blob: c90bb9acf97b068b797259879a2e8592a310bca2 [file] [log] [blame]
/*
* Copyright Altera Corporation (C) 2012-2015
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include <errno.h>
#include "sequencer.h"
#include "sequencer_auto.h"
#include "sequencer_auto_ac_init.h"
#include "sequencer_auto_inst_init.h"
#include "sequencer_defines.h"
static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
#define DELTA_D 1
/*
* In order to reduce ROM size, most of the selectable calibration steps are
* decided at compile time based on the user's calibration mode selection,
* as captured by the STATIC_CALIB_STEPS selection below.
*
* However, to support simulation-time selection of fast simulation mode, where
* we skip everything except the bare minimum, we need a few of the steps to
* be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
* check, which is based on the rtl-supplied value, or we dynamically compute
* the value to use based on the dynamically-chosen calibration mode
*/
#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
STATIC_SKIP_DELAY_LOOPS)
/* calibration steps requested by the rtl */
uint16_t dyn_calib_steps;
/*
* To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
* instead of static, we use boolean logic to select between
* non-skip and skip values
*
* The mask is set to include all bits when not-skipping, but is
* zero when skipping
*/
uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
struct gbl_type *gbl;
struct param_type *param;
uint32_t curr_shadow_reg;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm,
uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
static void set_failing_group_stage(uint32_t group, uint32_t stage,
uint32_t substage)
{
/*
* Only set the global stage if there was not been any other
* failing group
*/
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static void reg_file_set_group(u16 set_group)
{
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
}
static void reg_file_set_stage(u8 set_stage)
{
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
}
static void reg_file_set_sub_stage(u8 set_sub_stage)
{
set_sub_stage &= 0xff;
clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
}
/**
* phy_mgr_initialize() - Initialize PHY Manager
*
* Initialize PHY Manager.
*/
static void phy_mgr_initialize(void)
{
u32 ratio;
debug("%s:%d\n", __func__, __LINE__);
/* Calibration has control over path to memory */
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x3, &phy_mgr_cfg->mux_sel);
/* USER memory clock is not stable we begin initialization */
writel(0, &phy_mgr_cfg->reset_mem_stbl);
/* USER calibration status all set to zero */
writel(0, &phy_mgr_cfg->cal_status);
writel(0, &phy_mgr_cfg->cal_debug_info);
/* Init params only if we do NOT skip calibration. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
return;
ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
param->read_correct_mask_vg = (1 << ratio) - 1;
param->write_correct_mask_vg = (1 << ratio) - 1;
param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
ratio = RW_MGR_MEM_DATA_WIDTH /
RW_MGR_MEM_DATA_MASK_WIDTH;
param->dm_correct_mask = (1 << ratio) - 1;
}
/**
* set_rank_and_odt_mask() - Set Rank and ODT mask
* @rank: Rank mask
* @odt_mode: ODT mode, OFF or READ_WRITE
*
* Set Rank and ODT mask (On-Die Termination).
*/
static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
{
u32 odt_mask_0 = 0;
u32 odt_mask_1 = 0;
u32 cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_OFF) {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
} else { /* RW_MGR_ODT_MODE_READ_WRITE */
switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
case 1: /* 1 Rank */
/* Read: ODT = 0 ; Write: ODT = 1 */
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
break;
case 2: /* 2 Ranks */
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
/*
* - Dual-Slot , Single-Rank (1 CS per DIMM)
* OR
* - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
*
* Since MEM_NUMBER_OF_RANKS is 2, they
* are both single rank with 2 CS each
* (special for RDIMM).
*
* Read: Turn on ODT on the opposite rank
* Write: Turn on ODT on all ranks
*/
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
/*
* - Single-Slot , Dual-Rank (2 CS per DIMM)
*
* Read: Turn on ODT off on all ranks
* Write: Turn on ODT on active rank
*/
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
break;
case 4: /* 4 Ranks */
/* Read:
* ----------+-----------------------+
* | ODT |
* Read From +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 0 |
* 1 | 1 | 0 | 0 | 0 |
* 2 | 0 | 0 | 0 | 1 |
* 3 | 0 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*
* Write:
* ----------+-----------------------+
* | ODT |
* Write To +-----------------------+
* Rank | 3 | 2 | 1 | 0 |
* ----------+-----+-----+-----+-----+
* 0 | 0 | 1 | 0 | 1 |
* 1 | 1 | 0 | 1 | 0 |
* 2 | 0 | 1 | 0 | 1 |
* 3 | 1 | 0 | 1 | 0 |
* ----------+-----+-----+-----+-----+
*/
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
break;
}
}
cs_and_odt_mask = (0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) |
((0xFF & odt_mask_1) << 16);
writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
}
/**
* scc_mgr_set() - Set SCC Manager register
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
*
* This function sets the SCC Manager (Scan Chain Control Manager) register.
*/
static void scc_mgr_set(u32 off, u32 grp, u32 val)
{
writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}
/**
* scc_mgr_initialize() - Initialize SCC Manager registers
*
* Initialize SCC Manager registers.
*/
static void scc_mgr_initialize(void)
{
/*
* Clear register file for HPS. 16 (2^4) is the size of the
* full register file in the scc mgr:
* RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
* MEM_IF_READ_DQS_WIDTH - 1);
*/
int i;
for (i = 0; i < 16; i++) {
debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
__func__, __LINE__, i);
scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
}
}
static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}
static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
}
static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}
static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
}
static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
}
static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
delay);
}
static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
{
scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
delay);
}
/* load up dqs config settings */
static void scc_mgr_load_dqs(uint32_t dqs)
{
writel(dqs, &sdr_scc_mgr->dqs_ena);
}
/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
writel(0, &sdr_scc_mgr->dqs_io_ena);
}
/* load up dq config settings */
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}
/* load up dm config settings */
static void scc_mgr_load_dm(uint32_t dm)
{
writel(dm, &sdr_scc_mgr->dm_ena);
}
/**
* scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
* @off: Base offset in SCC Manager space
* @grp: Read/Write group
* @val: Value to be set
* @update: If non-zero, trigger SCC Manager update for all ranks
*
* This function sets the SCC Manager (Scan Chain Control Manager) register
* and optionally triggers the SCC update for all ranks.
*/
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
const int update)
{
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_set(off, grp, val);
if (update || (r == 0)) {
writel(grp, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
}
}
static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
read_group, phase, 0);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
uint32_t phase)
{
/*
* USER although the h/w doesn't support different phases per
* shadow register, for simplicity our scc manager modeling
* keeps different phase settings per shadow reg, and it's
* important for us to keep them in sync to match h/w.
* for efficiency, the scan chain update should occur only
* once to sr0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
write_group, phase, 0);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
uint32_t delay)
{
/*
* In shadow register mode, the T11 settings are stored in
* registers in the core, which are updated by the DQS_ENA
* signals. Not issuing the SCC_MGR_UPD command allows us to
* save lots of rank switching overhead, by calling
* select_shadow_regs_for_update with update_scan_chains
* set to 0.
*/
scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
read_group, delay, 1);
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_mgr_set_oct_out1_delay() - Set OCT output delay
* @write_group: Write group
* @delay: Delay value
*
* This function sets the OCT output delay in SCC manager.
*/
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
{
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
}
/**
* scc_mgr_set_hhp_extras() - Set HHP extras.
*
* Load the fixed setting in the SCC manager HHP extras.
