
| sprintf(string, "interrupted at byte %d/%d", |
| byte + 1, nb_bytes); |
| return TEST_FAILED; |
| } |
| /* enable byte x (dxngcr, bit dxen) */ |
| setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN); |
| |
| /* select the byte lane for comparison of read data */ |
| BIST_datx8_sel(phy, byte); |
| for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) { |
| for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) { |
| if (ctrlc()) { |
| sprintf(string, |
| "interrupted at byte %d/%d", |
| byte + 1, nb_bytes); |
| return TEST_FAILED; |
| } |
| /* write cfg to dxndqstr */ |
| set_r0dgsl_delay(phy, byte, gsl_idx); |
| set_r0dgps_delay(phy, byte, gps_idx); |
| |
| BIST_test(phy, byte, &result); |
| success = result.test_result; |
| if (success) |
| dqs_gating[byte][gsl_idx][gps_idx] = 1; |
| itm_soft_reset(phy); |
| } |
| } |
| set_midpoint_read_dqs_gating(phy, byte, dqs_gating); |
| /* dummy reads */ |
| readl(0xc0000000); |
| readl(0xc0000000); |
| } |
| |
| /* re-enable drift compensation */ |
| /* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */ |
| return TEST_PASSED; |
| } |
| |
| /**************************************************************** |
| * TEST |
| **************************************************************** |
| */ |
| static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string, int argc, |
| char *argv[]) |
| { |
| u32 rfshctl3 = readl(&ctl->rfshctl3); |
| u32 pwrctl = readl(&ctl->pwrctl); |
| enum test_result res; |
| |
| stm32mp1_refresh_disable(ctl); |
| res = read_dqs_gating(ctl, phy, string); |
| stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
| |
| return res; |
| } |
| |
| static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string, int argc, char *argv[]) |
| { |
| u32 rfshctl3 = readl(&ctl->rfshctl3); |
| u32 pwrctl = readl(&ctl->pwrctl); |
| enum test_result res; |
| |
| stm32mp1_refresh_disable(ctl); |
| res = bit_deskew(ctl, phy, string); |
| stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
| |
| return res; |
| } |
| |
| static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string, int argc, char *argv[]) |
| { |
| u32 rfshctl3 = readl(&ctl->rfshctl3); |
| u32 pwrctl = readl(&ctl->pwrctl); |
| enum test_result res; |
| |
| stm32mp1_refresh_disable(ctl); |
| res = eye_training(ctl, phy, string); |
| stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl); |
| |
| return res; |
| } |
| |
| static enum test_result do_display(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string, int argc, char *argv[]) |
| { |
| int byte; |
| u8 nb_bytes = get_nb_bytes(ctl); |
| |
| for (byte = 0; byte < nb_bytes; byte++) |
| display_reg_results(phy, byte); |
| |
| return TEST_PASSED; |
| } |
| |
| static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl, |
| struct stm32mp1_ddrphy *phy, |
| char *string, int argc, char *argv[]) |
| { |
| unsigned long value; |
| |
| if (argc > 0) { |
| if (strict_strtoul(argv[0], 0, &value) < 0) { |
| sprintf(string, "invalid nbErr %s", argv[0]); |
| return TEST_FAILED; |
| } |
| BIST_error_max = value; |
| } |
| if (argc > 1) { |
| if (strict_strtoul(argv[1], 0, &value) < 0) { |
| sprintf(string, "invalid Seed %s", argv[1]); |
| return TEST_FAILED; |
| } |
| BIST_seed = value; |
| } |
| printf("Bist.nbErr = %d\n", BIST_error_max); |
| if (BIST_seed) |
| printf("Bist.Seed = 0x%x\n", BIST_seed); |
| else |
| printf("Bist.Seed = random\n"); |
| |
| return TEST_PASSED; |
| } |
| |
| /**************************************************************** |
| * TEST Description |
| **************************************************************** |
| */ |
| |
| const struct test_desc tuning[] = { |
| {do_read_dqs_gating, "Read DQS gating", |
| "software read DQS Gating", "", 0 }, |
| {do_bit_deskew, "Bit de-skew", "", "", 0 }, |
| {do_eye_training, "Eye Training", "or DQS training", "", 0 }, |
| {do_display, "Display registers", "", "", 0 }, |
| {do_bist_config, "Bist config", "[nbErr] [seed]", |
| "configure Bist test", 2}, |
| }; |
| |
| const int tuning_nb = ARRAY_SIZE(tuning); |