| /* |
| * Overview: |
| * This is the generic MTD driver for NAND flash devices. It should be |
| * capable of working with almost all NAND chips currently available. |
| * |
| * Additional technical information is available on |
| * http://www.linux-mtd.infradead.org/doc/nand.html |
| * |
| * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) |
| * 2002-2006 Thomas Gleixner (tglx@linutronix.de) |
| * |
| * Credits: |
| * David Woodhouse for adding multichip support |
| * |
| * Aleph One Ltd. and Toby Churchill Ltd. for supporting the |
| * rework for 2K page size chips |
| * |
| * TODO: |
| * Enable cached programming for 2k page size chips |
| * Check, if mtd->ecctype should be set to MTD_ECC_HW |
| * if we have HW ECC support. |
| * BBT table is not serialized, has to be fixed |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <common.h> |
| #if CONFIG_IS_ENABLED(OF_CONTROL) |
| #include <fdtdec.h> |
| #endif |
| #include <malloc.h> |
| #include <watchdog.h> |
| #include <linux/err.h> |
| #include <linux/compat.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/nand_bch.h> |
| #ifdef CONFIG_MTD_PARTITIONS |
| #include <linux/mtd/partitions.h> |
| #endif |
| #include <asm/io.h> |
| #include <linux/errno.h> |
| |
| /* Define default oob placement schemes for large and small page devices */ |
| static struct nand_ecclayout nand_oob_8 = { |
| .eccbytes = 3, |
| .eccpos = {0, 1, 2}, |
| .oobfree = { |
| {.offset = 3, |
| .length = 2}, |
| {.offset = 6, |
| .length = 2} } |
| }; |
| |
| static struct nand_ecclayout nand_oob_16 = { |
| .eccbytes = 6, |
| .eccpos = {0, 1, 2, 3, 6, 7}, |
| .oobfree = { |
| {.offset = 8, |
| . length = 8} } |
| }; |
| |
| static struct nand_ecclayout nand_oob_64 = { |
| .eccbytes = 24, |
| .eccpos = { |
| 40, 41, 42, 43, 44, 45, 46, 47, |
| 48, 49, 50, 51, 52, 53, 54, 55, |
| 56, 57, 58, 59, 60, 61, 62, 63}, |
| .oobfree = { |
| {.offset = 2, |
| .length = 38} } |
| }; |
| |
| static struct nand_ecclayout nand_oob_128 = { |
| .eccbytes = 48, |
| .eccpos = { |
| 80, 81, 82, 83, 84, 85, 86, 87, |
| 88, 89, 90, 91, 92, 93, 94, 95, |
| 96, 97, 98, 99, 100, 101, 102, 103, |
| 104, 105, 106, 107, 108, 109, 110, 111, |
| 112, 113, 114, 115, 116, 117, 118, 119, |
| 120, 121, 122, 123, 124, 125, 126, 127}, |
| .oobfree = { |
| {.offset = 2, |
| .length = 78} } |
| }; |
| |
| static int nand_get_device(struct mtd_info *mtd, int new_state); |
| |
| static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops); |
| |
| /* |
| * For devices which display every fart in the system on a separate LED. Is |
| * compiled away when LED support is disabled. |
| */ |
| DEFINE_LED_TRIGGER(nand_led_trigger); |
| |
| static int check_offs_len(struct mtd_info *mtd, |
| loff_t ofs, uint64_t len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| /* Start address must align on block boundary */ |
| if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { |
| pr_debug("%s: unaligned address\n", __func__); |
| ret = -EINVAL; |
| } |
| |
| /* Length must align on block boundary */ |
| if (len & ((1ULL << chip->phys_erase_shift) - 1)) { |
| pr_debug("%s: length not block aligned\n", __func__); |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * nand_release_device - [GENERIC] release chip |
| * @mtd: MTD device structure |
| * |
| * Release chip lock and wake up anyone waiting on the device. |
| */ |
| static void nand_release_device(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* De-select the NAND device */ |
| chip->select_chip(mtd, -1); |
| } |
| |
| /** |
| * nand_read_byte - [DEFAULT] read one byte from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 8bit buswidth |
| */ |
| uint8_t nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| return readb(chip->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 16bit buswidth with endianness conversion. |
| * |
| */ |
| static uint8_t nand_read_byte16(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); |
| } |
| |
| /** |
| * nand_read_word - [DEFAULT] read one word from the chip |
| * @mtd: MTD device structure |
| * |
| * Default read function for 16bit buswidth without endianness conversion. |
| */ |
| static u16 nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| return readw(chip->IO_ADDR_R); |
| } |
| |
| /** |
| * nand_select_chip - [DEFAULT] control CE line |
| * @mtd: MTD device structure |
| * @chipnr: chipnumber to select, -1 for deselect |
| * |
| * Default select function for 1 chip devices. |
| */ |
| static void nand_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| switch (chipnr) { |
| case -1: |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); |
| break; |
| case 0: |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * nand_write_byte - [DEFAULT] write single byte to chip |
| * @mtd: MTD device structure |
| * @byte: value to write |
| * |
| * Default function to write a byte to I/O[7:0] |
| */ |
| static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| chip->write_buf(mtd, &byte, 1); |
| } |
| |
| /** |
| * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 |
| * @mtd: MTD device structure |
| * @byte: value to write |
| * |
| * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. |
| */ |
| static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| uint16_t word = byte; |
| |
| /* |
| * It's not entirely clear what should happen to I/O[15:8] when writing |
| * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: |
| * |
| * When the host supports a 16-bit bus width, only data is |
| * transferred at the 16-bit width. All address and command line |
| * transfers shall use only the lower 8-bits of the data bus. During |
| * command transfers, the host may place any value on the upper |
| * 8-bits of the data bus. During address transfers, the host shall |
| * set the upper 8-bits of the data bus to 00h. |
| * |
| * One user of the write_byte callback is nand_onfi_set_features. The |
| * four parameters are specified to be written to I/O[7:0], but this is |
| * neither an address nor a command transfer. Let's assume a 0 on the |
| * upper I/O lines is OK. |
| */ |
| chip->write_buf(mtd, (uint8_t *)&word, 2); |
| } |
| |
| static void iowrite8_rep(void *addr, const uint8_t *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| writeb(buf[i], addr); |
| } |
| static void ioread8_rep(void *addr, uint8_t *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = readb(addr); |
| } |
| |
| static void ioread16_rep(void *addr, void *buf, int len) |
| { |
| int i; |
| u16 *p = (u16 *) buf; |
| |
| for (i = 0; i < len; i++) |
| p[i] = readw(addr); |
| } |
| |
| static void iowrite16_rep(void *addr, void *buf, int len) |
| { |
| int i; |
| u16 *p = (u16 *) buf; |
| |
| for (i = 0; i < len; i++) |
| writew(p[i], addr); |
| } |
| |
| /** |
| * nand_write_buf - [DEFAULT] write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * Default write function for 8bit buswidth. |
| */ |
| void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| iowrite8_rep(chip->IO_ADDR_W, buf, len); |
| } |
| |
| /** |
| * nand_read_buf - [DEFAULT] read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * Default read function for 8bit buswidth. |
| */ |
| void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| ioread8_rep(chip->IO_ADDR_R, buf, len); |
| } |
| |
| /** |
| * nand_write_buf16 - [DEFAULT] write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| * |
| * Default write function for 16bit buswidth. |
| */ |
| void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u16 *p = (u16 *) buf; |
| |
| iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); |
| } |
| |
| /** |
| * nand_read_buf16 - [DEFAULT] read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| * |
| * Default read function for 16bit buswidth. |
| */ |
| void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u16 *p = (u16 *) buf; |
| |
| ioread16_rep(chip->IO_ADDR_R, p, len >> 1); |
| } |
| |
| /** |
| * nand_block_bad - [DEFAULT] Read bad block marker from the chip |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * Check, if the block is bad. |
| */ |
| static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) |
| { |
| int page, res = 0, i = 0; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u16 bad; |
| |
| if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) |
| ofs += mtd->erasesize - mtd->writesize; |
| |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| |
| do { |
| if (chip->options & NAND_BUSWIDTH_16) { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, |
| chip->badblockpos & 0xFE, page); |
| bad = cpu_to_le16(chip->read_word(mtd)); |
| if (chip->badblockpos & 0x1) |
| bad >>= 8; |
| else |
| bad &= 0xFF; |
| } else { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, |
| page); |
| bad = chip->read_byte(mtd); |
| } |
| |
| if (likely(chip->badblockbits == 8)) |
| res = bad != 0xFF; |
| else |
| res = hweight8(bad) < chip->badblockbits; |
| ofs += mtd->writesize; |
| page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
| i++; |
| } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE)); |
| |
| return res; |
| } |
| |
| /** |
| * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * This is the default implementation, which can be overridden by a hardware |
| * specific driver. It provides the details for writing a bad block marker to a |
| * block. |
| */ |
| static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtd_oob_ops ops; |
| uint8_t buf[2] = { 0, 0 }; |
| int ret = 0, res, i = 0; |
| |
| memset(&ops, 0, sizeof(ops)); |
| ops.oobbuf = buf; |
| ops.ooboffs = chip->badblockpos; |
| if (chip->options & NAND_BUSWIDTH_16) { |
| ops.ooboffs &= ~0x01; |
| ops.len = ops.ooblen = 2; |
| } else { |
| ops.len = ops.ooblen = 1; |
| } |
| ops.mode = MTD_OPS_PLACE_OOB; |
| |
| /* Write to first/last page(s) if necessary */ |
| if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) |
| ofs += mtd->erasesize - mtd->writesize; |
| do { |
| res = nand_do_write_oob(mtd, ofs, &ops); |
| if (!ret) |
| ret = res; |
| |
| i++; |
| ofs += mtd->writesize; |
| } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_block_markbad_lowlevel - mark a block bad |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * This function performs the generic NAND bad block marking steps (i.e., bad |
| * block table(s) and/or marker(s)). We only allow the hardware driver to |
| * specify how to write bad block markers to OOB (chip->block_markbad). |
| * |
| * We try operations in the following order: |
| * (1) erase the affected block, to allow OOB marker to be written cleanly |
| * (2) write bad block marker to OOB area of affected block (unless flag |
| * NAND_BBT_NO_OOB_BBM is present) |
| * (3) update the BBT |
| * Note that we retain the first error encountered in (2) or (3), finish the |
| * procedures, and dump the error in the end. |
| */ |
| static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int res, ret = 0; |
| |
| if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { |
| struct erase_info einfo; |
| |
| /* Attempt erase before marking OOB */ |
| memset(&einfo, 0, sizeof(einfo)); |
| einfo.mtd = mtd; |
| einfo.addr = ofs; |
| einfo.len = 1ULL << chip->phys_erase_shift; |
| nand_erase_nand(mtd, &einfo, 0); |
| |
| /* Write bad block marker to OOB */ |
| nand_get_device(mtd, FL_WRITING); |
| ret = chip->block_markbad(mtd, ofs); |
| nand_release_device(mtd); |
| } |
| |
| /* Mark block bad in BBT */ |
| if (chip->bbt) { |
| res = nand_markbad_bbt(mtd, ofs); |
| if (!ret) |
| ret = res; |
| } |
| |
| if (!ret) |
| mtd->ecc_stats.badblocks++; |
| |
| return ret; |
| } |
| |
| /** |
| * nand_check_wp - [GENERIC] check if the chip is write protected |
| * @mtd: MTD device structure |
| * |
| * Check, if the device is write protected. The function expects, that the |
| * device is already selected. |
| */ |
| static int nand_check_wp(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* Broken xD cards report WP despite being writable */ |
| if (chip->options & NAND_BROKEN_XD) |
| return 0; |
| |
| /* Check the WP bit */ |
| chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; |
| } |
| |
| /** |
| * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * |
| * Check if the block is marked as reserved. |
| */ |
| static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (!chip->bbt) |
| return 0; |
| /* Return info from the table */ |
| return nand_isreserved_bbt(mtd, ofs); |
| } |
| |
| /** |
| * nand_block_checkbad - [GENERIC] Check if a block is marked bad |
| * @mtd: MTD device structure |
| * @ofs: offset from device start |
| * @allowbbt: 1, if its allowed to access the bbt area |
| * |
| * Check, if the block is bad. Either by reading the bad block table or |
| * calling of the scan function. |
| */ |
| static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| if (!(chip->options & NAND_SKIP_BBTSCAN) && |
| !(chip->options & NAND_BBT_SCANNED)) { |
| chip->options |= NAND_BBT_SCANNED; |
| chip->scan_bbt(mtd); |
| } |
| |
| if (!chip->bbt) |
| return chip->block_bad(mtd, ofs); |
| |
| /* Return info from the table */ |
| return nand_isbad_bbt(mtd, ofs, allowbbt); |
| } |
| |
| /** |
| * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. |
| * @mtd: MTD device structure |
| * |
| * Wait for the ready pin after a command, and warn if a timeout occurs. |
| */ |
| void nand_wait_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u32 timeo = (CONFIG_SYS_HZ * 400) / 1000; |
| u32 time_start; |
| |
| time_start = get_timer(0); |
| /* Wait until command is processed or timeout occurs */ |
