blob: 8ee4234631bf901c6676b7c364b780e98c82514a [file] [log] [blame]
/*
* (C) Copyright 2006 Freescale Semiconductor, Inc.
*
* (C) Copyright 2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright 2004 Freescale Semiconductor.
* (C) Copyright 2003 Motorola Inc.
* Xianghua Xiao (X.Xiao@motorola.com)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
* Change log:
*
* 20050101: Eran Liberty (liberty@freescale.com)
* Initial file creating (porting from 85XX & 8260)
* 20060601: Dave Liu (daveliu@freescale.com)
* DDR ECC support
* unify variable names for 83xx
* code cleanup
*/
#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#include <spd_sdram.h>
#ifdef CONFIG_SPD_EEPROM
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif
#ifndef CFG_READ_SPD
#define CFG_READ_SPD i2c_read
#endif
/*
* Convert picoseconds into clock cycles (rounding up if needed).
*/
extern ulong get_ddr_clk(ulong dummy);
int
picos_to_clk(int picos)
{
unsigned int ddr_bus_clk;
int clks;
ddr_bus_clk = get_ddr_clk(0) >> 1;
clks = picos / ((1000000000 / ddr_bus_clk) * 1000);
if (picos % ((1000000000 / ddr_bus_clk) * 1000) !=0) {
clks++;
}
return clks;
}
unsigned int banksize(unsigned char row_dens)
{
return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}
int read_spd(uint addr)
{
return ((int) addr);
}
#undef SPD_DEBUG
#ifdef SPD_DEBUG
static void spd_debug(spd_eeprom_t *spd)
{
printf ("\nDIMM type: %-18.18s\n", spd->mpart);
printf ("SPD size: %d\n", spd->info_size);
printf ("EEPROM size: %d\n", 1 << spd->chip_size);
printf ("Memory type: %d\n", spd->mem_type);
printf ("Row addr: %d\n", spd->nrow_addr);
printf ("Column addr: %d\n", spd->ncol_addr);
printf ("# of rows: %d\n", spd->nrows);
printf ("Row density: %d\n", spd->row_dens);
printf ("# of banks: %d\n", spd->nbanks);
printf ("Data width: %d\n",
256 * spd->dataw_msb + spd->dataw_lsb);
printf ("Chip width: %d\n", spd->primw);
printf ("Refresh rate: %02X\n", spd->refresh);
printf ("CAS latencies: %02X\n", spd->cas_lat);
printf ("Write latencies: %02X\n", spd->write_lat);
printf ("tRP: %d\n", spd->trp);
printf ("tRCD: %d\n", spd->trcd);
printf ("\n");
}
#endif /* SPD_DEBUG */
long int spd_sdram()
{
#ifdef CONFIG_MPC834X
int caslat_83xx; /* For Errata DDR6 */
#endif
volatile immap_t *immap = (immap_t *)CFG_IMMRBAR;
volatile ddr83xx_t *ddr = &immap->ddr;
volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
spd_eeprom_t spd;
unsigned int tmp, tmp1;
unsigned int memsize;
unsigned int law_size;
unsigned char caslat, caslat_ctrl;
unsigned char burstlen;
unsigned int max_bus_clk;
unsigned int max_data_rate, effective_data_rate;
unsigned int ddrc_clk;
unsigned int refresh_clk;
unsigned sdram_cfg;
unsigned int ddrc_ecc_enable;
/* Read SPD parameters with I2C */
CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
#ifdef SPD_DEBUG
spd_debug(&spd);
#endif
/* Check the memory type */
if (spd.mem_type != SPD_MEMTYPE_DDR) {
printf("DDR: Module mem type is %02X\n", spd.mem_type);
return 0;
}
/* Check the number of physical bank */
if (spd.nrows > 2) {
printf("DDR: The number of physical bank is %02X\n", spd.nrows);
return 0;
}
/* Check if the number of row of the module is in the range of DDRC */
if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
printf("DDR: Row number is out of range of DDRC, row=%02X\n",
spd.nrow_addr);
return 0;
}
/* Check if the number of col of the module is in the range of DDRC */
if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
printf("DDR: Col number is out of range of DDRC, col=%02X\n",
spd.ncol_addr);
return 0;
}
/* Setup DDR chip select register */
ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
ddr->cs_config[2] = ( 1 << 31
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
debug("\n");
debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
if (spd.nrows == 2) {
ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
| ((banksize(spd.row_dens) >> 23) - 1) );
ddr->cs_config[3] = ( 1<<31
| (spd.nrow_addr-12) << 8
| (spd.ncol_addr-8) );
debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
}
if (spd.mem_type != 0x07) {
puts("No DDR module found!\n");
return 0;
}
/*
* Figure out memory size in Megabytes.
