| /* |
| * Copyright Altera Corporation (C) 2012-2015 |
| * |
| * SPDX-License-Identifier: BSD-3-Clause |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/arch/sdram.h> |
| #include <errno.h> |
| #include "sequencer.h" |
| |
| /* |
| * FIXME: This path is temporary until the SDRAM driver gets |
| * a proper thorough cleanup. |
| */ |
| #include "../../../board/altera/socfpga/qts/sequencer_auto.h" |
| #include "../../../board/altera/socfpga/qts/sequencer_defines.h" |
| |
| static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = |
| (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); |
| |
| static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = |
| (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); |
| |
| static struct socfpga_sdr_reg_file *sdr_reg_file = |
| (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; |
| |
| static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = |
| (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); |
| |
| static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = |
| (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; |
| |
| static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = |
| (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); |
| |
| static struct socfpga_data_mgr *data_mgr = |
| (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; |
| |
| static struct socfpga_sdr_ctrl *sdr_ctrl = |
| (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; |
| |
| const struct socfpga_sdram_rw_mgr_config *rwcfg; |
| const struct socfpga_sdram_io_config *iocfg; |
| |
| #define DELTA_D 1 |
| |
| /* |
| * In order to reduce ROM size, most of the selectable calibration steps are |
| * decided at compile time based on the user's calibration mode selection, |
| * as captured by the STATIC_CALIB_STEPS selection below. |
| * |
| * However, to support simulation-time selection of fast simulation mode, where |
| * we skip everything except the bare minimum, we need a few of the steps to |
| * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the |
| * check, which is based on the rtl-supplied value, or we dynamically compute |
| * the value to use based on the dynamically-chosen calibration mode |
| */ |
| |
| #define DLEVEL 0 |
| #define STATIC_IN_RTL_SIM 0 |
| #define STATIC_SKIP_DELAY_LOOPS 0 |
| |
| #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ |
| STATIC_SKIP_DELAY_LOOPS) |
| |
| /* calibration steps requested by the rtl */ |
| uint16_t dyn_calib_steps; |
| |
| /* |
| * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option |
| * instead of static, we use boolean logic to select between |
| * non-skip and skip values |
| * |
| * The mask is set to include all bits when not-skipping, but is |
| * zero when skipping |
| */ |
| |
| uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ |
| |
| #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ |
| ((non_skip_value) & skip_delay_mask) |
| |
| struct gbl_type *gbl; |
| struct param_type *param; |
| |
| static void set_failing_group_stage(uint32_t group, uint32_t stage, |
| uint32_t substage) |
| { |
| /* |
| * Only set the global stage if there was not been any other |
| * failing group |
| */ |
| if (gbl->error_stage == CAL_STAGE_NIL) { |
| gbl->error_substage = substage; |
| gbl->error_stage = stage; |
| gbl->error_group = group; |
| } |
| } |
| |
| static void reg_file_set_group(u16 set_group) |
| { |
| clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); |
| } |
| |
| static void reg_file_set_stage(u8 set_stage) |
| { |
| clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); |
| } |
| |
| static void reg_file_set_sub_stage(u8 set_sub_stage) |
| { |
| set_sub_stage &= 0xff; |
| clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); |
| } |
| |
| /** |
| * phy_mgr_initialize() - Initialize PHY Manager |
| * |
| * Initialize PHY Manager. |
| */ |
| static void phy_mgr_initialize(void) |
| { |
| u32 ratio; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| /* Calibration has control over path to memory */ |
| /* |
| * In Hard PHY this is a 2-bit control: |
| * 0: AFI Mux Select |
| * 1: DDIO Mux Select |
| */ |
| writel(0x3, &phy_mgr_cfg->mux_sel); |
| |
| /* USER memory clock is not stable we begin initialization */ |
| writel(0, &phy_mgr_cfg->reset_mem_stbl); |
| |
| /* USER calibration status all set to zero */ |
| writel(0, &phy_mgr_cfg->cal_status); |
| |
| writel(0, &phy_mgr_cfg->cal_debug_info); |
| |
| /* Init params only if we do NOT skip calibration. */ |
| if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) |
| return; |
| |
| ratio = rwcfg->mem_dq_per_read_dqs / |
| rwcfg->mem_virtual_groups_per_read_dqs; |
| param->read_correct_mask_vg = (1 << ratio) - 1; |
| param->write_correct_mask_vg = (1 << ratio) - 1; |
| param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1; |
| param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1; |
| } |
| |
| /** |
| * set_rank_and_odt_mask() - Set Rank and ODT mask |
| * @rank: Rank mask |
| * @odt_mode: ODT mode, OFF or READ_WRITE |
| * |
| * Set Rank and ODT mask (On-Die Termination). |
| */ |
| static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) |
| { |
| u32 odt_mask_0 = 0; |
| u32 odt_mask_1 = 0; |
| u32 cs_and_odt_mask; |
| |
| if (odt_mode == RW_MGR_ODT_MODE_OFF) { |
| odt_mask_0 = 0x0; |
| odt_mask_1 = 0x0; |
| } else { /* RW_MGR_ODT_MODE_READ_WRITE */ |
| switch (rwcfg->mem_number_of_ranks) { |
| case 1: /* 1 Rank */ |
| /* Read: ODT = 0 ; Write: ODT = 1 */ |
| odt_mask_0 = 0x0; |
| odt_mask_1 = 0x1; |
| break; |
| case 2: /* 2 Ranks */ |
| if (rwcfg->mem_number_of_cs_per_dimm == 1) { |
| /* |
| * - Dual-Slot , Single-Rank (1 CS per DIMM) |
| * OR |
| * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) |
| * |
| * Since MEM_NUMBER_OF_RANKS is 2, they |
| * are both single rank with 2 CS each |
| * (special for RDIMM). |
| * |
| * Read: Turn on ODT on the opposite rank |
| * Write: Turn on ODT on all ranks |
| */ |
| odt_mask_0 = 0x3 & ~(1 << rank); |
| odt_mask_1 = 0x3; |
| } else { |
| /* |
| * - Single-Slot , Dual-Rank (2 CS per DIMM) |
| * |
| * Read: Turn on ODT off on all ranks |
| * Write: Turn on ODT on active rank |
| */ |
| odt_mask_0 = 0x0; |
| odt_mask_1 = 0x3 & (1 << rank); |
| } |
| break; |
| case 4: /* 4 Ranks */ |
| /* Read: |
| * ----------+-----------------------+ |
| * | ODT | |
| * Read From +-----------------------+ |
| * Rank | 3 | 2 | 1 | 0 | |
| * ----------+-----+-----+-----+-----+ |
| * 0 | 0 | 1 | 0 | 0 | |
| * 1 | 1 | 0 | 0 | 0 | |
| * 2 | 0 | 0 | 0 | 1 | |
| * 3 | 0 | 0 | 1 | 0 | |
| * ----------+-----+-----+-----+-----+ |
| * |
| * Write: |
| * ----------+-----------------------+ |
| * | ODT | |
| * Write To +-----------------------+ |
| * Rank | 3 | 2 | 1 | 0 | |
| * ----------+-----+-----+-----+-----+ |
| * 0 | 0 | 1 | 0 | 1 | |
| * 1 | 1 | 0 | 1 | 0 | |
| * 2 | 0 | 1 | 0 | 1 | |
| * 3 | 1 | 0 | 1 | 0 | |
| * ----------+-----+-----+-----+-----+ |
| */ |
| switch (rank) { |
| case 0: |
| odt_mask_0 = 0x4; |
| odt_mask_1 = 0x5; |
| break; |
| case 1: |
| odt_mask_0 = 0x8; |
| odt_mask_1 = 0xA; |
| break; |
| case 2: |
| odt_mask_0 = 0x1; |
| odt_mask_1 = 0x5; |
| break; |
| case 3: |
| odt_mask_0 = 0x2; |
| odt_mask_1 = 0xA; |
| break; |
| } |
| break; |
| } |
| } |
| |
| cs_and_odt_mask = (0xFF & ~(1 << rank)) | |
| ((0xFF & odt_mask_0) << 8) | |
| ((0xFF & odt_mask_1) << 16); |
| writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); |
| } |
| |
| /** |
| * scc_mgr_set() - Set SCC Manager register |
| * @off: Base offset in SCC Manager space |
| * @grp: Read/Write group |
| * @val: Value to be set |
| * |
| * This function sets the SCC Manager (Scan Chain Control Manager) register. |
| */ |
| static void scc_mgr_set(u32 off, u32 grp, u32 val) |
| { |
| writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); |
| } |
| |
| /** |
| * scc_mgr_initialize() - Initialize SCC Manager registers |
| * |
| * Initialize SCC Manager registers. |
| */ |
| static void scc_mgr_initialize(void) |
| { |
| /* |
| * Clear register file for HPS. 16 (2^4) is the size of the |
| * full register file in the scc mgr: |
| * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + |
| * MEM_IF_READ_DQS_WIDTH - 1); |
| */ |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", |
| __func__, __LINE__, i); |
| scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); |
| } |
| } |
| |
| static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) |
| { |
| scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); |
| } |
| |
| static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); |
| } |
| |
| static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) |
| { |
| scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); |
| } |
| |
| static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); |
| } |
| |
| static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, |
| delay); |
| } |
| |
| static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); |
| } |
| |
| static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); |
| } |
| |
| static void scc_mgr_set_dqs_out1_delay(uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, |
| delay); |
| } |
| |
| static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) |
| { |
| scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, |
| rwcfg->mem_dq_per_write_dqs + 1 + dm, |
| delay); |
| } |
| |
| /* load up dqs config settings */ |
| static void scc_mgr_load_dqs(uint32_t dqs) |
| { |
| writel(dqs, &sdr_scc_mgr->dqs_ena); |
| } |
| |
| /* load up dqs io config settings */ |
| static void scc_mgr_load_dqs_io(void) |
| { |
| writel(0, &sdr_scc_mgr->dqs_io_ena); |
| } |
| |
| /* load up dq config settings */ |
| static void scc_mgr_load_dq(uint32_t dq_in_group) |
| { |
| writel(dq_in_group, &sdr_scc_mgr->dq_ena); |
| } |
| |
| /* load up dm config settings */ |
| static void scc_mgr_load_dm(uint32_t dm) |
| { |
| writel(dm, &sdr_scc_mgr->dm_ena); |
| } |
| |
| /** |
| * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks |
| * @off: Base offset in SCC Manager space |
| * @grp: Read/Write group |
| * @val: Value to be set |
| * @update: If non-zero, trigger SCC Manager update for all ranks |
| * |
| * This function sets the SCC Manager (Scan Chain Control Manager) register |
| * and optionally triggers the SCC update for all ranks. |
| */ |
| static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, |
| const int update) |
| { |
| u32 r; |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| scc_mgr_set(off, grp, val); |
| |
| if (update || (r == 0)) { |
| writel(grp, &sdr_scc_mgr->dqs_ena); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| } |
| } |
| |
| static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) |
| { |
| /* |
| * USER although the h/w doesn't support different phases per |
| * shadow register, for simplicity our scc manager modeling |
| * keeps different phase settings per shadow reg, and it's |
| * important for us to keep them in sync to match h/w. |
| * for efficiency, the scan chain update should occur only |
| * once to sr0. |
| */ |
| scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, |
| read_group, phase, 0); |
| } |
| |
| static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, |
| uint32_t phase) |
| { |
| /* |
| * USER although the h/w doesn't support different phases per |
| * shadow register, for simplicity our scc manager modeling |
| * keeps different phase settings per shadow reg, and it's |
| * important for us to keep them in sync to match h/w. |
| * for efficiency, the scan chain update should occur only |
| * once to sr0. |
| */ |
| scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, |
| write_group, phase, 0); |
| } |
| |
| static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, |
| uint32_t delay) |
| { |
| /* |
| * In shadow register mode, the T11 settings are stored in |
| * registers in the core, which are updated by the DQS_ENA |
| * signals. Not issuing the SCC_MGR_UPD command allows us to |
| * save lots of rank switching overhead, by calling |
| * select_shadow_regs_for_update with update_scan_chains |
| * set to 0. |
| */ |
| scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, |
| read_group, delay, 1); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| /** |
| * scc_mgr_set_oct_out1_delay() - Set OCT output delay |
| * @write_group: Write group |
| * @delay: Delay value |
| * |
| * This function sets the OCT output delay in SCC manager. |
| */ |
| static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) |
| { |
| const int ratio = rwcfg->mem_if_read_dqs_width / |
| rwcfg->mem_if_write_dqs_width; |
| const int base = write_group * ratio; |
| int i; |
| /* |
| * Load the setting in the SCC manager |
| * Although OCT affects only write data, the OCT delay is controlled |
| * by the DQS logic block which is instantiated once per read group. |
| * For protocols where a write group consists of multiple read groups, |
| * the setting must be set multiple times. |
| */ |
| for (i = 0; i < ratio; i++) |
| scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); |
| } |
| |
| /** |
| * scc_mgr_set_hhp_extras() - Set HHP extras. |
| * |
| * Load the fixed setting in the SCC manager HHP extras. |
| */ |
| static void scc_mgr_set_hhp_extras(void) |
| { |
| /* |
| * Load the fixed setting in the SCC manager |
| * bits: 0:0 = 1'b1 - DQS bypass |
| * bits: 1:1 = 1'b1 - DQ bypass |
| * bits: 4:2 = 3'b001 - rfifo_mode |
| * bits: 6:5 = 2'b01 - rfifo clock_select |
| * bits: 7:7 = 1'b0 - separate gating from ungating setting |
| * bits: 8:8 = 1'b0 - separate OE from Output delay setting |
| */ |
| const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | |
| (1 << 2) | (1 << 1) | (1 << 0); |
| const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | |
| SCC_MGR_HHP_GLOBALS_OFFSET | |
| SCC_MGR_HHP_EXTRAS_OFFSET; |
| |
| debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", |
| __func__, __LINE__); |
| writel(value, addr); |
| debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", |
| __func__, __LINE__); |
| } |
| |
| /** |
| * scc_mgr_zero_all() - Zero all DQS config |
| * |
| * Zero all DQS config. |
| */ |
| static void scc_mgr_zero_all(void) |
| { |
| int i, r; |
| |
| /* |
| * USER Zero all DQS config settings, across all groups and all |
| * shadow registers |
| */ |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { |
| /* |
| * The phases actually don't exist on a per-rank basis, |
| * but there's no harm updating them several times, so |
| * let's keep the code simple. |
| */ |
| scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); |
| scc_mgr_set_dqs_en_phase(i, 0); |
| scc_mgr_set_dqs_en_delay(i, 0); |
| } |
| |
| for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { |
| scc_mgr_set_dqdqs_output_phase(i, 0); |
| /* Arria V/Cyclone V don't have out2. */ |
| scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); |
| } |
| } |
| |
| /* Multicast to all DQS group enables. */ |
| writel(0xff, &sdr_scc_mgr->dqs_ena); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| /** |
| * scc_set_bypass_mode() - Set bypass mode and trigger SCC update |
| * @write_group: Write group |
| * |
| * Set bypass mode and trigger SCC update. |
| */ |
| static void scc_set_bypass_mode(const u32 write_group) |
| { |
| /* Multicast to all DQ enables. */ |
| writel(0xff, &sdr_scc_mgr->dq_ena); |
| writel(0xff, &sdr_scc_mgr->dm_ena); |
| |
| /* Update current DQS IO enable. */ |
| writel(0, &sdr_scc_mgr->dqs_io_ena); |
| |
| /* Update the DQS logic. */ |
| writel(write_group, &sdr_scc_mgr->dqs_ena); |
| |
| /* Hit update. */ |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| /** |
| * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group |
| * @write_group: Write group |
| * |
| * Load DQS settings for Write Group, do not trigger SCC update. |
| */ |
| static void scc_mgr_load_dqs_for_write_group(const u32 write_group) |
| { |
| const int ratio = rwcfg->mem_if_read_dqs_width / |
| rwcfg->mem_if_write_dqs_width; |
| const int base = write_group * ratio; |
| int i; |
| /* |
| * Load the setting in the SCC manager |
| * Although OCT affects only write data, the OCT delay is controlled |
| * by the DQS logic block which is instantiated once per read group. |
| * For protocols where a write group consists of multiple read groups, |
| * the setting must be set multiple times. |
| */ |
| for (i = 0; i < ratio; i++) |
| writel(base + i, &sdr_scc_mgr->dqs_ena); |
| } |
| |
| /** |
| * scc_mgr_zero_group() - Zero all configs for a group |
| * |
| * Zero DQ, DM, DQS and OCT configs for a group. |
| */ |
| static void scc_mgr_zero_group(const u32 write_group, const int out_only) |
| { |
| int i, r; |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| /* Zero all DQ config settings. */ |
| for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { |
| scc_mgr_set_dq_out1_delay(i, 0); |
| if (!out_only) |
| scc_mgr_set_dq_in_delay(i, 0); |
| } |
| |
| /* Multicast to all DQ enables. */ |
| writel(0xff, &sdr_scc_mgr->dq_ena); |
| |
| /* Zero all DM config settings. */ |
| for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) |
| scc_mgr_set_dm_out1_delay(i, 0); |
| |
| /* Multicast to all DM enables. */ |
| writel(0xff, &sdr_scc_mgr->dm_ena); |
| |
| /* Zero all DQS IO settings. */ |
| if (!out_only) |
| scc_mgr_set_dqs_io_in_delay(0); |
| |
| /* Arria V/Cyclone V don't have out2. */ |
| scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); |
| scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); |
| scc_mgr_load_dqs_for_write_group(write_group); |
| |
| /* Multicast to all DQS IO enables (only 1 in total). */ |
| writel(0, &sdr_scc_mgr->dqs_io_ena); |
| |
| /* Hit update to zero everything. */ |
| writel(0, &sdr_scc_mgr->update); |
| } |
| } |
| |
| /* |
| * apply and load a particular input delay for the DQ pins in a group |
| * group_bgn is the index of the first dq pin (in the write group) |
| */ |
| static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) |
| { |
| uint32_t i, p; |
| |
| for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) { |
| scc_mgr_set_dq_in_delay(p, delay); |
| scc_mgr_load_dq(p); |
| } |
| } |
| |
| /** |
| * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group |
| * @delay: Delay value |
| * |
| * Apply and load a particular output delay for the DQ pins in a group. |
| */ |
| static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) |
| { |
| int i; |
| |
| for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { |
| scc_mgr_set_dq_out1_delay(i, delay); |
| scc_mgr_load_dq(i); |
| } |
| } |
| |
| /* apply and load a particular output delay for the DM pins in a group */ |
| static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { |
| scc_mgr_set_dm_out1_delay(i, delay1); |
| scc_mgr_load_dm(i); |
| } |
| } |
| |
| |
| /* apply and load delay on both DQS and OCT out1 */ |
| static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, |
| uint32_t delay) |
| { |
| scc_mgr_set_dqs_out1_delay(delay); |
| scc_mgr_load_dqs_io(); |
| |
| scc_mgr_set_oct_out1_delay(write_group, delay); |
| scc_mgr_load_dqs_for_write_group(write_group); |
| } |
| |
| /** |
| * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT |
| * @write_group: Write group |
| * @delay: Delay value |
| * |
| * Apply a delay to the entire output side: DQ, DM, DQS, OCT. |
| */ |
| static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, |
| const u32 delay) |
| { |
| u32 i, new_delay; |
| |
| /* DQ shift */ |
| for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) |
| scc_mgr_load_dq(i); |
| |
| /* DM shift */ |
| for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) |
| scc_mgr_load_dm(i); |
| |
| /* DQS shift */ |
| new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; |
| if (new_delay > IO_IO_OUT2_DELAY_MAX) { |
| debug_cond(DLEVEL == 1, |
| "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", |
| __func__, __LINE__, write_group, delay, new_delay, |
| IO_IO_OUT2_DELAY_MAX, |
| new_delay - IO_IO_OUT2_DELAY_MAX); |
| new_delay -= IO_IO_OUT2_DELAY_MAX; |
| scc_mgr_set_dqs_out1_delay(new_delay); |
| } |
| |
| scc_mgr_load_dqs_io(); |
| |
| /* OCT shift */ |
| new_delay = READ_SCC_OCT_OUT2_DELAY + delay; |
| if (new_delay > IO_IO_OUT2_DELAY_MAX) { |
| debug_cond(DLEVEL == 1, |
| "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", |
| __func__, __LINE__, write_group, delay, |
| new_delay, IO_IO_OUT2_DELAY_MAX, |
| new_delay - IO_IO_OUT2_DELAY_MAX); |
| new_delay -= IO_IO_OUT2_DELAY_MAX; |
| scc_mgr_set_oct_out1_delay(write_group, new_delay); |
| } |
| |
| scc_mgr_load_dqs_for_write_group(write_group); |
| } |
| |
| /** |
| * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks |
| * @write_group: Write group |
| * @delay: Delay value |
| * |
| * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. |
| */ |
| static void |
| scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, |
| const u32 delay) |
| { |
| int r; |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| scc_mgr_apply_group_all_out_delay_add(write_group, delay); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| } |
| |
| /** |
| * set_jump_as_return() - Return instruction optimization |
| * |
| * Optimization used to recover some slots in ddr3 inst_rom could be |
| * applied to other protocols if we wanted to |
| */ |
| static void set_jump_as_return(void) |
| { |
| /* |
| * To save space, we replace return with jump to special shared |
| * RETURN instruction so we set the counter to large value so that |
| * we always jump. |
| */ |
| writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); |
| writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| } |
| |
| /** |
| * delay_for_n_mem_clocks() - Delay for N memory clocks |
| * @clocks: Length of the delay |
| * |
| * Delay for N memory clocks. |
| */ |
| static void delay_for_n_mem_clocks(const u32 clocks) |
| { |
| u32 afi_clocks; |
| u16 c_loop; |
| u8 inner; |
| u8 outer; |
| |
| debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); |
| |
| /* Scale (rounding up) to get afi clocks. */ |
| afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); |
| if (afi_clocks) /* Temporary underflow protection */ |
| afi_clocks--; |
| |
| /* |
| * Note, we don't bother accounting for being off a little |
| * bit because of a few extra instructions in outer loops. |
| * Note, the loops have a test at the end, and do the test |
| * before the decrement, and so always perform the loop |
| * 1 time more than the counter value |
| */ |
| c_loop = afi_clocks >> 16; |
| outer = c_loop ? 0xff : (afi_clocks >> 8); |
| inner = outer ? 0xff : afi_clocks; |
| |
| /* |
| * rom instructions are structured as follows: |
| * |
| * IDLE_LOOP2: jnz cntr0, TARGET_A |
| * IDLE_LOOP1: jnz cntr1, TARGET_B |
| * return |
| * |
| * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and |
| * TARGET_B is set to IDLE_LOOP2 as well |
| * |
| * if we have no outer loop, though, then we can use IDLE_LOOP1 only, |
| * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely |
| * |
| * a little confusing, but it helps save precious space in the inst_rom |
| * and sequencer rom and keeps the delays more accurate and reduces |
| * overhead |
| */ |
| if (afi_clocks < 0x100) { |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), |
| &sdr_rw_load_mgr_regs->load_cntr1); |
| |
| writel(rwcfg->idle_loop1, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET); |
| } else { |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), |
| &sdr_rw_load_mgr_regs->load_cntr0); |
| |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), |
| &sdr_rw_load_mgr_regs->load_cntr1); |
| |
| writel(rwcfg->idle_loop2, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| |
| writel(rwcfg->idle_loop2, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| do { |
| writel(rwcfg->idle_loop2, |
| SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET); |
| } while (c_loop-- != 0); |
| } |
| debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); |
| } |
| |
| /** |
| * rw_mgr_mem_init_load_regs() - Load instruction registers |
| * @cntr0: Counter 0 value |
| * @cntr1: Counter 1 value |
| * @cntr2: Counter 2 value |
| * @jump: Jump instruction value |
| * |
| * Load instruction registers. |
| */ |
| static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) |
| { |
| uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET; |
| |
| /* Load counters */ |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), |
| &sdr_rw_load_mgr_regs->load_cntr0); |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), |
| &sdr_rw_load_mgr_regs->load_cntr1); |
| writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), |
| &sdr_rw_load_mgr_regs->load_cntr2); |
| |
| /* Load jump address */ |
| writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| |
| /* Execute count instruction */ |
| writel(jump, grpaddr); |
| } |
| |
| /** |
| * rw_mgr_mem_load_user() - Load user calibration values |
| * @fin1: Final instruction 1 |
| * @fin2: Final instruction 2 |
| * @precharge: If 1, precharge the banks at the end |
| * |
| * Load user calibration values and optionally precharge the banks. |
| */ |
| static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, |
| const int precharge) |
| { |
| u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET; |
| u32 r; |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { |
| /* set rank */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); |
| |
| /* precharge all banks ... */ |
| if (precharge) |
| writel(rwcfg->precharge_all, grpaddr); |
| |
| /* |
| * USER Use Mirror-ed commands for odd ranks if address |
| * mirrorring is on |
| */ |
| if ((rwcfg->mem_address_mirroring >> r) & 0x1) { |
| set_jump_as_return(); |
| writel(rwcfg->mrs2_mirr, grpaddr); |
| delay_for_n_mem_clocks(4); |
| set_jump_as_return(); |
| writel(rwcfg->mrs3_mirr, grpaddr); |
| delay_for_n_mem_clocks(4); |
| set_jump_as_return(); |
| writel(rwcfg->mrs1_mirr, grpaddr); |
| delay_for_n_mem_clocks(4); |
| set_jump_as_return(); |
| writel(fin1, grpaddr); |
| } else { |
| set_jump_as_return(); |
| writel(rwcfg->mrs2, grpaddr); |
| delay_for_n_mem_clocks(4); |
| set_jump_as_return(); |
| writel(rwcfg->mrs3, grpaddr); |
| delay_for_n_mem_clocks(4); |
| set_jump_as_return(); |
| writel(rwcfg->mrs1, grpaddr); |
| set_jump_as_return(); |
| writel(fin2, grpaddr); |
| } |
| |
| if (precharge) |
| continue; |
| |
| set_jump_as_return(); |
| writel(rwcfg->zqcl, grpaddr); |
| |
| /* tZQinit = tDLLK = 512 ck cycles */ |
| delay_for_n_mem_clocks(512); |
| } |
| } |
| |
| /** |
| * rw_mgr_mem_initialize() - Initialize RW Manager |
| * |
| * Initialize RW Manager. |
| */ |
| static void rw_mgr_mem_initialize(void) |
| { |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| /* The reset / cke part of initialization is broadcasted to all ranks */ |
| writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); |
| |
| /* |
| * Here's how you load register for a loop |
| * Counters are located @ 0x800 |
| * Jump address are located @ 0xC00 |
| * For both, registers 0 to 3 are selected using bits 3 and 2, like |
| * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C |
| * I know this ain't pretty, but Avalon bus throws away the 2 least |
| * significant bits |
| */ |
| |
| /* Start with memory RESET activated */ |
| |
| /* tINIT = 200us */ |
| |
| /* |
| * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles |
| * If a and b are the number of iteration in 2 nested loops |
| * it takes the following number of cycles to complete the operation: |
| * number_of_cycles = ((2 + n) * a + 2) * b |
| * where n is the number of instruction in the inner loop |
| * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, |
| * b = 6A |
| */ |
| rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, |
| SEQ_TINIT_CNTR2_VAL, |
| rwcfg->init_reset_0_cke_0); |
| |
| /* Indicate that memory is stable. */ |
| writel(1, &phy_mgr_cfg->reset_mem_stbl); |
| |
| /* |
| * transition the RESET to high |
| * Wait for 500us |
| */ |
| |
| /* |
| * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles |
| * If a and b are the number of iteration in 2 nested loops |
| * it takes the following number of cycles to complete the operation |
| * number_of_cycles = ((2 + n) * a + 2) * b |
| * where n is the number of instruction in the inner loop |
| * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, |
| * b = FF |
| */ |
| rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, |
| SEQ_TRESET_CNTR2_VAL, |
| rwcfg->init_reset_1_cke_0); |
| |
| /* Bring up clock enable. */ |
| |
| /* tXRP < 250 ck cycles */ |
| delay_for_n_mem_clocks(250); |
| |
| rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset, |
| 0); |
| } |
| |
| /** |
| * rw_mgr_mem_handoff() - Hand off the memory to user |
| * |
| * At the end of calibration we have to program the user settings in |
| * and hand off the memory to the user. |
| */ |
| static void rw_mgr_mem_handoff(void) |
| { |
| rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1); |
| /* |
| * Need to wait tMOD (12CK or 15ns) time before issuing other |
| * commands, but we will have plenty of NIOS cycles before actual |
| * handoff so its okay. |
| */ |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command |
| * @group: Write Group |
| * @use_dm: Use DM |
| * |
| * Issue write test command. Two variants are provided, one that just tests |
| * a write pattern and another that tests datamask functionality. |
| */ |
| static void rw_mgr_mem_calibrate_write_test_issue(u32 group, |
| u32 test_dm) |
| { |
| const u32 quick_write_mode = |
| (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && |
| ENABLE_SUPER_QUICK_CALIBRATION; |
| u32 mcc_instruction; |
| u32 rw_wl_nop_cycles; |
| |
| /* |
| * Set counter and jump addresses for the right |
| * number of NOP cycles. |
| * The number of supported NOP cycles can range from -1 to infinity |
| * Three different cases are handled: |
| * |
| * 1. For a number of NOP cycles greater than 0, the RW Mgr looping |
| * mechanism will be used to insert the right number of NOPs |
| * |
| * 2. For a number of NOP cycles equals to 0, the micro-instruction |
| * issuing the write command will jump straight to the |
| * micro-instruction that turns on DQS (for DDRx), or outputs write |
| * data (for RLD), skipping |
| * the NOP micro-instruction all together |
| * |
| * 3. A number of NOP cycles equal to -1 indicates that DQS must be |
| * turned on in the same micro-instruction that issues the write |
| * command. Then we need |
| * to directly jump to the micro-instruction that sends out the data |
| * |
| * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters |
| * (2 and 3). One jump-counter (0) is used to perform multiple |
| * write-read operations. |
| * one counter left to issue this command in "multiple-group" mode |
| */ |
| |
| rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; |
| |
| if (rw_wl_nop_cycles == -1) { |
| /* |
| * CNTR 2 - We want to execute the special write operation that |
| * turns on DQS right away and then skip directly to the |
| * instruction that sends out the data. We set the counter to a |
| * large number so that the jump is always taken. |
| */ |
| writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); |
| |
| /* CNTR 3 - Not used */ |
| if (test_dm) { |
| mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1; |
| writel(rwcfg->lfsr_wr_rd_dm_bank_0_data, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| } else { |
| mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1; |
| writel(rwcfg->lfsr_wr_rd_bank_0_data, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| writel(rwcfg->lfsr_wr_rd_bank_0_nop, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| } |
| } else if (rw_wl_nop_cycles == 0) { |
| /* |
| * CNTR 2 - We want to skip the NOP operation and go straight |
| * to the DQS enable instruction. We set the counter to a large |
| * number so that the jump is always taken. |
| */ |
| writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); |
| |
| /* CNTR 3 - Not used */ |
| if (test_dm) { |
| mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; |
| writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| } else { |
| mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; |
| writel(rwcfg->lfsr_wr_rd_bank_0_dqs, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| } |
| } else { |
| /* |
| * CNTR 2 - In this case we want to execute the next instruction |
| * and NOT take the jump. So we set the counter to 0. The jump |
| * address doesn't count. |
| */ |
| writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); |
| writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| |
| /* |
| * CNTR 3 - Set the nop counter to the number of cycles we |
| * need to loop for, minus 1. |
| */ |
| writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); |
| if (test_dm) { |
| mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; |
| writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| } else { |
| mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; |
| writel(rwcfg->lfsr_wr_rd_bank_0_nop, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| } |
| } |
| |
| writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RESET_READ_DATAPATH_OFFSET); |
| |
| if (quick_write_mode) |
| writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); |
| else |
| writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); |
| |
| writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| |
| /* |
| * CNTR 1 - This is used to ensure enough time elapses |
| * for read data to come back. |
| */ |
| writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); |
| |
| if (test_dm) { |
| writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| } else { |
| writel(rwcfg->lfsr_wr_rd_bank_0_wait, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| } |
| |
| writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET) + |
| (group << 2)); |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass |
| * @rank_bgn: Rank number |
| * @write_group: Write Group |
| * @use_dm: Use DM |
| * @all_correct: All bits must be correct in the mask |
| * @bit_chk: Resulting bit mask after the test |
| * @all_ranks: Test all ranks |
| * |
| * Test writes, can check for a single bit pass or multiple bit pass. |
| */ |
| static int |
| rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, |
| const u32 use_dm, const u32 all_correct, |
| u32 *bit_chk, const u32 all_ranks) |
| { |
| const u32 rank_end = all_ranks ? |
| rwcfg->mem_number_of_ranks : |
| (rank_bgn + NUM_RANKS_PER_SHADOW_REG); |
| const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs / |
| rwcfg->mem_virtual_groups_per_write_dqs; |
| const u32 correct_mask_vg = param->write_correct_mask_vg; |
| |
| u32 tmp_bit_chk, base_rw_mgr; |
| int vg, r; |
| |
| *bit_chk = param->write_correct_mask; |
| |
| for (r = rank_bgn; r < rank_end; r++) { |
| /* Set rank */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); |
| |
| tmp_bit_chk = 0; |
| for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1; |
| vg >= 0; vg--) { |
| /* Reset the FIFOs to get pointers to known state. */ |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| |
| rw_mgr_mem_calibrate_write_test_issue( |
| write_group * |
| rwcfg->mem_virtual_groups_per_write_dqs + vg, |
| use_dm); |
| |
| base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); |
| tmp_bit_chk <<= shift_ratio; |
| tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); |
| } |
| |
| *bit_chk &= tmp_bit_chk; |
| } |
| |
| set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); |
| if (all_correct) { |
| debug_cond(DLEVEL == 2, |
| "write_test(%u,%u,ALL) : %u == %u => %i\n", |
| write_group, use_dm, *bit_chk, |
| param->write_correct_mask, |
| *bit_chk == param->write_correct_mask); |
| return *bit_chk == param->write_correct_mask; |
| } else { |
| set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); |
| debug_cond(DLEVEL == 2, |
| "write_test(%u,%u,ONE) : %u != %i => %i\n", |
| write_group, use_dm, *bit_chk, 0, *bit_chk != 0); |
| return *bit_chk != 0x00; |
| } |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns |
| * @rank_bgn: Rank number |
| * @group: Read/Write Group |
| * @all_ranks: Test all ranks |
| * |
| * Performs a guaranteed read on the patterns we are going to use during a |
| * read test to ensure memory works. |
| */ |
| static int |
| rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, |
| const u32 all_ranks) |
| { |
| const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET; |
| const u32 addr_offset = |
| (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2; |
| const u32 rank_end = all_ranks ? |
| rwcfg->mem_number_of_ranks : |
| (rank_bgn + NUM_RANKS_PER_SHADOW_REG); |
| const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs / |
| rwcfg->mem_virtual_groups_per_read_dqs; |
| const u32 correct_mask_vg = param->read_correct_mask_vg; |
| |
| u32 tmp_bit_chk, base_rw_mgr, bit_chk; |
| int vg, r; |
| int ret = 0; |
| |
| bit_chk = param->read_correct_mask; |
| |
| for (r = rank_bgn; r < rank_end; r++) { |
| /* Set rank */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); |
| |
| /* Load up a constant bursts of read commands */ |
| writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); |
| writel(rwcfg->guaranteed_read, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| |
| writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); |
| writel(rwcfg->guaranteed_read_cont, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| tmp_bit_chk = 0; |
| for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; |
| vg >= 0; vg--) { |
| /* Reset the FIFOs to get pointers to known state. */ |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RESET_READ_DATAPATH_OFFSET); |
| writel(rwcfg->guaranteed_read, |
| addr + addr_offset + (vg << 2)); |
| |
| base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); |
| tmp_bit_chk <<= shift_ratio; |
| tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; |
| } |
| |
| bit_chk &= tmp_bit_chk; |
| } |
| |
| writel(rwcfg->clear_dqs_enable, addr + (group << 2)); |
| |
| set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); |
| |
| if (bit_chk != param->read_correct_mask) |
| ret = -EIO; |
| |
| debug_cond(DLEVEL == 1, |
| "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", |
| __func__, __LINE__, group, bit_chk, |
| param->read_correct_mask, ret); |
| |
| return ret; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test |
| * @rank_bgn: Rank number |
| * @all_ranks: Test all ranks |
| * |
| * Load up the patterns we are going to use during a read test. |
| */ |
| static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, |
| const int all_ranks) |
| { |
| const u32 rank_end = all_ranks ? |
| rwcfg->mem_number_of_ranks : |
| (rank_bgn + NUM_RANKS_PER_SHADOW_REG); |
| u32 r; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| for (r = rank_bgn; r < rank_end; r++) { |
| /* set rank */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); |
| |
| /* Load up a constant bursts */ |
| writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); |
| |
| writel(rwcfg->guaranteed_write_wait0, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| |
| writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); |
| |
| writel(rwcfg->guaranteed_write_wait1, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); |
| |
| writel(rwcfg->guaranteed_write_wait2, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| |
| writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); |
| |
| writel(rwcfg->guaranteed_write_wait3, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| |
| writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET); |
| } |
| |
| set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank |
| * @rank_bgn: Rank number |
| * @group: Read/Write group |
| * @num_tries: Number of retries of the test |
| * @all_correct: All bits must be correct in the mask |
| * @bit_chk: Resulting bit mask after the test |
| * @all_groups: Test all R/W groups |
| * @all_ranks: Test all ranks |
| * |
| * Try a read and see if it returns correct data back. Test has dummy reads |
| * inserted into the mix used to align DQS enable. Test has more thorough |
| * checks than the regular read test. |
| */ |
| static int |
| rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, |
| const u32 num_tries, const u32 all_correct, |
| u32 *bit_chk, |
| const u32 all_groups, const u32 all_ranks) |
| { |
| const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks : |
| (rank_bgn + NUM_RANKS_PER_SHADOW_REG); |
| const u32 quick_read_mode = |
| ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && |
| ENABLE_SUPER_QUICK_CALIBRATION); |
| u32 correct_mask_vg = param->read_correct_mask_vg; |
| u32 tmp_bit_chk; |
| u32 base_rw_mgr; |
| u32 addr; |
| |
| int r, vg, ret; |
| |
| *bit_chk = param->read_correct_mask; |
| |
| for (r = rank_bgn; r < rank_end; r++) { |
| /* set rank */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); |
| |
| writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); |
| |
| writel(rwcfg->read_b2b_wait1, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); |
| writel(rwcfg->read_b2b_wait2, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add2); |
| |
| if (quick_read_mode) |
| writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); |
| /* need at least two (1+1) reads to capture failures */ |
| else if (all_groups) |
| writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); |
| else |
| writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); |
| |