*/
static void scc_mgr_set_hhp_extras(void)
{
/*
* Load the fixed setting in the SCC manager
* bits: 0:0 = 1'b1 - DQS bypass
* bits: 1:1 = 1'b1 - DQ bypass
* bits: 4:2 = 3'b001 - rfifo_mode
* bits: 6:5 = 2'b01 - rfifo clock_select
* bits: 7:7 = 1'b0 - separate gating from ungating setting
* bits: 8:8 = 1'b0 - separate OE from Output delay setting
*/
const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
(1 << 2) | (1 << 1) | (1 << 0);
const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_HHP_GLOBALS_OFFSET |
SCC_MGR_HHP_EXTRAS_OFFSET;
debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
__func__, __LINE__);
writel(value, addr);
debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
__func__, __LINE__);
}
/**
* scc_mgr_zero_all() - Zero all DQS config
*
* Zero all DQS config.
*/
static void scc_mgr_zero_all(void)
{
int i, r;
/*
* USER Zero all DQS config settings, across all groups and all
* shadow registers
*/
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
/*
* The phases actually don't exist on a per-rank basis,
* but there's no harm updating them several times, so
* let's keep the code simple.
*/
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
}
/* Multicast to all DQS group enables. */
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_set_bypass_mode() - Set bypass mode and trigger SCC update
* @write_group: Write group
*
* Set bypass mode and trigger SCC update.
*/
static void scc_set_bypass_mode(const u32 write_group)
{
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Update current DQS IO enable. */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Update the DQS logic. */
writel(write_group, &sdr_scc_mgr->dqs_ena);
/* Hit update. */
writel(0, &sdr_scc_mgr->update);
}
/**
* scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
* @write_group: Write group
*
* Load DQS settings for Write Group, do not trigger SCC update.
*/
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
{
const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
const int base = write_group * ratio;
int i;
/*
* Load the setting in the SCC manager
* Although OCT affects only write data, the OCT delay is controlled
* by the DQS logic block which is instantiated once per read group.
* For protocols where a write group consists of multiple read groups,
* the setting must be set multiple times.
*/
for (i = 0; i < ratio; i++)
writel(base + i, &sdr_scc_mgr->dqs_ena);
}
/**
* scc_mgr_zero_group() - Zero all configs for a group
*
* Zero DQ, DM, DQS and OCT configs for a group.
*/
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
{
int i, r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/* Zero all DQ config settings. */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, 0);
if (!out_only)
scc_mgr_set_dq_in_delay(i, 0);
}
/* Multicast to all DQ enables. */
writel(0xff, &sdr_scc_mgr->dq_ena);
/* Zero all DM config settings. */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_set_dm_out1_delay(i, 0);
/* Multicast to all DM enables. */
writel(0xff, &sdr_scc_mgr->dm_ena);
/* Zero all DQS IO settings. */
if (!out_only)
scc_mgr_set_dqs_io_in_delay(0);
/* Arria V/Cyclone V don't have out2. */
scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
/* Multicast to all DQS IO enables (only 1 in total). */
writel(0, &sdr_scc_mgr->dqs_io_ena);
/* Hit update to zero everything. */
writel(0, &sdr_scc_mgr->update);
}
}
/*
* apply and load a particular input delay for the DQ pins in a group
* group_bgn is the index of the first dq pin (in the write group)
*/
static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(p, delay);
scc_mgr_load_dq(p);
}
}
/**
* scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
* @delay: Delay value
*
* Apply and load a particular output delay for the DQ pins in a group.
*/
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
{
int i;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(i, delay);
scc_mgr_load_dq(i);
}
}
/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(i, delay1);
scc_mgr_load_dm(i);
}
}
/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side: DQ, DM, DQS, OCT.
*/
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
const u32 delay)
{
u32 i, new_delay;
/* DQ shift */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
scc_mgr_load_dq(i);
/* DM shift */
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
scc_mgr_load_dm(i);
/* DQS shift */
new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay, new_delay,
IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_dqs_out1_delay(new_delay);
}
scc_mgr_load_dqs_io();
/* OCT shift */
new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
debug_cond(DLEVEL == 1,
"%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
__func__, __LINE__, write_group, delay,
new_delay, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay -= IO_IO_OUT2_DELAY_MAX;
scc_mgr_set_oct_out1_delay(write_group, new_delay);
}
scc_mgr_load_dqs_for_write_group(write_group);
}
/**
* scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
* @write_group: Write group
* @delay: Delay value
*
* Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
*/
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
const u32 delay)
{
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_all_out_delay_add(write_group, delay);
writel(0, &sdr_scc_mgr->update);
}
}
/**
* set_jump_as_return() - Return instruction optimization
*
* Optimization used to recover some slots in ddr3 inst_rom could be
* applied to other protocols if we wanted to
*/
static void set_jump_as_return(void)
{
/*
* To save space, we replace return with jump to special shared
* RETURN instruction so we set the counter to large value so that
* we always jump.
*/
writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
}
/*
* should always use constants as argument to ensure all computations are
* performed at compile time
*/
static void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner = 0;
uint8_t outer = 0;
uint16_t c_loop = 0;
debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
/* scale (rounding up) to get afi clocks */
/*
* Note, we don't bother accounting for being off a little bit
* because of a few extra instructions in outer loops
* Note, the loops have a test at the end, and do the test before
* the decrement, and so always perform the loop
* 1 time more than the counter value
*/
if (afi_clocks == 0) {
;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks-1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks-1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks-1) >> 16;
}
/*
* rom instructions are structured as follows:
*
* IDLE_LOOP2: jnz cntr0, TARGET_A
* IDLE_LOOP1: jnz cntr1, TARGET_B
* return
*
* so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
* TARGET_B is set to IDLE_LOOP2 as well
*
* if we have no outer loop, though, then we can use IDLE_LOOP1 only,
* and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
*
* a little confusing, but it helps save precious space in the inst_rom
* and sequencer rom and keeps the delays more accurate and reduces
* overhead
*/
if (afi_clocks <= 0x100) {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} else {
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(RW_MGR_IDLE_LOOP2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* hack to get around compiler not being smart enough */
if (afi_clocks <= 0x10000) {
/* only need to run once */
writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} else {
do {
writel(RW_MGR_IDLE_LOOP2,
SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
} while (c_loop-- != 0);
}
}
debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}
/**
* rw_mgr_mem_init_load_regs() - Load instruction registers
* @cntr0: Counter 0 value
* @cntr1: Counter 1 value
* @cntr2: Counter 2 value
* @jump: Jump instruction value
*
* Load instruction registers.
*/
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
/* Load counters */
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
&sdr_rw_load_mgr_regs->load_cntr0);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
&sdr_rw_load_mgr_regs->load_cntr1);
writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
&sdr_rw_load_mgr_regs->load_cntr2);
/* Load jump address */
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/* Execute count instruction */
writel(jump, grpaddr);
}
/**
* rw_mgr_mem_load_user() - Load user calibration values
* @fin1: Final instruction 1
* @fin2: Final instruction 2
* @precharge: If 1, precharge the banks at the end
*
* Load user calibration values and optionally precharge the banks.