*/
memsize = spd.nrows * banksize(spd.row_dens) / 0x100000;
/*
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
*/
law_size = 19 + __ilog2(memsize);
/*
* Set up LAWBAR for all of DDR.
*/
ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
debug("DDR:bar=0x%08x\n", ecm->bar);
debug("DDR:ar=0x%08x\n", ecm->ar);
/*
* Find the largest CAS by locating the highest 1 bit
* in the spd.cas_lat field. Translate it to a DDR
* controller field value:
*
* CAS Lat DDR I Ctrl
* Clocks SPD Bit Value
* -------+--------+---------
* 1.0 0 001
* 1.5 1 010
* 2.0 2 011
* 2.5 3 100
* 3.0 4 101
* 3.5 5 110
* 4.0 6 111
*/
caslat = __ilog2(spd.cas_lat);
if (caslat > 4 ) {
printf("DDR: Invalid SPD CAS Latency, caslat=%02X\n", caslat);
return 0;
}
max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
+ (spd.clk_cycle & 0x0f));
max_data_rate = max_bus_clk * 2;
debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);
ddrc_clk = get_ddr_clk(0) / 1000000;
if (max_data_rate >= 390) { /* it is DDR 400 */
printf("DDR: platform not support DDR 400\n");
return 0;
} else if (max_data_rate >= 323) { /* it is DDR 333 */
if (ddrc_clk <= 350 && ddrc_clk > 280) {
/* DDRC clk at 280~350 */
effective_data_rate = 333; /* 6ns */
caslat = caslat;
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
/* DDRC clk at 230~280 */
if (spd.clk_cycle2 == 0x75) {
effective_data_rate = 266; /* 7.5ns */
caslat = caslat - 1;
}
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDRC clk at 90~230 */
if (spd.clk_cycle3 == 0xa0) {
effective_data_rate = 200; /* 10ns */
caslat = caslat - 2;
}
}
} else if (max_data_rate >= 256) { /* it is DDR 266 */
if (ddrc_clk <= 350 && ddrc_clk > 280) {
/* DDRC clk at 280~350 */
printf("DDR: DDR controller freq is more than "
"max data rate of the module\n");
return 0;
} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
/* DDRC clk at 230~280 */
effective_data_rate = 266; /* 7.5ns */
caslat = caslat;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDRC clk at 90~230 */
if (spd.clk_cycle2 == 0xa0) {
effective_data_rate = 200; /* 10ns */
caslat = caslat - 1;
}
}
} else if (max_data_rate >= 190) { /* it is DDR 200 */
if (ddrc_clk <= 350 && ddrc_clk > 230) {
/* DDRC clk at 230~350 */
printf("DDR: DDR controller freq is more than "
"max data rate of the module\n");
return 0;
} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
/* DDRC clk at 90~230 */
effective_data_rate = 200; /* 10ns */
caslat = caslat;
}
}
#ifdef CONFIG_MPC834X
/* Errata DDR6
This errata affects all MPC8349E, MPC8343E and MPC8347E processors.