| writel(rwcfg->read_b2b, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| if (all_groups) |
| writel(rwcfg->mem_if_read_dqs_width * |
| rwcfg->mem_virtual_groups_per_read_dqs - 1, |
| &sdr_rw_load_mgr_regs->load_cntr3); |
| else |
| writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); |
| |
| writel(rwcfg->read_b2b, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add3); |
| |
| tmp_bit_chk = 0; |
| for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0; |
| vg--) { |
| /* Reset the FIFOs to get pointers to known state. */ |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RESET_READ_DATAPATH_OFFSET); |
| |
| if (all_groups) { |
| addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_ALL_GROUPS_OFFSET; |
| } else { |
| addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET; |
| } |
| |
| writel(rwcfg->read_b2b, addr + |
| ((group * rwcfg->mem_virtual_groups_per_read_dqs + |
| vg) << 2)); |
| |
| base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); |
| tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs / |
| rwcfg->mem_virtual_groups_per_read_dqs; |
| tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); |
| } |
| |
| *bit_chk &= tmp_bit_chk; |
| } |
| |
| addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; |
| writel(rwcfg->clear_dqs_enable, addr + (group << 2)); |
| |
| set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); |
| |
| if (all_correct) { |
| ret = (*bit_chk == param->read_correct_mask); |
| debug_cond(DLEVEL == 2, |
| "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", |
| __func__, __LINE__, group, all_groups, *bit_chk, |
| param->read_correct_mask, ret); |
| } else { |
| ret = (*bit_chk != 0x00); |
| debug_cond(DLEVEL == 2, |
| "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", |
| __func__, __LINE__, group, all_groups, *bit_chk, |
| 0, ret); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks |
| * @grp: Read/Write group |
| * @num_tries: Number of retries of the test |
| * @all_correct: All bits must be correct in the mask |
| * @all_groups: Test all R/W groups |
| * |
| * Perform a READ test across all memory ranks. |
| */ |
| static int |
| rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, |
| const u32 all_correct, |
| const u32 all_groups) |
| { |
| u32 bit_chk; |
| return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, |
| &bit_chk, all_groups, 1); |
| } |
| |
| /** |
| * rw_mgr_incr_vfifo() - Increase VFIFO value |
| * @grp: Read/Write group |
| * |
| * Increase VFIFO value. |
| */ |
| static void rw_mgr_incr_vfifo(const u32 grp) |
| { |
| writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); |
| } |
| |
| /** |
| * rw_mgr_decr_vfifo() - Decrease VFIFO value |
| * @grp: Read/Write group |
| * |
| * Decrease VFIFO value. |
| */ |
| static void rw_mgr_decr_vfifo(const u32 grp) |
| { |
| u32 i; |
| |
| for (i = 0; i < VFIFO_SIZE - 1; i++) |
| rw_mgr_incr_vfifo(grp); |
| } |
| |
| /** |
| * find_vfifo_failing_read() - Push VFIFO to get a failing read |
| * @grp: Read/Write group |
| * |
| * Push VFIFO until a failing read happens. |
| */ |
| static int find_vfifo_failing_read(const u32 grp) |
| { |
| u32 v, ret, fail_cnt = 0; |
| |
| for (v = 0; v < VFIFO_SIZE; v++) { |
| debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", |
| __func__, __LINE__, v); |
| ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, |
| PASS_ONE_BIT, 0); |
| if (!ret) { |
| fail_cnt++; |
| |
| if (fail_cnt == 2) |
| return v; |
| } |
| |
| /* Fiddle with FIFO. */ |
| rw_mgr_incr_vfifo(grp); |
| } |
| |
| /* No failing read found! Something must have gone wrong. */ |
| debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); |
| return 0; |
| } |
| |
| /** |
| * sdr_find_phase_delay() - Find DQS enable phase or delay |
| * @working: If 1, look for working phase/delay, if 0, look for non-working |
| * @delay: If 1, look for delay, if 0, look for phase |
| * @grp: Read/Write group |
| * @work: Working window position |
| * @work_inc: Working window increment |
| * @pd: DQS Phase/Delay Iterator |
| * |
| * Find working or non-working DQS enable phase setting. |
| */ |
| static int sdr_find_phase_delay(int working, int delay, const u32 grp, |
| u32 *work, const u32 work_inc, u32 *pd) |
| { |
| const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; |
| u32 ret; |
| |
| for (; *pd <= max; (*pd)++) { |
| if (delay) |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); |
| else |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); |
| |
| ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, |
| PASS_ONE_BIT, 0); |
| if (!working) |
| ret = !ret; |
| |
| if (ret) |
| return 0; |
| |
| if (work) |
| *work += work_inc; |
| } |
| |
| return -EINVAL; |
| } |
| /** |
| * sdr_find_phase() - Find DQS enable phase |
| * @working: If 1, look for working phase, if 0, look for non-working phase |
| * @grp: Read/Write group |
| * @work: Working window position |
| * @i: Iterator |
| * @p: DQS Phase Iterator |
| * |
| * Find working or non-working DQS enable phase setting. |
| */ |
| static int sdr_find_phase(int working, const u32 grp, u32 *work, |
| u32 *i, u32 *p) |
| { |
| const u32 end = VFIFO_SIZE + (working ? 0 : 1); |
| int ret; |
| |
| for (; *i < end; (*i)++) { |
| if (working) |
| *p = 0; |
| |
| ret = sdr_find_phase_delay(working, 0, grp, work, |
| IO_DELAY_PER_OPA_TAP, p); |
| if (!ret) |
| return 0; |
| |
| if (*p > IO_DQS_EN_PHASE_MAX) { |
| /* Fiddle with FIFO. */ |
| rw_mgr_incr_vfifo(grp); |
| if (!working) |
| *p = 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * sdr_working_phase() - Find working DQS enable phase |
| * @grp: Read/Write group |
| * @work_bgn: Working window start position |
| * @d: dtaps output value |
| * @p: DQS Phase Iterator |
| * @i: Iterator |
| * |
| * Find working DQS enable phase setting. |
| */ |
| static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, |
| u32 *p, u32 *i) |
| { |
| const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / |
| IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| int ret; |
| |
| *work_bgn = 0; |
| |
| for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { |
| *i = 0; |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); |
| ret = sdr_find_phase(1, grp, work_bgn, i, p); |
| if (!ret) |
| return 0; |
| *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| } |
| |
| /* Cannot find working solution */ |
| debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", |
| __func__, __LINE__); |
| return -EINVAL; |
| } |
| |
| /** |
| * sdr_backup_phase() - Find DQS enable backup phase |
| * @grp: Read/Write group |
| * @work_bgn: Working window start position |
| * @p: DQS Phase Iterator |
| * |
| * Find DQS enable backup phase setting. |
| */ |
| static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) |
| { |
| u32 tmp_delay, d; |
| int ret; |
| |
| /* Special case code for backing up a phase */ |
| if (*p == 0) { |
| *p = IO_DQS_EN_PHASE_MAX; |
| rw_mgr_decr_vfifo(grp); |
| } else { |
| (*p)--; |
| } |
| tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); |
| |
| for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, d); |
| |
| ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, |
| PASS_ONE_BIT, 0); |
| if (ret) { |
| *work_bgn = tmp_delay; |
| break; |
| } |
| |
| tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| } |
| |
| /* Restore VFIFO to old state before we decremented it (if needed). */ |
| (*p)++; |
| if (*p > IO_DQS_EN_PHASE_MAX) { |
| *p = 0; |
| rw_mgr_incr_vfifo(grp); |
| } |
| |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); |
| } |
| |
| /** |
| * sdr_nonworking_phase() - Find non-working DQS enable phase |
| * @grp: Read/Write group |
| * @work_end: Working window end position |
| * @p: DQS Phase Iterator |
| * @i: Iterator |
| * |
| * Find non-working DQS enable phase setting. |
| */ |
| static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) |
| { |
| int ret; |
| |
| (*p)++; |
| *work_end += IO_DELAY_PER_OPA_TAP; |
| if (*p > IO_DQS_EN_PHASE_MAX) { |
| /* Fiddle with FIFO. */ |
| *p = 0; |
| rw_mgr_incr_vfifo(grp); |
| } |
| |
| ret = sdr_find_phase(0, grp, work_end, i, p); |
| if (ret) { |
| /* Cannot see edge of failing read. */ |
| debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", |
| __func__, __LINE__); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * sdr_find_window_center() - Find center of the working DQS window. |
| * @grp: Read/Write group |
| * @work_bgn: First working settings |
| * @work_end: Last working settings |
| * |
| * Find center of the working DQS enable window. |
| */ |
| static int sdr_find_window_center(const u32 grp, const u32 work_bgn, |
| const u32 work_end) |
| { |
| u32 work_mid; |
| int tmp_delay = 0; |
| int i, p, d; |
| |
| work_mid = (work_bgn + work_end) / 2; |
| |
| debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", |
| work_bgn, work_end, work_mid); |
| /* Get the middle delay to be less than a VFIFO delay */ |
| tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; |
| |
| debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); |
| work_mid %= tmp_delay; |
| debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); |
| |
| tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); |
| if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) |
| tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; |
| p = tmp_delay / IO_DELAY_PER_OPA_TAP; |
| |
| debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); |
| |
| d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); |
| if (d > IO_DQS_EN_DELAY_MAX) |
| d = IO_DQS_EN_DELAY_MAX; |
| tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| |
| debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); |
| |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, p); |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, d); |
| |
| /* |
| * push vfifo until we can successfully calibrate. We can do this |
| * because the largest possible margin in 1 VFIFO cycle. |
| */ |
| for (i = 0; i < VFIFO_SIZE; i++) { |
| debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); |
| if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, |
| PASS_ONE_BIT, |
| 0)) { |
| debug_cond(DLEVEL == 2, |
| "%s:%d center: found: ptap=%u dtap=%u\n", |
| __func__, __LINE__, p, d); |
| return 0; |
| } |
| |
| /* Fiddle with FIFO. */ |
| rw_mgr_incr_vfifo(grp); |
| } |
| |
| debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", |
| __func__, __LINE__); |
| return -EINVAL; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use |
| * @grp: Read/Write Group |
| * |
| * Find a good DQS enable to use. |
| */ |
| static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) |
| { |
| u32 d, p, i; |
| u32 dtaps_per_ptap; |
| u32 work_bgn, work_end; |
| u32 found_passing_read, found_failing_read, initial_failing_dtap; |
| int ret; |
| |
| debug("%s:%d %u\n", __func__, __LINE__, grp); |
| |
| reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); |
| |
| scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); |
| |
| /* Step 0: Determine number of delay taps for each phase tap. */ |
| dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| |
| /* Step 1: First push vfifo until we get a failing read. */ |
| find_vfifo_failing_read(grp); |
| |
| /* Step 2: Find first working phase, increment in ptaps. */ |
| work_bgn = 0; |
| ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); |
| if (ret) |
| return ret; |
| |
| work_end = work_bgn; |
| |
| /* |
| * If d is 0 then the working window covers a phase tap and we can |
| * follow the old procedure. Otherwise, we've found the beginning |
| * and we need to increment the dtaps until we find the end. |
| */ |
| if (d == 0) { |
| /* |
| * Step 3a: If we have room, back off by one and |
| * increment in dtaps. |
| */ |
| sdr_backup_phase(grp, &work_bgn, &p); |
| |
| /* |
| * Step 4a: go forward from working phase to non working |
| * phase, increment in ptaps. |
| */ |
| ret = sdr_nonworking_phase(grp, &work_end, &p, &i); |
| if (ret) |
| return ret; |
| |
| /* Step 5a: Back off one from last, increment in dtaps. */ |
| |
| /* Special case code for backing up a phase */ |
| if (p == 0) { |
| p = IO_DQS_EN_PHASE_MAX; |
| rw_mgr_decr_vfifo(grp); |
| } else { |
| p = p - 1; |
| } |
| |
| work_end -= IO_DELAY_PER_OPA_TAP; |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, p); |
| |
| d = 0; |
| |
| debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", |
| __func__, __LINE__, p); |
| } |
| |
| /* The dtap increment to find the failing edge is done here. */ |
| sdr_find_phase_delay(0, 1, grp, &work_end, |
| IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); |
| |
| /* Go back to working dtap */ |
| if (d != 0) |
| work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; |
| |
| debug_cond(DLEVEL == 2, |
| "%s:%d p/d: ptap=%u dtap=%u end=%u\n", |
| __func__, __LINE__, p, d - 1, work_end); |
| |
| if (work_end < work_bgn) { |
| /* nil range */ |
| debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", |
| __func__, __LINE__); |
| return -EINVAL; |
| } |
| |
| debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", |
| __func__, __LINE__, work_bgn, work_end); |
| |
| /* |
| * We need to calculate the number of dtaps that equal a ptap. |
| * To do that we'll back up a ptap and re-find the edge of the |
| * window using dtaps |
| */ |
| debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", |
| __func__, __LINE__); |
| |
| /* Special case code for backing up a phase */ |
| if (p == 0) { |
| p = IO_DQS_EN_PHASE_MAX; |
| rw_mgr_decr_vfifo(grp); |
| debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", |
| __func__, __LINE__, p); |
| } else { |
| p = p - 1; |
| debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", |
| __func__, __LINE__, p); |
| } |
| |
| scc_mgr_set_dqs_en_phase_all_ranks(grp, p); |
| |
| /* |
| * Increase dtap until we first see a passing read (in case the |