| while (get_timer(time_start) < timeo) { |
| if (chip->dev_ready) |
| if (chip->dev_ready(mtd)) |
| break; |
| } |
| |
| if (!chip->dev_ready(mtd)) |
| pr_warn("timeout while waiting for chip to become ready\n"); |
| } |
| EXPORT_SYMBOL_GPL(nand_wait_ready); |
| |
| /** |
| * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. |
| * @mtd: MTD device structure |
| * @timeo: Timeout in ms |
| * |
| * Wait for status ready (i.e. command done) or timeout. |
| */ |
| static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) |
| { |
| register struct nand_chip *chip = mtd_to_nand(mtd); |
| u32 time_start; |
| |
| timeo = (CONFIG_SYS_HZ * timeo) / 1000; |
| time_start = get_timer(0); |
| while (get_timer(time_start) < timeo) { |
| if ((chip->read_byte(mtd) & NAND_STATUS_READY)) |
| break; |
| WATCHDOG_RESET(); |
| } |
| }; |
| |
| /** |
| * nand_command - [DEFAULT] Send command to NAND device |
| * @mtd: MTD device structure |
| * @command: the command to be sent |
| * @column: the column address for this command, -1 if none |
| * @page_addr: the page address for this command, -1 if none |
| * |
| * Send command to NAND device. This function is used for small page devices |
| * (512 Bytes per page). |
| */ |
| static void nand_command(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| register struct nand_chip *chip = mtd_to_nand(mtd); |
| int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; |
| |
| /* Write out the command to the device */ |
| if (command == NAND_CMD_SEQIN) { |
| int readcmd; |
| |
| if (column >= mtd->writesize) { |
| /* OOB area */ |
| column -= mtd->writesize; |
| readcmd = NAND_CMD_READOOB; |
| } else if (column < 256) { |
| /* First 256 bytes --> READ0 */ |
| readcmd = NAND_CMD_READ0; |
| } else { |
| column -= 256; |
| readcmd = NAND_CMD_READ1; |
| } |
| chip->cmd_ctrl(mtd, readcmd, ctrl); |
| ctrl &= ~NAND_CTRL_CHANGE; |
| } |
| chip->cmd_ctrl(mtd, command, ctrl); |
| |
| /* Address cycle, when necessary */ |
| ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (chip->options & NAND_BUSWIDTH_16 && |
| !nand_opcode_8bits(command)) |
| column >>= 1; |
| chip->cmd_ctrl(mtd, column, ctrl); |
| ctrl &= ~NAND_CTRL_CHANGE; |
| } |
| if (page_addr != -1) { |
| chip->cmd_ctrl(mtd, page_addr, ctrl); |
| ctrl &= ~NAND_CTRL_CHANGE; |
| chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); |
| /* One more address cycle for devices > 32MiB */ |
| if (chip->chipsize > (32 << 20)) |
| chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); |
| } |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| /* |
| * Program and erase have their own busy handlers status and sequential |
| * in needs no delay |
| */ |
| switch (command) { |
| |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_READID: |
| case NAND_CMD_SET_FEATURES: |
| return; |
| |
| case NAND_CMD_RESET: |
| if (chip->dev_ready) |
| break; |
| udelay(chip->chip_delay); |
| chip->cmd_ctrl(mtd, NAND_CMD_STATUS, |
| NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| chip->cmd_ctrl(mtd, |
| NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ |
| nand_wait_status_ready(mtd, 250); |
| return; |
| |
| /* This applies to read commands */ |
| default: |
| /* |
| * If we don't have access to the busy pin, we apply the given |
| * command delay |
| */ |
| if (!chip->dev_ready) { |
| udelay(chip->chip_delay); |
| return; |
| } |
| } |
| /* |
| * Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. |
| */ |
| ndelay(100); |
| |
| nand_wait_ready(mtd); |
| } |
| |
| /** |
| * nand_command_lp - [DEFAULT] Send command to NAND large page device |
| * @mtd: MTD device structure |
| * @command: the command to be sent |
| * @column: the column address for this command, -1 if none |
| * @page_addr: the page address for this command, -1 if none |
| * |
| * Send command to NAND device. This is the version for the new large page |
| * devices. We don't have the separate regions as we have in the small page |
| * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. |
| */ |
| static void nand_command_lp(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| register struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* Emulate NAND_CMD_READOOB */ |
| if (command == NAND_CMD_READOOB) { |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; |
| } |
| |
| /* Command latch cycle */ |
| chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| |
| if (column != -1 || page_addr != -1) { |
| int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; |
| |
| /* Serially input address */ |
| if (column != -1) { |
| /* Adjust columns for 16 bit buswidth */ |
| if (chip->options & NAND_BUSWIDTH_16 && |
| !nand_opcode_8bits(command)) |
| column >>= 1; |
| chip->cmd_ctrl(mtd, column, ctrl); |
| ctrl &= ~NAND_CTRL_CHANGE; |
| chip->cmd_ctrl(mtd, column >> 8, ctrl); |
| } |
| if (page_addr != -1) { |
| chip->cmd_ctrl(mtd, page_addr, ctrl); |
| chip->cmd_ctrl(mtd, page_addr >> 8, |
| NAND_NCE | NAND_ALE); |
| /* One more address cycle for devices > 128MiB */ |
| if (chip->chipsize > (128 << 20)) |
| chip->cmd_ctrl(mtd, page_addr >> 16, |
| NAND_NCE | NAND_ALE); |
| } |
| } |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| /* |
| * Program and erase have their own busy handlers status, sequential |
| * in and status need no delay. |
| */ |
| switch (command) { |
| |
| case NAND_CMD_CACHEDPROG: |
| case NAND_CMD_PAGEPROG: |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| case NAND_CMD_SEQIN: |
| case NAND_CMD_RNDIN: |
| case NAND_CMD_STATUS: |
| case NAND_CMD_READID: |
| case NAND_CMD_SET_FEATURES: |
| return; |
| |
| case NAND_CMD_RESET: |
| if (chip->dev_ready) |
| break; |
| udelay(chip->chip_delay); |
| chip->cmd_ctrl(mtd, NAND_CMD_STATUS, |
| NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, |
| NAND_NCE | NAND_CTRL_CHANGE); |
| /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ |
| nand_wait_status_ready(mtd, 250); |
| return; |
| |
| case NAND_CMD_RNDOUT: |
| /* No ready / busy check necessary */ |
| chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, |
| NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, |
| NAND_NCE | NAND_CTRL_CHANGE); |
| return; |
| |
| case NAND_CMD_READ0: |
| chip->cmd_ctrl(mtd, NAND_CMD_READSTART, |
| NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, |
| NAND_NCE | NAND_CTRL_CHANGE); |
| |
| /* This applies to read commands */ |
| default: |
| /* |
| * If we don't have access to the busy pin, we apply the given |
| * command delay. |
| */ |
| if (!chip->dev_ready) { |
| udelay(chip->chip_delay); |
| return; |
| } |
| } |
| |
| /* |
| * Apply this short delay always to ensure that we do wait tWB in |
| * any case on any machine. |
| */ |
| ndelay(100); |
| |
| nand_wait_ready(mtd); |
| } |
| |
| /** |
| * panic_nand_get_device - [GENERIC] Get chip for selected access |
| * @chip: the nand chip descriptor |
| * @mtd: MTD device structure |
| * @new_state: the state which is requested |
| * |
| * Used when in panic, no locks are taken. |
| */ |
| static void panic_nand_get_device(struct nand_chip *chip, |
| struct mtd_info *mtd, int new_state) |
| { |
| /* Hardware controller shared among independent devices */ |
| chip->controller->active = chip; |
| chip->state = new_state; |
| } |
| |
| /** |
| * nand_get_device - [GENERIC] Get chip for selected access |
| * @mtd: MTD device structure |
| * @new_state: the state which is requested |
| * |
| * Get the device and lock it for exclusive access |
| */ |
| static int |
| nand_get_device(struct mtd_info *mtd, int new_state) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| chip->state = new_state; |
| return 0; |
| } |
| |
| /** |
| * panic_nand_wait - [GENERIC] wait until the command is done |
| * @mtd: MTD device structure |
| * @chip: NAND chip structure |
| * @timeo: timeout |
| * |
| * Wait for command done. This is a helper function for nand_wait used when |
| * we are in interrupt context. May happen when in panic and trying to write |
| * an oops through mtdoops. |
| */ |
| static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, |
| unsigned long timeo) |
| { |
| int i; |
| for (i = 0; i < timeo; i++) { |
| if (chip->dev_ready) { |
| if (chip->dev_ready(mtd)) |
| break; |
| } else { |
| if (chip->read_byte(mtd) & NAND_STATUS_READY) |
| break; |
| } |
| mdelay(1); |
| } |
| } |
| |
| /** |
| * nand_wait - [DEFAULT] wait until the command is done |
| * @mtd: MTD device structure |
| * @chip: NAND chip structure |
| * |
| * Wait for command done. This applies to erase and program only. |
| */ |
| static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| int status; |
| unsigned long timeo = 400; |
| |
| led_trigger_event(nand_led_trigger, LED_FULL); |
| |
| /* |
| * Apply this short delay always to ensure that we do wait tWB in any |
| * case on any machine. |
| */ |
| ndelay(100); |
| |
| chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| |
| u32 timer = (CONFIG_SYS_HZ * timeo) / 1000; |
| u32 time_start; |
| |
| time_start = get_timer(0); |
| while (get_timer(time_start) < timer) { |
| if (chip->dev_ready) { |
| if (chip->dev_ready(mtd)) |
| break; |
| } else { |
| if (chip->read_byte(mtd) & NAND_STATUS_READY) |
| break; |
| } |
| } |
| led_trigger_event(nand_led_trigger, LED_OFF); |
| |
| status = (int)chip->read_byte(mtd); |
| /* This can happen if in case of timeout or buggy dev_ready */ |
| WARN_ON(!(status & NAND_STATUS_READY)); |
| return status; |
| } |
| |
| #define BITS_PER_BYTE 8 |
| |
| /** |
| * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data |
| * @buf: buffer to test |
| * @len: buffer length |
| * @bitflips_threshold: maximum number of bitflips |
| * |
| * Check if a buffer contains only 0xff, which means the underlying region |
| * has been erased and is ready to be programmed. |
| * The bitflips_threshold specify the maximum number of bitflips before |
| * considering the region is not erased. |
| * Note: The logic of this function has been extracted from the memweight |
| * implementation, except that nand_check_erased_buf function exit before |
| * testing the whole buffer if the number of bitflips exceed the |
| * bitflips_threshold value. |
| * |
| * Returns a positive number of bitflips less than or equal to |
| * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| * threshold. |
| */ |
| static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) |
| { |
| const unsigned char *bitmap = buf; |
| int bitflips = 0; |
| int weight; |
| |
| for (; len && ((uintptr_t)bitmap) % sizeof(long); |
| len--, bitmap++) { |
| weight = hweight8(*bitmap); |
| bitflips += BITS_PER_BYTE - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| for (; len >= 4; len -= 4, bitmap += 4) { |
| weight = hweight32(*((u32 *)bitmap)); |
| bitflips += 32 - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| for (; len > 0; len--, bitmap++) { |
| weight = hweight8(*bitmap); |
| bitflips += BITS_PER_BYTE - weight; |
| if (unlikely(bitflips > bitflips_threshold)) |
| return -EBADMSG; |
| } |
| |
| return bitflips; |
| } |
| |
| /** |
| * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only |
| * 0xff data |
| * @data: data buffer to test |
| * @datalen: data length |
| * @ecc: ECC buffer |
| * @ecclen: ECC length |
| * @extraoob: extra OOB buffer |
| * @extraooblen: extra OOB length |
| * @bitflips_threshold: maximum number of bitflips |
| * |
| * Check if a data buffer and its associated ECC and OOB data contains only |
| * 0xff pattern, which means the underlying region has been erased and is |
| * ready to be programmed. |
| * The bitflips_threshold specify the maximum number of bitflips before |
| * considering the region as not erased. |
| * |
| * Note: |
| * 1/ ECC algorithms are working on pre-defined block sizes which are usually |
| * different from the NAND page size. When fixing bitflips, ECC engines will |
| * report the number of errors per chunk, and the NAND core infrastructure |
| * expect you to return the maximum number of bitflips for the whole page. |
| * This is why you should always use this function on a single chunk and |
| * not on the whole page. After checking each chunk you should update your |
| * max_bitflips value accordingly. |
| * 2/ When checking for bitflips in erased pages you should not only check |
| * the payload data but also their associated ECC data, because a user might |
| * have programmed almost all bits to 1 but a few. In this case, we |
| * shouldn't consider the chunk as erased, and checking ECC bytes prevent |
| * this case. |
| * 3/ The extraoob argument is optional, and should be used if some of your OOB |
| * data are protected by the ECC engine. |
| * It could also be used if you support subpages and want to attach some |
| * extra OOB data to an ECC chunk. |
| * |
| * Returns a positive number of bitflips less than or equal to |
| * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the |
| * threshold. In case of success, the passed buffers are filled with 0xff. |
| */ |
| int nand_check_erased_ecc_chunk(void *data, int datalen, |
| void *ecc, int ecclen, |
| void *extraoob, int extraooblen, |
| int bitflips_threshold) |
| { |
| int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; |
| |
| data_bitflips = nand_check_erased_buf(data, datalen, |
| bitflips_threshold); |
| if (data_bitflips < 0) |
| return data_bitflips; |
| |
| bitflips_threshold -= data_bitflips; |
| |
| ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); |
| if (ecc_bitflips < 0) |
| return ecc_bitflips; |
| |
| bitflips_threshold -= ecc_bitflips; |
| |
| extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, |