*/
if ((tmp1 >= 280) && (tmp1 < 350)) /* CSB=333 */
{
if (spd.mid[0] == 0x2c) {
/* Micron memory running at 333 MHz */
/* Chances are, U-Boot will crash before we get here,
but just in case, display a message and return error. */
printf("Micron DDR not supported at 333MHz CSB\n");
return 0;
} else if (spd.mid[0] == 0xad) {
printf("Hynix DDR does not require Errata DDR6\n");
} else {
/* enable 2 cycle Earlier for CL=2.5 or 3 */
ddr->debug_reg = 0x202c0000;
printf("Errata DDR6 (debug_reg=0x%x)\n", ddr->debug_reg);
}
caslat_83xx = caslat;
}
if ((tmp1 >= 230) && (tmp1 < 280)) { /* CSB=266 */
if (spd.mid[0] != 0x2c) /* non-Micron */
caslat_83xx = caslat - 1;
}
if ((tmp1 >= 90) && (tmp1 < 230)) { /* CSB=200 */
caslat = 3;
caslat_83xx = 2;
}
#endif
/*
* note: caslat must also be programmed into ddr->sdram_mode
* register.
*
* note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,
* use conservative value here.
*/
caslat_ctrl = (caslat + 1) & 0x07; /* see as above */
ddr->timing_cfg_1 =
(((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |
((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) |
((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) |
#ifdef CONFIG_MPC834x
((caslat_83xx & 0x07) << 16 ) |
#else
((caslat_ctrl & 0x07) << 16 ) |
#endif
(((picos_to_clk(spd.trfc * 1000) - 8) & 0x0f) << 12 ) |
( 0x300 ) |
((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1);
ddr->timing_cfg_2 = 0x00000800;
debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
/* Setup init value, but not enable */
ddr->sdram_cfg = 0x42000000;
/* Check DIMM data bus width */
if (spd.dataw_lsb == 0x20)
{
burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
printf("\n DDR DIMM: data bus width is 32 bit");
}
else
{
burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
printf("\n DDR DIMM: data bus width is 64 bit");
}
/* Is this an ECC DDR chip? */
if (spd.config == 0x02) {
printf(" with ECC\n");
}
else
printf(" without ECC\n");
/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
Burst type is sequential
*/
switch(caslat) {
case 1:
ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
break;
case 2:
ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
break;
case 3:
ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
break;
case 4:
ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
break;
default:
printf("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 "
"is supported.\n");
return 0;
}
debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
switch(spd.refresh) {
case 0x00:
case 0x80:
tmp = picos_to_clk(15625000);
break;
case 0x01:
case 0x81:
tmp = picos_to_clk(3900000);
break;
case 0x02:
case 0x82:
tmp = picos_to_clk(7800000);
break;
case 0x03:
case 0x83:
tmp = picos_to_clk(31300000);
break;
case 0x04:
case 0x84:
tmp = picos_to_clk(62500000);
break;
case 0x05:
case 0x85:
tmp = picos_to_clk(125000000);
break;
default:
tmp = 0x512;
break;
}
/*
* Set BSTOPRE to 0x100 for page mode
* If auto-charge is used, set BSTOPRE = 0
*/
ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100;
debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
/* SS_EN = 0, source synchronous disable
* CLK_ADJST = 0, MCK/MCK# is launched aligned with addr/cmd
*/
ddr->sdram_clk_cntl = 0x00000000;
debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
asm("sync;isync");
udelay(600);
/*
* Figure out the settings for the sdram_cfg register. Build up
* the entire register in 'tmp' before writing since the write into
* the register will actually enable the memory controller, and all
* settings must be done before enabling.
*
* sdram_cfg[0] = 1 (ddr sdram logic enable)
* sdram_cfg[1] = 1 (self-refresh-enable)
* sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
* sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
* sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
*/
sdram_cfg = 0xC2000000;
/* sdram_cfg[3] = RD_EN - registered DIMM enable */
if (spd.mod_attr & 0x02) {
sdram_cfg |= 0x10000000;
}
/* The DIMM is 32bit width */
if (spd.dataw_lsb == 0x20) {
sdram_cfg |= 0x000C0000;
}
ddrc_ecc_enable = 0;
#if defined(CONFIG_DDR_ECC)
/* Enable ECC with sdram_cfg[2] */
if (spd.config == 0x02) {
sdram_cfg |= 0x20000000;
ddrc_ecc_enable = 1;
/* disable error detection */
ddr->err_disable = ~ECC_ERROR_ENABLE;
/* set single bit error threshold to maximum value,
* reset counter to zero */
ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
(0 << ECC_ERROR_MAN_SBEC_SHIFT);
}
debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
printf(" DDRC ECC mode: %s", ddrc_ecc_enable ? "ON":"OFF");
#if defined(CONFIG_DDR_2T_TIMING)
/*
* Enable 2T timing by setting sdram_cfg[16].