| * window is smaller than a ptap), and then a failing read to |
| * mark the edge of the window again. |
| */ |
| |
| /* Find a passing read. */ |
| debug_cond(DLEVEL == 2, "%s:%d find passing read\n", |
| __func__, __LINE__); |
| |
| initial_failing_dtap = d; |
| |
| found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); |
| if (found_passing_read) { |
| /* Find a failing read. */ |
| debug_cond(DLEVEL == 2, "%s:%d find failing read\n", |
| __func__, __LINE__); |
| d++; |
| found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, |
| &d); |
| } else { |
| debug_cond(DLEVEL == 1, |
| "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", |
| __func__, __LINE__); |
| } |
| |
| /* |
| * The dynamically calculated dtaps_per_ptap is only valid if we |
| * found a passing/failing read. If we didn't, it means d hit the max |
| * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its |
| * statically calculated value. |
| */ |
| if (found_passing_read && found_failing_read) |
| dtaps_per_ptap = d - initial_failing_dtap; |
| |
| writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); |
| debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", |
| __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); |
| |
| /* Step 6: Find the centre of the window. */ |
| ret = sdr_find_window_center(grp, work_bgn, work_end); |
| |
| return ret; |
| } |
| |
| /** |
| * search_stop_check() - Check if the detected edge is valid |
| * @write: Perform read (Stage 2) or write (Stage 3) calibration |
| * @d: DQS delay |
| * @rank_bgn: Rank number |
| * @write_group: Write Group |
| * @read_group: Read Group |
| * @bit_chk: Resulting bit mask after the test |
| * @sticky_bit_chk: Resulting sticky bit mask after the test |
| * @use_read_test: Perform read test |
| * |
| * Test if the found edge is valid. |
| */ |
| static u32 search_stop_check(const int write, const int d, const int rank_bgn, |
| const u32 write_group, const u32 read_group, |
| u32 *bit_chk, u32 *sticky_bit_chk, |
| const u32 use_read_test) |
| { |
| const u32 ratio = rwcfg->mem_if_read_dqs_width / |
| rwcfg->mem_if_write_dqs_width; |
| const u32 correct_mask = write ? param->write_correct_mask : |
| param->read_correct_mask; |
| const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : |
| rwcfg->mem_dq_per_read_dqs; |
| u32 ret; |
| /* |
| * Stop searching when the read test doesn't pass AND when |
| * we've seen a passing read on every bit. |
| */ |
| if (write) { /* WRITE-ONLY */ |
| ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, |
| 0, PASS_ONE_BIT, |
| bit_chk, 0); |
| } else if (use_read_test) { /* READ-ONLY */ |
| ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, |
| NUM_READ_PB_TESTS, |
| PASS_ONE_BIT, bit_chk, |
| 0, 0); |
| } else { /* READ-ONLY */ |
| rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, |
| PASS_ONE_BIT, bit_chk, 0); |
| *bit_chk = *bit_chk >> (per_dqs * |
| (read_group - (write_group * ratio))); |
| ret = (*bit_chk == 0); |
| } |
| *sticky_bit_chk = *sticky_bit_chk | *bit_chk; |
| ret = ret && (*sticky_bit_chk == correct_mask); |
| debug_cond(DLEVEL == 2, |
| "%s:%d center(left): dtap=%u => %u == %u && %u", |
| __func__, __LINE__, d, |
| *sticky_bit_chk, correct_mask, ret); |
| return ret; |
| } |
| |
| /** |
| * search_left_edge() - Find left edge of DQ/DQS working phase |
| * @write: Perform read (Stage 2) or write (Stage 3) calibration |
| * @rank_bgn: Rank number |
| * @write_group: Write Group |
| * @read_group: Read Group |
| * @test_bgn: Rank number to begin the test |
| * @sticky_bit_chk: Resulting sticky bit mask after the test |
| * @left_edge: Left edge of the DQ/DQS phase |
| * @right_edge: Right edge of the DQ/DQS phase |
| * @use_read_test: Perform read test |
| * |
| * Find left edge of DQ/DQS working phase. |
| */ |
| static void search_left_edge(const int write, const int rank_bgn, |
| const u32 write_group, const u32 read_group, const u32 test_bgn, |
| u32 *sticky_bit_chk, |
| int *left_edge, int *right_edge, const u32 use_read_test) |
| { |
| const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; |
| const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; |
| const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : |
| rwcfg->mem_dq_per_read_dqs; |
| u32 stop, bit_chk; |
| int i, d; |
| |
| for (d = 0; d <= dqs_max; d++) { |
| if (write) |
| scc_mgr_apply_group_dq_out1_delay(d); |
| else |
| scc_mgr_apply_group_dq_in_delay(test_bgn, d); |
| |
| writel(0, &sdr_scc_mgr->update); |
| |
| stop = search_stop_check(write, d, rank_bgn, write_group, |
| read_group, &bit_chk, sticky_bit_chk, |
| use_read_test); |
| if (stop == 1) |
| break; |
| |
| /* stop != 1 */ |
| for (i = 0; i < per_dqs; i++) { |
| if (bit_chk & 1) { |
| /* |
| * Remember a passing test as |
| * the left_edge. |
| */ |
| left_edge[i] = d; |
| } else { |
| /* |
| * If a left edge has not been seen |
| * yet, then a future passing test |
| * will mark this edge as the right |
| * edge. |
| */ |
| if (left_edge[i] == delay_max + 1) |
| right_edge[i] = -(d + 1); |
| } |
| bit_chk >>= 1; |
| } |
| } |
| |
| /* Reset DQ delay chains to 0 */ |
| if (write) |
| scc_mgr_apply_group_dq_out1_delay(0); |
| else |
| scc_mgr_apply_group_dq_in_delay(test_bgn, 0); |
| |
| *sticky_bit_chk = 0; |
| for (i = per_dqs - 1; i >= 0; i--) { |
| debug_cond(DLEVEL == 2, |
| "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", |
| __func__, __LINE__, i, left_edge[i], |
| i, right_edge[i]); |
| |
| /* |
| * Check for cases where we haven't found the left edge, |
| * which makes our assignment of the the right edge invalid. |
| * Reset it to the illegal value. |
| */ |
| if ((left_edge[i] == delay_max + 1) && |
| (right_edge[i] != delay_max + 1)) { |
| right_edge[i] = delay_max + 1; |
| debug_cond(DLEVEL == 2, |
| "%s:%d vfifo_center: reset right_edge[%u]: %d\n", |
| __func__, __LINE__, i, right_edge[i]); |
| } |
| |
| /* |
| * Reset sticky bit |
| * READ: except for bits where we have seen both |
| * the left and right edge. |
| * WRITE: except for bits where we have seen the |
| * left edge. |
| */ |
| *sticky_bit_chk <<= 1; |
| if (write) { |
| if (left_edge[i] != delay_max + 1) |
| *sticky_bit_chk |= 1; |
| } else { |
| if ((left_edge[i] != delay_max + 1) && |
| (right_edge[i] != delay_max + 1)) |
| *sticky_bit_chk |= 1; |
| } |
| } |
| |
| |
| } |
| |
| /** |
| * search_right_edge() - Find right edge of DQ/DQS working phase |
| * @write: Perform read (Stage 2) or write (Stage 3) calibration |
| * @rank_bgn: Rank number |
| * @write_group: Write Group |
| * @read_group: Read Group |
| * @start_dqs: DQS start phase |
| * @start_dqs_en: DQS enable start phase |
| * @sticky_bit_chk: Resulting sticky bit mask after the test |
| * @left_edge: Left edge of the DQ/DQS phase |
| * @right_edge: Right edge of the DQ/DQS phase |
| * @use_read_test: Perform read test |
| * |
| * Find right edge of DQ/DQS working phase. |
| */ |
| static int search_right_edge(const int write, const int rank_bgn, |
| const u32 write_group, const u32 read_group, |
| const int start_dqs, const int start_dqs_en, |
| u32 *sticky_bit_chk, |
| int *left_edge, int *right_edge, const u32 use_read_test) |
| { |
| const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; |
| const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; |
| const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : |
| rwcfg->mem_dq_per_read_dqs; |
| u32 stop, bit_chk; |
| int i, d; |
| |
| for (d = 0; d <= dqs_max - start_dqs; d++) { |
| if (write) { /* WRITE-ONLY */ |
| scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, |
| d + start_dqs); |
| } else { /* READ-ONLY */ |
| scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); |
| if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { |
| uint32_t delay = d + start_dqs_en; |
| if (delay > IO_DQS_EN_DELAY_MAX) |
| delay = IO_DQS_EN_DELAY_MAX; |
| scc_mgr_set_dqs_en_delay(read_group, delay); |
| } |
| scc_mgr_load_dqs(read_group); |
| } |
| |
| writel(0, &sdr_scc_mgr->update); |
| |
| stop = search_stop_check(write, d, rank_bgn, write_group, |
| read_group, &bit_chk, sticky_bit_chk, |
| use_read_test); |
| if (stop == 1) { |
| if (write && (d == 0)) { /* WRITE-ONLY */ |
| for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { |
| /* |
| * d = 0 failed, but it passed when |
| * testing the left edge, so it must be |
| * marginal, set it to -1 |
| */ |
| if (right_edge[i] == delay_max + 1 && |
| left_edge[i] != delay_max + 1) |
| right_edge[i] = -1; |
| } |
| } |
| break; |
| } |
| |
| /* stop != 1 */ |
| for (i = 0; i < per_dqs; i++) { |
| if (bit_chk & 1) { |
| /* |
| * Remember a passing test as |
| * the right_edge. |
| */ |
| right_edge[i] = d; |
| } else { |
| if (d != 0) { |
| /* |
| * If a right edge has not |
| * been seen yet, then a future |
| * passing test will mark this |
| * edge as the left edge. |
| */ |
| if (right_edge[i] == delay_max + 1) |
| left_edge[i] = -(d + 1); |
| } else { |
| /* |
| * d = 0 failed, but it passed |
| * when testing the left edge, |
| * so it must be marginal, set |
| * it to -1 |
| */ |
| if (right_edge[i] == delay_max + 1 && |
| left_edge[i] != delay_max + 1) |
| right_edge[i] = -1; |
| /* |
| * If a right edge has not been |
| * seen yet, then a future |
| * passing test will mark this |
| * edge as the left edge. |
| */ |
| else if (right_edge[i] == delay_max + 1) |
| left_edge[i] = -(d + 1); |
| } |
| } |
| |
| debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", |
| __func__, __LINE__, d); |
| debug_cond(DLEVEL == 2, |
| "bit_chk_test=%i left_edge[%u]: %d ", |
| bit_chk & 1, i, left_edge[i]); |
| debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, |
| right_edge[i]); |
| bit_chk >>= 1; |
| } |
| } |
| |
| /* Check that all bits have a window */ |
| for (i = 0; i < per_dqs; i++) { |
| debug_cond(DLEVEL == 2, |
| "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", |
| __func__, __LINE__, i, left_edge[i], |
| i, right_edge[i]); |
| if ((left_edge[i] == dqs_max + 1) || |
| (right_edge[i] == dqs_max + 1)) |
| return i + 1; /* FIXME: If we fail, retval > 0 */ |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * get_window_mid_index() - Find the best middle setting of DQ/DQS phase |
| * @write: Perform read (Stage 2) or write (Stage 3) calibration |
| * @left_edge: Left edge of the DQ/DQS phase |
| * @right_edge: Right edge of the DQ/DQS phase |
| * @mid_min: Best DQ/DQS phase middle setting |
| * |
| * Find index and value of the middle of the DQ/DQS working phase. |
| */ |
| static int get_window_mid_index(const int write, int *left_edge, |
| int *right_edge, int *mid_min) |
| { |
| const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : |
| rwcfg->mem_dq_per_read_dqs; |
| int i, mid, min_index; |
| |
| /* Find middle of window for each DQ bit */ |
| *mid_min = left_edge[0] - right_edge[0]; |
| min_index = 0; |
| for (i = 1; i < per_dqs; i++) { |
| mid = left_edge[i] - right_edge[i]; |
| if (mid < *mid_min) { |
| *mid_min = mid; |
| min_index = i; |
| } |
| } |
| |
| /* |
| * -mid_min/2 represents the amount that we need to move DQS. |
| * If mid_min is odd and positive we'll need to add one to make |
| * sure the rounding in further calculations is correct (always |
| * bias to the right), so just add 1 for all positive values. |
| */ |
| if (*mid_min > 0) |
| (*mid_min)++; |
| *mid_min = *mid_min / 2; |
| |
| debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", |
| __func__, __LINE__, *mid_min, min_index); |
| return min_index; |
| } |
| |
| /** |
| * center_dq_windows() - Center the DQ/DQS windows |
| * @write: Perform read (Stage 2) or write (Stage 3) calibration |
| * @left_edge: Left edge of the DQ/DQS phase |
| * @right_edge: Right edge of the DQ/DQS phase |
| * @mid_min: Adjusted DQ/DQS phase middle setting |
| * @orig_mid_min: Original DQ/DQS phase middle setting |
| * @min_index: DQ/DQS phase middle setting index |
| * @test_bgn: Rank number to begin the test |
| * @dq_margin: Amount of shift for the DQ |
| * @dqs_margin: Amount of shift for the DQS |
| * |
| * Align the DQ/DQS windows in each group. |
| */ |
| static void center_dq_windows(const int write, int *left_edge, int *right_edge, |
| const int mid_min, const int orig_mid_min, |
| const int min_index, const int test_bgn, |
| int *dq_margin, int *dqs_margin) |
| { |
| const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; |
| const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : |
| rwcfg->mem_dq_per_read_dqs; |
| const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : |
| SCC_MGR_IO_IN_DELAY_OFFSET; |
| const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; |
| |
| u32 temp_dq_io_delay1, temp_dq_io_delay2; |
| int shift_dq, i, p; |
| |
| /* Initialize data for export structures */ |
| *dqs_margin = delay_max + 1; |
| *dq_margin = delay_max + 1; |
| |
| /* add delay to bring centre of all DQ windows to the same "level" */ |
| for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { |
| /* Use values before divide by 2 to reduce round off error */ |
| shift_dq = (left_edge[i] - right_edge[i] - |
| (left_edge[min_index] - right_edge[min_index]))/2 + |
| (orig_mid_min - mid_min); |
| |
| debug_cond(DLEVEL == 2, |
| "vfifo_center: before: shift_dq[%u]=%d\n", |
| i, shift_dq); |
| |
| temp_dq_io_delay1 = readl(addr + (p << 2)); |
| temp_dq_io_delay2 = readl(addr + (i << 2)); |
| |
| if (shift_dq + temp_dq_io_delay1 > delay_max) |
| shift_dq = delay_max - temp_dq_io_delay2; |
| else if (shift_dq + temp_dq_io_delay1 < 0) |
| shift_dq = -temp_dq_io_delay1; |
| |
| debug_cond(DLEVEL == 2, |
| "vfifo_center: after: shift_dq[%u]=%d\n", |
| i, shift_dq); |
| |
| if (write) |
| scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); |
| else |
| scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); |
| |
| scc_mgr_load_dq(p); |
| |
| debug_cond(DLEVEL == 2, |