| bitflips_threshold); |
| if (extraoob_bitflips < 0) |
| return extraoob_bitflips; |
| |
| if (data_bitflips) |
| memset(data, 0xff, datalen); |
| |
| if (ecc_bitflips) |
| memset(ecc, 0xff, ecclen); |
| |
| if (extraoob_bitflips) |
| memset(extraoob, 0xff, extraooblen); |
| |
| return data_bitflips + ecc_bitflips + extraoob_bitflips; |
| } |
| EXPORT_SYMBOL(nand_check_erased_ecc_chunk); |
| |
| /** |
| * nand_read_page_raw - [INTERN] read raw page data without ecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| */ |
| static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| chip->read_buf(mtd, buf, mtd->writesize); |
| if (oob_required) |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 0; |
| } |
| |
| /** |
| * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * We need a special oob layout and handling even when OOB isn't used. |
| */ |
| static int nand_read_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, |
| int oob_required, int page) |
| { |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size; |
| |
| for (steps = chip->ecc.steps; steps > 0; steps--) { |
| chip->read_buf(mtd, buf, eccsize); |
| buf += eccsize; |
| |
| if (chip->ecc.prepad) { |
| chip->read_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->read_buf(mtd, oob, eccbytes); |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->read_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) |
| chip->read_buf(mtd, oob, size); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| */ |
| static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| unsigned int max_bitflips = 0; |
| |
| chip->ecc.read_page_raw(mtd, chip, buf, 1, page); |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @data_offs: offset of requested data within the page |
| * @readlen: data length |
| * @bufpoi: buffer to store read data |
| * @page: page number to read |
| */ |
| static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, |
| uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, |
| int page) |
| { |
| int start_step, end_step, num_steps; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *p; |
| int data_col_addr, i, gaps = 0; |
| int datafrag_len, eccfrag_len, aligned_len, aligned_pos; |
| int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; |
| int index; |
| unsigned int max_bitflips = 0; |
| |
| /* Column address within the page aligned to ECC size (256bytes) */ |
| start_step = data_offs / chip->ecc.size; |
| end_step = (data_offs + readlen - 1) / chip->ecc.size; |
| num_steps = end_step - start_step + 1; |
| index = start_step * chip->ecc.bytes; |
| |
| /* Data size aligned to ECC ecc.size */ |
| datafrag_len = num_steps * chip->ecc.size; |
| eccfrag_len = num_steps * chip->ecc.bytes; |
| |
| data_col_addr = start_step * chip->ecc.size; |
| /* If we read not a page aligned data */ |
| if (data_col_addr != 0) |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1); |
| |
| p = bufpoi + data_col_addr; |
| chip->read_buf(mtd, p, datafrag_len); |
| |
| /* Calculate ECC */ |
| for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) |
| chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); |
| |
| /* |
| * The performance is faster if we position offsets according to |
| * ecc.pos. Let's make sure that there are no gaps in ECC positions. |
| */ |
| for (i = 0; i < eccfrag_len - 1; i++) { |
| if (eccpos[i + index] + 1 != eccpos[i + index + 1]) { |
| gaps = 1; |
| break; |
| } |
| } |
| if (gaps) { |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| } else { |
| /* |
| * Send the command to read the particular ECC bytes take care |
| * about buswidth alignment in read_buf. |
| */ |
| aligned_pos = eccpos[index] & ~(busw - 1); |
| aligned_len = eccfrag_len; |
| if (eccpos[index] & (busw - 1)) |
| aligned_len++; |
| if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1)) |
| aligned_len++; |
| |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| mtd->writesize + aligned_pos, -1); |
| chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len); |
| } |
| |
| for (i = 0; i < eccfrag_len; i++) |
| chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]]; |
| |
| p = bufpoi + data_col_addr; |
| for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { |
| int stat; |
| |
| stat = chip->ecc.correct(mtd, p, |
| &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]); |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| &chip->buffers->ecccode[i], |
| chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Not for syndrome calculating ECC controllers which need a special oob layout. |
| */ |
| static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| unsigned int max_bitflips = 0; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| } |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| eccsteps = chip->ecc.steps; |
| p = buf; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, eccsize, |
| &ecc_code[i], eccbytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * Hardware ECC for large page chips, require OOB to be read first. For this |
| * ECC mode, the write_page method is re-used from ECC_HW. These methods |
| * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with |
| * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from |
| * the data area, by overwriting the NAND manufacturer bad block markings. |
| */ |
| static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| unsigned int max_bitflips = 0; |
| |
| /* Read the OOB area first */ |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, eccsize, |
| &ecc_code[i], eccbytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller requires OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * The hw generator calculates the error syndrome automatically. Therefore we |
| * need a special oob layout and handling. |
| */ |
| static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| unsigned int max_bitflips = 0; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| int stat; |
| |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| |
| if (chip->ecc.prepad) { |
| chip->read_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->ecc.hwctl(mtd, NAND_ECC_READSYN); |
| chip->read_buf(mtd, oob, eccbytes); |
| stat = chip->ecc.correct(mtd, p, oob, NULL); |
| |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->read_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| |
| if (stat == -EBADMSG && |
| (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { |
| /* check for empty pages with bitflips */ |
| stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, |
| oob - eccpadbytes, |
| eccpadbytes, |
| NULL, 0, |
| chip->ecc.strength); |
| } |
| |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| i = mtd->oobsize - (oob - chip->oob_poi); |
| if (i) |
| chip->read_buf(mtd, oob, i); |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_transfer_oob - [INTERN] Transfer oob to client buffer |
| * @chip: nand chip structure |
| * @oob: oob destination address |
| * @ops: oob ops structure |
| * @len: size of oob to transfer |
| */ |
| static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, |
| struct mtd_oob_ops *ops, size_t len) |
| { |
| switch (ops->mode) { |
| |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_RAW: |
| memcpy(oob, chip->oob_poi + ops->ooboffs, len); |
| return oob + len; |
| |
| case MTD_OPS_AUTO_OOB: { |
| struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| uint32_t boffs = 0, roffs = ops->ooboffs; |
| size_t bytes = 0; |
| |
| for (; free->length && len; free++, len -= bytes) { |
| /* Read request not from offset 0? */ |
| if (unlikely(roffs)) { |
| if (roffs >= free->length) { |
| roffs -= free->length; |
| continue; |
| } |
| boffs = free->offset + roffs; |
| bytes = min_t(size_t, len, |
| (free->length - roffs)); |
| roffs = 0; |
| } else { |
| bytes = min_t(size_t, len, free->length); |
| boffs = free->offset; |
| } |
| memcpy(oob, chip->oob_poi + boffs, bytes); |
| oob += bytes; |
| } |
| return oob; |
| } |
| default: |
| BUG(); |
| } |
| return NULL; |
| } |
| |
| /** |
| * nand_setup_read_retry - [INTERN] Set the READ RETRY mode |
| * @mtd: MTD device structure |
| * @retry_mode: the retry mode to use |
| * |
| * Some vendors supply a special command to shift the Vt threshold, to be used |
| * when there are too many bitflips in a page (i.e., ECC error). After setting |
| * a new threshold, the host should retry reading the page. |
| */ |
| static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| pr_debug("setting READ RETRY mode %d\n", retry_mode); |
| |
| if (retry_mode >= chip->read_retries) |
| return -EINVAL; |
| |
| if (!chip->setup_read_retry) |
| return -EOPNOTSUPP; |
| |
| return chip->setup_read_retry(mtd, retry_mode); |
| } |
| |
| /** |
| * nand_do_read_ops - [INTERN] Read data with ECC |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @ops: oob ops structure |
| * |
| * Internal function. Called with chip held. |
| */ |
| static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| int chipnr, page, realpage, col, bytes, aligned, oob_required; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| uint32_t readlen = ops->len; |
| uint32_t oobreadlen = ops->ooblen; |
| uint32_t max_oobsize = mtd_oobavail(mtd, ops); |
| |
| uint8_t *bufpoi, *oob, *buf; |
| int use_bufpoi; |
| unsigned int max_bitflips = 0; |
| int retry_mode = 0; |
| bool ecc_fail = false; |
| |
| chipnr = (int)(from >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| realpage = (int)(from >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| |
| col = (int)(from & (mtd->writesize - 1)); |
| |
| buf = ops->datbuf; |
| oob = ops->oobbuf; |
| oob_required = oob ? 1 : 0; |
| |
| while (1) { |
| unsigned int ecc_failures = mtd->ecc_stats.failed; |
| |
| WATCHDOG_RESET(); |
| bytes = min(mtd->writesize - col, readlen); |
| aligned = (bytes == mtd->writesize); |
| |
| if (!aligned) |
| use_bufpoi = 1; |
| else |
| use_bufpoi = 0; |
| |
| /* Is the current page in the buffer? */ |
| if (realpage != chip->pagebuf || oob) { |
| bufpoi = use_bufpoi ? chip->buffers->databuf : buf; |
| |
| if (use_bufpoi && aligned) |
| pr_debug("%s: using read bounce buffer for buf@%p\n", |
| __func__, buf); |
| |
| read_retry: |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); |
| |
| /* |
| * Now read the page into the buffer. Absent an error, |
| * the read methods return max bitflips per ecc step. |
| */ |
| if (unlikely(ops->mode == MTD_OPS_RAW)) |
| ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, |
| oob_required, |
| page); |
| else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && |
| !oob) |
| ret = chip->ecc.read_subpage(mtd, chip, |
| col, bytes, bufpoi, |
| page); |
| else |
| ret = chip->ecc.read_page(mtd, chip, bufpoi, |
| oob_required, page); |
| if (ret < 0) { |
| if (use_bufpoi) |
| /* Invalidate page cache */ |
| chip->pagebuf = -1; |
| break; |
| } |
| |
| max_bitflips = max_t(unsigned int, max_bitflips, ret); |
| |
| /* Transfer not aligned data */ |
| if (use_bufpoi) { |
| if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && |
| !(mtd->ecc_stats.failed - ecc_failures) && |
| (ops->mode != MTD_OPS_RAW)) { |
| chip->pagebuf = realpage; |
| chip->pagebuf_bitflips = ret; |
| } else { |
| /* Invalidate page cache */ |
| chip->pagebuf = -1; |
| } |
| memcpy(buf, chip->buffers->databuf + col, bytes); |
| } |
| |
| if (unlikely(oob)) { |
| int toread = min(oobreadlen, max_oobsize); |
| |
| if (toread) { |
| oob = nand_transfer_oob(chip, |
| oob, ops, toread); |
| oobreadlen -= toread; |
| } |
| } |
| |
| if (chip->options & NAND_NEED_READRDY) { |
| /* Apply delay or wait for ready/busy pin */ |
| if (!chip->dev_ready) |
| udelay(chip->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| } |
| |
| if (mtd->ecc_stats.failed - ecc_failures) { |
| if (retry_mode + 1 < chip->read_retries) { |
| retry_mode++; |
| ret = nand_setup_read_retry(mtd, |
| retry_mode); |
| if (ret < 0) |
| break; |
| |
| /* Reset failures; retry */ |
| mtd->ecc_stats.failed = ecc_failures; |
| goto read_retry; |
| } else { |
| /* No more retry modes; real failure */ |
| ecc_fail = true; |
| } |
| } |
| |
| buf += bytes; |
| } else { |
| memcpy(buf, chip->buffers->databuf + col, bytes); |
| buf += bytes; |
| max_bitflips = max_t(unsigned int, max_bitflips, |
| chip->pagebuf_bitflips); |
| } |
| |
| readlen -= bytes; |
| |
| /* Reset to retry mode 0 */ |
| if (retry_mode) { |
| ret = nand_setup_read_retry(mtd, 0); |
| if (ret < 0) |
| break; |
| retry_mode = 0; |
| } |
| |
| if (!readlen) |
| break; |
| |
| /* For subsequent reads align to page boundary */ |
| col = 0; |
| /* Increment page address */ |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| chip->select_chip(mtd, -1); |
| chip->select_chip(mtd, chipnr); |
| } |
| } |
| chip->select_chip(mtd, -1); |
| |
| ops->retlen = ops->len - (size_t) readlen; |
| if (oob) |
| ops->oobretlen = ops->ooblen - oobreadlen; |
| |
| if (ret < 0) |
| return ret; |
| |
| if (ecc_fail) |
| return -EBADMSG; |
| |
| return max_bitflips; |
| } |
| |
| /** |
| * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @len: number of bytes to read |
| * @retlen: pointer to variable to store the number of read bytes |
| * @buf: the databuffer to put data |
| * |
| * Get hold of the chip and call nand_do_read. |
| */ |
| static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, uint8_t *buf) |
| { |
| struct mtd_oob_ops ops; |
| int ret; |
| |
| nand_get_device(mtd, FL_READING); |
| memset(&ops, 0, sizeof(ops)); |
| ops.len = len; |
| ops.datbuf = buf; |
| ops.mode = MTD_OPS_PLACE_OOB; |
