| /* |
| * (C) Copyright 2006 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * Copyright (c) 2005 Cisco Systems. All rights reserved. |
| * Roland Dreier <rolandd@cisco.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <asm/processor.h> |
| #include <asm-ppc/io.h> |
| #include <ppc4xx.h> |
| #include <common.h> |
| #include <pci.h> |
| |
| #if defined(CONFIG_440SPE) && defined(CONFIG_PCI) |
| |
| #include "440spe_pcie.h" |
| |
| enum { |
| PTYPE_ENDPOINT = 0x0, |
| PTYPE_LEGACY_ENDPOINT = 0x1, |
| PTYPE_ROOT_PORT = 0x4, |
| |
| LNKW_X1 = 0x1, |
| LNKW_X4 = 0x4, |
| LNKW_X8 = 0x8 |
| }; |
| |
| static int pcie_read_config(struct pci_controller *hose, unsigned int devfn, |
| int offset, int len, u32 *val) { |
| |
| *val = 0; |
| /* |
| * 440SPE implements only one function per port |
| */ |
| if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1))) |
| return 0; |
| |
| devfn = PCI_BDF(0,0,0); |
| offset += devfn << 4; |
| |
| switch (len) { |
| case 1: |
| *val = in_8(hose->cfg_data + offset); |
| break; |
| case 2: |
| *val = in_le16((u16 *)(hose->cfg_data + offset)); |
| break; |
| default: |
| *val = in_le32((u32 *)(hose->cfg_data + offset)); |
| break; |
| } |
| return 0; |
| } |
| |
| static int pcie_write_config(struct pci_controller *hose, unsigned int devfn, |
| int offset, int len, u32 val) { |
| |
| /* |
| * 440SPE implements only one function per port |
| */ |
| if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1))) |
| return 0; |
| |
| devfn = PCI_BDF(0,0,0); |
| offset += devfn << 4; |
| |
| switch (len) { |
| case 1: |
| out_8(hose->cfg_data + offset, val); |
| break; |
| case 2: |
| out_le16((u16 *)(hose->cfg_data + offset), val); |
| break; |
| default: |
| out_le32((u32 *)(hose->cfg_data + offset), val); |
| break; |
| } |
| return 0; |
| } |
| |
| int pcie_read_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 *val) |
| { |
| u32 v; |
| int rv; |
| |
| rv = pcie_read_config(hose, dev, offset, 1, &v); |
| *val = (u8)v; |
| return rv; |
| } |
| |
| int pcie_read_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 *val) |
| { |
| u32 v; |
| int rv; |
| |
| rv = pcie_read_config(hose, dev, offset, 2, &v); |
| *val = (u16)v; |
| return rv; |
| } |
| |
| int pcie_read_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 *val) |
| { |
| u32 v; |
| int rv; |
| |
| rv = pcie_read_config(hose, dev, offset, 3, &v); |
| *val = (u32)v; |
| return rv; |
| } |
| |
| int pcie_write_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 val) |
| { |
| return pcie_write_config(hose,(u32)dev,offset,1,val); |
| } |
| |
| int pcie_write_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 val) |
| { |
| return pcie_write_config(hose,(u32)dev,offset,2,(u32 )val); |
| } |
| |
| int pcie_write_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 val) |
| { |
| return pcie_write_config(hose,(u32)dev,offset,3,(u32 )val); |
| } |
| |
| static void ppc440spe_setup_utl(u32 port) { |
| |
| volatile void *utl_base = NULL; |
| |
| /* |
| * Map UTL registers |
| */ |
| switch (port) { |
| case 0: |
| mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x0000000c); |
| mtdcr(DCRN_PEGPL_REGBAL(PCIE0), 0x20000000); |
| mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001); |
| mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0x68782800); |
| break; |
| |
| case 1: |
| mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x0000000c); |
| mtdcr(DCRN_PEGPL_REGBAL(PCIE1), 0x20001000); |
| mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001); |
| mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0x68782800); |
| break; |
| |
| case 2: |
| mtdcr(DCRN_PEGPL_REGBAH(PCIE2), 0x0000000c); |
| mtdcr(DCRN_PEGPL_REGBAL(PCIE2), 0x20002000); |
| mtdcr(DCRN_PEGPL_REGMSK(PCIE2), 0x00007001); |
| mtdcr(DCRN_PEGPL_SPECIAL(PCIE2), 0x68782800); |
| break; |
| } |
| utl_base = (unsigned int *)(CFG_PCIE_BASE + 0x1000 * port); |
| |
| /* |