*/
sdram_cfg |= SDRAM_CFG_2T_EN;
#endif
/* Enable controller, and GO! */
ddr->sdram_cfg = sdram_cfg;
asm("sync;isync");
udelay(500);
debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
return memsize; /*in MBytes*/
}
#endif /* CONFIG_SPD_EEPROM */
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
/*
* Use timebase counter, get_timer() is not availabe
* at this point of initialization yet.
*/
static __inline__ unsigned long get_tbms (void)
{
unsigned long tbl;
unsigned long tbu1, tbu2;
unsigned long ms;
unsigned long long tmp;
ulong tbclk = get_tbclk();
/* get the timebase ticks */
do {
asm volatile ("mftbu %0":"=r" (tbu1):);
asm volatile ("mftb %0":"=r" (tbl):);
asm volatile ("mftbu %0":"=r" (tbu2):);
} while (tbu1 != tbu2);
/* convert ticks to ms */
tmp = (unsigned long long)(tbu1);
tmp = (tmp << 32);
tmp += (unsigned long long)(tbl);
ms = tmp/(tbclk/1000);
return ms;
}
/*
* Initialize all of memory for ECC, then enable errors.
*/
/* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
void ddr_enable_ecc(unsigned int dram_size)
{
uint *p;
volatile immap_t *immap = (immap_t *)CFG_IMMRBAR;
volatile ddr83xx_t *ddr= &immap->ddr;
unsigned long t_start, t_end;
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
uint i;
#endif
debug("Initialize a Cachline in DRAM\n");
icache_enable();
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
/* Initialise DMA for direct Transfers */
dma_init();
#endif
t_start = get_tbms();
#if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
debug("DDR init: Cache flush method\n");
for (p = 0; p < (uint *)(dram_size); p++) {
if (((unsigned int)p & 0x1f) == 0) {
ppcDcbz((unsigned long) p);
}
/* write pattern to cache and flush */
*p = (unsigned int)0xdeadbeef;
if (((unsigned int)p & 0x1c) == 0x1c) {
ppcDcbf((unsigned long) p);
}
}
#else
printf("DDR init: DMA method\n");
for (p = 0; p < (uint *)(8 * 1024); p++) {
/* zero one data cache line */
if (((unsigned int)p & 0x1f) == 0) {
ppcDcbz((unsigned long)p);
}
/* write pattern to it and flush */
*p = (unsigned int)0xdeadbeef;
if (((unsigned int)p & 0x1c) == 0x1c) {
ppcDcbf((unsigned long)p);
}
}
/* 8K */
dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
/* 16K */
dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
/* 32K */
dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
/* 64K */
dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
/* 128k */
dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
/* 256k */
dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
/* 512k */
dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
/* 1M */
dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
/* 2M */
dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
/* 4M */
dma_xfer((uint *)0x400000, 0x400000, (uint *)0);
for (i = 1; i < dram_size / 0x800000; i++) {
dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
}
#endif
t_end = get_tbms();
icache_disable();
debug("\nREADY!!\n");
debug("ddr init duration: %ld ms\n", t_end - t_start);
/* Clear All ECC Errors */
if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
ddr->err_detect |= ECC_ERROR_DETECT_MME;
if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
ddr->err_detect |= ECC_ERROR_DETECT_MBE;
if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
ddr->err_detect |= ECC_ERROR_DETECT_SBE;
if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
ddr->err_detect |= ECC_ERROR_DETECT_MSE;
/* Disable ECC-Interrupts */
ddr->err_int_en &= ECC_ERR_INT_DISABLE;
/* Enable errors for ECC */
ddr->err_disable &= ECC_ERROR_ENABLE;
__asm__ __volatile__ ("sync");
__asm__ __volatile__ ("isync");
}
#endif /* CONFIG_DDR_ECC */