| ret = nand_do_read_ops(mtd, from, &ops); |
| *retlen = ops.retlen; |
| nand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to read |
| */ |
| static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| return 0; |
| } |
| |
| /** |
| * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC |
| * with syndromes |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to read |
| */ |
| static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| int length = mtd->oobsize; |
| int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsize = chip->ecc.size; |
| uint8_t *bufpoi = chip->oob_poi; |
| int i, toread, sndrnd = 0, pos; |
| |
| chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page); |
| for (i = 0; i < chip->ecc.steps; i++) { |
| if (sndrnd) { |
| pos = eccsize + i * (eccsize + chunk); |
| if (mtd->writesize > 512) |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); |
| else |
| chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page); |
| } else |
| sndrnd = 1; |
| toread = min_t(int, length, chunk); |
| chip->read_buf(mtd, bufpoi, toread); |
| bufpoi += toread; |
| length -= toread; |
| } |
| if (length > 0) |
| chip->read_buf(mtd, bufpoi, length); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to write |
| */ |
| static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| int status = 0; |
| const uint8_t *buf = chip->oob_poi; |
| int length = mtd->oobsize; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| chip->write_buf(mtd, buf, length); |
| /* Send command to program the OOB data */ |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| |
| status = chip->waitfunc(mtd, chip); |
| |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| /** |
| * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC |
| * with syndrome - only for large page flash |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @page: page number to write |
| */ |
| static int nand_write_oob_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, int page) |
| { |
| int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsize = chip->ecc.size, length = mtd->oobsize; |
| int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps; |
| const uint8_t *bufpoi = chip->oob_poi; |
| |
| /* |
| * data-ecc-data-ecc ... ecc-oob |
| * or |
| * data-pad-ecc-pad-data-pad .... ecc-pad-oob |
| */ |
| if (!chip->ecc.prepad && !chip->ecc.postpad) { |
| pos = steps * (eccsize + chunk); |
| steps = 0; |
| } else |
| pos = eccsize; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); |
| for (i = 0; i < steps; i++) { |
| if (sndcmd) { |
| if (mtd->writesize <= 512) { |
| uint32_t fill = 0xFFFFFFFF; |
| |
| len = eccsize; |
| while (len > 0) { |
| int num = min_t(int, len, 4); |
| chip->write_buf(mtd, (uint8_t *)&fill, |
| num); |
| len -= num; |
| } |
| } else { |
| pos = eccsize + i * (eccsize + chunk); |
| chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); |
| } |
| } else |
| sndcmd = 1; |
| len = min_t(int, length, chunk); |
| chip->write_buf(mtd, bufpoi, len); |
| bufpoi += len; |
| length -= len; |
| } |
| if (length > 0) |
| chip->write_buf(mtd, bufpoi, length); |
| |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| /** |
| * nand_do_read_oob - [INTERN] NAND read out-of-band |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @ops: oob operations description structure |
| * |
| * NAND read out-of-band data from the spare area. |
| */ |
| static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| int page, realpage, chipnr; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtd_ecc_stats stats; |
| int readlen = ops->ooblen; |
| int len; |
| uint8_t *buf = ops->oobbuf; |
| int ret = 0; |
| |
| pr_debug("%s: from = 0x%08Lx, len = %i\n", |
| __func__, (unsigned long long)from, readlen); |
| |
| stats = mtd->ecc_stats; |
| |
| len = mtd_oobavail(mtd, ops); |
| |
| if (unlikely(ops->ooboffs >= len)) { |
| pr_debug("%s: attempt to start read outside oob\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Do not allow reads past end of device */ |
| if (unlikely(from >= mtd->size || |
| ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - |
| (from >> chip->page_shift)) * len)) { |
| pr_debug("%s: attempt to read beyond end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| chipnr = (int)(from >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| /* Shift to get page */ |
| realpage = (int)(from >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| |
| while (1) { |
| WATCHDOG_RESET(); |
| |
| if (ops->mode == MTD_OPS_RAW) |
| ret = chip->ecc.read_oob_raw(mtd, chip, page); |
| else |
| ret = chip->ecc.read_oob(mtd, chip, page); |
| |
| if (ret < 0) |
| break; |
| |
| len = min(len, readlen); |
| buf = nand_transfer_oob(chip, buf, ops, len); |
| |
| if (chip->options & NAND_NEED_READRDY) { |
| /* Apply delay or wait for ready/busy pin */ |
| if (!chip->dev_ready) |
| udelay(chip->chip_delay); |
| else |
| nand_wait_ready(mtd); |
| } |
| |
| readlen -= len; |
| if (!readlen) |
| break; |
| |
| /* Increment page address */ |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| chip->select_chip(mtd, -1); |
| chip->select_chip(mtd, chipnr); |
| } |
| } |
| chip->select_chip(mtd, -1); |
| |
| ops->oobretlen = ops->ooblen - readlen; |
| |
| if (ret < 0) |
| return ret; |
| |
| if (mtd->ecc_stats.failed - stats.failed) |
| return -EBADMSG; |
| |
| return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; |
| } |
| |
| /** |
| * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band |
| * @mtd: MTD device structure |
| * @from: offset to read from |
| * @ops: oob operation description structure |
| * |
| * NAND read data and/or out-of-band data. |
| */ |
| static int nand_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| int ret = -ENOTSUPP; |
| |
| ops->retlen = 0; |
| |
| /* Do not allow reads past end of device */ |
| if (ops->datbuf && (from + ops->len) > mtd->size) { |
| pr_debug("%s: attempt to read beyond end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| nand_get_device(mtd, FL_READING); |
| |
| switch (ops->mode) { |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_AUTO_OOB: |
| case MTD_OPS_RAW: |
| break; |
| |
| default: |
| goto out; |
| } |
| |
| if (!ops->datbuf) |
| ret = nand_do_read_oob(mtd, from, ops); |
| else |
| ret = nand_do_read_ops(mtd, from, ops); |
| |
| out: |
| nand_release_device(mtd); |
| return ret; |
| } |
| |
| |
| /** |
| * nand_write_page_raw - [INTERN] raw page write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * Not for syndrome calculating ECC controllers, which use a special oob layout. |
| */ |
| static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, int page) |
| { |
| chip->write_buf(mtd, buf, mtd->writesize); |
| if (oob_required) |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_page_raw_syndrome - [INTERN] raw page write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * We need a special oob layout and handling even when ECC isn't checked. |
| */ |
| static int nand_write_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size; |
| |
| for (steps = chip->ecc.steps; steps > 0; steps--) { |
| chip->write_buf(mtd, buf, eccsize); |
| buf += eccsize; |
| |
| if (chip->ecc.prepad) { |
| chip->write_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->write_buf(mtd, oob, eccbytes); |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->write_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) |
| chip->write_buf(mtd, oob, size); |
| |
| return 0; |
| } |
| /** |
| * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| const uint8_t *p = buf; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| |
| /* Software ECC calculation */ |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
| |
| return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); |
| } |
| |
| /** |
| * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| const uint8_t *p = buf; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| chip->ecc.hwctl(mtd, NAND_ECC_WRITE); |
| chip->write_buf(mtd, p, eccsize); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| } |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
| |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @offset: column address of subpage within the page |
| * @data_len: data length |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| */ |
| static int nand_write_subpage_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, uint32_t offset, |
| uint32_t data_len, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| uint8_t *oob_buf = chip->oob_poi; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| int ecc_size = chip->ecc.size; |
| int ecc_bytes = chip->ecc.bytes; |
| int ecc_steps = chip->ecc.steps; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint32_t start_step = offset / ecc_size; |
| uint32_t end_step = (offset + data_len - 1) / ecc_size; |
| int oob_bytes = mtd->oobsize / ecc_steps; |
| int step, i; |
| |
| for (step = 0; step < ecc_steps; step++) { |
| /* configure controller for WRITE access */ |
| chip->ecc.hwctl(mtd, NAND_ECC_WRITE); |
| |
| /* write data (untouched subpages already masked by 0xFF) */ |
| chip->write_buf(mtd, buf, ecc_size); |
| |
| /* mask ECC of un-touched subpages by padding 0xFF */ |
| if ((step < start_step) || (step > end_step)) |
| memset(ecc_calc, 0xff, ecc_bytes); |
| else |
| chip->ecc.calculate(mtd, buf, ecc_calc); |
| |
| /* mask OOB of un-touched subpages by padding 0xFF */ |
| /* if oob_required, preserve OOB metadata of written subpage */ |
| if (!oob_required || (step < start_step) || (step > end_step)) |
| memset(oob_buf, 0xff, oob_bytes); |
| |
| buf += ecc_size; |
| ecc_calc += ecc_bytes; |
| oob_buf += oob_bytes; |
| } |
| |
| /* copy calculated ECC for whole page to chip->buffer->oob */ |
| /* this include masked-value(0xFF) for unwritten subpages */ |
| ecc_calc = chip->buffers->ecccalc; |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
| |
| /* write OOB buffer to NAND device */ |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: data buffer |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * |
| * The hw generator calculates the error syndrome automatically. Therefore we |
| * need a special oob layout and handling. |
| */ |
| static int nand_write_page_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| int i, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| const uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| |
| chip->ecc.hwctl(mtd, NAND_ECC_WRITE); |
| chip->write_buf(mtd, p, eccsize); |
| |
| if (chip->ecc.prepad) { |
| chip->write_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->ecc.calculate(mtd, p, oob); |
| chip->write_buf(mtd, oob, eccbytes); |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->write_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| i = mtd->oobsize - (oob - chip->oob_poi); |
| if (i) |
| chip->write_buf(mtd, oob, i); |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_page - [REPLACEABLE] write one page |
| * @mtd: MTD device structure |
| * @chip: NAND chip descriptor |
| * @offset: address offset within the page |
| * @data_len: length of actual data to be written |
| * @buf: the data to write |
| * @oob_required: must write chip->oob_poi to OOB |
| * @page: page number to write |
| * @cached: cached programming |
| * @raw: use _raw version of write_page |
| */ |
| static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint32_t offset, int data_len, const uint8_t *buf, |
| int oob_required, int page, int cached, int raw) |
| { |
| int status, subpage; |
| |
| if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && |
| chip->ecc.write_subpage) |
| subpage = offset || (data_len < mtd->writesize); |
| else |
| subpage = 0; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); |
| |
| if (unlikely(raw)) |
| status = chip->ecc.write_page_raw(mtd, chip, buf, |
| oob_required, page); |
| else if (subpage) |
| status = chip->ecc.write_subpage(mtd, chip, offset, data_len, |
| buf, oob_required, page); |
| else |
| status = chip->ecc.write_page(mtd, chip, buf, oob_required, |
| page); |
| |
| if (status < 0) |
| return status; |
| |
| /* |
| * Cached progamming disabled for now. Not sure if it's worth the |
| * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). |
| */ |
| cached = 0; |
| |
| if (!cached || !NAND_HAS_CACHEPROG(chip)) { |
| |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| /* |
| * See if operation failed and additional status checks are |
| * available. |
| */ |
| if ((status & NAND_STATUS_FAIL) && (chip->errstat)) |
| status = chip->errstat(mtd, chip, FL_WRITING, status, |
| page); |
| |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| } else { |
| chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nand_fill_oob - [INTERN] Transfer client buffer to oob |
| * @mtd: MTD device structure |
| * @oob: oob data buffer |
| * @len: oob data write length |
| * @ops: oob ops structure |
| */ |
| static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, |
| struct mtd_oob_ops *ops) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| /* |
| * Initialise to all 0xFF, to avoid the possibility of left over OOB |
| * data from a previous OOB read. |
| */ |
| memset(chip->oob_poi, 0xff, mtd->oobsize); |
| |
| switch (ops->mode) { |
| |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_RAW: |
| memcpy(chip->oob_poi + ops->ooboffs, oob, len); |
| return oob + len; |
| |
| case MTD_OPS_AUTO_OOB: { |
| struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| uint32_t boffs = 0, woffs = ops->ooboffs; |