| "vfifo_center: margin[%u]=[%d,%d]\n", i, |
| left_edge[i] - shift_dq + (-mid_min), |
| right_edge[i] + shift_dq - (-mid_min)); |
| |
| /* To determine values for export structures */ |
| if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) |
| *dq_margin = left_edge[i] - shift_dq + (-mid_min); |
| |
| if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) |
| *dqs_margin = right_edge[i] + shift_dq - (-mid_min); |
| } |
| |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering |
| * @rank_bgn: Rank number |
| * @rw_group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * @use_read_test: Perform a read test |
| * @update_fom: Update FOM |
| * |
| * Per-bit deskew DQ and centering. |
| */ |
| static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, |
| const u32 rw_group, const u32 test_bgn, |
| const int use_read_test, const int update_fom) |
| { |
| const u32 addr = |
| SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + |
| (rw_group << 2); |
| /* |
| * Store these as signed since there are comparisons with |
| * signed numbers. |
| */ |
| uint32_t sticky_bit_chk; |
| int32_t left_edge[rwcfg->mem_dq_per_read_dqs]; |
| int32_t right_edge[rwcfg->mem_dq_per_read_dqs]; |
| int32_t orig_mid_min, mid_min; |
| int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; |
| int32_t dq_margin, dqs_margin; |
| int i, min_index; |
| int ret; |
| |
| debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); |
| |
| start_dqs = readl(addr); |
| if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) |
| start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); |
| |
| /* set the left and right edge of each bit to an illegal value */ |
| /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ |
| sticky_bit_chk = 0; |
| for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) { |
| left_edge[i] = IO_IO_IN_DELAY_MAX + 1; |
| right_edge[i] = IO_IO_IN_DELAY_MAX + 1; |
| } |
| |
| /* Search for the left edge of the window for each bit */ |
| search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, |
| &sticky_bit_chk, |
| left_edge, right_edge, use_read_test); |
| |
| |
| /* Search for the right edge of the window for each bit */ |
| ret = search_right_edge(0, rank_bgn, rw_group, rw_group, |
| start_dqs, start_dqs_en, |
| &sticky_bit_chk, |
| left_edge, right_edge, use_read_test); |
| if (ret) { |
| /* |
| * Restore delay chain settings before letting the loop |
| * in rw_mgr_mem_calibrate_vfifo to retry different |
| * dqs/ck relationships. |
| */ |
| scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); |
| if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) |
| scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); |
| |
| scc_mgr_load_dqs(rw_group); |
| writel(0, &sdr_scc_mgr->update); |
| |
| debug_cond(DLEVEL == 1, |
| "%s:%d vfifo_center: failed to find edge [%u]: %d %d", |
| __func__, __LINE__, i, left_edge[i], right_edge[i]); |
| if (use_read_test) { |
| set_failing_group_stage(rw_group * |
| rwcfg->mem_dq_per_read_dqs + i, |
| CAL_STAGE_VFIFO, |
| CAL_SUBSTAGE_VFIFO_CENTER); |
| } else { |
| set_failing_group_stage(rw_group * |
| rwcfg->mem_dq_per_read_dqs + i, |
| CAL_STAGE_VFIFO_AFTER_WRITES, |
| CAL_SUBSTAGE_VFIFO_CENTER); |
| } |
| return -EIO; |
| } |
| |
| min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); |
| |
| /* Determine the amount we can change DQS (which is -mid_min) */ |
| orig_mid_min = mid_min; |
| new_dqs = start_dqs - mid_min; |
| if (new_dqs > IO_DQS_IN_DELAY_MAX) |
| new_dqs = IO_DQS_IN_DELAY_MAX; |
| else if (new_dqs < 0) |
| new_dqs = 0; |
| |
| mid_min = start_dqs - new_dqs; |
| debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", |
| mid_min, new_dqs); |
| |
| if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { |
| if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) |
| mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; |
| else if (start_dqs_en - mid_min < 0) |
| mid_min += start_dqs_en - mid_min; |
| } |
| new_dqs = start_dqs - mid_min; |
| |
| debug_cond(DLEVEL == 1, |
| "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", |
| start_dqs, |
| IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, |
| new_dqs, mid_min); |
| |
| /* Add delay to bring centre of all DQ windows to the same "level". */ |
| center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, |
| min_index, test_bgn, &dq_margin, &dqs_margin); |
| |
| /* Move DQS-en */ |
| if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { |
| final_dqs_en = start_dqs_en - mid_min; |
| scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); |
| scc_mgr_load_dqs(rw_group); |
| } |
| |
| /* Move DQS */ |
| scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); |
| scc_mgr_load_dqs(rw_group); |
| debug_cond(DLEVEL == 2, |
| "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", |
| __func__, __LINE__, dq_margin, dqs_margin); |
| |
| /* |
| * Do not remove this line as it makes sure all of our decisions |
| * have been applied. Apply the update bit. |
| */ |
| writel(0, &sdr_scc_mgr->update); |
| |
| if ((dq_margin < 0) || (dqs_margin < 0)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device |
| * @rw_group: Read/Write Group |
| * @phase: DQ/DQS phase |
| * |
| * Because initially no communication ca be reliably performed with the memory |
| * device, the sequencer uses a guaranteed write mechanism to write data into |
| * the memory device. |
| */ |
| static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, |
| const u32 phase) |
| { |
| int ret; |
| |
| /* Set a particular DQ/DQS phase. */ |
| scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); |
| |
| debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", |
| __func__, __LINE__, rw_group, phase); |
| |
| /* |
| * Altera EMI_RM 2015.05.04 :: Figure 1-25 |
| * Load up the patterns used by read calibration using the |
| * current DQDQS phase. |
| */ |
| rw_mgr_mem_calibrate_read_load_patterns(0, 1); |
| |
| if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) |
| return 0; |
| |
| /* |
| * Altera EMI_RM 2015.05.04 :: Figure 1-26 |
| * Back-to-Back reads of the patterns used for calibration. |
| */ |
| ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); |
| if (ret) |
| debug_cond(DLEVEL == 1, |
| "%s:%d Guaranteed read test failed: g=%u p=%u\n", |
| __func__, __LINE__, rw_group, phase); |
| return ret; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration |
| * @rw_group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * |
| * DQS enable calibration ensures reliable capture of the DQ signal without |
| * glitches on the DQS line. |
| */ |
| static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, |
| const u32 test_bgn) |
| { |
| /* |
| * Altera EMI_RM 2015.05.04 :: Figure 1-27 |
| * DQS and DQS Eanble Signal Relationships. |
| */ |
| |
| /* We start at zero, so have one less dq to devide among */ |
| const u32 delay_step = IO_IO_IN_DELAY_MAX / |
| (rwcfg->mem_dq_per_read_dqs - 1); |
| int ret; |
| u32 i, p, d, r; |
| |
| debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); |
| |
| /* Try different dq_in_delays since the DQ path is shorter than DQS. */ |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| for (i = 0, p = test_bgn, d = 0; |
| i < rwcfg->mem_dq_per_read_dqs; |
| i++, p++, d += delay_step) { |
| debug_cond(DLEVEL == 1, |
| "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", |
| __func__, __LINE__, rw_group, r, i, p, d); |
| |
| scc_mgr_set_dq_in_delay(p, d); |
| scc_mgr_load_dq(p); |
| } |
| |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| /* |
| * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different |
| * dq_in_delay values |
| */ |
| ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); |
| |
| debug_cond(DLEVEL == 1, |
| "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", |
| __func__, __LINE__, rw_group, !ret); |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| scc_mgr_apply_group_dq_in_delay(test_bgn, 0); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS |
| * @rw_group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * @use_read_test: Perform a read test |
| * @update_fom: Update FOM |
| * |
| * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads |
| * within a group. |
| */ |
| static int |
| rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, |
| const int use_read_test, |
| const int update_fom) |
| |
| { |
| int ret, grp_calibrated; |
| u32 rank_bgn, sr; |
| |
| /* |
| * Altera EMI_RM 2015.05.04 :: Figure 1-28 |
| * Read per-bit deskew can be done on a per shadow register basis. |
| */ |
| grp_calibrated = 1; |
| for (rank_bgn = 0, sr = 0; |
| rank_bgn < rwcfg->mem_number_of_ranks; |
| rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { |
| ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, |
| test_bgn, |
| use_read_test, |
| update_fom); |
| if (!ret) |
| continue; |
| |
| grp_calibrated = 0; |
| } |
| |
| if (!grp_calibrated) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO |
| * @rw_group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * |
| * Stage 1: Calibrate the read valid prediction FIFO. |
| * |
| * This function implements UniPHY calibration Stage 1, as explained in |
| * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". |
| * |
| * - read valid prediction will consist of finding: |
| * - DQS enable phase and DQS enable delay (DQS Enable Calibration) |
| * - DQS input phase and DQS input delay (DQ/DQS Centering) |
| * - we also do a per-bit deskew on the DQ lines. |
| */ |
| static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) |
| { |
| uint32_t p, d; |
| uint32_t dtaps_per_ptap; |
| uint32_t failed_substage; |
| |
| int ret; |
| |
| debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); |
| |
| /* Update info for sims */ |
| reg_file_set_group(rw_group); |
| reg_file_set_stage(CAL_STAGE_VFIFO); |
| reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); |
| |
| failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; |
| |
| /* USER Determine number of delay taps for each phase tap. */ |
| dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, |
| IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; |
| |
| for (d = 0; d <= dtaps_per_ptap; d += 2) { |
| /* |
| * In RLDRAMX we may be messing the delay of pins in |
| * the same write rw_group but outside of the current read |
| * the rw_group, but that's ok because we haven't calibrated |
| * output side yet. |
| */ |
| if (d > 0) { |
| scc_mgr_apply_group_all_out_delay_add_all_ranks( |
| rw_group, d); |
| } |
| |
| for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { |
| /* 1) Guaranteed Write */ |
| ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); |
| if (ret) |
| break; |
| |
| /* 2) DQS Enable Calibration */ |
| ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, |
| test_bgn); |
| if (ret) { |
| failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; |
| continue; |
| } |
| |
| /* 3) Centering DQ/DQS */ |
| /* |
| * If doing read after write calibration, do not update |
| * FOM now. Do it then. |
| */ |
| ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, |
| test_bgn, 1, 0); |
| if (ret) { |
| failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; |
| continue; |
| } |
| |
| /* All done. */ |
| goto cal_done_ok; |
| } |
| } |
| |
| /* Calibration Stage 1 failed. */ |
| set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); |
| return 0; |
| |
| /* Calibration Stage 1 completed OK. */ |
| cal_done_ok: |
| /* |
| * Reset the delay chains back to zero if they have moved > 1 |
| * (check for > 1 because loop will increase d even when pass in |
| * first case). |
| */ |
| if (d > 2) |
| scc_mgr_zero_group(rw_group, 1); |
| |
| return 1; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. |
| * @rw_group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * |
| * Stage 3: DQ/DQS Centering. |
| * |
| * This function implements UniPHY calibration Stage 3, as explained in |
| * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". |
| */ |
| static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, |
| const u32 test_bgn) |
| { |
| int ret; |
| |
| debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); |
| |
| /* Update info for sims. */ |
| reg_file_set_group(rw_group); |
| reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); |
| reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); |
| |
| ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); |
| if (ret) |
| set_failing_group_stage(rw_group, |
| CAL_STAGE_VFIFO_AFTER_WRITES, |
| CAL_SUBSTAGE_VFIFO_CENTER); |
| return ret; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_lfifo() - Minimize latency |
| * |
| * Stage 4: Minimize latency. |
| * |
| * This function implements UniPHY calibration Stage 4, as explained in |
| * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". |
| * Calibrate LFIFO to find smallest read latency. |
| */ |
| static uint32_t rw_mgr_mem_calibrate_lfifo(void) |
| { |
| int found_one = 0; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| /* Update info for sims. */ |
| reg_file_set_stage(CAL_STAGE_LFIFO); |
| reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); |
| |
| /* Load up the patterns used by read calibration for all ranks */ |
| rw_mgr_mem_calibrate_read_load_patterns(0, 1); |
| |
| do { |
| writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); |
| debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", |
| __func__, __LINE__, gbl->curr_read_lat); |
| |
| if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, |
| PASS_ALL_BITS, 1)) |
| break; |
| |
| found_one = 1; |
| /* |
| * Reduce read latency and see if things are |
| * working correctly. |
| */ |
| gbl->curr_read_lat--; |
| } while (gbl->curr_read_lat > 0); |
| |
| /* Reset the fifos to get pointers to known state. */ |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| |
| if (found_one) { |