*/
static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
const int precharge)
{
u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
u32 r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* precharge all banks ... */
if (precharge)
writel(RW_MGR_PRECHARGE_ALL, grpaddr);
/*
* USER Use Mirror-ed commands for odd ranks if address
* mirrorring is on
*/
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
writel(RW_MGR_MRS2_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1_MIRR, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(fin1, grpaddr);
} else {
set_jump_as_return();
writel(RW_MGR_MRS2, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS3, grpaddr);
delay_for_n_mem_clocks(4);
set_jump_as_return();
writel(RW_MGR_MRS1, grpaddr);
set_jump_as_return();
writel(fin2, grpaddr);
}
if (precharge)
continue;
set_jump_as_return();
writel(RW_MGR_ZQCL, grpaddr);
/* tZQinit = tDLLK = 512 ck cycles */
delay_for_n_mem_clocks(512);
}
}
/**
* rw_mgr_mem_initialize() - Initialize RW Manager
*
* Initialize RW Manager.
*/
static void rw_mgr_mem_initialize(void)
{
debug("%s:%d\n", __func__, __LINE__);
/* The reset / cke part of initialization is broadcasted to all ranks */
writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
/*
* Here's how you load register for a loop
* Counters are located @ 0x800
* Jump address are located @ 0xC00
* For both, registers 0 to 3 are selected using bits 3 and 2, like
* in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
* I know this ain't pretty, but Avalon bus throws away the 2 least
* significant bits
*/
/* Start with memory RESET activated */
/* tINIT = 200us */
/*
* 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation:
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
* b = 6A
*/
rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
SEQ_TINIT_CNTR2_VAL,
RW_MGR_INIT_RESET_0_CKE_0);
/* Indicate that memory is stable. */
writel(1, &phy_mgr_cfg->reset_mem_stbl);
/*
* transition the RESET to high
* Wait for 500us
*/
/*
* 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
* If a and b are the number of iteration in 2 nested loops
* it takes the following number of cycles to complete the operation
* number_of_cycles = ((2 + n) * a + 2) * b
* where n is the number of instruction in the inner loop
* One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
* b = FF
*/
rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
SEQ_TRESET_CNTR2_VAL,
RW_MGR_INIT_RESET_1_CKE_0);
/* Bring up clock enable. */
/* tXRP < 250 ck cycles */
delay_for_n_mem_clocks(250);
rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
0);
}
/*
* At the end of calibration we have to program the user settings in, and
* USER hand off the memory to the user.
*/
static void rw_mgr_mem_handoff(void)
{
rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
/*
* USER need to wait tMOD (12CK or 15ns) time before issuing
* other commands, but we will have plenty of NIOS cycles before
* actual handoff so its okay.
*/
}
/**
* rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
* @rank_bgn: Rank number
* @group: Read/Write Group
* @all_ranks: Test all ranks
*
* Performs a guaranteed read on the patterns we are going to use during a
* read test to ensure memory works.
*/
static int
rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
const u32 all_ranks)
{
const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET;
const u32 addr_offset =
(group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
const u32 rank_end = all_ranks ?
RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
const u32 correct_mask_vg = param->read_correct_mask_vg;
u32 tmp_bit_chk, base_rw_mgr, bit_chk;
int vg, r;
int ret = 0;
bit_chk = param->read_correct_mask;
for (r = rank_bgn; r < rank_end; r++) {
/* Request to skip the rank */
if (param->skip_ranks[r])
continue;
/* Set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts of read commands */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_READ,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_READ_CONT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
vg >= 0; vg--) {
/* Reset the FIFOs to get pointers to known state. */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
writel(RW_MGR_GUARANTEED_READ,
addr + addr_offset + (vg << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk <<= shift_ratio;
tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
}
bit_chk &= tmp_bit_chk;
}
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
if (bit_chk != param->read_correct_mask)
ret = -EIO;
debug_cond(DLEVEL == 1,
"%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
__func__, __LINE__, group, bit_chk,
param->read_correct_mask, ret);
return ret;
}
/**
* rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
* @rank_bgn: Rank number
* @all_ranks: Test all ranks
*
* Load up the patterns we are going to use during a read test.
*/
static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
const int all_ranks)
{
const u32 rank_end = all_ranks ?
RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
u32 r;
debug("%s:%d\n", __func__, __LINE__);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
/* Load up a constant bursts */
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
/*
* try a read and see if it returns correct data back. has dummy reads
* inserted into the mix used to align dqs enable. has more thorough checks
* than the regular read test.
*/
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups, uint32_t all_ranks)
{
uint32_t r, vg;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr;
uint32_t base_rw_mgr;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r])
/* request to skip the rank */
continue;
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_READ_B2B_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
writel(RW_MGR_READ_B2B_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
if (quick_read_mode)
writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
/* need at least two (1+1) reads to capture failures */
else if (all_groups)
writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
else
writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
if (all_groups)
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
&sdr_rw_load_mgr_regs->load_cntr3);
else
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
writel(RW_MGR_READ_B2B,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
if (all_groups)
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
else
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_READ_B2B, addr +
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
vg) << 2));
base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
(%u == %u) => %lu", __func__, __LINE__, group,
all_groups, *bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk ==
param->read_correct_mask));
return *bit_chk == param->read_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
(%u != %lu) => %lu\n", __func__, __LINE__,
group, all_groups, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0x00));
return *bit_chk != 0x00;
}
}
static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
bit_chk, all_groups, 1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
{
writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
(*v)++;
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE-1; i++)
rw_mgr_incr_vfifo(grp, v);
}
static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
{
uint32_t v;
uint32_t fail_cnt = 0;
uint32_t test_status;
for (v = 0; v < VFIFO_SIZE; ) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
__func__, __LINE__, v);
test_status = rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2)
break;
}
/* fiddle with FIFO */
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
/* no failing read found!! Something must have gone wrong */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
__func__, __LINE__);
return 0;
} else {
return v;
}
}
/**
* sdr_find_phase() - Find DQS enable phase
* @working: If 1, look for working phase, if 0, look for non-working phase
* @grp: Read/Write group
* @v: VFIFO value
* @work: Working window position
* @i: Iterator
* @p: DQS Phase Iterator
* @max_working_cnt: Counter
*
* Find working or non-working DQS enable phase setting.
*/
static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
u32 *i, u32 *p, u32 *max_working_cnt)
{
u32 ret, bit_chk;
const u32 end = VFIFO_SIZE + (working ? 0 : 1);
for (; *i < end; (*i)++) {
if (working)
*p = 0;
for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT, &bit_chk, 0);
if (ret)
(*max_working_cnt)++;
if (!working)
ret = !ret;
if (ret)
return 0;
*work += IO_DELAY_PER_OPA_TAP;
}
if (*p > IO_DQS_EN_PHASE_MAX) {
/* Fiddle with FIFO. */
rw_mgr_incr_vfifo(grp, v);
if (!working)
*p = 0;
}
}
return -EINVAL;
}
static int sdr_working_phase(uint32_t grp,
uint32_t dtaps_per_ptap, uint32_t *work_bgn,
uint32_t *v, uint32_t *d, uint32_t *p,
uint32_t *i, uint32_t *max_working_cnt)
{
int ret;
*work_bgn = 0;
for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
*i = 0;
scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
ret = sdr_find_phase(1, grp, v, work_bgn, i, p, max_working_cnt);
if (!ret)
return 0;
*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
/* Cannot find working solution */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
__func__, __LINE__);
return -EINVAL;
}
static void sdr_backup_phase(uint32_t grp,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *max_working_cnt)
{
uint32_t found_begin = 0;
uint32_t tmp_delay;
u32 bit_chk;
/* Special case code for backing up a phase */
if (*p == 0) {
*p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, v);
} else {
(*p)--;
}
tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_begin = 1;
*work_bgn = tmp_delay;
break;
}
}
/* We have found a working dtap before the ptap found above */
if (found_begin == 1)
(*max_working_cnt)++;
/*
* Restore VFIFO to old state before we decremented it
* (if needed).