| * Set buffer allocations and then assert VRB and TXE. |
| */ |
| out_be32(utl_base + PEUTL_OUTTR, 0x08000000); |
| out_be32(utl_base + PEUTL_INTR, 0x02000000); |
| out_be32(utl_base + PEUTL_OPDBSZ, 0x10000000); |
| out_be32(utl_base + PEUTL_PBBSZ, 0x53000000); |
| out_be32(utl_base + PEUTL_IPHBSZ, 0x08000000); |
| out_be32(utl_base + PEUTL_IPDBSZ, 0x10000000); |
| out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000); |
| out_be32(utl_base + PEUTL_PCTL, 0x80800066); |
| } |
| |
| static int check_error(void) |
| { |
| u32 valPE0, valPE1, valPE2; |
| int err = 0; |
| |
| /* SDR0_PEGPLLLCT1 reset */ |
| if (!(valPE0 = SDR_READ(PESDR0_PLLLCT1) & 0x01000000)) { |
| printf("PCIE: SDR0_PEGPLLLCT1 reset error 0x%x\n", valPE0); |
| } |
| |
| valPE0 = SDR_READ(PESDR0_RCSSET); |
| valPE1 = SDR_READ(PESDR1_RCSSET); |
| valPE2 = SDR_READ(PESDR2_RCSSET); |
| |
| /* SDR0_PExRCSSET rstgu */ |
| if (!(valPE0 & 0x01000000) || |
| !(valPE1 & 0x01000000) || |
| !(valPE2 & 0x01000000)) { |
| printf("PCIE: SDR0_PExRCSSET rstgu error\n"); |
| err = -1; |
| } |
| |
| /* SDR0_PExRCSSET rstdl */ |
| if (!(valPE0 & 0x00010000) || |
| !(valPE1 & 0x00010000) || |
| !(valPE2 & 0x00010000)) { |
| printf("PCIE: SDR0_PExRCSSET rstdl error\n"); |
| err = -1; |
| } |
| |
| /* SDR0_PExRCSSET rstpyn */ |
| if ((valPE0 & 0x00001000) || |
| (valPE1 & 0x00001000) || |
| (valPE2 & 0x00001000)) { |
| printf("PCIE: SDR0_PExRCSSET rstpyn error\n"); |
| err = -1; |
| } |
| |
| /* SDR0_PExRCSSET hldplb */ |
| if ((valPE0 & 0x10000000) || |
| (valPE1 & 0x10000000) || |
| (valPE2 & 0x10000000)) { |
| printf("PCIE: SDR0_PExRCSSET hldplb error\n"); |
| err = -1; |
| } |
| |
| /* SDR0_PExRCSSET rdy */ |
| if ((valPE0 & 0x00100000) || |
| (valPE1 & 0x00100000) || |
| (valPE2 & 0x00100000)) { |
| printf("PCIE: SDR0_PExRCSSET rdy error\n"); |
| err = -1; |
| } |
| |
| /* SDR0_PExRCSSET shutdown */ |
| if ((valPE0 & 0x00000100) || |
| (valPE1 & 0x00000100) || |
| (valPE2 & 0x00000100)) { |
| printf("PCIE: SDR0_PExRCSSET shutdown error\n"); |
| err = -1; |
| } |
| return err; |
| } |
| |
| /* |
| * Initialize PCI Express core |
| */ |
| int ppc440spe_init_pcie(void) |
| { |
| int time_out = 20; |
| |
| /* Set PLL clock receiver to LVPECL */ |
| SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) | 1 << 28); |
| |
| if (check_error()) |
| return -1; |
| |
| if (!(SDR_READ(PESDR0_PLLLCT2) & 0x10000)) |
| { |
| printf("PCIE: PESDR_PLLCT2 resistance calibration failed (0x%08x)\n", |
| SDR_READ(PESDR0_PLLLCT2)); |
| return -1; |
| } |
| /* De-assert reset of PCIe PLL, wait for lock */ |
| SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) & ~(1 << 24)); |
| udelay(3); |
| |
| while (time_out) { |
| if (!(SDR_READ(PESDR0_PLLLCT3) & 0x10000000)) { |
| time_out--; |
| udelay(1); |
| } else |
| break; |
| } |
| if (!time_out) { |
| printf("PCIE: VCO output not locked\n"); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Yucca board as End point and root point setup |
| * and |
| * testing inbound and out bound windows |
| * |
| * YUCCA board can be plugged into another yucca board or you can get PCI-E |
| * cable which can be used to setup loop back from one port to another port. |
| * Please rememeber that unless there is a endpoint plugged in to root port it |
| * will not initialize. It is the same in case of endpoint , unless there is |
| * root port attached it will not initialize. |
| * |
| * In this release of software all the PCI-E ports are configured as either |
| * endpoint or rootpoint.In future we will have support for selective ports |
| * setup as endpoint and root point in single board. |
| * |
| * Once your board came up as root point , you can verify by reading |
| * /proc/bus/pci/devices. Where you can see the configuration registers |
| * of end point device attached to the port. |
| * |
| * Enpoint cofiguration can be verified by connecting Yucca board to any |
