blob: 2405dec8525b1af4e3d5aa93164844b4a833de62 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
* Copyright (C) 2015 - 2017 Intel Corp.
* Copyright (C) 2017 - 2019 Siemens AG
* (Written by Alexandru Gagniuc <alexandrux.gagniuc@intel.com> for Intel Corp.)
* (Written by Andrey Petrov <andrey.petrov@intel.com> for Intel Corp.)
*
* Portions from coreboot soc/intel/apollolake/chip.c
*/
#define LOG_CATEGORY UCLASS_NORTHBRIDGE
#include <common.h>
#include <dm.h>
#include <dt-structs.h>
#include <log.h>
#include <spl.h>
#include <tables_csum.h>
#include <acpi/acpi_table.h>
#include <asm/acpi_nhlt.h>
#include <asm/intel_pinctrl.h>
#include <asm/intel_regs.h>
#include <asm/io.h>
#include <asm/pci.h>
#include <asm/arch/acpi.h>
#include <asm/arch/hostbridge.h>
#include <asm/arch/systemagent.h>
#include <dt-bindings/sound/nhlt.h>
#include <dm/acpi.h>
enum {
PCIEXBAR = 0x60,
PCIEXBAR_LENGTH_256MB = 0,
PCIEXBAR_LENGTH_128MB,
PCIEXBAR_LENGTH_64MB,
PCIEXBAR_PCIEXBAREN = 1 << 0,
BGSM = 0xb4, /* Base GTT Stolen Memory */
TSEG = 0xb8, /* TSEG base */
TOLUD = 0xbc,
};
#if CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
static const struct nhlt_format_config dmic_1ch_formats[] = {
/* 48 KHz 16-bits per sample. */
{
.num_channels = 1,
.sample_freq_khz = 48,
.container_bits_per_sample = 16,
.valid_bits_per_sample = 16,
.settings_file = "dmic-1ch-48khz-16b.dat",
},
};
static const struct nhlt_dmic_array_config dmic_1ch_mic_config = {
.tdm_config = {
.config_type = NHLT_TDM_MIC_ARRAY,
},
.array_type = NHLT_MIC_ARRAY_VENDOR_DEFINED,
};
static const struct nhlt_endp_descriptor dmic_1ch_descriptors[] = {
{
.link = NHLT_LINK_PDM,
.device = NHLT_PDM_DEV,
.direction = NHLT_DIR_CAPTURE,
.vid = NHLT_VID,
.did = NHLT_DID_DMIC,
.cfg = &dmic_1ch_mic_config,
.cfg_size = sizeof(dmic_1ch_mic_config),
.formats = dmic_1ch_formats,
.num_formats = ARRAY_SIZE(dmic_1ch_formats),
},
};
static const struct nhlt_format_config dmic_2ch_formats[] = {
/* 48 KHz 16-bits per sample. */
{
.num_channels = 2,
.sample_freq_khz = 48,
.container_bits_per_sample = 16,
.valid_bits_per_sample = 16,
.settings_file = "dmic-2ch-48khz-16b.dat",
},
};
static const struct nhlt_dmic_array_config dmic_2ch_mic_config = {
.tdm_config = {
.config_type = NHLT_TDM_MIC_ARRAY,
},
.array_type = NHLT_MIC_ARRAY_2CH_SMALL,
};
static const struct nhlt_endp_descriptor dmic_2ch_descriptors[] = {
{
.link = NHLT_LINK_PDM,
.device = NHLT_PDM_DEV,
.direction = NHLT_DIR_CAPTURE,
.vid = NHLT_VID,
.did = NHLT_DID_DMIC,
.cfg = &dmic_2ch_mic_config,
.cfg_size = sizeof(dmic_2ch_mic_config),
.formats = dmic_2ch_formats,
.num_formats = ARRAY_SIZE(dmic_2ch_formats),
},
};
static const struct nhlt_format_config dmic_4ch_formats[] = {
/* 48 KHz 16-bits per sample. */
{
.num_channels = 4,
.sample_freq_khz = 48,
.container_bits_per_sample = 16,
.valid_bits_per_sample = 16,
.settings_file = "dmic-4ch-48khz-16b.dat",
},
};
static const struct nhlt_dmic_array_config dmic_4ch_mic_config = {
.tdm_config = {
.config_type = NHLT_TDM_MIC_ARRAY,
},
.array_type = NHLT_MIC_ARRAY_4CH_L_SHAPED,
};
static const struct nhlt_endp_descriptor dmic_4ch_descriptors[] = {
{
.link = NHLT_LINK_PDM,
.device = NHLT_PDM_DEV,
.direction = NHLT_DIR_CAPTURE,
.vid = NHLT_VID,
.did = NHLT_DID_DMIC,
.cfg = &dmic_4ch_mic_config,
.cfg_size = sizeof(dmic_4ch_mic_config),
.formats = dmic_4ch_formats,
.num_formats = ARRAY_SIZE(dmic_4ch_formats),
},
};
#endif
static int apl_hostbridge_early_init_pinctrl(struct udevice *dev)
{
struct apl_hostbridge_plat *plat = dev_get_plat(dev);
struct udevice *pinctrl;
int ret;