*/
(*p)++;
if (*p > IO_DQS_EN_PHASE_MAX) {
*p = 0;
rw_mgr_incr_vfifo(grp, v);
}
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
}
static int sdr_nonworking_phase(uint32_t grp,
uint32_t *work_bgn, uint32_t *v, uint32_t *d,
uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
uint32_t *work_end)
{
int ret;
(*p)++;
*work_end += IO_DELAY_PER_OPA_TAP;
if (*p > IO_DQS_EN_PHASE_MAX) {
/* Fiddle with FIFO. */
*p = 0;
rw_mgr_incr_vfifo(grp, v);
}
ret = sdr_find_phase(0, grp, v, work_end, i, p, max_working_cnt);
if (ret) {
/* Cannot see edge of failing read. */
debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
__func__, __LINE__);
}
return ret;
}
/**
* sdr_find_window_center() - Find center of the working DQS window.
* @grp: Read/Write group
* @work_bgn: First working settings
* @work_end: Last working settings
* @val: VFIFO value
*
* Find center of the working DQS enable window.
*/
static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
const u32 work_end, const u32 val)
{
u32 bit_chk, work_mid, v = val;
int tmp_delay = 0;
int i, p, d;
work_mid = (work_bgn + work_end) / 2;
debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
work_bgn, work_end, work_mid);
/* Get the middle delay to be less than a VFIFO delay */
tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
work_mid %= tmp_delay;
debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
p = tmp_delay / IO_DELAY_PER_OPA_TAP;
debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
if (d > IO_DQS_EN_DELAY_MAX)
d = IO_DQS_EN_DELAY_MAX;
tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
/*
* push vfifo until we can successfully calibrate. We can do this
* because the largest possible margin in 1 VFIFO cycle.
*/
for (i = 0; i < VFIFO_SIZE; i++) {
debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
v);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
debug_cond(DLEVEL == 2,
"%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
__func__, __LINE__, v, p, d);
return 0;
}
/* Fiddle with FIFO. */
rw_mgr_incr_vfifo(grp, &v);
}
debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
__func__, __LINE__);
return -EINVAL;
}
/* find a good dqs enable to use */
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t v, d, p, i;
uint32_t max_working_cnt;
uint32_t bit_chk;
uint32_t dtaps_per_ptap;
uint32_t work_bgn, work_end;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
debug("%s:%d %u\n", __func__, __LINE__, grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
/* ************************************************************** */
/* * Step 0 : Determine number of delay taps for each phase tap * */
dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
/* ********************************************************* */
/* * Step 1 : First push vfifo until we get a failing read * */
v = find_vfifo_read(grp, &bit_chk);
max_working_cnt = 0;
/* ******************************************************** */
/* * step 2: find first working phase, increment in ptaps * */
work_bgn = 0;
if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d,
&p, &i, &max_working_cnt))
return 0;
work_end = work_bgn;
/*
* If d is 0 then the working window covers a phase tap and
* we can follow the old procedure otherwise, we've found the beginning,
* and we need to increment the dtaps until we find the end.
*/
if (d == 0) {
/* ********************************************************* */
/* * step 3a: if we have room, back off by one and
increment in dtaps * */
sdr_backup_phase(grp, &work_bgn, &v, &d, &p,
&max_working_cnt);
/* ********************************************************* */
/* * step 4a: go forward from working phase to non working
phase, increment in ptaps * */
if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
&i, &max_working_cnt, &work_end))
return 0;
/* ********************************************************* */
/* * step 5a: back off one from last, increment in dtaps * */
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/* * The actual increment of dtaps is done outside of
the if/else loop to share code */
d = 0;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
vfifo=%u ptap=%u\n", __func__, __LINE__,
v, p);
} else {
/* ******************************************************* */
/* * step 3-5b: Find the right edge of the window using
delay taps * */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
v, p, d, work_bgn);
work_end = work_bgn;
/* * The actual increment of dtaps is done outside of the
if/else loop to share code */
/* Only here to counterbalance a subtract later on which is
not needed if this branch of the algorithm is taken */
max_working_cnt++;
}
/* The dtap increment to find the failing edge is done here */
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
end-2: dtap=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
break;
}
}
/* Go back to working dtap */
if (d != 0)
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
v, p, d-1, work_end);
if (work_end < work_bgn) {
/* nil range */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
failed\n", __func__, __LINE__);
return 0;
}
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
__func__, __LINE__, work_bgn, work_end);
/* *************************************************************** */
/*
* * We need to calculate the number of dtaps that equal a ptap
* * To do that we'll back up a ptap and re-find the edge of the
* * window using dtaps
*/
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
for tracking\n", __func__, __LINE__);
/* Special case code for backing up a phase */
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
cycle/phase: v=%u p=%u\n", __func__, __LINE__,
v, p);
} else {
p = p - 1;
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
phase only: v=%u p=%u", __func__, __LINE__,
v, p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
/*
* Increase dtap until we first see a passing read (in case the
* window is smaller than a ptap),
* and then a failing read to mark the edge of the window again
*/
/* Find a passing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
__func__, __LINE__);
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
PASS_ONE_BIT,
&bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
/* Find a failing read */
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
read\n", __func__, __LINE__);
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
testing read d=%u\n", __func__, __LINE__, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
calculate dtaps", __func__, __LINE__);
debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
}
/*
* The dynamically calculated dtaps_per_ptap is only valid if we
* found a passing/failing read. If we didn't, it means d hit the max
* (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
* statically calculated value.
*/
if (found_passing_read && found_failing_read)
dtaps_per_ptap = d - initial_failing_dtap;
writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
- %u = %u", __func__, __LINE__, d,
initial_failing_dtap, dtaps_per_ptap);
/* ******************************************** */
/* * step 6: Find the centre of the window * */
if (sdr_find_window_centre(grp, work_bgn, work_end, v))
return 0; /* FIXME: Old code, return 0 means failure :-( */
return 1;
}
/* per-bit deskew DQ and center */
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
uint32_t addr;
debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
start_dqs = readl(addr + (read_group << 2));
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
start_dqs_en = readl(addr + ((read_group << 2)
- IO_DQS_EN_DELAY_OFFSET));
/* set the left and right edge of each bit to an illegal value */
/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
&& %u", __func__, __LINE__, d,
sticky_bit_chk,
param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as the
left_edge */
left_edge[i] = d;
} else {
/* If a left edge has not been seen yet,
then a future passing test will mark
this edge as the right edge */
if (left_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have seen
* both the left and right edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX)
delay = IO_DQS_EN_DELAY_MAX;
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
if (use_read_test) {
stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
&bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group - (write_group *
RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
%u && %u", __func__, __LINE__, d,
sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
/* Remember a passing test as
the right_edge */
right_edge[i] = d;
} else {
if (d != 0) {
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
/* d = 0 failed, but it passed
when testing the left edge,
so it must be marginal,
set it to -1 */
if (right_edge[i] ==
IO_IO_IN_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_IN_DELAY_MAX
+ 1) {
right_edge[i] = -1;
}
/* If a right edge has not been
seen yet, then a future passing
test will mark this edge as the
left edge */
else if (right_edge[i] ==
IO_IO_IN_DELAY_MAX +
1) {
left_edge[i] = -(d + 1);
}
}
}
debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
d=%u]: ", __func__, __LINE__, d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
== IO_IO_IN_DELAY_MAX + 1)) {
/*
* Restore delay chain settings before letting the loop
* in rw_mgr_mem_calibrate_vfifo to retry different
* dqs/ck relationships.