| /* Add a fudge factor to the read latency that was determined */ |
| gbl->curr_read_lat += 2; |
| writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); |
| debug_cond(DLEVEL == 2, |
| "%s:%d lfifo: success: using read_lat=%u\n", |
| __func__, __LINE__, gbl->curr_read_lat); |
| } else { |
| set_failing_group_stage(0xff, CAL_STAGE_LFIFO, |
| CAL_SUBSTAGE_READ_LATENCY); |
| |
| debug_cond(DLEVEL == 2, |
| "%s:%d lfifo: failed at initial read_lat=%u\n", |
| __func__, __LINE__, gbl->curr_read_lat); |
| } |
| |
| return found_one; |
| } |
| |
| /** |
| * search_window() - Search for the/part of the window with DM/DQS shift |
| * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift |
| * @rank_bgn: Rank number |
| * @write_group: Write Group |
| * @bgn_curr: Current window begin |
| * @end_curr: Current window end |
| * @bgn_best: Current best window begin |
| * @end_best: Current best window end |
| * @win_best: Size of the best window |
| * @new_dqs: New DQS value (only applicable if search_dm = 0). |
| * |
| * Search for the/part of the window with DM/DQS shift. |
| */ |
| static void search_window(const int search_dm, |
| const u32 rank_bgn, const u32 write_group, |
| int *bgn_curr, int *end_curr, int *bgn_best, |
| int *end_best, int *win_best, int new_dqs) |
| { |
| u32 bit_chk; |
| const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; |
| int d, di; |
| |
| /* Search for the/part of the window with DM/DQS shift. */ |
| for (di = max; di >= 0; di -= DELTA_D) { |
| if (search_dm) { |
| d = di; |
| scc_mgr_apply_group_dm_out1_delay(d); |
| } else { |
| /* For DQS, we go from 0...max */ |
| d = max - di; |
| /* |
| * Note: This only shifts DQS, so are we limiting ourselve to |
| * width of DQ unnecessarily. |
| */ |
| scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, |
| d + new_dqs); |
| } |
| |
| writel(0, &sdr_scc_mgr->update); |
| |
| if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, |
| PASS_ALL_BITS, &bit_chk, |
| 0)) { |
| /* Set current end of the window. */ |
| *end_curr = search_dm ? -d : d; |
| |
| /* |
| * If a starting edge of our window has not been seen |
| * this is our current start of the DM window. |
| */ |
| if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) |
| *bgn_curr = search_dm ? -d : d; |
| |
| /* |
| * If current window is bigger than best seen. |
| * Set best seen to be current window. |
| */ |
| if ((*end_curr - *bgn_curr + 1) > *win_best) { |
| *win_best = *end_curr - *bgn_curr + 1; |
| *bgn_best = *bgn_curr; |
| *end_best = *end_curr; |
| } |
| } else { |
| /* We just saw a failing test. Reset temp edge. */ |
| *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| *end_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| |
| /* Early exit is only applicable to DQS. */ |
| if (search_dm) |
| continue; |
| |
| /* |
| * Early exit optimization: if the remaining delay |
| * chain space is less than already seen largest |
| * window we can exit. |
| */ |
| if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) |
| break; |
| } |
| } |
| } |
| |
| /* |
| * rw_mgr_mem_calibrate_writes_center() - Center all windows |
| * @rank_bgn: Rank number |
| * @write_group: Write group |
| * @test_bgn: Rank at which the test begins |
| * |
| * Center all windows. Do per-bit-deskew to possibly increase size of |
| * certain windows. |
| */ |
| static int |
| rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, |
| const u32 test_bgn) |
| { |
| int i; |
| u32 sticky_bit_chk; |
| u32 min_index; |
| int left_edge[rwcfg->mem_dq_per_write_dqs]; |
| int right_edge[rwcfg->mem_dq_per_write_dqs]; |
| int mid; |
| int mid_min, orig_mid_min; |
| int new_dqs, start_dqs; |
| int dq_margin, dqs_margin, dm_margin; |
| int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| int end_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; |
| int end_best = IO_IO_OUT1_DELAY_MAX + 1; |
| int win_best = 0; |
| |
| int ret; |
| |
| debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); |
| |
| dm_margin = 0; |
| |
| start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | |
| SCC_MGR_IO_OUT1_DELAY_OFFSET) + |
| (rwcfg->mem_dq_per_write_dqs << 2)); |
| |
| /* Per-bit deskew. */ |
| |
| /* |
| * Set the left and right edge of each bit to an illegal value. |
| * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. |
| */ |
| sticky_bit_chk = 0; |
| for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { |
| left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; |
| right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; |
| } |
| |
| /* Search for the left edge of the window for each bit. */ |
| search_left_edge(1, rank_bgn, write_group, 0, test_bgn, |
| &sticky_bit_chk, |
| left_edge, right_edge, 0); |
| |
| /* Search for the right edge of the window for each bit. */ |
| ret = search_right_edge(1, rank_bgn, write_group, 0, |
| start_dqs, 0, |
| &sticky_bit_chk, |
| left_edge, right_edge, 0); |
| if (ret) { |
| set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, |
| CAL_SUBSTAGE_WRITES_CENTER); |
| return -EINVAL; |
| } |
| |
| min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); |
| |
| /* Determine the amount we can change DQS (which is -mid_min). */ |
| orig_mid_min = mid_min; |
| new_dqs = start_dqs; |
| mid_min = 0; |
| debug_cond(DLEVEL == 1, |
| "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", |
| __func__, __LINE__, start_dqs, new_dqs, mid_min); |
| |
| /* Add delay to bring centre of all DQ windows to the same "level". */ |
| center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, |
| min_index, 0, &dq_margin, &dqs_margin); |
| |
| /* Move DQS */ |
| scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); |
| writel(0, &sdr_scc_mgr->update); |
| |
| /* Centre DM */ |
| debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); |
| |
| /* |
| * Set the left and right edge of each bit to an illegal value. |
| * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. |
| */ |
| left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; |
| right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; |
| |
| /* Search for the/part of the window with DM shift. */ |
| search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, |
| &bgn_best, &end_best, &win_best, 0); |
| |
| /* Reset DM delay chains to 0. */ |
| scc_mgr_apply_group_dm_out1_delay(0); |
| |
| /* |
| * Check to see if the current window nudges up aganist 0 delay. |
| * If so we need to continue the search by shifting DQS otherwise DQS |
| * search begins as a new search. |
| */ |
| if (end_curr != 0) { |
| bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| end_curr = IO_IO_OUT1_DELAY_MAX + 1; |
| } |
| |
| /* Search for the/part of the window with DQS shifts. */ |
| search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, |
| &bgn_best, &end_best, &win_best, new_dqs); |
| |
| /* Assign left and right edge for cal and reporting. */ |
| left_edge[0] = -1 * bgn_best; |
| right_edge[0] = end_best; |
| |
| debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", |
| __func__, __LINE__, left_edge[0], right_edge[0]); |
| |
| /* Move DQS (back to orig). */ |
| scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); |
| |
| /* Move DM */ |
| |
| /* Find middle of window for the DM bit. */ |
| mid = (left_edge[0] - right_edge[0]) / 2; |
| |
| /* Only move right, since we are not moving DQS/DQ. */ |
| if (mid < 0) |
| mid = 0; |
| |
| /* dm_marign should fail if we never find a window. */ |
| if (win_best == 0) |
| dm_margin = -1; |
| else |
| dm_margin = left_edge[0] - mid; |
| |
| scc_mgr_apply_group_dm_out1_delay(mid); |
| writel(0, &sdr_scc_mgr->update); |
| |
| debug_cond(DLEVEL == 2, |
| "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", |
| __func__, __LINE__, left_edge[0], right_edge[0], |
| mid, dm_margin); |
| /* Export values. */ |
| gbl->fom_out += dq_margin + dqs_margin; |
| |
| debug_cond(DLEVEL == 2, |
| "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", |
| __func__, __LINE__, dq_margin, dqs_margin, dm_margin); |
| |
| /* |
| * Do not remove this line as it makes sure all of our |
| * decisions have been applied. |
| */ |
| writel(0, &sdr_scc_mgr->update); |
| |
| if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * rw_mgr_mem_calibrate_writes() - Write Calibration Part One |
| * @rank_bgn: Rank number |
| * @group: Read/Write Group |
| * @test_bgn: Rank at which the test begins |
| * |
| * Stage 2: Write Calibration Part One. |
| * |
| * This function implements UniPHY calibration Stage 2, as explained in |
| * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". |
| */ |
| static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, |
| const u32 test_bgn) |
| { |
| int ret; |
| |
| /* Update info for sims */ |
| debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); |
| |
| reg_file_set_group(group); |
| reg_file_set_stage(CAL_STAGE_WRITES); |
| reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); |
| |
| ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); |
| if (ret) |
| set_failing_group_stage(group, CAL_STAGE_WRITES, |
| CAL_SUBSTAGE_WRITES_CENTER); |
| |
| return ret; |
| } |
| |
| /** |
| * mem_precharge_and_activate() - Precharge all banks and activate |
| * |
| * Precharge all banks and activate row 0 in bank "000..." and bank "111...". |
| */ |
| static void mem_precharge_and_activate(void) |
| { |
| int r; |
| |
| for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { |
| /* Set rank. */ |
| set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); |
| |
| /* Precharge all banks. */ |
| writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET); |
| |
| writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); |
| writel(rwcfg->activate_0_and_1_wait1, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add0); |
| |
| writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); |
| writel(rwcfg->activate_0_and_1_wait2, |
| &sdr_rw_load_jump_mgr_regs->load_jump_add1); |
| |
| /* Activate rows. */ |
| writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | |
| RW_MGR_RUN_SINGLE_GROUP_OFFSET); |
| } |
| } |
| |
| /** |
| * mem_init_latency() - Configure memory RLAT and WLAT settings |
| * |
| * Configure memory RLAT and WLAT parameters. |
| */ |
| static void mem_init_latency(void) |
| { |
| /* |
| * For AV/CV, LFIFO is hardened and always runs at full rate |
| * so max latency in AFI clocks, used here, is correspondingly |
| * smaller. |
| */ |
| const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; |
| u32 rlat, wlat; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| /* |
| * Read in write latency. |
| * WL for Hard PHY does not include additive latency. |
| */ |
| wlat = readl(&data_mgr->t_wl_add); |
| wlat += readl(&data_mgr->mem_t_add); |
| |
| gbl->rw_wl_nop_cycles = wlat - 1; |
| |
| /* Read in readl latency. */ |
| rlat = readl(&data_mgr->t_rl_add); |
| |
| /* Set a pretty high read latency initially. */ |
| gbl->curr_read_lat = rlat + 16; |
| if (gbl->curr_read_lat > max_latency) |
| gbl->curr_read_lat = max_latency; |
| |
| writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); |
| |
| /* Advertise write latency. */ |
| writel(wlat, &phy_mgr_cfg->afi_wlat); |
| } |
| |
| /** |
| * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings |
| * |
| * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. |
| */ |
| static void mem_skip_calibrate(void) |
| { |
| uint32_t vfifo_offset; |
| uint32_t i, j, r; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| /* Need to update every shadow register set used by the interface */ |
| for (r = 0; r < rwcfg->mem_number_of_ranks; |
| r += NUM_RANKS_PER_SHADOW_REG) { |
| /* |
| * Set output phase alignment settings appropriate for |
| * skip calibration. |
| */ |
| for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { |
| scc_mgr_set_dqs_en_phase(i, 0); |
| #if IO_DLL_CHAIN_LENGTH == 6 |
| scc_mgr_set_dqdqs_output_phase(i, 6); |
| #else |
| scc_mgr_set_dqdqs_output_phase(i, 7); |
| #endif |
| /* |
| * Case:33398 |
| * |
| * Write data arrives to the I/O two cycles before write |
| * latency is reached (720 deg). |
| * -> due to bit-slip in a/c bus |
| * -> to allow board skew where dqs is longer than ck |
| * -> how often can this happen!? |
| * -> can claim back some ptaps for high freq |
| * support if we can relax this, but i digress... |
| * |
| * The write_clk leads mem_ck by 90 deg |
| * The minimum ptap of the OPA is 180 deg |
| * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay |
| * The write_clk is always delayed by 2 ptaps |
| * |
| * Hence, to make DQS aligned to CK, we need to delay |
| * DQS by: |
| * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) |
| * |
| * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) |
| * gives us the number of ptaps, which simplies to: |
| * |
| * (1.25 * IO_DLL_CHAIN_LENGTH - 2) |
| */ |
| scc_mgr_set_dqdqs_output_phase(i, |
| 1.25 * IO_DLL_CHAIN_LENGTH - 2); |
| } |
| writel(0xff, &sdr_scc_mgr->dqs_ena); |
| writel(0xff, &sdr_scc_mgr->dqs_io_ena); |
| |
| for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { |
| writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | |
| SCC_MGR_GROUP_COUNTER_OFFSET); |
| } |
| writel(0xff, &sdr_scc_mgr->dq_ena); |
| writel(0xff, &sdr_scc_mgr->dm_ena); |
| writel(0, &sdr_scc_mgr->update); |
| } |
| |
| /* Compensate for simulation model behaviour */ |
| for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { |
| scc_mgr_set_dqs_bus_in_delay(i, 10); |
| scc_mgr_load_dqs(i); |
| } |
| writel(0, &sdr_scc_mgr->update); |
| |
| /* |
| * ArriaV has hard FIFOs that can only be initialized by incrementing |
| * in sequencer. |
| */ |
| vfifo_offset = CALIB_VFIFO_OFFSET; |
| for (j = 0; j < vfifo_offset; j++) |
| writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| |
| /* |
| * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal |
| * setting from generation-time constant. |