ret = uclass_first_device_err(UCLASS_PINCTRL, &pinctrl);
if (ret)
return log_msg_ret("no hostbridge pinctrl", ret);
return pinctrl_config_pads(pinctrl, plat->early_pads,
plat->early_pads_count);
}
static int apl_hostbridge_early_init(struct udevice *dev)
{
struct apl_hostbridge_plat *plat = dev_get_plat(dev);
u32 region_size;
ulong base;
u32 reg;
int ret;
/* Set up the MCHBAR */
pci_x86_read_config(plat->bdf, MCHBAR, &base, PCI_SIZE_32);
base = MCH_BASE_ADDRESS;
pci_x86_write_config(plat->bdf, MCHBAR, base | 1, PCI_SIZE_32);
/*
* The PCIEXBAR is assumed to live in the memory mapped IO space under
* 4GiB
*/
pci_x86_write_config(plat->bdf, PCIEXBAR + 4, 0, PCI_SIZE_32);
switch (plat->pciex_region_size >> 20) {
default:
case 256:
region_size = PCIEXBAR_LENGTH_256MB;
break;
case 128:
region_size = PCIEXBAR_LENGTH_128MB;
break;
case 64:
region_size = PCIEXBAR_LENGTH_64MB;
break;
}
reg = CONFIG_MMCONF_BASE_ADDRESS | (region_size << 1)
| PCIEXBAR_PCIEXBAREN;
pci_x86_write_config(plat->bdf, PCIEXBAR, reg, PCI_SIZE_32);
/*
* TSEG defines the base of SMM range. BIOS determines the base
* of TSEG memory which must be at or below Graphics base of GTT
* Stolen memory, hence its better to clear TSEG register early
* to avoid power on default non-zero value (if any).
*/
pci_x86_write_config(plat->bdf, TSEG, 0, PCI_SIZE_32);
ret = apl_hostbridge_early_init_pinctrl(dev);
if (ret)
return log_msg_ret("pinctrl", ret);
return 0;
}
static int apl_hostbridge_of_to_plat(struct udevice *dev)
{
struct apl_hostbridge_plat *plat = dev_get_plat(dev);
struct udevice *pinctrl;
int ret;
/*
* The host bridge holds the early pad data needed to get through TPL.
* This is a small amount of data, enough to fit in TPL, so we keep it
* separate from the full pad data, stored in the fsp-s subnode. That
* subnode is not present in TPL, to save space.
*/
ret = uclass_first_device_err(UCLASS_PINCTRL, &pinctrl);
if (ret)
return log_msg_ret("no hostbridge PINCTRL", ret);
#if CONFIG_IS_ENABLED(OF_REAL)
int root;
/* Get length of PCI Express Region */
plat->pciex_region_size = dev_read_u32_default(dev, "pciex-region-size",
256 << 20);
root = pci_get_devfn(dev);
if (root < 0)
return log_msg_ret("Cannot get host-bridge PCI address", root);
plat->bdf = root;
ret = pinctrl_read_pads(pinctrl, dev_ofnode(dev), "early-pads",
&plat->early_pads, &plat->early_pads_count);
if (ret)
return log_msg_ret("early-pads", ret);
#else
struct dtd_intel_apl_hostbridge *dtplat = &plat->dtplat;
int size;
plat->pciex_region_size = dtplat->pciex_region_size;
plat->bdf = pci_ofplat_get_devfn(dtplat->reg[0]);
/* Assume that if everything is 0, it is empty */
plat->early_pads = dtplat->early_pads;
size = ARRAY_SIZE(dtplat->early_pads);
plat->early_pads_count = pinctrl_count_pads(pinctrl, plat->early_pads,
size);
#endif
return 0;
}
static int apl_hostbridge_probe(struct udevice *dev)
{
if (spl_phase() == PHASE_TPL)
return apl_hostbridge_early_init(dev);
return 0;
}
static int apl_acpi_hb_get_name(const struct udevice *dev, char *out_name)
{
return acpi_copy_name(out_name, "RHUB");
}
#if CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
static int apl_acpi_hb_write_tables(const struct udevice *dev,
struct acpi_ctx *ctx)
{
struct acpi_table_header *header;
struct acpi_dmar *dmar;
u32 val;
/*
* Create DMAR table only if virtualization is enabled. Due to some
* constraints on Apollo Lake SoC (some stepping affected), VTD could
* not be enabled together with IPU. Doing so will override and disable
* VTD while leaving CAPID0_A still reporting that VTD is available.