| size_t bytes = 0; |
| |
| for (; free->length && len; free++, len -= bytes) { |
| /* Write request not from offset 0? */ |
| if (unlikely(woffs)) { |
| if (woffs >= free->length) { |
| woffs -= free->length; |
| continue; |
| } |
| boffs = free->offset + woffs; |
| bytes = min_t(size_t, len, |
| (free->length - woffs)); |
| woffs = 0; |
| } else { |
| bytes = min_t(size_t, len, free->length); |
| boffs = free->offset; |
| } |
| memcpy(chip->oob_poi + boffs, oob, bytes); |
| oob += bytes; |
| } |
| return oob; |
| } |
| default: |
| BUG(); |
| } |
| return NULL; |
| } |
| |
| #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) |
| |
| /** |
| * nand_do_write_ops - [INTERN] NAND write with ECC |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @ops: oob operations description structure |
| * |
| * NAND write with ECC. |
| */ |
| static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| int chipnr, realpage, page, blockmask, column; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| uint32_t writelen = ops->len; |
| |
| uint32_t oobwritelen = ops->ooblen; |
| uint32_t oobmaxlen = mtd_oobavail(mtd, ops); |
| |
| uint8_t *oob = ops->oobbuf; |
| uint8_t *buf = ops->datbuf; |
| int ret; |
| int oob_required = oob ? 1 : 0; |
| |
| ops->retlen = 0; |
| if (!writelen) |
| return 0; |
| |
| /* Reject writes, which are not page aligned */ |
| if (NOTALIGNED(to)) { |
| pr_notice("%s: attempt to write non page aligned data\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| column = to & (mtd->writesize - 1); |
| |
| chipnr = (int)(to >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) { |
| ret = -EIO; |
| goto err_out; |
| } |
| |
| realpage = (int)(to >> chip->page_shift); |
| page = realpage & chip->pagemask; |
| blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; |
| |
| /* Invalidate the page cache, when we write to the cached page */ |
| if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && |
| ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) |
| chip->pagebuf = -1; |
| |
| /* Don't allow multipage oob writes with offset */ |
| if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { |
| ret = -EINVAL; |
| goto err_out; |
| } |
| |
| while (1) { |
| int bytes = mtd->writesize; |
| int cached = writelen > bytes && page != blockmask; |
| uint8_t *wbuf = buf; |
| int use_bufpoi; |
| int part_pagewr = (column || writelen < mtd->writesize); |
| |
| if (part_pagewr) |
| use_bufpoi = 1; |
| else |
| use_bufpoi = 0; |
| |
| WATCHDOG_RESET(); |
| /* Partial page write?, or need to use bounce buffer */ |
| if (use_bufpoi) { |
| pr_debug("%s: using write bounce buffer for buf@%p\n", |
| __func__, buf); |
| cached = 0; |
| if (part_pagewr) |
| bytes = min_t(int, bytes - column, writelen); |
| chip->pagebuf = -1; |
| memset(chip->buffers->databuf, 0xff, mtd->writesize); |
| memcpy(&chip->buffers->databuf[column], buf, bytes); |
| wbuf = chip->buffers->databuf; |
| } |
| |
| if (unlikely(oob)) { |
| size_t len = min(oobwritelen, oobmaxlen); |
| oob = nand_fill_oob(mtd, oob, len, ops); |
| oobwritelen -= len; |
| } else { |
| /* We still need to erase leftover OOB data */ |
| memset(chip->oob_poi, 0xff, mtd->oobsize); |
| } |
| ret = chip->write_page(mtd, chip, column, bytes, wbuf, |
| oob_required, page, cached, |
| (ops->mode == MTD_OPS_RAW)); |
| if (ret) |
| break; |
| |
| writelen -= bytes; |
| if (!writelen) |
| break; |
| |
| column = 0; |
| buf += bytes; |
| realpage++; |
| |
| page = realpage & chip->pagemask; |
| /* Check, if we cross a chip boundary */ |
| if (!page) { |
| chipnr++; |
| chip->select_chip(mtd, -1); |
| chip->select_chip(mtd, chipnr); |
| } |
| } |
| |
| ops->retlen = ops->len - writelen; |
| if (unlikely(oob)) |
| ops->oobretlen = ops->ooblen; |
| |
| err_out: |
| chip->select_chip(mtd, -1); |
| return ret; |
| } |
| |
| /** |
| * panic_nand_write - [MTD Interface] NAND write with ECC |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @retlen: pointer to variable to store the number of written bytes |
| * @buf: the data to write |
| * |
| * NAND write with ECC. Used when performing writes in interrupt context, this |
| * may for example be called by mtdoops when writing an oops while in panic. |
| */ |
| static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct mtd_oob_ops ops; |
| int ret; |
| |
| /* Wait for the device to get ready */ |
| panic_nand_wait(mtd, chip, 400); |
| |
| /* Grab the device */ |
| panic_nand_get_device(chip, mtd, FL_WRITING); |
| |
| memset(&ops, 0, sizeof(ops)); |
| ops.len = len; |
| ops.datbuf = (uint8_t *)buf; |
| ops.mode = MTD_OPS_PLACE_OOB; |
| |
| ret = nand_do_write_ops(mtd, to, &ops); |
| |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| /** |
| * nand_write - [MTD Interface] NAND write with ECC |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @len: number of bytes to write |
| * @retlen: pointer to variable to store the number of written bytes |
| * @buf: the data to write |
| * |
| * NAND write with ECC. |
| */ |
| static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const uint8_t *buf) |
| { |
| struct mtd_oob_ops ops; |
| int ret; |
| |
| nand_get_device(mtd, FL_WRITING); |
| memset(&ops, 0, sizeof(ops)); |
| ops.len = len; |
| ops.datbuf = (uint8_t *)buf; |
| ops.mode = MTD_OPS_PLACE_OOB; |
| ret = nand_do_write_ops(mtd, to, &ops); |
| *retlen = ops.retlen; |
| nand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * nand_do_write_oob - [MTD Interface] NAND write out-of-band |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @ops: oob operation description structure |
| * |
| * NAND write out-of-band. |
| */ |
| static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| int chipnr, page, status, len; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| |
| pr_debug("%s: to = 0x%08x, len = %i\n", |
| __func__, (unsigned int)to, (int)ops->ooblen); |
| |
| len = mtd_oobavail(mtd, ops); |
| |
| /* Do not allow write past end of page */ |
| if ((ops->ooboffs + ops->ooblen) > len) { |
| pr_debug("%s: attempt to write past end of page\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| if (unlikely(ops->ooboffs >= len)) { |
| pr_debug("%s: attempt to start write outside oob\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| /* Do not allow write past end of device */ |
| if (unlikely(to >= mtd->size || |
| ops->ooboffs + ops->ooblen > |
| ((mtd->size >> chip->page_shift) - |
| (to >> chip->page_shift)) * len)) { |
| pr_debug("%s: attempt to write beyond end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| chipnr = (int)(to >> chip->chip_shift); |
| chip->select_chip(mtd, chipnr); |
| |
| /* Shift to get page */ |
| page = (int)(to >> chip->page_shift); |
| |
| /* |
| * Reset the chip. Some chips (like the Toshiba TC5832DC found in one |
| * of my DiskOnChip 2000 test units) will clear the whole data page too |
| * if we don't do this. I have no clue why, but I seem to have 'fixed' |
| * it in the doc2000 driver in August 1999. dwmw2. |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) { |
| chip->select_chip(mtd, -1); |
| return -EROFS; |
| } |
| |
| /* Invalidate the page cache, if we write to the cached page */ |
| if (page == chip->pagebuf) |
| chip->pagebuf = -1; |
| |
| nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); |
| |
| if (ops->mode == MTD_OPS_RAW) |
| status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); |
| else |
| status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); |
| |
| chip->select_chip(mtd, -1); |
| |
| if (status) |
| return status; |
| |
| ops->oobretlen = ops->ooblen; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band |
| * @mtd: MTD device structure |
| * @to: offset to write to |
| * @ops: oob operation description structure |
| */ |
| static int nand_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| int ret = -ENOTSUPP; |
| |
| ops->retlen = 0; |
| |
| /* Do not allow writes past end of device */ |
| if (ops->datbuf && (to + ops->len) > mtd->size) { |
| pr_debug("%s: attempt to write beyond end of device\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| nand_get_device(mtd, FL_WRITING); |
| |
| switch (ops->mode) { |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_AUTO_OOB: |
| case MTD_OPS_RAW: |
| break; |
| |
| default: |
| goto out; |
| } |
| |
| if (!ops->datbuf) |
| ret = nand_do_write_oob(mtd, to, ops); |
| else |
| ret = nand_do_write_ops(mtd, to, ops); |
| |
| out: |
| nand_release_device(mtd); |
| return ret; |
| } |
| |
| /** |
| * single_erase - [GENERIC] NAND standard block erase command function |
| * @mtd: MTD device structure |
| * @page: the page address of the block which will be erased |
| * |
| * Standard erase command for NAND chips. Returns NAND status. |
| */ |
| static int single_erase(struct mtd_info *mtd, int page) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| /* Send commands to erase a block */ |
| chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); |
| chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); |
| |
| return chip->waitfunc(mtd, chip); |
| } |
| |
| /** |
| * nand_erase - [MTD Interface] erase block(s) |
| * @mtd: MTD device structure |
| * @instr: erase instruction |
| * |
| * Erase one ore more blocks. |
| */ |
| static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| return nand_erase_nand(mtd, instr, 0); |
| } |
| |
| /** |
| * nand_erase_nand - [INTERN] erase block(s) |
| * @mtd: MTD device structure |
| * @instr: erase instruction |
| * @allowbbt: allow erasing the bbt area |
| * |
| * Erase one ore more blocks. |
| */ |
| int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, |
| int allowbbt) |
| { |
| int page, status, pages_per_block, ret, chipnr; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| loff_t len; |
| |
| pr_debug("%s: start = 0x%012llx, len = %llu\n", |
| __func__, (unsigned long long)instr->addr, |
| (unsigned long long)instr->len); |
| |
| if (check_offs_len(mtd, instr->addr, instr->len)) |
| return -EINVAL; |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(mtd, FL_ERASING); |
| |
| /* Shift to get first page */ |
| page = (int)(instr->addr >> chip->page_shift); |
| chipnr = (int)(instr->addr >> chip->chip_shift); |
| |
| /* Calculate pages in each block */ |
| pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); |
| |
| /* Select the NAND device */ |
| chip->select_chip(mtd, chipnr); |
| |
| /* Check, if it is write protected */ |
| if (nand_check_wp(mtd)) { |
| pr_debug("%s: device is write protected!\n", |
| __func__); |
| instr->state = MTD_ERASE_FAILED; |
| goto erase_exit; |
| } |
| |
| /* Loop through the pages */ |
| len = instr->len; |
| |
| instr->state = MTD_ERASING; |
| |
| while (len) { |
| WATCHDOG_RESET(); |
| |
| /* Check if we have a bad block, we do not erase bad blocks! */ |
| if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) << |
| chip->page_shift, allowbbt)) { |
| pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", |
| __func__, page); |
| instr->state = MTD_ERASE_FAILED; |
| goto erase_exit; |
| } |
| |
| /* |
| * Invalidate the page cache, if we erase the block which |
| * contains the current cached page. |
| */ |
| if (page <= chip->pagebuf && chip->pagebuf < |
| (page + pages_per_block)) |
| chip->pagebuf = -1; |
| |
| status = chip->erase(mtd, page & chip->pagemask); |
| |
| /* |
| * See if operation failed and additional status checks are |
| * available |
| */ |
| if ((status & NAND_STATUS_FAIL) && (chip->errstat)) |
| status = chip->errstat(mtd, chip, FL_ERASING, |
| status, page); |
| |
| /* See if block erase succeeded */ |
| if (status & NAND_STATUS_FAIL) { |
| pr_debug("%s: failed erase, page 0x%08x\n", |
| __func__, page); |
| instr->state = MTD_ERASE_FAILED; |
| instr->fail_addr = |
| ((loff_t)page << chip->page_shift); |
| goto erase_exit; |
| } |
| |
| /* Increment page address and decrement length */ |
| len -= (1ULL << chip->phys_erase_shift); |
| page += pages_per_block; |
| |
| /* Check, if we cross a chip boundary */ |
| if (len && !(page & chip->pagemask)) { |
| chipnr++; |
| chip->select_chip(mtd, -1); |
| chip->select_chip(mtd, chipnr); |
| } |
| } |
| instr->state = MTD_ERASE_DONE; |
| |
| erase_exit: |
| |
| ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; |
| |
| /* Deselect and wake up anyone waiting on the device */ |
| chip->select_chip(mtd, -1); |
| nand_release_device(mtd); |
| |
| /* Do call back function */ |
| if (!ret) |
| mtd_erase_callback(instr); |
| |
| /* Return more or less happy */ |
| return ret; |
| } |
| |
| /** |
| * nand_sync - [MTD Interface] sync |
| * @mtd: MTD device structure |
| * |
| * Sync is actually a wait for chip ready function. |
| */ |
| static void nand_sync(struct mtd_info *mtd) |
| { |
| pr_debug("%s: called\n", __func__); |
| |
| /* Grab the lock and see if the device is available */ |
| nand_get_device(mtd, FL_SYNCING); |
| /* Release it and go back */ |
| nand_release_device(mtd); |
| } |
| |
| /** |
| * nand_block_isbad - [MTD Interface] Check if block at offset is bad |
| * @mtd: MTD device structure |
| * @offs: offset relative to mtd start |
| */ |
| static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int chipnr = (int)(offs >> chip->chip_shift); |
| int ret; |
| |
| /* Select the NAND device */ |
| nand_get_device(mtd, FL_READING); |
| chip->select_chip(mtd, chipnr); |
| |
| ret = nand_block_checkbad(mtd, offs, 0); |
| |
| chip->select_chip(mtd, -1); |
| nand_release_device(mtd); |
| |
| return ret; |
| } |
| |
| /** |
| * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad |
| * @mtd: MTD device structure |