| */ |
| gbl->curr_read_lat = CALIB_LFIFO_OFFSET; |
| writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); |
| } |
| |
| /** |
| * mem_calibrate() - Memory calibration entry point. |
| * |
| * Perform memory calibration. |
| */ |
| static uint32_t mem_calibrate(void) |
| { |
| uint32_t i; |
| uint32_t rank_bgn, sr; |
| uint32_t write_group, write_test_bgn; |
| uint32_t read_group, read_test_bgn; |
| uint32_t run_groups, current_run; |
| uint32_t failing_groups = 0; |
| uint32_t group_failed = 0; |
| |
| const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width / |
| rwcfg->mem_if_write_dqs_width; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| /* Initialize the data settings */ |
| gbl->error_substage = CAL_SUBSTAGE_NIL; |
| gbl->error_stage = CAL_STAGE_NIL; |
| gbl->error_group = 0xff; |
| gbl->fom_in = 0; |
| gbl->fom_out = 0; |
| |
| /* Initialize WLAT and RLAT. */ |
| mem_init_latency(); |
| |
| /* Initialize bit slips. */ |
| mem_precharge_and_activate(); |
| |
| for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { |
| writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | |
| SCC_MGR_GROUP_COUNTER_OFFSET); |
| /* Only needed once to set all groups, pins, DQ, DQS, DM. */ |
| if (i == 0) |
| scc_mgr_set_hhp_extras(); |
| |
| scc_set_bypass_mode(i); |
| } |
| |
| /* Calibration is skipped. */ |
| if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { |
| /* |
| * Set VFIFO and LFIFO to instant-on settings in skip |
| * calibration mode. |
| */ |
| mem_skip_calibrate(); |
| |
| /* |
| * Do not remove this line as it makes sure all of our |
| * decisions have been applied. |
| */ |
| writel(0, &sdr_scc_mgr->update); |
| return 1; |
| } |
| |
| /* Calibration is not skipped. */ |
| for (i = 0; i < NUM_CALIB_REPEAT; i++) { |
| /* |
| * Zero all delay chain/phase settings for all |
| * groups and all shadow register sets. |
| */ |
| scc_mgr_zero_all(); |
| |
| run_groups = ~0; |
| |
| for (write_group = 0, write_test_bgn = 0; write_group |
| < rwcfg->mem_if_write_dqs_width; write_group++, |
| write_test_bgn += rwcfg->mem_dq_per_write_dqs) { |
| |
| /* Initialize the group failure */ |
| group_failed = 0; |
| |
| current_run = run_groups & ((1 << |
| RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); |
| run_groups = run_groups >> |
| RW_MGR_NUM_DQS_PER_WRITE_GROUP; |
| |
| if (current_run == 0) |
| continue; |
| |
| writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | |
| SCC_MGR_GROUP_COUNTER_OFFSET); |
| scc_mgr_zero_group(write_group, 0); |
| |
| for (read_group = write_group * rwdqs_ratio, |
| read_test_bgn = 0; |
| read_group < (write_group + 1) * rwdqs_ratio; |
| read_group++, |
| read_test_bgn += rwcfg->mem_dq_per_read_dqs) { |
| if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) |
| continue; |
| |
| /* Calibrate the VFIFO */ |
| if (rw_mgr_mem_calibrate_vfifo(read_group, |
| read_test_bgn)) |
| continue; |
| |
| if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) |
| return 0; |
| |
| /* The group failed, we're done. */ |
| goto grp_failed; |
| } |
| |
| /* Calibrate the output side */ |
| for (rank_bgn = 0, sr = 0; |
| rank_bgn < rwcfg->mem_number_of_ranks; |
| rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { |
| if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) |
| continue; |
| |
| /* Not needed in quick mode! */ |
| if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) |
| continue; |
| |
| /* Calibrate WRITEs */ |
| if (!rw_mgr_mem_calibrate_writes(rank_bgn, |
| write_group, write_test_bgn)) |
| continue; |
| |
| group_failed = 1; |
| if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) |
| return 0; |
| } |
| |
| /* Some group failed, we're done. */ |
| if (group_failed) |
| goto grp_failed; |
| |
| for (read_group = write_group * rwdqs_ratio, |
| read_test_bgn = 0; |
| read_group < (write_group + 1) * rwdqs_ratio; |
| read_group++, |
| read_test_bgn += rwcfg->mem_dq_per_read_dqs) { |
| if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) |
| continue; |
| |
| if (!rw_mgr_mem_calibrate_vfifo_end(read_group, |
| read_test_bgn)) |
| continue; |
| |
| if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) |
| return 0; |
| |
| /* The group failed, we're done. */ |
| goto grp_failed; |
| } |
| |
| /* No group failed, continue as usual. */ |
| continue; |
| |
| grp_failed: /* A group failed, increment the counter. */ |
| failing_groups++; |
| } |
| |
| /* |
| * USER If there are any failing groups then report |
| * the failure. |
| */ |
| if (failing_groups != 0) |
| return 0; |
| |
| if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) |
| continue; |
| |
| /* Calibrate the LFIFO */ |
| if (!rw_mgr_mem_calibrate_lfifo()) |
| return 0; |
| } |
| |
| /* |
| * Do not remove this line as it makes sure all of our decisions |
| * have been applied. |
| */ |
| writel(0, &sdr_scc_mgr->update); |
| return 1; |
| } |
| |
| /** |
| * run_mem_calibrate() - Perform memory calibration |
| * |
| * This function triggers the entire memory calibration procedure. |
| */ |
| static int run_mem_calibrate(void) |
| { |
| int pass; |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| |
| /* Reset pass/fail status shown on afi_cal_success/fail */ |
| writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); |
| |
| /* Stop tracking manager. */ |
| clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); |
| |
| phy_mgr_initialize(); |
| rw_mgr_mem_initialize(); |
| |
| /* Perform the actual memory calibration. */ |
| pass = mem_calibrate(); |
| |
| mem_precharge_and_activate(); |
| writel(0, &phy_mgr_cmd->fifo_reset); |
| |
| /* Handoff. */ |
| rw_mgr_mem_handoff(); |
| /* |
| * In Hard PHY this is a 2-bit control: |
| * 0: AFI Mux Select |
| * 1: DDIO Mux Select |
| */ |
| writel(0x2, &phy_mgr_cfg->mux_sel); |
| |
| /* Start tracking manager. */ |
| setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); |
| |
| return pass; |
| } |
| |
| /** |
| * debug_mem_calibrate() - Report result of memory calibration |
| * @pass: Value indicating whether calibration passed or failed |
| * |
| * This function reports the results of the memory calibration |
| * and writes debug information into the register file. |
| */ |
| static void debug_mem_calibrate(int pass) |
| { |
| uint32_t debug_info; |
| |
| if (pass) { |
| printf("%s: CALIBRATION PASSED\n", __FILE__); |
| |
| gbl->fom_in /= 2; |
| gbl->fom_out /= 2; |
| |
| if (gbl->fom_in > 0xff) |
| gbl->fom_in = 0xff; |
| |
| if (gbl->fom_out > 0xff) |
| gbl->fom_out = 0xff; |
| |
| /* Update the FOM in the register file */ |
| debug_info = gbl->fom_in; |
| debug_info |= gbl->fom_out << 8; |
| writel(debug_info, &sdr_reg_file->fom); |
| |
| writel(debug_info, &phy_mgr_cfg->cal_debug_info); |
| writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); |
| } else { |
| printf("%s: CALIBRATION FAILED\n", __FILE__); |
| |
| debug_info = gbl->error_stage; |
| debug_info |= gbl->error_substage << 8; |
| debug_info |= gbl->error_group << 16; |
| |
| writel(debug_info, &sdr_reg_file->failing_stage); |
| writel(debug_info, &phy_mgr_cfg->cal_debug_info); |
| writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); |
| |
| /* Update the failing group/stage in the register file */ |
| debug_info = gbl->error_stage; |
| debug_info |= gbl->error_substage << 8; |
| debug_info |= gbl->error_group << 16; |
| writel(debug_info, &sdr_reg_file->failing_stage); |
| } |
| |
| printf("%s: Calibration complete\n", __FILE__); |
| } |
| |
| /** |
| * hc_initialize_rom_data() - Initialize ROM data |
| * |
| * Initialize ROM data. |
| */ |
| static void hc_initialize_rom_data(void) |
| { |
| unsigned int nelem = 0; |
| const u32 *rom_init; |
| u32 i, addr; |
| |
| socfpga_get_seq_inst_init(&rom_init, &nelem); |
| addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; |
| for (i = 0; i < nelem; i++) |
| writel(rom_init[i], addr + (i << 2)); |
| |
| socfpga_get_seq_ac_init(&rom_init, &nelem); |
| addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; |
| for (i = 0; i < nelem; i++) |
| writel(rom_init[i], addr + (i << 2)); |
| } |
| |
| /** |
| * initialize_reg_file() - Initialize SDR register file |
| * |
| * Initialize SDR register file. |
| */ |
| static void initialize_reg_file(void) |
| { |
| /* Initialize the register file with the correct data */ |
| writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); |
| writel(0, &sdr_reg_file->debug_data_addr); |
| writel(0, &sdr_reg_file->cur_stage); |
| writel(0, &sdr_reg_file->fom); |
| writel(0, &sdr_reg_file->failing_stage); |
| writel(0, &sdr_reg_file->debug1); |
| writel(0, &sdr_reg_file->debug2); |
| } |
| |
| /** |
| * initialize_hps_phy() - Initialize HPS PHY |
| * |
| * Initialize HPS PHY. |
| */ |
| static void initialize_hps_phy(void) |
| { |
| uint32_t reg; |
| /* |
| * Tracking also gets configured here because it's in the |
| * same register. |
| */ |
| uint32_t trk_sample_count = 7500; |
| uint32_t trk_long_idle_sample_count = (10 << 16) | 100; |
| /* |
| * Format is number of outer loops in the 16 MSB, sample |
| * count in 16 LSB. |
| */ |
| |
| reg = 0; |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); |
| /* |
| * This field selects the intrinsic latency to RDATA_EN/FULL path. |
| * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. |
| */ |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( |
| trk_sample_count); |
| writel(reg, &sdr_ctrl->phy_ctrl0); |
| |
| reg = 0; |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( |
| trk_sample_count >> |
| SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( |
| trk_long_idle_sample_count); |
| writel(reg, &sdr_ctrl->phy_ctrl1); |
| |
| reg = 0; |
| reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( |
| trk_long_idle_sample_count >> |
| SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); |
| writel(reg, &sdr_ctrl->phy_ctrl2); |
| } |
| |
| /** |
| * initialize_tracking() - Initialize tracking |
| * |
| * Initialize the register file with usable initial data. |
| */ |
| static void initialize_tracking(void) |
| { |
| /* |
| * Initialize the register file with the correct data. |
| * Compute usable version of value in case we skip full |
| * computation later. |
| */ |
| writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, |
| &sdr_reg_file->dtaps_per_ptap); |
| |
| /* trk_sample_count */ |
| writel(7500, &sdr_reg_file->trk_sample_count); |
| |
| /* longidle outer loop [15:0] */ |
| writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); |
| |
| /* |
| * longidle sample count [31:24] |
| * trfc, worst case of 933Mhz 4Gb [23:16] |
| * trcd, worst case [15:8] |
| * vfifo wait [7:0] |
| */ |
| writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), |
| &sdr_reg_file->delays); |
| |
| /* mux delay */ |
| writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) | |
| (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0), |
| &sdr_reg_file->trk_rw_mgr_addr); |
| |
| writel(rwcfg->mem_if_read_dqs_width, |
| &sdr_reg_file->trk_read_dqs_width); |
| |
| /* trefi [7:0] */ |
| writel((rwcfg->refresh_all << 24) | (1000 << 0), |
| &sdr_reg_file->trk_rfsh); |
| } |
| |
| int sdram_calibration_full(void) |
| { |
| struct param_type my_param; |
| struct gbl_type my_gbl; |
| uint32_t pass; |
| |
| memset(&my_param, 0, sizeof(my_param)); |
| memset(&my_gbl, 0, sizeof(my_gbl)); |
| |
| param = &my_param; |
| gbl = &my_gbl; |
| |
| rwcfg = socfpga_get_sdram_rwmgr_config(); |
| iocfg = socfpga_get_sdram_io_config(); |
| |
| /* Set the calibration enabled by default */ |
| gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; |
| /* |
| * Only sweep all groups (regardless of fail state) by default |
| * Set enabled read test by default. |
| */ |
| #if DISABLE_GUARANTEED_READ |
| gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; |
| #endif |
| /* Initialize the register file */ |
| initialize_reg_file(); |
| |
| /* Initialize any PHY CSR */ |
| initialize_hps_phy(); |
| |
| scc_mgr_initialize(); |
| |
| initialize_tracking(); |
| |
| printf("%s: Preparing to start memory calibration\n", __FILE__); |
| |
| debug("%s:%d\n", __func__, __LINE__); |
| debug_cond(DLEVEL == 1, |
| "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", |
| rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm, |
| rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs, |
| rwcfg->mem_virtual_groups_per_read_dqs, |
| rwcfg->mem_virtual_groups_per_write_dqs); |
| debug_cond(DLEVEL == 1, |
| "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", |
| rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width, |
| rwcfg->mem_data_width, rwcfg->mem_data_mask_width, |
| IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); |
| debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", |
| IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); |
| debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", |
| IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, |
| IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); |
| debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", |
| IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, |
| IO_IO_OUT2_DELAY_MAX); |
| debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", |
| IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); |
| |
| hc_initialize_rom_data(); |
| |
| /* update info for sims */ |
| reg_file_set_stage(CAL_STAGE_NIL); |
| reg_file_set_group(0); |
| |
| /* |
| * Load global needed for those actions that require |
| * some dynamic calibration support. |
| */ |
| dyn_calib_steps = STATIC_CALIB_STEPS; |
| /* |
| * Load global to allow dynamic selection of delay loop settings |
| * based on calibration mode. |
| */ |
| if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) |
| skip_delay_mask = 0xff; |
| else |
| skip_delay_mask = 0x0; |
| |
| pass = run_mem_calibrate(); |
| debug_mem_calibrate(pass); |
| return pass; |
| } |