*/
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group,
start_dqs_en);
}
scc_mgr_load_dqs(read_group);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
find edge [%u]: %d %d", __func__, __LINE__,
i, left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO,
CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group *
RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
__func__, __LINE__, mid_min, min_index);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX)
new_dqs = IO_DQS_IN_DELAY_MAX;
else if (new_dqs < 0)
new_dqs = 0;
mid_min = start_dqs - new_dqs;
debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
else if (start_dqs_en - mid_min < 0)
mid_min += start_dqs_en - mid_min;
}
new_dqs = start_dqs - mid_min;
debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
new_dqs=%d mid_min=%d\n", start_dqs,
IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "vfifo_center: before: \
shift_dq[%u]=%d\n", i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
temp_dq_in_delay1 = readl(addr + (p << 2));
temp_dq_in_delay2 = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_in_delay1 >
(int32_t)IO_IO_IN_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
shift_dq = -(int32_t)temp_dq_in_delay1;
}
debug_cond(DLEVEL == 2, "vfifo_center: after: \
shift_dq[%u]=%d\n", i, shift_dq);
final_dq[i] = temp_dq_in_delay1 + shift_dq;
scc_mgr_set_dq_in_delay(p, final_dq[i]);
scc_mgr_load_dq(p);
debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
final_dqs_en = start_dqs_en - mid_min;
/* Move DQS-en */
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
/* Move DQS */
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
dqs_margin=%d", __func__, __LINE__,
dq_margin, dqs_margin);
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied. Apply the update bit.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
/**
* rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
* @rw_group: Read/Write Group
* @phase: DQ/DQS phase
*
* Because initially no communication ca be reliably performed with the memory
* device, the sequencer uses a guaranteed write mechanism to write data into
* the memory device.
*/
static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
const u32 phase)
{
int ret;
/* Set a particular DQ/DQS phase. */
scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-25
* Load up the patterns used by read calibration using the
* current DQDQS phase.
*/
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
return 0;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-26
* Back-to-Back reads of the patterns used for calibration.
*/
ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
if (ret)
debug_cond(DLEVEL == 1,
"%s:%d Guaranteed read test failed: g=%u p=%u\n",
__func__, __LINE__, rw_group, phase);
return ret;
}
/**
* rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* DQS enable calibration ensures reliable capture of the DQ signal without
* glitches on the DQS line.
*/
static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
const u32 test_bgn)
{
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-27
* DQS and DQS Eanble Signal Relationships.
*/
/* We start at zero, so have one less dq to devide among */
const u32 delay_step = IO_IO_IN_DELAY_MAX /
(RW_MGR_MEM_DQ_PER_READ_DQS - 1);
int found;
u32 i, p, d, r;
debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
/* Try different dq_in_delays since the DQ path is shorter than DQS. */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
for (i = 0, p = test_bgn, d = 0;
i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++, d += delay_step) {
debug_cond(DLEVEL == 1,
"%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
__func__, __LINE__, rw_group, r, i, p, d);
scc_mgr_set_dq_in_delay(p, d);
scc_mgr_load_dq(p);
}
writel(0, &sdr_scc_mgr->update);
}
/*
* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
* dq_in_delay values
*/
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
debug_cond(DLEVEL == 1,
"%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
__func__, __LINE__, rw_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
writel(0, &sdr_scc_mgr->update);
}
if (!found)
return -EINVAL;
return 0;
}
/**
* rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
* @use_read_test: Perform a read test
* @update_fom: Update FOM
*
* The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
* within a group.
*/
static int
rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
const int use_read_test,
const int update_fom)
{
int ret, grp_calibrated;
u32 rank_bgn, sr;
/*
* Altera EMI_RM 2015.05.04 :: Figure 1-28
* Read per-bit deskew can be done on a per shadow register basis.
*/
grp_calibrated = 1;
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
/* Check if this set of ranks should be skipped entirely. */
if (param->skip_shadow_regs[sr])
continue;
ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
rw_group, test_bgn,
use_read_test,
update_fom);
if (ret)
continue;
grp_calibrated = 0;
}
if (!grp_calibrated)
return -EIO;
return 0;
}
/**
* rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
* @rw_group: Read/Write Group
* @test_bgn: Rank at which the test begins
*
* Stage 1: Calibrate the read valid prediction FIFO.
*
* This function implements UniPHY calibration Stage 1, as explained in
* detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
*
* - read valid prediction will consist of finding:
* - DQS enable phase and DQS enable delay (DQS Enable Calibration)
* - DQS input phase and DQS input delay (DQ/DQS Centering)
* - we also do a per-bit deskew on the DQ lines.
*/
static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
{
uint32_t p, d;
uint32_t dtaps_per_ptap;
uint32_t failed_substage;
int ret;
debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
/* Update info for sims */
reg_file_set_group(rw_group);
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
/* USER Determine number of delay taps for each phase tap. */
dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
for (d = 0; d <= dtaps_per_ptap; d += 2) {
/*
* In RLDRAMX we may be messing the delay of pins in
* the same write rw_group but outside of the current read
* the rw_group, but that's ok because we haven't calibrated
* output side yet.
*/
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(
rw_group, d);
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
/* 1) Guaranteed Write */
ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
if (ret)
break;
/* 2) DQS Enable Calibration */
ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
test_bgn);
if (ret) {
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
continue;
}
/* 3) Centering DQ/DQS */
/*
* If doing read after write calibration, do not update
* FOM now. Do it then.
*/
ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
test_bgn, 1, 0);
if (ret) {
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
continue;
}
/* All done. */
goto cal_done_ok;
}
}
/* Calibration Stage 1 failed. */
set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
/* Calibration Stage 1 completed OK. */
cal_done_ok:
/*
* Reset the delay chains back to zero if they have moved > 1
* (check for > 1 because loop will increase d even when pass in
* first case).
*/
if (d > 2)
scc_mgr_zero_group(rw_group, 1);
return 1;
}
/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
write_group = read_group;
/* update info for sims */
reg_file_set_group(read_group);
grp_calibrated = 1;
/* Read per-bit deskew can be done on a per shadow register basis */
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
/* Determine if this set of ranks should be skipped entirely */
if (!param->skip_shadow_regs[sr]) {
/* This is the last calibration round, update FOM here */
if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
write_group,
read_group,
test_bgn, 0,
1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
/* Calibrate LFIFO to find smallest read latency */
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
uint32_t bit_chk;
debug("%s:%d\n", __func__, __LINE__);
/* update info for sims */
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
/* Load up the patterns used by read calibration for all ranks */
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
found_one = 0;
do {
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
__func__, __LINE__, gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
NUM_READ_TESTS,
PASS_ALL_BITS,
&bit_chk, 1)) {
break;
}
found_one = 1;
/* reduce read latency and see if things are working */
/* correctly */
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
if (found_one) {
/* add a fudge factor to the read latency that was determined */
gbl->curr_read_lat += 2;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
CAL_SUBSTAGE_READ_LATENCY);
debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
read_lat=%u\n", __func__, __LINE__,
gbl->curr_read_lat);
return 0;
}
}
/*
* issue write test command.
* two variants are provided. one that just tests a write pattern and
* another that tests datamask functionality.