* As in this case FSP will lock VTD to disabled state, we need to make
* sure that DMAR table generation only happens when at least DEFVTBAR
* is enabled. Otherwise the DMAR header will be generated while the
* content of the table will be missing.
*/
dm_pci_read_config32(dev, CAPID0_A, &val);
if ((val & VTD_DISABLE) ||
!(readl(MCHBAR_REG(DEFVTBAR)) & VTBAR_ENABLED))
return 0;
log_debug("ACPI: * DMAR\n");
dmar = (struct acpi_dmar *)ctx->current;
header = &dmar->header;
acpi_create_dmar(dmar, DMAR_INTR_REMAP);
ctx->current += sizeof(struct acpi_dmar);
apl_acpi_fill_dmar(ctx);
/* (Re)calculate length and checksum */
header->length = ctx->current - (void *)dmar;
header->checksum = table_compute_checksum((void *)dmar, header->length);
acpi_align(ctx);
acpi_add_table(ctx, dmar);
return 0;
}
static int apl_acpi_setup_nhlt(const struct udevice *dev, struct acpi_ctx *ctx)
{
struct nhlt *nhlt = ctx->nhlt;
u32 channels;
ofnode node;
node = ofnode_find_subnode(dev_ofnode(dev), "nhlt");
if (ofnode_read_u32(node, "intel,dmic-channels", &channels))
return log_msg_ret("channels", -EINVAL);
switch (channels) {
case 1:
return nhlt_add_endpoints(nhlt, dmic_1ch_descriptors,
ARRAY_SIZE(dmic_1ch_descriptors));
case 2:
return nhlt_add_endpoints(nhlt, dmic_2ch_descriptors,
ARRAY_SIZE(dmic_2ch_descriptors));
case 4:
return nhlt_add_endpoints(nhlt, dmic_4ch_descriptors,
ARRAY_SIZE(dmic_4ch_descriptors));
}
return log_msg_ret("channels", -EINVAL);
}
#endif
static int apl_hostbridge_remove(struct udevice *dev)
{
/*
* TODO(sjg@chromium.org): Consider adding code from coreboot's
* platform_fsp_notify_status()
*/
return 0;
}
static ulong sa_read_reg(struct udevice *dev, int reg)
{
u32 val;
/* All regions concerned for have 1 MiB alignment */
dm_pci_read_config32(dev, BGSM, &val);
return ALIGN_DOWN(val, 1 << 20);
}
ulong sa_get_tolud_base(struct udevice *dev)
{
return sa_read_reg(dev, TOLUD);
}
ulong sa_get_gsm_base(struct udevice *dev)
{
return sa_read_reg(dev, BGSM);
}
ulong sa_get_tseg_base(struct udevice *dev)
{
return sa_read_reg(dev, TSEG);
}
struct acpi_ops apl_hostbridge_acpi_ops = {
.get_name = apl_acpi_hb_get_name,
#if CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)
.write_tables = apl_acpi_hb_write_tables,
.setup_nhlt = apl_acpi_setup_nhlt,
#endif
};
#if CONFIG_IS_ENABLED(OF_REAL)
static const struct udevice_id apl_hostbridge_ids[] = {
{ .compatible = "intel,apl-hostbridge" },
{ }
};
#endif
U_BOOT_DRIVER(intel_apl_hostbridge) = {
.name = "intel_apl_hostbridge",
.id = UCLASS_NORTHBRIDGE,
.of_match = of_match_ptr(apl_hostbridge_ids),
.of_to_plat = apl_hostbridge_of_to_plat,
.probe = apl_hostbridge_probe,
.remove = apl_hostbridge_remove,
.plat_auto = sizeof(struct apl_hostbridge_plat),
ACPI_OPS_PTR(&apl_hostbridge_acpi_ops)
.flags = DM_FLAG_OS_PREPARE,
};