blob: ac6285aa5f2eb6cae88a0a17f57c911fc54e04b4 [file] [log] [blame]
#ifndef _I386_BITOPS_H
#define _I386_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/
#ifdef CONFIG_SMP
#define LOCK_PREFIX "lock ; "
#else
#define LOCK_PREFIX ""
#endif
#define ADDR (*(volatile long *) addr)
/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void set_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btsl %1,%0"
:"=m" (ADDR)
:"Ir" (nr));
}
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __set_bit(int nr, volatile void * addr)
{
__asm__(
"btsl %1,%0"
:"=m" (ADDR)
:"Ir" (nr));
}
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
static __inline__ void clear_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btrl %1,%0"
:"=m" (ADDR)
:"Ir" (nr));
}
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void __change_bit(int nr, volatile void * addr)
{
__asm__ __volatile__(
"btcl %1,%0"
:"=m" (ADDR)
:"Ir" (nr));
}
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void change_bit(int nr, volatile void * addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btcl %1,%0"
:"=m" (ADDR)
:"Ir" (nr));
}
/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btsl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr) : "memory");
return oldbit;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__(
"btsl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr));
return oldbit;
}
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btrl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr) : "memory");
return oldbit;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__(
"btrl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr));
return oldbit;
}
/* WARNING: non atomic and it can be reordered! */
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__(
"btcl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr) : "memory");
return oldbit;
}
/**
* test_and_change_bit - Change a bit and return its new value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__( LOCK_PREFIX
"btcl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"Ir" (nr) : "memory");
return oldbit;
}
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static int test_bit(int nr, const volatile void * addr);
#endif
static __inline__ int constant_test_bit(int nr, const volatile void * addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
static __inline__ int variable_test_bit(int nr, volatile void * addr)
{
int oldbit;
__asm__ __volatile__(
"btl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit)
:"m" (ADDR),"Ir" (nr));
return oldbit;
}
#define test_bit(nr,addr) \
(__builtin_constant_p(nr) ? \
constant_test_bit((nr),(addr)) : \
variable_test_bit((nr),(addr)))
/**
* find_first_zero_bit - find the first zero bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
static __inline__ int find_first_zero_bit(void * addr, unsigned size)
{
int d0, d1, d2;
int res;
if (!size)
return 0;
/* This looks at memory. Mark it volatile to tell gcc not to move it around */
__asm__ __volatile__(
"movl $-1,%%eax\n\t"
"xorl %%edx,%%edx\n\t"
"repe; scasl\n\t"
"je 1f\n\t"
"xorl -4(%%edi),%%eax\n\t"
"subl $4,%%edi\n\t"
"bsfl %%eax,%%edx\n"
"1:\tsubl %%ebx,%%edi\n\t"
"shll $3,%%edi\n\t"
"addl %%edi,%%edx"
:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
return res;
}
/**
* find_next_zero_bit - find the first zero bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
int set = 0, bit = offset & 31, res;
if (bit) {
/*
* Look for zero in first byte
*/
__asm__("bsfl %1,%0\n\t"
"jne 1f\n\t"
"movl $32, %0\n"
"1:"
: "=r" (set)
: "r" (~(*p >> bit)));
if (set < (32 - bit))
return set + offset;
set = 32 - bit;
p++;
}
/*
* No zero yet, search remaining full bytes for a zero
*/
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
return (offset + set + res);
}
/**
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
static __inline__ unsigned long ffz(unsigned long word)
{
__asm__("bsfl %1,%0"
:"=r" (word)
:"r" (~word));
return word;
}
#ifdef __KERNEL__
/**
* ffs - find first bit set
* @x: the word to search
*
* This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static __inline__ int ffs(int x)
{
int r;
__asm__("bsfl %1,%0\n\t"
"jnz 1f\n\t"
"movl $-1,%0\n"
"1:" : "=r" (r) : "g" (x));
return r+1;
}
#define ffs
/**
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#endif /* __KERNEL__ */
#ifdef __KERNEL__
#define ext2_set_bit __test_and_set_bit
#define ext2_clear_bit __test_and_clear_bit
#define ext2_test_bit test_bit
#define ext2_find_first_zero_bit find_first_zero_bit
#define ext2_find_next_zero_bit find_next_zero_bit
/* Bitmap functions for the minix filesystem. */
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* _I386_BITOPS_H */