| * host or another yucca board. Then try to scan the device. In case of |
| * linux use "lspci" or appripriate os command. |
| * |
| * How do I verify the inbound and out bound windows ?(yucca to yucca) |
| * in this configuration inbound and outbound windows are setup to access |
| * sram memroy area. SRAM is at 0x4 0000 0000 , on PLB bus. This address |
| * is mapped at 0x90000000. From u-boot prompt write data 0xb000 0000, |
| * This is waere your POM(PLB out bound memory window) mapped. then |
| * read the data from other yucca board's u-boot prompt at address |
| * 0x9000 0000(SRAM). Data should match. |
| * In case of inbound , write data to u-boot command prompt at 0xb000 0000 |
| * which is mapped to 0x4 0000 0000. Now on rootpoint yucca u-boot prompt check |
| * data at 0x9000 0000(SRAM).Data should match. |
| */ |
| int ppc440spe_init_pcie_rootport(int port) |
| { |
| static int core_init; |
| volatile u32 val = 0; |
| int attempts; |
| |
| if (!core_init) { |
| ++core_init; |
| if (ppc440spe_init_pcie()) |
| return -1; |
| } |
| |
| /* |
| * Initialize various parts of the PCI Express core for our port: |
| * |
| * - Set as a root port and enable max width |
| * (PXIE0 -> X8, PCIE1 and PCIE2 -> X4). |
| * - Set up UTL configuration. |
| * - Increase SERDES drive strength to levels suggested by AMCC. |
| * - De-assert RSTPYN, RSTDL and RSTGU. |
| * |
| * NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with |
| * default setting 0x11310000. The register has new fields, |
| * PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core |
| * hang. |
| */ |
| switch (port) { |
| case 0: |
| SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X8 << 12); |
| |
| SDR_WRITE(PESDR0_UTLSET1, 0x21222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR0_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000); |
| SDR_WRITE(PESDR0_RCSSET, |
| (SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| |
| case 1: |
| SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12); |
| SDR_WRITE(PESDR1_UTLSET1, 0x21222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR1_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR1_RCSSET, |
| (SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| |
| case 2: |
| SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12); |
| SDR_WRITE(PESDR2_UTLSET1, 0x21222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR2_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR2_RCSSET, |
| (SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| } |
| /* |
| * Notice: the following delay has critical impact on device |
| * initialization - if too short (<50ms) the link doesn't get up. |
| */ |
| mdelay(100); |
| |
| switch (port) { |
| case 0: |
| val = SDR_READ(PESDR0_RCSSTS); |
| break; |
| case 1: |
| val = SDR_READ(PESDR1_RCSSTS); |
| break; |
| case 2: |
| val = SDR_READ(PESDR2_RCSSTS); |
| break; |
| } |
| |
| if (val & (1 << 20)) { |
| printf("PCIE%d: PGRST failed %08x\n", port, val); |
| return -1; |
| } |
| |
| /* |
| * Verify link is up |
| */ |
| val = 0; |
| switch (port) { |
| case 0: |
| val = SDR_READ(PESDR0_LOOP); |
| break; |
| case 1: |
| val = SDR_READ(PESDR1_LOOP); |
| break; |
| case 2: |
| val = SDR_READ(PESDR2_LOOP); |
| break; |
| } |
| if (!(val & 0x00001000)) { |
| printf("PCIE%d: link is not up.\n", port); |
| return -1; |
| } |
| |
| /* |
| * Setup UTL registers - but only on revA! |
| * We use default settings for revB chip. |
| */ |
| if (!ppc440spe_revB()) |
| ppc440spe_setup_utl(port); |
| |
| /* |
| * We map PCI Express configuration access into the 512MB regions |
| * |
| * NOTICE: revB is very strict about PLB real addressess and ranges to |
| * be mapped for config space; it seems to only work with d_nnnn_nnnn |
| * range (hangs the core upon config transaction attempts when set |
| * otherwise) while revA uses c_nnnn_nnnn. |
| * |
| * For revA: |
| * PCIE0: 0xc_4000_0000 |
| * PCIE1: 0xc_8000_0000 |