| * @ofs: offset relative to mtd start |
| */ |
| static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| int ret; |
| |
| ret = nand_block_isbad(mtd, ofs); |
| if (ret) { |
| /* If it was bad already, return success and do nothing */ |
| if (ret > 0) |
| return 0; |
| return ret; |
| } |
| |
| return nand_block_markbad_lowlevel(mtd, ofs); |
| } |
| |
| /** |
| * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand |
| * @mtd: MTD device structure |
| * @chip: nand chip info structure |
| * @addr: feature address. |
| * @subfeature_param: the subfeature parameters, a four bytes array. |
| */ |
| static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, |
| int addr, uint8_t *subfeature_param) |
| { |
| int status; |
| int i; |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| if (!chip->onfi_version || |
| !(le16_to_cpu(chip->onfi_params.opt_cmd) |
| & ONFI_OPT_CMD_SET_GET_FEATURES)) |
| return -EINVAL; |
| #endif |
| |
| chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1); |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| chip->write_byte(mtd, subfeature_param[i]); |
| |
| status = chip->waitfunc(mtd, chip); |
| if (status & NAND_STATUS_FAIL) |
| return -EIO; |
| return 0; |
| } |
| |
| /** |
| * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand |
| * @mtd: MTD device structure |
| * @chip: nand chip info structure |
| * @addr: feature address. |
| * @subfeature_param: the subfeature parameters, a four bytes array. |
| */ |
| static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, |
| int addr, uint8_t *subfeature_param) |
| { |
| int i; |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| if (!chip->onfi_version || |
| !(le16_to_cpu(chip->onfi_params.opt_cmd) |
| & ONFI_OPT_CMD_SET_GET_FEATURES)) |
| return -EINVAL; |
| #endif |
| |
| chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1); |
| for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) |
| *subfeature_param++ = chip->read_byte(mtd); |
| return 0; |
| } |
| |
| /* Set default functions */ |
| static void nand_set_defaults(struct nand_chip *chip, int busw) |
| { |
| /* check for proper chip_delay setup, set 20us if not */ |
| if (!chip->chip_delay) |
| chip->chip_delay = 20; |
| |
| /* check, if a user supplied command function given */ |
| if (chip->cmdfunc == NULL) |
| chip->cmdfunc = nand_command; |
| |
| /* check, if a user supplied wait function given */ |
| if (chip->waitfunc == NULL) |
| chip->waitfunc = nand_wait; |
| |
| if (!chip->select_chip) |
| chip->select_chip = nand_select_chip; |
| |
| /* set for ONFI nand */ |
| if (!chip->onfi_set_features) |
| chip->onfi_set_features = nand_onfi_set_features; |
| if (!chip->onfi_get_features) |
| chip->onfi_get_features = nand_onfi_get_features; |
| |
| /* If called twice, pointers that depend on busw may need to be reset */ |
| if (!chip->read_byte || chip->read_byte == nand_read_byte) |
| chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; |
| if (!chip->read_word) |
| chip->read_word = nand_read_word; |
| if (!chip->block_bad) |
| chip->block_bad = nand_block_bad; |
| if (!chip->block_markbad) |
| chip->block_markbad = nand_default_block_markbad; |
| if (!chip->write_buf || chip->write_buf == nand_write_buf) |
| chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; |
| if (!chip->write_byte || chip->write_byte == nand_write_byte) |
| chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; |
| if (!chip->read_buf || chip->read_buf == nand_read_buf) |
| chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; |
| if (!chip->scan_bbt) |
| chip->scan_bbt = nand_default_bbt; |
| |
| if (!chip->controller) { |
| chip->controller = &chip->hwcontrol; |
| spin_lock_init(&chip->controller->lock); |
| init_waitqueue_head(&chip->controller->wq); |
| } |
| |
| } |
| |
| /* Sanitize ONFI strings so we can safely print them */ |
| static void sanitize_string(char *s, size_t len) |
| { |
| ssize_t i; |
| |
| /* Null terminate */ |
| s[len - 1] = 0; |
| |
| /* Remove non printable chars */ |
| for (i = 0; i < len - 1; i++) { |
| if (s[i] < ' ' || s[i] > 127) |
| s[i] = '?'; |
| } |
| |
| /* Remove trailing spaces */ |
| strim(s); |
| } |
| |
| static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) |
| { |
| int i; |
| while (len--) { |
| crc ^= *p++ << 8; |
| for (i = 0; i < 8; i++) |
| crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); |
| } |
| |
| return crc; |
| } |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| /* Parse the Extended Parameter Page. */ |
| static int nand_flash_detect_ext_param_page(struct mtd_info *mtd, |
| struct nand_chip *chip, struct nand_onfi_params *p) |
| { |
| struct onfi_ext_param_page *ep; |
| struct onfi_ext_section *s; |
| struct onfi_ext_ecc_info *ecc; |
| uint8_t *cursor; |
| int ret = -EINVAL; |
| int len; |
| int i; |
| |
| len = le16_to_cpu(p->ext_param_page_length) * 16; |
| ep = kmalloc(len, GFP_KERNEL); |
| if (!ep) |
| return -ENOMEM; |
| |
| /* Send our own NAND_CMD_PARAM. */ |
| chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); |
| |
| /* Use the Change Read Column command to skip the ONFI param pages. */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| sizeof(*p) * p->num_of_param_pages , -1); |
| |
| /* Read out the Extended Parameter Page. */ |
| chip->read_buf(mtd, (uint8_t *)ep, len); |
| if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) |
| != le16_to_cpu(ep->crc))) { |
| pr_debug("fail in the CRC.\n"); |
| goto ext_out; |
| } |
| |
| /* |
| * Check the signature. |
| * Do not strictly follow the ONFI spec, maybe changed in future. |
| */ |
| if (strncmp((char *)ep->sig, "EPPS", 4)) { |
| pr_debug("The signature is invalid.\n"); |
| goto ext_out; |
| } |
| |
| /* find the ECC section. */ |
| cursor = (uint8_t *)(ep + 1); |
| for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { |
| s = ep->sections + i; |
| if (s->type == ONFI_SECTION_TYPE_2) |
| break; |
| cursor += s->length * 16; |
| } |
| if (i == ONFI_EXT_SECTION_MAX) { |
| pr_debug("We can not find the ECC section.\n"); |
| goto ext_out; |
| } |
| |
| /* get the info we want. */ |
| ecc = (struct onfi_ext_ecc_info *)cursor; |
| |
| if (!ecc->codeword_size) { |
| pr_debug("Invalid codeword size\n"); |
| goto ext_out; |
| } |
| |
| chip->ecc_strength_ds = ecc->ecc_bits; |
| chip->ecc_step_ds = 1 << ecc->codeword_size; |
| ret = 0; |
| |
| ext_out: |
| kfree(ep); |
| return ret; |
| } |
| |
| static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; |
| |
| return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, |
| feature); |
| } |
| |
| /* |
| * Configure chip properties from Micron vendor-specific ONFI table |
| */ |
| static void nand_onfi_detect_micron(struct nand_chip *chip, |
| struct nand_onfi_params *p) |
| { |
| struct nand_onfi_vendor_micron *micron = (void *)p->vendor; |
| |
| if (le16_to_cpu(p->vendor_revision) < 1) |
| return; |
| |
| chip->read_retries = micron->read_retry_options; |
| chip->setup_read_retry = nand_setup_read_retry_micron; |
| } |
| |
| /* |
| * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. |
| */ |
| static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, |
| int *busw) |
| { |
| struct nand_onfi_params *p = &chip->onfi_params; |
| int i, j; |
| int val; |
| |
| /* Try ONFI for unknown chip or LP */ |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); |
| if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || |
| chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') |
| return 0; |
| |
| chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); |
| for (i = 0; i < 3; i++) { |
| for (j = 0; j < sizeof(*p); j++) |
| ((uint8_t *)p)[j] = chip->read_byte(mtd); |
| if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == |
| le16_to_cpu(p->crc)) { |
| break; |
| } |
| } |
| |
| if (i == 3) { |
| pr_err("Could not find valid ONFI parameter page; aborting\n"); |
| return 0; |
| } |
| |
| /* Check version */ |
| val = le16_to_cpu(p->revision); |
| if (val & (1 << 5)) |
| chip->onfi_version = 23; |
| else if (val & (1 << 4)) |
| chip->onfi_version = 22; |
| else if (val & (1 << 3)) |
| chip->onfi_version = 21; |
| else if (val & (1 << 2)) |
| chip->onfi_version = 20; |
| else if (val & (1 << 1)) |
| chip->onfi_version = 10; |
| |
| if (!chip->onfi_version) { |
| pr_info("unsupported ONFI version: %d\n", val); |
| return 0; |
| } |
| |
| sanitize_string(p->manufacturer, sizeof(p->manufacturer)); |
| sanitize_string(p->model, sizeof(p->model)); |
| if (!mtd->name) |
| mtd->name = p->model; |
| |
| mtd->writesize = le32_to_cpu(p->byte_per_page); |
| |
| /* |
| * pages_per_block and blocks_per_lun may not be a power-of-2 size |
| * (don't ask me who thought of this...). MTD assumes that these |
| * dimensions will be power-of-2, so just truncate the remaining area. |
| */ |
| mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); |
| mtd->erasesize *= mtd->writesize; |
| |
| mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); |
| |
| /* See erasesize comment */ |
| chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); |
| chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; |
| chip->bits_per_cell = p->bits_per_cell; |
| |
| if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) |
| *busw = NAND_BUSWIDTH_16; |
| else |
| *busw = 0; |
| |
| if (p->ecc_bits != 0xff) { |
| chip->ecc_strength_ds = p->ecc_bits; |
| chip->ecc_step_ds = 512; |
| } else if (chip->onfi_version >= 21 && |
| (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { |
| |
| /* |
| * The nand_flash_detect_ext_param_page() uses the |
| * Change Read Column command which maybe not supported |
| * by the chip->cmdfunc. So try to update the chip->cmdfunc |
| * now. We do not replace user supplied command function. |
| */ |
| if (mtd->writesize > 512 && chip->cmdfunc == nand_command) |
| chip->cmdfunc = nand_command_lp; |
| |
| /* The Extended Parameter Page is supported since ONFI 2.1. */ |
| if (nand_flash_detect_ext_param_page(mtd, chip, p)) |
| pr_warn("Failed to detect ONFI extended param page\n"); |
| } else { |
| pr_warn("Could not retrieve ONFI ECC requirements\n"); |
| } |
| |
| if (p->jedec_id == NAND_MFR_MICRON) |
| nand_onfi_detect_micron(chip, p); |
| |
| return 1; |
| } |
| #else |
| static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, |
| int *busw) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. |
| */ |
| static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip, |
| int *busw) |
| { |
| struct nand_jedec_params *p = &chip->jedec_params; |
| struct jedec_ecc_info *ecc; |
| int val; |
| int i, j; |
| |
| /* Try JEDEC for unknown chip or LP */ |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1); |
| if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' || |
| chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' || |
| chip->read_byte(mtd) != 'C') |
| return 0; |
| |
| chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1); |
| for (i = 0; i < 3; i++) { |
| for (j = 0; j < sizeof(*p); j++) |
| ((uint8_t *)p)[j] = chip->read_byte(mtd); |
| |
| if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == |
| le16_to_cpu(p->crc)) |
| break; |
| } |
| |
| if (i == 3) { |
| pr_err("Could not find valid JEDEC parameter page; aborting\n"); |
| return 0; |
| } |
| |
| /* Check version */ |
| val = le16_to_cpu(p->revision); |
| if (val & (1 << 2)) |
| chip->jedec_version = 10; |
| else if (val & (1 << 1)) |
| chip->jedec_version = 1; /* vendor specific version */ |
| |
| if (!chip->jedec_version) { |
| pr_info("unsupported JEDEC version: %d\n", val); |
| return 0; |
| } |
| |
| sanitize_string(p->manufacturer, sizeof(p->manufacturer)); |
| sanitize_string(p->model, sizeof(p->model)); |
| if (!mtd->name) |
| mtd->name = p->model; |
| |
| mtd->writesize = le32_to_cpu(p->byte_per_page); |
| |
| /* Please reference to the comment for nand_flash_detect_onfi. */ |
| mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); |
| mtd->erasesize *= mtd->writesize; |
| |
| mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); |
| |
| /* Please reference to the comment for nand_flash_detect_onfi. */ |
| chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); |
| chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; |
| chip->bits_per_cell = p->bits_per_cell; |
| |
| if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) |
| *busw = NAND_BUSWIDTH_16; |
| else |
| *busw = 0; |
| |
| /* ECC info */ |
| ecc = &p->ecc_info[0]; |
| |
| if (ecc->codeword_size >= 9) { |
| chip->ecc_strength_ds = ecc->ecc_bits; |
| chip->ecc_step_ds = 1 << ecc->codeword_size; |
| } else { |
| pr_warn("Invalid codeword size\n"); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * nand_id_has_period - Check if an ID string has a given wraparound period |
| * @id_data: the ID string |
| * @arrlen: the length of the @id_data array |
| * @period: the period of repitition |
| * |
| * Check if an ID string is repeated within a given sequence of bytes at |
| * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a |
| * period of 3). This is a helper function for nand_id_len(). Returns non-zero |
| * if the repetition has a period of @period; otherwise, returns zero. |
| */ |
| static int nand_id_has_period(u8 *id_data, int arrlen, int period) |
| { |
| int i, j; |
| for (i = 0; i < period; i++) |
| for (j = i + period; j < arrlen; j += period) |
| if (id_data[i] != id_data[j]) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * nand_id_len - Get the length of an ID string returned by CMD_READID |
| * @id_data: the ID string |
| * @arrlen: the length of the @id_data array |
| |
