blob: d42b00da2fe6c72a08a674f83b08dc921e35556c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2016 General Electric Company
*/
#include "vpd_reader.h"
#include <malloc.h>
#include <i2c.h>
#include <linux/bch.h>
#include <stdlib.h>
#include <dm/uclass.h>
#include <i2c_eeprom.h>
#include <hexdump.h>
/* BCH configuration */
const struct {
int header_ecc_capability_bits;
int data_ecc_capability_bits;
unsigned int prim_poly;
struct {
int min;
int max;
} galois_field_order;
} bch_configuration = {
.header_ecc_capability_bits = 4,
.data_ecc_capability_bits = 16,
.prim_poly = 0,
.galois_field_order = {
.min = 5,
.max = 15,
},
};
static int calculate_galois_field_order(size_t source_length)
{
int gfo = bch_configuration.galois_field_order.min;
for (; gfo < bch_configuration.galois_field_order.max &&
((((1 << gfo) - 1) - ((int)source_length * 8)) < 0);
gfo++) {
}
if (gfo == bch_configuration.galois_field_order.max)
return -1;
return gfo + 1;
}
static int verify_bch(int ecc_bits, unsigned int prim_poly, u8 *data,
size_t data_length, const u8 *ecc, size_t ecc_length)
{
int gfo = calculate_galois_field_order(data_length);
if (gfo < 0)
return -1;
struct bch_control *bch = init_bch(gfo, ecc_bits, prim_poly);
if (!bch)
return -1;
if (bch->ecc_bytes != ecc_length) {
free_bch(bch);
return -1;
}
unsigned int *errloc = (unsigned int *)calloc(data_length,
sizeof(unsigned int));
int errors = decode_bch(bch, data, data_length, ecc, NULL, NULL,
errloc);
free_bch(bch);
if (errors < 0) {
free(errloc);
return -1;
}
if (errors > 0) {
for (int n = 0; n < errors; n++) {
if (errloc[n] >= 8 * data_length) {
/*
* n-th error located in ecc (no need for data
* correction)
*/
} else {
/* n-th error located in data */
data[errloc[n] / 8] ^= 1 << (errloc[n] % 8);
}
}
}
free(errloc);
return 0;
}
static const int ID;
static const int LEN = 1;
static const int VER = 2;
static const int TYP = 3;
static const int BLOCK_SIZE = 4;
static const u8 HEADER_BLOCK_ID;
static const u8 HEADER_BLOCK_LEN = 18;
static const u32 HEADER_BLOCK_MAGIC = 0xca53ca53;
static const size_t HEADER_BLOCK_VERIFY_LEN = 14;
static const size_t HEADER_BLOCK_ECC_OFF = 14;
static const size_t HEADER_BLOCK_ECC_LEN = 4;
static const u8 ECC_BLOCK_ID = 0xFF;
static int vpd_reader(size_t size, u8 *data, struct vpd_cache *userdata,
int (*fn)(struct vpd_cache *, u8 id, u8 version, u8 type,
size_t size, u8 const *data))
{
if (size < HEADER_BLOCK_LEN || !data || !fn)
return -EINVAL;
/*
* +--------------------+----------------+--//--+--------------------+
* | header block | data block | ... | ecc block |
* +--------------------+----------------+--//--+--------------------+
* : : :
* +------+-------+-----+ +------+-------------+
* | id | magic | ecc | | ... | ecc |
* | len | off | | +------+-------------+
* | ver | size | | :
* | type | | | :
* +------+-------+-----+ :
* : : : :
* <----- [1] ----> <--------- [2] --------->
*
* Repair (if necessary) the contents of header block [1] by using a
* 4 byte ECC located at the end of the header block. A successful
* return value means that we can trust the header.
*/
int ret = verify_bch(bch_configuration.header_ecc_capability_bits,
bch_configuration.prim_poly, data,
HEADER_BLOCK_VERIFY_LEN,
&data[HEADER_BLOCK_ECC_OFF], HEADER_BLOCK_ECC_LEN);
if (ret < 0)
return ret;
/* Validate header block { id, length, version, type }. */
if (data[ID] != HEADER_BLOCK_ID || data[LEN] != HEADER_BLOCK_LEN ||
data[VER] != 0 || data[TYP] != 0 ||
ntohl(*(u32 *)(&data[4])) != HEADER_BLOCK_MAGIC)
return -EINVAL;
u32 offset = ntohl(*(u32 *)(&data[8]));
u16 size_bits = ntohs(*(u16 *)(&data[12]));
/* Check that ECC header fits. */
if (offset + 3 >= size)
return -EINVAL;
/* Validate ECC block. */
u8 *ecc = &data[offset];
if (ecc[ID] != ECC_BLOCK_ID || ecc[LEN] < BLOCK_SIZE ||
ecc[LEN] + offset > size ||
ecc[LEN] - BLOCK_SIZE != size_bits / 8 || ecc[VER] != 1 ||
ecc[TYP] != 1)
return -EINVAL;
/*
* Use the header block to locate the ECC block and verify the data
* blocks [2] against the ecc block ECC.
*/
ret = verify_bch(bch_configuration.data_ecc_capability_bits,
bch_configuration.prim_poly, &data[data[LEN]],
offset - data[LEN], &data[offset + BLOCK_SIZE],
ecc[LEN] - BLOCK_SIZE);
if (ret < 0)
return ret;
/* Stop after ECC. Ignore possible zero padding. */
size = offset;
for (;;) {
/* Move to next block. */
size -= data[LEN];
data += data[LEN];
if (size == 0) {
/* Finished iterating through blocks. */
return 0;
}
if (size < BLOCK_SIZE || data[LEN] < BLOCK_SIZE) {
/* Not enough data for a header, or short header. */
return -EINVAL;
}
ret = fn(userdata, data[ID], data[VER], data[TYP],
data[LEN] - BLOCK_SIZE, &data[BLOCK_SIZE]);
if (ret)
return ret;
}
}
int read_vpd(struct vpd_cache *cache,
int (*process_block)(struct vpd_cache *, u8 id, u8 version,
u8 type, size_t size, u8 const *data))
{
struct udevice *dev;
int ret;
u8 *data;
int size;
ret = uclass_get_device_by_name(UCLASS_I2C_EEPROM, "vpd", &dev);
if (ret)
return ret;
size = i2c_eeprom_size(dev);
if (size < 0) {
printf("Unable to get size of eeprom: %d\n", ret);
return ret;
}
data = malloc(size);
if (!data)
return -ENOMEM;
ret = i2c_eeprom_read(dev, 0, data, size);
if (ret) {
free(data);
return ret;
}
ret = vpd_reader(size, data, cache, process_block);
free(data);
return ret;
}