| * PCIE2: 0xc_c000_0000 |
| * |
| * For revB: |
| * PCIE0: 0xd_0000_0000 |
| * PCIE1: 0xd_2000_0000 |
| * PCIE2: 0xd_4000_0000 |
| */ |
| |
| switch (port) { |
| case 0: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000); |
| } else { |
| /* revA */ |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */ |
| break; |
| |
| case 1: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000); |
| } else { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */ |
| break; |
| |
| case 2: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000); |
| } else { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */ |
| break; |
| } |
| |
| /* |
| * Check for VC0 active and assert RDY. |
| */ |
| attempts = 10; |
| switch (port) { |
| case 0: |
| while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE0: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20); |
| break; |
| case 1: |
| while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE1: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| |
| SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20); |
| break; |
| case 2: |
| while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE2: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| |
| SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20); |
| break; |
| } |
| mdelay(100); |
| |
| return 0; |
| } |
| |
| int ppc440spe_init_pcie_endport(int port) |
| { |
| static int core_init; |
| volatile u32 val = 0; |
| int attempts; |
| |
| if (!core_init) { |
| ++core_init; |
| if (ppc440spe_init_pcie()) |
| return -1; |
| } |
| |
| /* |
| * Initialize various parts of the PCI Express core for our port: |
| * |
| * - Set as a end port and enable max width |
| * (PXIE0 -> X8, PCIE1 and PCIE2 -> X4). |
| * - Set up UTL configuration. |
| * - Increase SERDES drive strength to levels suggested by AMCC. |
| * - De-assert RSTPYN, RSTDL and RSTGU. |
| * |
| * NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with |
| * default setting 0x11310000. The register has new fields, |
| * PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core |
| * hang. |
| */ |
| switch (port) { |
| case 0: |
| SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X8 << 12); |
| |
| SDR_WRITE(PESDR0_UTLSET1, 0x20222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR0_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000); |
| SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000); |
| SDR_WRITE(PESDR0_RCSSET, |
| (SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| |
| case 1: |
| SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12); |
| SDR_WRITE(PESDR1_UTLSET1, 0x20222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR1_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR1_RCSSET, |
| (SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| |
| case 2: |
| SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12); |
| SDR_WRITE(PESDR2_UTLSET1, 0x20222222); |
| if (!ppc440spe_revB()) |
| SDR_WRITE(PESDR2_UTLSET2, 0x11000000); |
| SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000); |
| SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000); |
| SDR_WRITE(PESDR2_RCSSET, |
| (SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12); |
| break; |
| } |
| /* |
| * Notice: the following delay has critical impact on device |
| * initialization - if too short (<50ms) the link doesn't get up. |
| */ |
| mdelay(100); |
| |
| switch (port) { |
| case 0: val = SDR_READ(PESDR0_RCSSTS); break; |
| case 1: val = SDR_READ(PESDR1_RCSSTS); break; |
| case 2: val = SDR_READ(PESDR2_RCSSTS); break; |
| } |
| |
| if (val & (1 << 20)) { |
| printf("PCIE%d: PGRST failed %08x\n", port, val); |
| return -1; |
| } |
| |
| /* |
| * Verify link is up |
| */ |
| val = 0; |
| switch (port) |
| { |
| case 0: |
| val = SDR_READ(PESDR0_LOOP); |
| break; |
| case 1: |
| val = SDR_READ(PESDR1_LOOP); |
| break; |
| case 2: |
| val = SDR_READ(PESDR2_LOOP); |
| break; |
| } |