| * Returns the length of the ID string, according to known wraparound/trailing |
| * zero patterns. If no pattern exists, returns the length of the array. |
| */ |
| static int nand_id_len(u8 *id_data, int arrlen) |
| { |
| int last_nonzero, period; |
| |
| /* Find last non-zero byte */ |
| for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) |
| if (id_data[last_nonzero]) |
| break; |
| |
| /* All zeros */ |
| if (last_nonzero < 0) |
| return 0; |
| |
| /* Calculate wraparound period */ |
| for (period = 1; period < arrlen; period++) |
| if (nand_id_has_period(id_data, arrlen, period)) |
| break; |
| |
| /* There's a repeated pattern */ |
| if (period < arrlen) |
| return period; |
| |
| /* There are trailing zeros */ |
| if (last_nonzero < arrlen - 1) |
| return last_nonzero + 1; |
| |
| /* No pattern detected */ |
| return arrlen; |
| } |
| |
| /* Extract the bits of per cell from the 3rd byte of the extended ID */ |
| static int nand_get_bits_per_cell(u8 cellinfo) |
| { |
| int bits; |
| |
| bits = cellinfo & NAND_CI_CELLTYPE_MSK; |
| bits >>= NAND_CI_CELLTYPE_SHIFT; |
| return bits + 1; |
| } |
| |
| /* |
| * Many new NAND share similar device ID codes, which represent the size of the |
| * chip. The rest of the parameters must be decoded according to generic or |
| * manufacturer-specific "extended ID" decoding patterns. |
| */ |
| static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 id_data[8], int *busw) |
| { |
| int extid, id_len; |
| /* The 3rd id byte holds MLC / multichip data */ |
| chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| /* The 4th id byte is the important one */ |
| extid = id_data[3]; |
| |
| id_len = nand_id_len(id_data, 8); |
| |
| /* |
| * Field definitions are in the following datasheets: |
| * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32) |
| * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) |
| * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22) |
| * |
| * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung |
| * ID to decide what to do. |
| */ |
| if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG && |
| !nand_is_slc(chip) && id_data[5] != 0x00) { |
| /* Calc pagesize */ |
| mtd->writesize = 2048 << (extid & 0x03); |
| extid >>= 2; |
| /* Calc oobsize */ |
| switch (((extid >> 2) & 0x04) | (extid & 0x03)) { |
| case 1: |
| mtd->oobsize = 128; |
| break; |
| case 2: |
| mtd->oobsize = 218; |
| break; |
| case 3: |
| mtd->oobsize = 400; |
| break; |
| case 4: |
| mtd->oobsize = 436; |
| break; |
| case 5: |
| mtd->oobsize = 512; |
| break; |
| case 6: |
| mtd->oobsize = 640; |
| break; |
| case 7: |
| default: /* Other cases are "reserved" (unknown) */ |
| mtd->oobsize = 1024; |
| break; |
| } |
| extid >>= 2; |
| /* Calc blocksize */ |
| mtd->erasesize = (128 * 1024) << |
| (((extid >> 1) & 0x04) | (extid & 0x03)); |
| *busw = 0; |
| } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX && |
| !nand_is_slc(chip)) { |
| unsigned int tmp; |
| |
| /* Calc pagesize */ |
| mtd->writesize = 2048 << (extid & 0x03); |
| extid >>= 2; |
| /* Calc oobsize */ |
| switch (((extid >> 2) & 0x04) | (extid & 0x03)) { |
| case 0: |
| mtd->oobsize = 128; |
| break; |
| case 1: |
| mtd->oobsize = 224; |
| break; |
| case 2: |
| mtd->oobsize = 448; |
| break; |
| case 3: |
| mtd->oobsize = 64; |
| break; |
| case 4: |
| mtd->oobsize = 32; |
| break; |
| case 5: |
| mtd->oobsize = 16; |
| break; |
| default: |
| mtd->oobsize = 640; |
| break; |
| } |
| extid >>= 2; |
| /* Calc blocksize */ |
| tmp = ((extid >> 1) & 0x04) | (extid & 0x03); |
| if (tmp < 0x03) |
| mtd->erasesize = (128 * 1024) << tmp; |
| else if (tmp == 0x03) |
| mtd->erasesize = 768 * 1024; |
| else |
| mtd->erasesize = (64 * 1024) << tmp; |
| *busw = 0; |
| } else { |
| /* Calc pagesize */ |
| mtd->writesize = 1024 << (extid & 0x03); |
| extid >>= 2; |
| /* Calc oobsize */ |
| mtd->oobsize = (8 << (extid & 0x01)) * |
| (mtd->writesize >> 9); |
| extid >>= 2; |
| /* Calc blocksize. Blocksize is multiples of 64KiB */ |
| mtd->erasesize = (64 * 1024) << (extid & 0x03); |
| extid >>= 2; |
| /* Get buswidth information */ |
| *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; |
| |
| /* |
| * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per |
| * 512B page. For Toshiba SLC, we decode the 5th/6th byte as |
| * follows: |
| * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, |
| * 110b -> 24nm |
| * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC |
| */ |
| if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA && |
| nand_is_slc(chip) && |
| (id_data[5] & 0x7) == 0x6 /* 24nm */ && |
| !(id_data[4] & 0x80) /* !BENAND */) { |
| mtd->oobsize = 32 * mtd->writesize >> 9; |
| } |
| |
| } |
| } |
| |
| /* |
| * Old devices have chip data hardcoded in the device ID table. nand_decode_id |
| * decodes a matching ID table entry and assigns the MTD size parameters for |
| * the chip. |
| */ |
| static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip, |
| struct nand_flash_dev *type, u8 id_data[8], |
| int *busw) |
| { |
| int maf_id = id_data[0]; |
| |
| mtd->erasesize = type->erasesize; |
| mtd->writesize = type->pagesize; |
| mtd->oobsize = mtd->writesize / 32; |
| *busw = type->options & NAND_BUSWIDTH_16; |
| |
| /* All legacy ID NAND are small-page, SLC */ |
| chip->bits_per_cell = 1; |
| |
| /* |
| * Check for Spansion/AMD ID + repeating 5th, 6th byte since |
| * some Spansion chips have erasesize that conflicts with size |
| * listed in nand_ids table. |
| * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) |
| */ |
| if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00 |
| && id_data[6] == 0x00 && id_data[7] == 0x00 |
| && mtd->writesize == 512) { |
| mtd->erasesize = 128 * 1024; |
| mtd->erasesize <<= ((id_data[3] & 0x03) << 1); |
| } |
| } |
| |
| /* |
| * Set the bad block marker/indicator (BBM/BBI) patterns according to some |
| * heuristic patterns using various detected parameters (e.g., manufacturer, |
| * page size, cell-type information). |
| */ |
| static void nand_decode_bbm_options(struct mtd_info *mtd, |
| struct nand_chip *chip, u8 id_data[8]) |
| { |
| int maf_id = id_data[0]; |
| |
| /* Set the bad block position */ |
| if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) |
| chip->badblockpos = NAND_LARGE_BADBLOCK_POS; |
| else |
| chip->badblockpos = NAND_SMALL_BADBLOCK_POS; |
| |
| /* |
| * Bad block marker is stored in the last page of each block on Samsung |
| * and Hynix MLC devices; stored in first two pages of each block on |
| * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba, |
| * AMD/Spansion, and Macronix. All others scan only the first page. |
| */ |
| if (!nand_is_slc(chip) && |
| (maf_id == NAND_MFR_SAMSUNG || |
| maf_id == NAND_MFR_HYNIX)) |
| chip->bbt_options |= NAND_BBT_SCANLASTPAGE; |
| else if ((nand_is_slc(chip) && |
| (maf_id == NAND_MFR_SAMSUNG || |
| maf_id == NAND_MFR_HYNIX || |
| maf_id == NAND_MFR_TOSHIBA || |
| maf_id == NAND_MFR_AMD || |
| maf_id == NAND_MFR_MACRONIX)) || |
| (mtd->writesize == 2048 && |
| maf_id == NAND_MFR_MICRON)) |
| chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; |
| } |
| |
| static inline bool is_full_id_nand(struct nand_flash_dev *type) |
| { |
| return type->id_len; |
| } |
| |
| static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip, |
| struct nand_flash_dev *type, u8 *id_data, int *busw) |
| { |
| if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) { |
| mtd->writesize = type->pagesize; |
| mtd->erasesize = type->erasesize; |
| mtd->oobsize = type->oobsize; |
| |
| chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); |
| chip->chipsize = (uint64_t)type->chipsize << 20; |
| chip->options |= type->options; |
| chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); |
| chip->ecc_step_ds = NAND_ECC_STEP(type); |
| chip->onfi_timing_mode_default = |
| type->onfi_timing_mode_default; |
| |
| *busw = type->options & NAND_BUSWIDTH_16; |
| |
| if (!mtd->name) |
| mtd->name = type->name; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Get the flash and manufacturer id and lookup if the type is supported. |
| */ |
| static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| int *maf_id, int *dev_id, |
| struct nand_flash_dev *type) |
| { |
| int busw; |
| int i, maf_idx; |
| u8 id_data[8]; |
| |
| /* Select the device */ |
| chip->select_chip(mtd, 0); |
| |
| /* |
| * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) |
| * after power-up. |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* Send the command for reading device ID */ |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| |
| /* Read manufacturer and device IDs */ |
| *maf_id = chip->read_byte(mtd); |
| *dev_id = chip->read_byte(mtd); |
| |
| /* |
| * Try again to make sure, as some systems the bus-hold or other |
| * interface concerns can cause random data which looks like a |
| * possibly credible NAND flash to appear. If the two results do |
| * not match, ignore the device completely. |
| */ |
| |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| |
| /* Read entire ID string */ |
| for (i = 0; i < 8; i++) |
| id_data[i] = chip->read_byte(mtd); |
| |
| if (id_data[0] != *maf_id || id_data[1] != *dev_id) { |
| pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", |
| *maf_id, *dev_id, id_data[0], id_data[1]); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| if (!type) |
| type = nand_flash_ids; |
| |
| for (; type->name != NULL; type++) { |
| if (is_full_id_nand(type)) { |
| if (find_full_id_nand(mtd, chip, type, id_data, &busw)) |
| goto ident_done; |
| } else if (*dev_id == type->dev_id) { |
| break; |
| } |
| } |
| |
| chip->onfi_version = 0; |
| if (!type->name || !type->pagesize) { |
| /* Check if the chip is ONFI compliant */ |
| if (nand_flash_detect_onfi(mtd, chip, &busw)) |
| goto ident_done; |
| |
| /* Check if the chip is JEDEC compliant */ |
| if (nand_flash_detect_jedec(mtd, chip, &busw)) |
| goto ident_done; |
| } |
| |
| if (!type->name) |
| return ERR_PTR(-ENODEV); |
| |
| if (!mtd->name) |
| mtd->name = type->name; |
| |
| chip->chipsize = (uint64_t)type->chipsize << 20; |
| |
| if (!type->pagesize) { |
| /* Decode parameters from extended ID */ |
| nand_decode_ext_id(mtd, chip, id_data, &busw); |
| } else { |
| nand_decode_id(mtd, chip, type, id_data, &busw); |
| } |
| /* Get chip options */ |
| chip->options |= type->options; |
| |
| /* |
| * Check if chip is not a Samsung device. Do not clear the |
| * options for chips which do not have an extended id. |
| */ |
| if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) |
| chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; |
| ident_done: |
| |
| /* Try to identify manufacturer */ |
| for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) { |
| if (nand_manuf_ids[maf_idx].id == *maf_id) |
| break; |
| } |
| |
| if (chip->options & NAND_BUSWIDTH_AUTO) { |
| WARN_ON(chip->options & NAND_BUSWIDTH_16); |
| chip->options |= busw; |
| nand_set_defaults(chip, busw); |
| } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { |
| /* |
| * Check, if buswidth is correct. Hardware drivers should set |
| * chip correct! |
| */ |
| pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| *maf_id, *dev_id); |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name); |
| pr_warn("bus width %d instead %d bit\n", |
| (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, |
| busw ? 16 : 8); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| nand_decode_bbm_options(mtd, chip, id_data); |
| |
| /* Calculate the address shift from the page size */ |
| chip->page_shift = ffs(mtd->writesize) - 1; |
| /* Convert chipsize to number of pages per chip -1 */ |
| chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; |
| |
| chip->bbt_erase_shift = chip->phys_erase_shift = |
| ffs(mtd->erasesize) - 1; |
| if (chip->chipsize & 0xffffffff) |
| chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; |
| else { |
| chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); |
| chip->chip_shift += 32 - 1; |
| } |
| |
| chip->badblockbits = 8; |
| chip->erase = single_erase; |
| |
| /* Do not replace user supplied command function! */ |
| if (mtd->writesize > 512 && chip->cmdfunc == nand_command) |
| chip->cmdfunc = nand_command_lp; |
| |
| pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", |
| *maf_id, *dev_id); |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| if (chip->onfi_version) |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| chip->onfi_params.model); |
| else if (chip->jedec_version) |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| chip->jedec_params.model); |
| else |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| type->name); |
| #else |
| if (chip->jedec_version) |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| chip->jedec_params.model); |
| else |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| type->name); |
| |
| pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, |
| type->name); |
| #endif |
| |
| pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", |
| (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", |
| mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); |
| return type; |
| } |
| |
| #if CONFIG_IS_ENABLED(OF_CONTROL) |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node) |
| { |
| int ret, ecc_mode = -1, ecc_strength, ecc_step; |
| const void *blob = gd->fdt_blob; |
| const char *str; |
| |
| ret = fdtdec_get_int(blob, node, "nand-bus-width", -1); |
| if (ret == 16) |
| chip->options |= NAND_BUSWIDTH_16; |
| |