*/
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
ENABLE_SUPER_QUICK_CALIBRATION);
uint32_t rw_wl_nop_cycles;
uint32_t addr;
/*
* Set counter and jump addresses for the right
* number of NOP cycles.
* The number of supported NOP cycles can range from -1 to infinity
* Three different cases are handled:
*
* 1. For a number of NOP cycles greater than 0, the RW Mgr looping
* mechanism will be used to insert the right number of NOPs
*
* 2. For a number of NOP cycles equals to 0, the micro-instruction
* issuing the write command will jump straight to the
* micro-instruction that turns on DQS (for DDRx), or outputs write
* data (for RLD), skipping
* the NOP micro-instruction all together
*
* 3. A number of NOP cycles equal to -1 indicates that DQS must be
* turned on in the same micro-instruction that issues the write
* command. Then we need
* to directly jump to the micro-instruction that sends out the data
*
* NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
* (2 and 3). One jump-counter (0) is used to perform multiple
* write-read operations.
* one counter left to issue this command in "multiple-group" mode
*/
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
/*
* CNTR 2 - We want to execute the special write operation that
* turns on DQS right away and then skip directly to the
* instruction that sends out the data. We set the counter to a
* large number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
} else if (rw_wl_nop_cycles == 0) {
/*
* CNTR 2 - We want to skip the NOP operation and go straight
* to the DQS enable instruction. We set the counter to a large
* number so that the jump is always taken.
*/
writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
/* CNTR 3 - Not used */
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
&sdr_rw_load_jump_mgr_regs->load_jump_add2);
}
} else {
/*
* CNTR 2 - In this case we want to execute the next instruction
* and NOT take the jump. So we set the counter to 0. The jump
* address doesn't count.
*/
writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
/*
* CNTR 3 - Set the nop counter to the number of cycles we
* need to loop for, minus 1.
*/
writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
if (test_dm) {
mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
} else {
mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
&sdr_rw_load_jump_mgr_regs->load_jump_add3);
}
}
writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RESET_READ_DATAPATH_OFFSET);
if (quick_write_mode)
writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
else
writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
/*
* CNTR 1 - This is used to ensure enough time elapses
* for read data to come back.
*/
writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
if (test_dm) {
writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
} else {
writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
}
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
writel(mcc_instruction, addr + (group << 2));
}
/* Test writes, can check for a single bit pass or multiple bit pass */
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
uint32_t *bit_chk, uint32_t all_ranks)
{
uint32_t r;
uint32_t correct_mask_vg;
uint32_t tmp_bit_chk;
uint32_t vg;
uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t addr_rw_mgr;
uint32_t base_rw_mgr;
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
/* request to skip the rank */
continue;
}
/* set rank */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
/* reset the fifos to get pointers to known state */
writel(0, &phy_mgr_cmd->fifo_reset);
tmp_bit_chk = tmp_bit_chk <<
(RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
use_dm);
base_rw_mgr = readl(addr_rw_mgr);
tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
if (vg == 0)
break;
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
%u => %lu", write_group, use_dm,
*bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk ==
param->write_correct_mask));
return *bit_chk == param->write_correct_mask;
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
write_group, use_dm, *bit_chk);
debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return *bit_chk != 0x00;
}
}
/*
* center all windows. do per-bit-deskew to possibly increase size of
* certain windows.
*/
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
uint32_t write_group, uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
/*
* Store these as signed since there are comparisons with
* signed numbers.
*/
uint32_t bit_chk;
uint32_t sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
uint32_t temp_dq_out1_delay;
uint32_t addr;
debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
dm_margin = 0;
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
start_dqs = readl(addr +
(RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
/* per-bit deskew */
/*
* set the left and right edge of each bit to an illegal value
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
*/
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the left edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, d);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
== %u && %u [bit_chk= %u ]\n",
d, sticky_bit_chk, param->write_correct_mask,
stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as the
* left_edge.
*/
left_edge[i] = d;
} else {
/*
* If a left edge has not been seen
* yet, then a future passing test will
* mark this edge as the right edge.
*/
if (left_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Reset DQ delay chains to 0 */
scc_mgr_apply_group_dq_out1_delay(0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d\n", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
/*
* Check for cases where we haven't found the left edge,
* which makes our assignment of the the right edge invalid.
* Reset it to the illegal value.
*/
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
(right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
right_edge[%u]: %d\n", __func__, __LINE__,
i, right_edge[i]);
}
/*
* Reset sticky bit (except for bits where we have
* seen the left edge).
*/
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
sticky_bit_chk = sticky_bit_chk | 1;
if (i == 0)
break;
}
/* Search for the right edge of the window for each bit */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + start_dqs);
writel(0, &sdr_scc_mgr->update);
/*
* Stop searching when the read test doesn't pass AND when
* we've seen a passing read on every bit.
*/
stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
0, PASS_ONE_BIT, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
%u && %u\n", d, sticky_bit_chk,
param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
i++) {
/* d = 0 failed, but it passed when
testing the left edge, so it must be
marginal, set it to -1 */
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
/*
* Remember a passing test as
* the right_edge.
*/
right_edge[i] = d;
} else {
if (d != 0) {
/*
* If a right edge has not
* been seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1)
left_edge[i] = -(d + 1);
} else {
/*
* d = 0 failed, but it passed
* when testing the left edge,
* so it must be marginal, set
* it to -1.
*/
if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX + 1 &&
left_edge[i] !=
IO_IO_OUT1_DELAY_MAX + 1)
right_edge[i] = -1;
/*
* If a right edge has not been
* seen yet, then a future
* passing test will mark this
* edge as the left edge.
*/
else if (right_edge[i] ==
IO_IO_OUT1_DELAY_MAX +
1)
left_edge[i] = -(d + 1);
}
}
debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
(int)(bit_chk & 1), i, left_edge[i]);
debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
/* Check that all bits have a window */
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
%d right_edge[%u]: %d", __func__, __LINE__,
i, left_edge[i], i, right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
(right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i,
CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
/* Find middle of window for each DQ bit */
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
/*
* -mid_min/2 represents the amount that we need to move DQS.
* If mid_min is odd and positive we'll need to add one to
* make sure the rounding in further calculations is correct
* (always bias to the right), so just add 1 for all positive values.
*/
if (mid_min > 0)
mid_min++;
mid_min = mid_min / 2;
debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
__LINE__, mid_min);
/* Determine the amount we can change DQS (which is -mid_min) */
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
/* Initialize data for export structures */
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
/* add delay to bring centre of all DQ windows to the same "level" */
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
/* Use values before divide by 2 to reduce round off error */
shift_dq = (left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index]))/2 +
(orig_mid_min - mid_min);
debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
[%u]=%d\n", __func__, __LINE__, i, shift_dq);
addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
temp_dq_out1_delay = readl(addr + (i << 2));
if (shift_dq + (int32_t)temp_dq_out1_delay >
(int32_t)IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
shift_dq = -(int32_t)temp_dq_out1_delay;
}
debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
i, shift_dq);
scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
scc_mgr_load_dq(i);
debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
left_edge[i] - shift_dq + (-mid_min),
right_edge[i] + shift_dq - (-mid_min));
/* To determine values for export structures */
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
dq_margin = left_edge[i] - shift_dq + (-mid_min);
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
/* Move DQS */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
writel(0, &sdr_scc_mgr->update);
/* Centre DM */
debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
/*
* set the left and right edge of each bit to an illegal value,
* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
*/
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
/* Search for the/part of the window with DM shift */
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(d);
writel(0, &sdr_scc_mgr->update);
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = -d;
/*
* If a starting edge of our window has not been seen
* this is our current start of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = -d;
/*
* If current window is bigger than best seen.