| if (!(val & 0x00001000)) { |
| printf("PCIE%d: link is not up.\n", port); |
| return -1; |
| } |
| |
| /* |
| * Setup UTL registers - but only on revA! |
| * We use default settings for revB chip. |
| */ |
| if (!ppc440spe_revB()) |
| ppc440spe_setup_utl(port); |
| |
| /* |
| * We map PCI Express configuration access into the 512MB regions |
| * |
| * NOTICE: revB is very strict about PLB real addressess and ranges to |
| * be mapped for config space; it seems to only work with d_nnnn_nnnn |
| * range (hangs the core upon config transaction attempts when set |
| * otherwise) while revA uses c_nnnn_nnnn. |
| * |
| * For revA: |
| * PCIE0: 0xc_4000_0000 |
| * PCIE1: 0xc_8000_0000 |
| * PCIE2: 0xc_c000_0000 |
| * |
| * For revB: |
| * PCIE0: 0xd_0000_0000 |
| * PCIE1: 0xd_2000_0000 |
| * PCIE2: 0xd_4000_0000 |
| */ |
| switch (port) { |
| case 0: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000); |
| } else { |
| /* revA */ |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */ |
| break; |
| |
| case 1: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000); |
| } else { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */ |
| break; |
| |
| case 2: |
| if (ppc440spe_revB()) { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000); |
| } else { |
| mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c); |
| mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000); |
| } |
| mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */ |
| break; |
| } |
| |
| /* |
| * Check for VC0 active and assert RDY. |
| */ |
| attempts = 10; |
| switch (port) { |
| case 0: |
| while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE0: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20); |
| break; |
| case 1: |
| while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE1: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| |
| SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20); |
| break; |
| case 2: |
| while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) { |
| if (!(attempts--)) { |
| printf("PCIE2: VC0 not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| |
| SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20); |
| break; |
| } |
| mdelay(100); |
| |
| return 0; |
| } |
| |
| void ppc440spe_setup_pcie_rootpoint(struct pci_controller *hose, int port) |
| { |
| volatile void *mbase = NULL; |
| volatile void *rmbase = NULL; |
| |
| pci_set_ops(hose, |
| pcie_read_config_byte, |
| pcie_read_config_word, |
| pcie_read_config_dword, |
| pcie_write_config_byte, |
| pcie_write_config_word, |
| pcie_write_config_dword); |
| |
| switch (port) { |
| case 0: |
| mbase = (u32 *)CFG_PCIE0_XCFGBASE; |
| rmbase = (u32 *)CFG_PCIE0_CFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE; |
| break; |
| case 1: |
| mbase = (u32 *)CFG_PCIE1_XCFGBASE; |
| rmbase = (u32 *)CFG_PCIE1_CFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE; |
| break; |
| case 2: |
| mbase = (u32 *)CFG_PCIE2_XCFGBASE; |
| rmbase = (u32 *)CFG_PCIE2_CFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE; |
| break; |
| } |
| |
| /* |
| * Set bus numbers on our root port |
| */ |
| out_8((u8 *)mbase + PCI_PRIMARY_BUS, 0); |
| out_8((u8 *)mbase + PCI_SECONDARY_BUS, 1); |
| out_8((u8 *)mbase + PCI_SUBORDINATE_BUS, 1); |
| |
| /* |
| * Set up outbound translation to hose->mem_space from PLB |
| * addresses at an offset of 0xd_0000_0000. We set the low |
| * bits of the mask to 11 to turn off splitting into 8 |
| * subregions and to enable the outbound translation. |
| */ |
| out_le32(mbase + PECFG_POM0LAH, 0x00000000); |
| out_le32(mbase + PECFG_POM0LAL, 0x00000000); |
| |
| switch (port) { |
| case 0: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| case 1: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE)); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| case 2: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE)); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| } |