| if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt")) |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| |
| str = fdt_getprop(blob, node, "nand-ecc-mode", NULL); |
| if (str) { |
| if (!strcmp(str, "none")) |
| ecc_mode = NAND_ECC_NONE; |
| else if (!strcmp(str, "soft")) |
| ecc_mode = NAND_ECC_SOFT; |
| else if (!strcmp(str, "hw")) |
| ecc_mode = NAND_ECC_HW; |
| else if (!strcmp(str, "hw_syndrome")) |
| ecc_mode = NAND_ECC_HW_SYNDROME; |
| else if (!strcmp(str, "hw_oob_first")) |
| ecc_mode = NAND_ECC_HW_OOB_FIRST; |
| else if (!strcmp(str, "soft_bch")) |
| ecc_mode = NAND_ECC_SOFT_BCH; |
| } |
| |
| |
| ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1); |
| ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1); |
| |
| if ((ecc_step >= 0 && !(ecc_strength >= 0)) || |
| (!(ecc_step >= 0) && ecc_strength >= 0)) { |
| pr_err("must set both strength and step size in DT\n"); |
| return -EINVAL; |
| } |
| |
| if (ecc_mode >= 0) |
| chip->ecc.mode = ecc_mode; |
| |
| if (ecc_strength >= 0) |
| chip->ecc.strength = ecc_strength; |
| |
| if (ecc_step > 0) |
| chip->ecc.size = ecc_step; |
| |
| return 0; |
| } |
| #else |
| static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node) |
| { |
| return 0; |
| } |
| #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */ |
| |
| /** |
| * nand_scan_ident - [NAND Interface] Scan for the NAND device |
| * @mtd: MTD device structure |
| * @maxchips: number of chips to scan for |
| * @table: alternative NAND ID table |
| * |
| * This is the first phase of the normal nand_scan() function. It reads the |
| * flash ID and sets up MTD fields accordingly. |
| * |
| */ |
| int nand_scan_ident(struct mtd_info *mtd, int maxchips, |
| struct nand_flash_dev *table) |
| { |
| int i, nand_maf_id, nand_dev_id; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_flash_dev *type; |
| int ret; |
| |
| if (chip->flash_node) { |
| ret = nand_dt_init(mtd, chip, chip->flash_node); |
| if (ret) |
| return ret; |
| } |
| |
| /* Set the default functions */ |
| nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16); |
| |
| /* Read the flash type */ |
| type = nand_get_flash_type(mtd, chip, &nand_maf_id, |
| &nand_dev_id, table); |
| |
| if (IS_ERR(type)) { |
| if (!(chip->options & NAND_SCAN_SILENT_NODEV)) |
| pr_warn("No NAND device found\n"); |
| chip->select_chip(mtd, -1); |
| return PTR_ERR(type); |
| } |
| |
| chip->select_chip(mtd, -1); |
| |
| /* Check for a chip array */ |
| for (i = 1; i < maxchips; i++) { |
| chip->select_chip(mtd, i); |
| /* See comment in nand_get_flash_type for reset */ |
| chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| /* Send the command for reading device ID */ |
| chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); |
| /* Read manufacturer and device IDs */ |
| if (nand_maf_id != chip->read_byte(mtd) || |
| nand_dev_id != chip->read_byte(mtd)) { |
| chip->select_chip(mtd, -1); |
| break; |
| } |
| chip->select_chip(mtd, -1); |
| } |
| |
| #ifdef DEBUG |
| if (i > 1) |
| pr_info("%d chips detected\n", i); |
| #endif |
| |
| /* Store the number of chips and calc total size for mtd */ |
| chip->numchips = i; |
| mtd->size = i * chip->chipsize; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_scan_ident); |
| |
| /* |
| * Check if the chip configuration meet the datasheet requirements. |
| |
| * If our configuration corrects A bits per B bytes and the minimum |
| * required correction level is X bits per Y bytes, then we must ensure |
| * both of the following are true: |
| * |
| * (1) A / B >= X / Y |
| * (2) A >= X |
| * |
| * Requirement (1) ensures we can correct for the required bitflip density. |
| * Requirement (2) ensures we can correct even when all bitflips are clumped |
| * in the same sector. |
| */ |
| static bool nand_ecc_strength_good(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int corr, ds_corr; |
| |
| if (ecc->size == 0 || chip->ecc_step_ds == 0) |
| /* Not enough information */ |
| return true; |
| |
| /* |
| * We get the number of corrected bits per page to compare |
| * the correction density. |
| */ |
| corr = (mtd->writesize * ecc->strength) / ecc->size; |
| ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; |
| |
| return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; |
| } |
| |
| /** |
| * nand_scan_tail - [NAND Interface] Scan for the NAND device |
| * @mtd: MTD device structure |
| * |
| * This is the second phase of the normal nand_scan() function. It fills out |
| * all the uninitialized function pointers with the defaults and scans for a |
| * bad block table if appropriate. |
| */ |
| int nand_scan_tail(struct mtd_info *mtd) |
| { |
| int i; |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| struct nand_buffers *nbuf; |
| |
| /* New bad blocks should be marked in OOB, flash-based BBT, or both */ |
| BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && |
| !(chip->bbt_options & NAND_BBT_USE_FLASH)); |
| |
| if (!(chip->options & NAND_OWN_BUFFERS)) { |
| nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL); |
| chip->buffers = nbuf; |
| } else { |
| if (!chip->buffers) |
| return -ENOMEM; |
| } |
| |
| /* Set the internal oob buffer location, just after the page data */ |
| chip->oob_poi = chip->buffers->databuf + mtd->writesize; |
| |
| /* |
| * If no default placement scheme is given, select an appropriate one. |
| */ |
| if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) { |
| switch (mtd->oobsize) { |
| case 8: |
| ecc->layout = &nand_oob_8; |
| break; |
| case 16: |
| ecc->layout = &nand_oob_16; |
| break; |
| case 64: |
| ecc->layout = &nand_oob_64; |
| break; |
| case 128: |
| ecc->layout = &nand_oob_128; |
| break; |
| default: |
| pr_warn("No oob scheme defined for oobsize %d\n", |
| mtd->oobsize); |
| BUG(); |
| } |
| } |
| |
| if (!chip->write_page) |
| chip->write_page = nand_write_page; |
| |
| /* |
| * Check ECC mode, default to software if 3byte/512byte hardware ECC is |
| * selected and we have 256 byte pagesize fallback to software ECC |
| */ |
| |
| switch (ecc->mode) { |
| case NAND_ECC_HW_OOB_FIRST: |
| /* Similar to NAND_ECC_HW, but a separate read_page handle */ |
| if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { |
| pr_warn("No ECC functions supplied; hardware ECC not possible\n"); |
| BUG(); |
| } |
| if (!ecc->read_page) |
| ecc->read_page = nand_read_page_hwecc_oob_first; |
| |
| case NAND_ECC_HW: |
| /* Use standard hwecc read page function? */ |
| if (!ecc->read_page) |
| ecc->read_page = nand_read_page_hwecc; |
| if (!ecc->write_page) |
| ecc->write_page = nand_write_page_hwecc; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw; |
| if (!ecc->read_oob) |
| ecc->read_oob = nand_read_oob_std; |
| if (!ecc->write_oob) |
| ecc->write_oob = nand_write_oob_std; |
| if (!ecc->read_subpage) |
| ecc->read_subpage = nand_read_subpage; |
| if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) |
| ecc->write_subpage = nand_write_subpage_hwecc; |
| |
| case NAND_ECC_HW_SYNDROME: |
| if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && |
| (!ecc->read_page || |
| ecc->read_page == nand_read_page_hwecc || |
| !ecc->write_page || |
| ecc->write_page == nand_write_page_hwecc)) { |
| pr_warn("No ECC functions supplied; hardware ECC not possible\n"); |
| BUG(); |
| } |
| /* Use standard syndrome read/write page function? */ |
| if (!ecc->read_page) |
| ecc->read_page = nand_read_page_syndrome; |
| if (!ecc->write_page) |
| ecc->write_page = nand_write_page_syndrome; |
| if (!ecc->read_page_raw) |
| ecc->read_page_raw = nand_read_page_raw_syndrome; |
| if (!ecc->write_page_raw) |
| ecc->write_page_raw = nand_write_page_raw_syndrome; |
| if (!ecc->read_oob) |
| ecc->read_oob = nand_read_oob_syndrome; |
| if (!ecc->write_oob) |
| ecc->write_oob = nand_write_oob_syndrome; |
| |
| if (mtd->writesize >= ecc->size) { |
| if (!ecc->strength) { |
| pr_warn("Driver must set ecc.strength when using hardware ECC\n"); |
| BUG(); |
| } |
| break; |
| } |
| pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", |
| ecc->size, mtd->writesize); |
| ecc->mode = NAND_ECC_SOFT; |
| |
| case NAND_ECC_SOFT: |
| ecc->calculate = nand_calculate_ecc; |
| ecc->correct = nand_correct_data; |
| ecc->read_page = nand_read_page_swecc; |
| ecc->read_subpage = nand_read_subpage; |
| ecc->write_page = nand_write_page_swecc; |
| ecc->read_page_raw = nand_read_page_raw; |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->write_oob = nand_write_oob_std; |
| if (!ecc->size) |
| ecc->size = 256; |
| ecc->bytes = 3; |
| ecc->strength = 1; |
| break; |
| |
| case NAND_ECC_SOFT_BCH: |
| if (!mtd_nand_has_bch()) { |
| pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n"); |
| BUG(); |
| } |
| ecc->calculate = nand_bch_calculate_ecc; |
| ecc->correct = nand_bch_correct_data; |
| ecc->read_page = nand_read_page_swecc; |
| ecc->read_subpage = nand_read_subpage; |
| ecc->write_page = nand_write_page_swecc; |
| ecc->read_page_raw = nand_read_page_raw; |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->write_oob = nand_write_oob_std; |
| /* |
| * Board driver should supply ecc.size and ecc.strength values |
| * to select how many bits are correctable. Otherwise, default |
| * to 4 bits for large page devices. |
| */ |
| if (!ecc->size && (mtd->oobsize >= 64)) { |
| ecc->size = 512; |
| ecc->strength = 4; |
| } |
| |
| /* See nand_bch_init() for details. */ |
| ecc->bytes = 0; |
| ecc->priv = nand_bch_init(mtd); |
| if (!ecc->priv) { |
| pr_warn("BCH ECC initialization failed!\n"); |
| BUG(); |
| } |
| break; |
| |
| case NAND_ECC_NONE: |
| pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); |
| ecc->read_page = nand_read_page_raw; |
| ecc->write_page = nand_write_page_raw; |
| ecc->read_oob = nand_read_oob_std; |
| ecc->read_page_raw = nand_read_page_raw; |
| ecc->write_page_raw = nand_write_page_raw; |
| ecc->write_oob = nand_write_oob_std; |
| ecc->size = mtd->writesize; |
| ecc->bytes = 0; |
| ecc->strength = 0; |
| break; |
| |
| default: |
| pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode); |
| BUG(); |
| } |
| |
| /* For many systems, the standard OOB write also works for raw */ |
| if (!ecc->read_oob_raw) |
| ecc->read_oob_raw = ecc->read_oob; |
| if (!ecc->write_oob_raw) |
| ecc->write_oob_raw = ecc->write_oob; |
| |
| /* |
| * The number of bytes available for a client to place data into |
| * the out of band area. |
| */ |
| mtd->oobavail = 0; |
| if (ecc->layout) { |
| for (i = 0; ecc->layout->oobfree[i].length; i++) |
| mtd->oobavail += ecc->layout->oobfree[i].length; |
| } |
| |
| /* ECC sanity check: warn if it's too weak */ |
| if (!nand_ecc_strength_good(mtd)) |
| pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", |
| mtd->name); |
| |
| /* |
| * Set the number of read / write steps for one page depending on ECC |
| * mode. |
| */ |
| ecc->steps = mtd->writesize / ecc->size; |
| if (ecc->steps * ecc->size != mtd->writesize) { |
| pr_warn("Invalid ECC parameters\n"); |
| BUG(); |
| } |
| ecc->total = ecc->steps * ecc->bytes; |
| |
| /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ |
| if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { |
| switch (ecc->steps) { |
| case 2: |
| mtd->subpage_sft = 1; |
| break; |
| case 4: |
| case 8: |
| case 16: |
| mtd->subpage_sft = 2; |
| break; |
| } |
| } |
| chip->subpagesize = mtd->writesize >> mtd->subpage_sft; |
| |
| /* Initialize state */ |
| chip->state = FL_READY; |
| |
| /* Invalidate the pagebuffer reference */ |
| chip->pagebuf = -1; |
| |
| /* Large page NAND with SOFT_ECC should support subpage reads */ |
| switch (ecc->mode) { |
| case NAND_ECC_SOFT: |
| case NAND_ECC_SOFT_BCH: |
| if (chip->page_shift > 9) |
| chip->options |= NAND_SUBPAGE_READ; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Fill in remaining MTD driver data */ |
| mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; |
| mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : |
| MTD_CAP_NANDFLASH; |
| mtd->_erase = nand_erase; |
| mtd->_read = nand_read; |
| mtd->_write = nand_write; |
| mtd->_panic_write = panic_nand_write; |
| mtd->_read_oob = nand_read_oob; |
| mtd->_write_oob = nand_write_oob; |
| mtd->_sync = nand_sync; |
| mtd->_lock = NULL; |
| mtd->_unlock = NULL; |
| mtd->_block_isreserved = nand_block_isreserved; |
| mtd->_block_isbad = nand_block_isbad; |
| mtd->_block_markbad = nand_block_markbad; |
| mtd->writebufsize = mtd->writesize; |
| |
| /* propagate ecc info to mtd_info */ |
| mtd->ecclayout = ecc->layout; |
| mtd->ecc_strength = ecc->strength; |
| mtd->ecc_step_size = ecc->size; |
| /* |
| * Initialize bitflip_threshold to its default prior scan_bbt() call. |
| * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be |
| * properly set. |
| */ |
| if (!mtd->bitflip_threshold) |
| mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_scan_tail); |
| |
| /** |
| * nand_scan - [NAND Interface] Scan for the NAND device |
| * @mtd: MTD device structure |
| * @maxchips: number of chips to scan for |
| * |
| * This fills out all the uninitialized function pointers with the defaults. |
| * The flash ID is read and the mtd/chip structures are filled with the |
| * appropriate values. |
| */ |
| int nand_scan(struct mtd_info *mtd, int maxchips) |
| { |
| int ret; |
| |
| ret = nand_scan_ident(mtd, maxchips, NULL); |
| if (!ret) |
| ret = nand_scan_tail(mtd); |
| return ret; |
| } |
| EXPORT_SYMBOL(nand_scan); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); |
| MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); |
| MODULE_DESCRIPTION("Generic NAND flash driver code"); |