* Set best seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
}
/* Reset DM delay chains to 0 */
scc_mgr_apply_group_dm_out1_delay(0);
/*
* Check to see if the current window nudges up aganist 0 delay.
* If so we need to continue the search by shifting DQS otherwise DQS
* search begins as a new search. */
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
/* Search for the/part of the window with DQS shifts */
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
/*
* Note: This only shifts DQS, so are we limiting ourselve to
* width of DQ unnecessarily.
*/
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
d + new_dqs);
writel(0, &sdr_scc_mgr->update);
if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk,
0)) {
/* USE Set current end of the window */
end_curr = d;
/*
* If a beginning edge of our window has not been seen
* this is our current begin of the DM window.
*/
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
bgn_curr = d;
/*
* If current window is bigger than best seen. Set best
* seen to be current window.
*/
if ((end_curr-bgn_curr+1) > win_best) {
win_best = end_curr-bgn_curr+1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
/* We just saw a failing test. Reset temp edge */
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
/* Early exit optimization: if ther remaining delay
chain space is less than already seen largest window
we can exit */
if ((win_best-1) >
(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
}
}
}
/* assign left and right edge for cal and reporting; */
left_edge[0] = -1*bgn_best;
right_edge[0] = end_best;
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
__LINE__, left_edge[0], right_edge[0]);
/* Move DQS (back to orig) */
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
/* Move DM */
/* Find middle of window for the DM bit */
mid = (left_edge[0] - right_edge[0]) / 2;
/* only move right, since we are not moving DQS/DQ */
if (mid < 0)
mid = 0;
/* dm_marign should fail if we never find a window */
if (win_best == 0)
dm_margin = -1;
else
dm_margin = left_edge[0] - mid;
scc_mgr_apply_group_dm_out1_delay(mid);
writel(0, &sdr_scc_mgr->update);
debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
dm_margin=%d\n", __func__, __LINE__, left_edge[0],
right_edge[0], mid, dm_margin);
/* Export values */
gbl->fom_out += dq_margin + dqs_margin;
debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
dq_margin, dqs_margin, dm_margin);
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
/* calibrate the write operations */
static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
uint32_t test_bgn)
{
/* update info for sims */
debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
/**
* mem_precharge_and_activate() - Precharge all banks and activate
*
* Precharge all banks and activate row 0 in bank "000..." and bank "111...".
*/
static void mem_precharge_and_activate(void)
{
int r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
/* Test if the rank should be skipped. */
if (param->skip_ranks[r])
continue;
/* Set rank. */
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
/* Precharge all banks. */
writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
&sdr_rw_load_jump_mgr_regs->load_jump_add0);
writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
&sdr_rw_load_jump_mgr_regs->load_jump_add1);
/* Activate rows. */
writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
RW_MGR_RUN_SINGLE_GROUP_OFFSET);
}
}
/**
* mem_init_latency() - Configure memory RLAT and WLAT settings
*
* Configure memory RLAT and WLAT parameters.
*/
static void mem_init_latency(void)
{
/*
* For AV/CV, LFIFO is hardened and always runs at full rate
* so max latency in AFI clocks, used here, is correspondingly
* smaller.
*/
const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
u32 rlat, wlat;
debug("%s:%d\n", __func__, __LINE__);
/*
* Read in write latency.
* WL for Hard PHY does not include additive latency.
*/
wlat = readl(&data_mgr->t_wl_add);
wlat += readl(&data_mgr->mem_t_add);
gbl->rw_wl_nop_cycles = wlat - 1;
/* Read in readl latency. */
rlat = readl(&data_mgr->t_rl_add);
/* Set a pretty high read latency initially. */
gbl->curr_read_lat = rlat + 16;
if (gbl->curr_read_lat > max_latency)
gbl->curr_read_lat = max_latency;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
/* Advertise write latency. */
writel(wlat, &phy_mgr_cfg->afi_wlat);
}
/**
* @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
*
* Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
*/
static void mem_skip_calibrate(void)
{
uint32_t vfifo_offset;
uint32_t i, j, r;
debug("%s:%d\n", __func__, __LINE__);
/* Need to update every shadow register set used by the interface */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
r += NUM_RANKS_PER_SHADOW_REG) {
/*
* Set output phase alignment settings appropriate for
* skip calibration.
*/
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_en_phase(i, 0);
#if IO_DLL_CHAIN_LENGTH == 6
scc_mgr_set_dqdqs_output_phase(i, 6);
#else
scc_mgr_set_dqdqs_output_phase(i, 7);
#endif
/*
* Case:33398
*
* Write data arrives to the I/O two cycles before write
* latency is reached (720 deg).
* -> due to bit-slip in a/c bus
* -> to allow board skew where dqs is longer than ck
* -> how often can this happen!?
* -> can claim back some ptaps for high freq
* support if we can relax this, but i digress...
*
* The write_clk leads mem_ck by 90 deg
* The minimum ptap of the OPA is 180 deg
* Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
* The write_clk is always delayed by 2 ptaps
*
* Hence, to make DQS aligned to CK, we need to delay
* DQS by:
* (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
*
* Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
* gives us the number of ptaps, which simplies to:
*
* (1.25 * IO_DLL_CHAIN_LENGTH - 2)
*/
scc_mgr_set_dqdqs_output_phase(i,
1.25 * IO_DLL_CHAIN_LENGTH - 2);
}
writel(0xff, &sdr_scc_mgr->dqs_ena);
writel(0xff, &sdr_scc_mgr->dqs_io_ena);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
}
writel(0xff, &sdr_scc_mgr->dq_ena);
writel(0xff, &sdr_scc_mgr->dm_ena);
writel(0, &sdr_scc_mgr->update);
}
/* Compensate for simulation model behaviour */
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs(i);
}
writel(0, &sdr_scc_mgr->update);
/*
* ArriaV has hard FIFOs that can only be initialized by incrementing
* in sequencer.
*/
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++)
writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
writel(0, &phy_mgr_cmd->fifo_reset);
/*
* For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
* setting from generation-time constant.
*/
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
}
/**
* mem_calibrate() - Memory calibration entry point.
*
* Perform memory calibration.
*/
static uint32_t mem_calibrate(void)
{
uint32_t i;
uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
uint32_t failing_groups = 0;
uint32_t group_failed = 0;
const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
debug("%s:%d\n", __func__, __LINE__);
/* Initialize the data settings */
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
/* Initialize WLAT and RLAT. */
mem_init_latency();
/* Initialize bit slips. */
mem_precharge_and_activate();
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
/* Only needed once to set all groups, pins, DQ, DQS, DM. */
if (i == 0)
scc_mgr_set_hhp_extras();
scc_set_bypass_mode(i);
}
/* Calibration is skipped. */
if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
/*
* Set VFIFO and LFIFO to instant-on settings in skip
* calibration mode.
*/
mem_skip_calibrate();
/*
* Do not remove this line as it makes sure all of our
* decisions have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/* Calibration is not skipped. */
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
/*
* Zero all delay chain/phase settings for all
* groups and all shadow register sets.