| |
| /* Set up 16GB inbound memory window at 0 */ |
| out_le32(mbase + PCI_BASE_ADDRESS_0, 0); |
| out_le32(mbase + PCI_BASE_ADDRESS_1, 0); |
| out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc); |
| out_le32(mbase + PECFG_BAR0LMPA, 0); |
| |
| out_le32(mbase + PECFG_PIM01SAH, 0xffff0000); |
| out_le32(mbase + PECFG_PIM01SAL, 0x00000000); |
| out_le32(mbase + PECFG_PIM0LAL, 0); |
| out_le32(mbase + PECFG_PIM0LAH, 0); |
| out_le32(mbase + PECFG_PIM1LAL, 0x00000000); |
| out_le32(mbase + PECFG_PIM1LAH, 0x00000004); |
| out_le32(mbase + PECFG_PIMEN, 0x1); |
| |
| /* Enable I/O, Mem, and Busmaster cycles */ |
| out_le16((u16 *)(mbase + PCI_COMMAND), |
| in_le16((u16 *)(mbase + PCI_COMMAND)) | |
| PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| printf("PCIE:%d successfully set as rootpoint\n",port); |
| } |
| |
| int ppc440spe_setup_pcie_endpoint(struct pci_controller *hose, int port) |
| { |
| volatile void *mbase = NULL; |
| int attempts = 0; |
| |
| pci_set_ops(hose, |
| pcie_read_config_byte, |
| pcie_read_config_word, |
| pcie_read_config_dword, |
| pcie_write_config_byte, |
| pcie_write_config_word, |
| pcie_write_config_dword); |
| |
| switch (port) { |
| case 0: |
| mbase = (u32 *)CFG_PCIE0_XCFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE; |
| break; |
| case 1: |
| mbase = (u32 *)CFG_PCIE1_XCFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE; |
| break; |
| case 2: |
| mbase = (u32 *)CFG_PCIE2_XCFGBASE; |
| hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE; |
| break; |
| } |
| |
| /* |
| * Set up outbound translation to hose->mem_space from PLB |
| * addresses at an offset of 0xd_0000_0000. We set the low |
| * bits of the mask to 11 to turn off splitting into 8 |
| * subregions and to enable the outbound translation. |
| */ |
| out_le32(mbase + PECFG_POM0LAH, 0x00001ff8); |
| out_le32(mbase + PECFG_POM0LAL, 0x00001000); |
| |
| switch (port) { |
| case 0: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| case 1: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE)); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| case 2: |
| mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d); |
| mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE + |
| port * CFG_PCIE_MEMSIZE)); |
| mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff); |
| mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2), |
| ~(CFG_PCIE_MEMSIZE - 1) | 3); |
| break; |
| } |
| |
| /* Set up 16GB inbound memory window at 0 */ |
| out_le32(mbase + PCI_BASE_ADDRESS_0, 0); |
| out_le32(mbase + PCI_BASE_ADDRESS_1, 0); |
| out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc); |
| out_le32(mbase + PECFG_BAR0LMPA, 0); |
| out_le32(mbase + PECFG_PIM0LAL, 0x00000000); |
| out_le32(mbase + PECFG_PIM0LAH, 0x00000004); /* pointing to SRAM */ |
| out_le32(mbase + PECFG_PIMEN, 0x1); |
| |
| /* Enable I/O, Mem, and Busmaster cycles */ |
| out_le16((u16 *)(mbase + PCI_COMMAND), |
| in_le16((u16 *)(mbase + PCI_COMMAND)) | |
| PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| out_le16(mbase + 0x200,0xcaad); /* Setting vendor ID */ |
| out_le16(mbase + 0x202,0xfeed); /* Setting device ID */ |
| attempts = 10; |
| switch (port) { |
| case 0: |
| while (!(SDR_READ(PESDR0_RCSSTS) & (1 << 8))) { |
| if (!(attempts--)) { |
| printf("PCIE0: BMEN is not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| break; |
| case 1: |
| while (!(SDR_READ(PESDR1_RCSSTS) & (1 << 8))) { |
| if (!(attempts--)) { |
| printf("PCIE1: BMEN is not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| break; |
| case 2: |
| while (!(SDR_READ(PESDR2_RCSSTS) & (1 << 8))) { |
| if (!(attempts--)) { |
| printf("PCIE2: BMEN is not active\n"); |
| return -1; |
| } |
| mdelay(1000); |
| } |
| break; |
| } |
| printf("PCIE:%d successfully set as endpoint\n",port); |
| |
| return 0; |
| } |
| #endif /* CONFIG_440SPE && CONFIG_PCI */ |