*/
scc_mgr_zero_all();
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0; write_group
< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
/* Initialize the group failure */
group_failed = 0;
current_run = run_groups & ((1 <<
RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >>
RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0)
continue;
writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
SCC_MGR_GROUP_COUNTER_OFFSET);
scc_mgr_zero_group(write_group, 0);
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
continue;
/* Calibrate the VFIFO */
if (rw_mgr_mem_calibrate_vfifo(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
}
/* Calibrate the output side */
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
/* Not needed in quick mode! */
if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
continue;
/*
* Determine if this set of ranks
* should be skipped entirely.
*/
if (param->skip_shadow_regs[sr])
continue;
/* Calibrate WRITEs */
if (rw_mgr_mem_calibrate_writes(rank_bgn,
write_group, write_test_bgn))
continue;
group_failed = 1;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
}
/* Some group failed, we're done. */
if (group_failed)
goto grp_failed;
for (read_group = write_group * rwdqs_ratio,
read_test_bgn = 0;
read_group < (write_group + 1) * rwdqs_ratio;
read_group++,
read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
continue;
if (rw_mgr_mem_calibrate_vfifo_end(read_group,
read_test_bgn))
continue;
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
return 0;
/* The group failed, we're done. */
goto grp_failed;
}
/* No group failed, continue as usual. */
continue;
grp_failed: /* A group failed, increment the counter. */
failing_groups++;
}
/*
* USER If there are any failing groups then report
* the failure.
*/
if (failing_groups != 0)
return 0;
if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
continue;
/*
* If we're skipping groups as part of debug,
* don't calibrate LFIFO.
*/
if (param->skip_groups != 0)
continue;
/* Calibrate the LFIFO */
if (!rw_mgr_mem_calibrate_lfifo())
return 0;
}
/*
* Do not remove this line as it makes sure all of our decisions
* have been applied.
*/
writel(0, &sdr_scc_mgr->update);
return 1;
}
/**
* run_mem_calibrate() - Perform memory calibration
*
* This function triggers the entire memory calibration procedure.
*/
static int run_mem_calibrate(void)
{
int pass;
debug("%s:%d\n", __func__, __LINE__);
/* Reset pass/fail status shown on afi_cal_success/fail */
writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
/* Stop tracking manager. */
clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
phy_mgr_initialize();
rw_mgr_mem_initialize();
/* Perform the actual memory calibration. */
pass = mem_calibrate();
mem_precharge_and_activate();
writel(0, &phy_mgr_cmd->fifo_reset);
/* Handoff. */
rw_mgr_mem_handoff();
/*
* In Hard PHY this is a 2-bit control:
* 0: AFI Mux Select
* 1: DDIO Mux Select
*/
writel(0x2, &phy_mgr_cfg->mux_sel);
/* Start tracking manager. */
setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
return pass;
}
/**
* debug_mem_calibrate() - Report result of memory calibration
* @pass: Value indicating whether calibration passed or failed
*
* This function reports the results of the memory calibration
* and writes debug information into the register file.
*/
static void debug_mem_calibrate(int pass)
{
uint32_t debug_info;
if (pass) {
printf("%s: CALIBRATION PASSED\n", __FILE__);
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff)
gbl->fom_in = 0xff;
if (gbl->fom_out > 0xff)
gbl->fom_out = 0xff;
/* Update the FOM in the register file */
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
writel(debug_info, &sdr_reg_file->fom);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
} else {
printf("%s: CALIBRATION FAILED\n", __FILE__);
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
writel(debug_info, &phy_mgr_cfg->cal_debug_info);
writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
/* Update the failing group/stage in the register file */
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
writel(debug_info, &sdr_reg_file->failing_stage);
}
printf("%s: Calibration complete\n", __FILE__);
}
/**
* hc_initialize_rom_data() - Initialize ROM data
*
* Initialize ROM data.
*/
static void hc_initialize_rom_data(void)
{
u32 i, addr;
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
writel(inst_rom_init[i], addr + (i << 2));
addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
writel(ac_rom_init[i], addr + (i << 2));
}
/**
* initialize_reg_file() - Initialize SDR register file
*
* Initialize SDR register file.
*/
static void initialize_reg_file(void)
{
/* Initialize the register file with the correct data */
writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
writel(0, &sdr_reg_file->debug_data_addr);
writel(0, &sdr_reg_file->cur_stage);
writel(0, &sdr_reg_file->fom);
writel(0, &sdr_reg_file->failing_stage);
writel(0, &sdr_reg_file->debug1);
writel(0, &sdr_reg_file->debug2);
}
/**
* initialize_hps_phy() - Initialize HPS PHY
*
* Initialize HPS PHY.
*/
static void initialize_hps_phy(void)
{
uint32_t reg;
/*
* Tracking also gets configured here because it's in the
* same register.
*/
uint32_t trk_sample_count = 7500;
uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
/*
* Format is number of outer loops in the 16 MSB, sample
* count in 16 LSB.
*/
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
/*
* This field selects the intrinsic latency to RDATA_EN/FULL path.
* 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
*/
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
trk_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl0);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
trk_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
trk_long_idle_sample_count);
writel(reg, &sdr_ctrl->phy_ctrl1);
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
trk_long_idle_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
writel(reg, &sdr_ctrl->phy_ctrl2);
}
/**
* initialize_tracking() - Initialize tracking
*
* Initialize the register file with usable initial data.
*/
static void initialize_tracking(void)
{
/*
* Initialize the register file with the correct data.
* Compute usable version of value in case we skip full
* computation later.
*/
writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
&sdr_reg_file->dtaps_per_ptap);
/* trk_sample_count */
writel(7500, &sdr_reg_file->trk_sample_count);
/* longidle outer loop [15:0] */
writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
/*
* longidle sample count [31:24]
* trfc, worst case of 933Mhz 4Gb [23:16]
* trcd, worst case [15:8]
* vfifo wait [7:0]
*/
writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
&sdr_reg_file->delays);
/* mux delay */
writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
(RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
&sdr_reg_file->trk_rw_mgr_addr);
writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
&sdr_reg_file->trk_read_dqs_width);
/* trefi [7:0] */
writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
&sdr_reg_file->trk_rfsh);
}
int sdram_calibration_full(void)
{
struct param_type my_param;
struct gbl_type my_gbl;
uint32_t pass;
memset(&my_param, 0, sizeof(my_param));
memset(&my_gbl, 0, sizeof(my_gbl));
param = &my_param;
gbl = &my_gbl;
/* Set the calibration enabled by default */
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
/*
* Only sweep all groups (regardless of fail state) by default
* Set enabled read test by default.
*/
#if DISABLE_GUARANTEED_READ
gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
/* Initialize the register file */
initialize_reg_file();
/* Initialize any PHY CSR */
initialize_hps_phy();
scc_mgr_initialize();
initialize_tracking();
printf("%s: Preparing to start memory calibration\n", __FILE__);
debug("%s:%d\n", __func__, __LINE__);
debug_cond(DLEVEL == 1,
"DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
debug_cond(DLEVEL == 1,
"dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
IO_IO_OUT2_DELAY_MAX);
debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
hc_initialize_rom_data();
/* update info for sims */
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
/*
* Load global needed for those actions that require
* some dynamic calibration support.
*/
dyn_calib_steps = STATIC_CALIB_STEPS;
/*
* Load global to allow dynamic selection of delay loop settings
* based on calibration mode.
*/
if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
skip_delay_mask = 0xff;
else
skip_delay_mask = 0x0;
pass = run_mem_calibrate();
debug_mem_calibrate(pass);
return pass;
}